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Abstract

Background: An assumption of Digital Image Correlation (DIC) is that the displacement field within each subset

is relatively smooth, captured with reasonable accuracy by, for example, linear or quadratic shape functions. Although

this assumption works well for many materials, it becomes problematic for heterogeneous materials, such as fiber

networks, wherein the length scale of heterogeneity matches the size of a subset. Objective: Here we applied DIC

to fibrous networks made of collagen, for which displacements at the scale of a subset are highly heterogeneous, but

errors caused by the heterogeneity are difficult to quantify. We developed a method to quantify such errors. Methods:

We began by generating a synthetic three-dimensional fiber network with structure matching that of gels made of

fibrous collagen. We then formulated an algorithm to mimic the way in which a confocal microscope images the

fibers at its focal plane, thereby generating synthetic images similar to those obtained in experiments. Displacement

boundary conditions were applied to the synthetic fiber networks, and the resulting displacement fields were computed

using a finite element solver. DIC was applied to the synthetic images, and displacements were compared to the data

from the finite element method, enabling rigorous quantification of error. Results: Point-wise errors in the DIC-

measured displacements were substantial, often exceeding 40%, but over regions far larger than the length scales of

heterogeneity or the DIC subset size, errors were modest, e.g., ≤ 15%. Conclusions: Although DIC can accurately

measure displacements of fiber networks at length scales larger than the subset window, quantification of mechanical

behavior at the scale of material heterogeneity will require new methods to complement or replace the use of DIC.

2



Introduction

Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) use random patterns on or within the

test specimen as a messenger of deformation data [1]. The random patterns, often referred to as speckle patterns,

create distributions of intensity, which control the accuracy of these techniques. To ensure sufficient information is

contained, it is common to deposit artificial speckle patterns on the surface of the specimen prior to imaging. Whereas

application of the speckle pattern and use of DIC is straightforward for homogeneous materials, care must be exercised

when studying heterogeneous materials, for which accurately capturing the heterogeneous deformations requires that

the length scale of the speckles be smaller than the length scale of the material heterogeneity. This separation of scales

ensures that the DIC algorithm’s built-in shape functions accurately match the true deformations undergone by the

material. Mismatch causes interpolation bias, which, in addition to correlation noise, is a major source of error in DIC

measurements [2]. Using artificially generated speckles, it is often possible to achieve separation of scales, and DIC

has successfully been applied to numerous heterogeneous materials, such as fiber-reinforced composites [3], gels [4],

foams [5], concrete [6], polycrystals [7], and soils [8].

However, there are numerous instances in which it is challenging or impractical to add a customized speckle pattern

to the specimen. Examples include microcomputed X-ray tomographic images of bone [9–11], confocal microscope

images of fibrous materials [12–17], and satellite images of the earth’s surface [18–20]. In these examples, the user

must rely on natural texture, resulting from, for example, heterogeneous microstructure or random topography. The

natural texture is sometimes referred to as natural speckles. There exist two major concerns that can increase the

measurement error. Firstly, with natural speckles, the user has less control over the distribution of intensity. Secondly,

in contrast to artificial speckles, natural speckles exist on the same length scale as heterogeneity within the material.

While the first concern can often be mitigated by altering the imaging settings, the second always persists. Moreover,

when using natural speckles, it is common for the desired spatial resolution to match the length scale of material

heterogeneity, which could further enhance measurement errors [21]. There is no established method to quantify these

errors.

Here, we developed a method to quantify errors associated with use of DIC on images of a highly heterogeneous

material. The material chosen was a network of fibers made of collagen, with the individual fibers themselves serving

as the random high contrast speckle pattern. The length scale of the material heterogeneity, the fibers, is comparable

to the desired spatial resolution, making the application of DIC to this type of material subject to the errors described

above. A further complication is that these fibrous materials also exhibit local heterogeneities in stiffness that renders

the displacement field to be nonaffine, i.e., deviating from the case of uniform strain [22]. Several numerical models

of fiber networks have reported nonaffine displacements by considering each fiber as a beam that resists both lateral
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Figure 1: (a) Flowchart of the overall method. (b) Flowchart of algorithm to generate synthetic images.

bending and axial stretching [23–27]. Since fibers in collagen networks are slender, the dimensionless ratio of stiffness

in bending to stretching is small, typically on the order of 10−4 [28–31]. As a result, the mechanics are dominated by

fiber bending, which, due to randomness of the fiber network, causes the displacement field to be highly heterogeneous

on the length scale of the fibers. Experiments have corroborated these findings by quantifying heterogeneous fiber

rotations [32] and displacements [33–36]. The local heterogeneity causes the deformation field to differ strongly

from the shape functions built into the DIC algorithm, which could generate appreciable errors [21, 37]. It remains

difficult to quantify these errors, because the true displacement field is typically unknown. Inspired by a workflow

proposed in ref. [38], we quantified errors by applying DIC to simulated (synthetic) images for which the ground-truth

displacement fields were known. We started by creating an algorithm to generate synthetic images from a numerical

three-dimensional (3D) model. These images resembled those captured by a confocal microscope on gels made of

collagen fibers. Finite element (FE) software was used to apply displacement boundary conditions to the model

and to solve for the deformed state. For both the reference and deformed states, we generated the corresponding

synthetic images, and correlated them using DIC. The results were then compared with the FE data, enabling precise

quantification of errors

Methods

A summary of our methodology is shown in Fig. 1a. In brief, we created synthetic 3D models of fiber networks

and used FE software to deform them under realistic loading conditions. Synthetic images were generated from the

fiber networks before and after deformation, allowing for the use of DIC to estimate the displacements. Comparison

between the data from FE and the estimated data from DIC enabled quantification of errors. Below, we elaborate on

each step.
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Confocal Microscopy

We began by imaging gels made of fibrous collagen. We neutralized acidified rat tail collagen type I (Corning)

with a buffer and added a fluorescent dye. Then we polymerized that mixture at 22◦C to obtain a matrix of labelled

collagen fibers. We prepared collagen matrices at a concentration 2 mg/mL. Full details are given in our prior study

[17].

The collagen matrices were imaged with a spinning disk confocal microscope (Yokogawa CSU-X1) having pin-

holes of diameter 50 µm. The spinning disk system was attached to a Ti-E base (Nikon). Images were acquired with

a 20× 0.75 NA air objective (Nikon) and a Zyla sCMOS camera (Andor). The system was run with IQ3 acquisition

software (Andor).

Generation of Synthetic Random 3D Fiber Networks

We generated synthetic 3D random fiber networks with tunable fiber length and nodal density using a previously

developed algorithm [27] that uses a simulated annealing-based technique, originally proposed elsewhere [39, 40], to

achieve desired distributions of fiber length (defined as the distance between nodes corresponding to the endpoints of

each fiber) and connectivity (defined as the number of fibers meeting at each node). In brief, the algorithm deposits

nodes in space, connects them with fibers, and then moves the nodes and swaps fibers between different nodes until the

desired average fiber length, alignment, and connectivity is achieved. This algorithm can generate networks with do-

main dimensions and average fiber lengths at any length scale. The algorithm is available online in a public repository

at the link in the Code Availability statement.

For this study, we generated random fiber networks that matched the images of the collagen gels. The average

fiber length L f was chosen to be 20 and 30 µm, which matches previously reported fiber lengths in collagen gels

prepared under similar conditions [36]. For each value of fiber length, we generated two networks each having a value

of nodal density (nodes/volume), 0.01 and 0.025 nodes/µm3, which qualitatively matched the densities of the imaged

collagen gels. Thus, there were four different fiber networks as summarized in Table 1. Fiber networks generated

by this algorithm had a tendency to deposit more nodes near domain edges causing non-uniformity in nodal density,

so nodes near the edges were cropped out. After cropping, the in-plane (x and y) dimensions, Lx and Ly, were each

chosen to be 245 µm, which matches the dimensions of images acquired by the confocal microscope. The out-of-

plane (z) dimension, Lz, was chosen to be 5 µm to reduce the computational time required for network generation and

subsequent FE calculations.

5



Network L f (µm) Nodal density (nodes/µm3)
A 20 0.01
B 30 0.01
C 20 0.025
D 30 0.025

Table 1: Details of the four different synthetic networks generated to mimic collagen gels.

Finite Element Simulations

On each network, we imposed several different displacement boundary conditions by performing 3D FE sim-

ulations using the commercially available FE software Abaqus (Dassault Systèmes). Each fiber was modeled as a

three-noded quadratic beam element, and connections between fibers were welded such that they transmitted both

forces and moments. During loading, fiber networks exhibit nonlinearity, which results primarily from geometric

changes associated with displacement and realignment of fibers rather than inherent nonlinearity of the individual

fibers [41, 42]. Hence for the sake of simplicity, we assumed each fiber to be linear and elastic.

As network deformations were large, we used the Newton-Raphson based quasi-static solver, as in our prior work

[43]. As this solver is unable to converge to a static equilibrium for very large geometric nonlinearities [44], we

divided the full applied displacement boundary condition into multiple equally spaced load steps, finding 20 steps

to be sufficient. The use of 20 steps reduced the convergence error but did not eliminate it. However, because this

work used only the FE results for DIC, and because DIC quantifies only the kinematics, our study required only that

the computed displacement fields be kinematically compatible, which is ensured regardless of whether perfect force

equilibrium was achieved.

Generation of Synthetic Images

Here we describe our procedure to generate synthetic images of the fiber network before and after undergoing

deformations imposed by the FE solver. We mimicked imaging of collagen gels by confocal microscopy, in which

image features at the focal plane of the specimen are convolved with the point spread function (PSF), which is defined

as the image created by a point source of light. We formulated an algorithm to simulate such imaging, as described in

the following four steps and summarized in Fig. 1b. Code to run the algorithm is available in a public repository at the

link in the Code Availability statement.

Step 1: Generation of the PSF

We began by noting that a confocal microscope produces a two-dimensional (2D) image by sampling the 3D space,

where the thickness of the image in the out-of-plane (z) direction depends on the PSF. The theoretical intensity I of
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the PSF of a confocal microscope having pinhole size smaller than the resolution limit is given by [45, 46]

I(z̃, r̃) =
(

2
z̃

)4 [
U2

1 (z̃, r̃)+U2
2 (z̃, r̃)

]2
I0, (1)

where I0 is the peak intensity at the focal point, U1 and U2 are Lommel functions of order 1 and 2, respectively, and z̃

and r̃ are dimensionless spatial parameters,

z̃ =
2π

λ

NA2

n
z and r̃ =

2π

λ
NA

√
x2 + y2, (2)

with NA being the numerical aperture of microscope, λ being the wavelength of light, n being the refractive index of

the immersion medium (air, water, or oil) between the specimen and objective, and x, y and z being spatial coordinates

where the image is acquired in the x–y plane. A Lommel function of order n is defined as

Un(z̃, r̃) =
∞

∑
s=0

(−1)s
(

z̃
r̃

)n+2s

Jn+2s (r̃) , (3)

where Jn+2s (r̃) is the Bessel function of the first kind of order (n+2s). Plots of the PSF are shown in Fig. 2a–b.

The parameters matching the imaging of the collagen gels were n = 1, λ = 0.525 µm, and NA = 0.75, though in

creating the synthetic images we also considered NA = 0.65 and NA = 0.7 to account for reduced resolution caused

by using a pinhole larger than the width of the PSF, which is typical in confocal microscopy, because a small pinhole

allows too little light through, requiring the user to increase either the imaging time or the illumination power, both

of which can cause photobleaching. Hence, confocal microscopes typically use a pinhole larger than the width of the

PSF, and in our case, the pinhole diameter was 50 µm.

Step 2: Generation of Fiber Images for Convolution with PSF

With the PSF established, the next step was to convolve the 3D PSF with a 3D image of the synthetic fiber

network. To reduce computation time, the 3D convolution was approximated by a series of 2D convolutions (Fig. 2c);

this approximation has been studied in detail in the use of convolutional neural networks [47]. The 2D convolutions

were performed on synthetic images containing all fibers within a range of z̃ positions. The ranges of z̃ positions were

defined by limiting positions, chosen such that at location r̃ = 0, the intensity of the PSF was 90%, 60%, 30%, and 0%

of its maximum value. The corresponding dimensionless positions were z̃ = ±1.58, ±3.46, ±5.22, ±10.03, which,

using our imaging parameters, corresponded to z =±0.27, ±0.59, ±0.89, and ±1.71 µm. We then used our simulated

fiber networks to create synthetic images containing all fibers within the ranges defined by each sequential pair of

limiting positions (Fig. 2d). The images had an in-plane pixel size of 0.325 µm, which matched the experimental

images. Each image was assigned a z position matching the center of the z range used to generate that image, with
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Figure 2: Generation of synthetic images mimicking confocal imaging. (a) PSF in r̃-z̃ coordinates. Units in µm result from the choice of parameters
to match the experimental images as described in the text. (b) PSF in x-y (in-plane) coordinates at position z̃ = 0. (c) Schematic of a 3D volume
imaged by a confocal microscope. All fibers within each z range shown were used to create an image at planes identified by z = 0, ±z1, ±z2, and
±z3, which correspond to z = 0, ±0.43, ±0.74, and ±1.30 µm, respectively. (d) Resulting projected images at each z position. (e) In-plane PSF at
each z position. (f) Each projected image was convolved with the corresponding PSF, resulting in a set of convolved images. (g) The images were
summed. (h) Noise was added to produce the final image.

values corresponding to z= 0, ±0.43, ±0.74, and ±1.30 µm. Eq. 1 was evaluated at each of these positions to evaluate

the PSF corresponding to each image (Fig. 2e). As shown in the figure, the PSF at the top and bottom locations chosen,

z =±1.30 µm, was nearly zero, indicating that the range of z chosen spanned the PSF.

Step 3: Convolution and Assembly

A 2D convolution between each projected image (Fig. 2d) and its corresponding PSF (Fig. 2e) was performed.

The resulting seven convolved images (Fig. 2f) were added to obtain the final image (Fig. 2g).

Step 4: Incorporating Noise

As images acquired by a confocal microscope contain noise resulting from numerous sources [48], we added noise

to the synthetic images. To determine the appropriate distribution of noise to use, we analyzed our experimental

images of collagen gels. For each image, we manually identified regions between fibers and plotted histograms of the

intensities. As the intensity in regions between fibers would be zero in the absence of noise, the resulting histograms

approximated the distribution of noise. We typically observed these distributions to be Gaussian with mean and

standard deviation 35.94% and 16.42%, respectively, of the median intensity of the image. Therefore, we added a

random variable drawn from this measured distribution to each pixel of the synthetic images to represent the imaging
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noise (Fig. 2h).

Customizability of Image Generator Algorithm

It is possible to customize our image generator algorithm to suit imaging techniques different from confocal mi-

croscopy. For example, one could alter the built-in 3D PSF in Step 1 using a PSF appropriate for X-ray micro-

computed tomography (e.g., ref. [49]) to prepare synthetic tomograms mimicking X-ray micro-computed tomography

(similar to refs. [50] and [51]), which are often needed to validate the accuracy of image analysis algorithms. As

another example, by using an appropriate 2D PSF in Step 1 and removing the “assembly” feature in Step 3, it is pos-

sible to produce synthetic telescopic observations of astronomical objects similar to ref. [52]. Our algorithm could

also be used in more general situations of applying DIC on images of 2D samples, but in such situations, the smallest

image feature is typically larger than the width of the PSF, meaning convolution with the PSF would not be essential.

Instead, one could include considerations that are relevant in other imaging systems, such as uneven illumination as in

ref. [53].

DIC Algorithms Used

The DIC algorithm used in the majority of this study was the local algorithm Fast Iterative Digital Image Corre-

lation (FIDIC) [54], which is the same algorithm used in our prior publications on fibrous materials [17, 36, 43, 55].

Where stated in the Results section, we also used a global algorithm, Augmented Lagrangian Digital Image Correla-

tion (ALDIC), which enforces displacement compatibility and strain smoothness across subsets [56]. The subset size

used in the correlations varied from 16×16 to 64×64 px (5.2×5.2 to 20.8×20.8 µm2) and is reported in the Results.

The subset spacing was a quarter of the subset size. In some cases, the magnitude of local deformation of speckle

features (i.e., of the fibers) within each DIC subset between the first and last load step of the FE solver was too large

for correlation by DIC. For this reason, we applied the DIC incrementally to pairs of images from sequential load steps

and computed the total nodal displacements by summing the incremental nodal displacements.

Interpolating FE Data onto a Grid for Comparison to DIC Results

The displacement at each node of the fiber network, computed by the FE solver, were used for comparison against

the results of DIC. As displacements computed by DIC were on an uniform grid, the FE data was interpolated to the

same grid using natural interpolation, which is C1 continuous. Given that DIC correlates subsets of finite size, it also

spatially smooths the data. Hence, the FE data was smoothed as well, with the method of smoothing designed to

match as well as possible the smoothing performed by the FIDIC and ALDIC algorithms. For FIDIC, the algorithm

multiplied each image subset by a weight function designed to increase the spatial resolution of the correlation while
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Figure 3: Qualitative and quantitative comparison of experimental and synthetic images. (a) Images of 2 mg/mL collagen gels from confocal
imaging. (b) Synthetic images generated by our algorithm. Fiber length and nodal density are identified by A, B, C, & D as defined in Table 1. (c)
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defined to be the distance at which C = 1/2 and is an indicator of the effective speckle size in the synthetic image.

minimizing noise [57]. Therefore, for comparison between FIDIC and FE data, we smoothed the interpolated FE data

using this same weighing function. ALDIC, however, did not apply a weight to each image subset, so for comparison

to ALDIC results, the FE data was averaged over a square window the same size as the subset used for ALDIC.

Results and Discussion

Quality Assessment of Synthetic Images

Representative experimental images of density 2 mg/mL are shown in Fig. 3a, with representative synthetic images

of different density and fiber length shown in Fig. 3b. Qualitative comparison between the experimental and synthetic

images shows that fiber lengths, widths, and densities appear to match well. A more quantitative comparison between

synthetic and experimental images was performed by plotting histograms of intensities for synthetic and experimental

images. For parity in comparison, we normalised the intensity (I) of each image with the median intensity of that

image. The number of pixels in each histogram bin, Npix, was normalized by the maximum number of pixels in any

bin, Nmax, of the corresponding image. The synthetic image of network D was found to match the experimental images

the best and was used to create the histograms (Fig. 3c). Synthetic images generated with NA equal to 0.65 and 0.70

gave a slightly better match to the experimental images than the synthetic image generated with NA of 0.75 (Fig. 3c).

For a second quantitative comparison between synthetic and experimental images, we used the spatial autocorre-
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lation, C, defined as

C(i, j) =
< (I(m,n)−µI)(I(m+ i,n+ j)−µI)>

σ2
I

, (4)

where I is the image intensity, the index pairs (m,n) and (i, j) indicate the rows and columns corresponding to each

pixel in the image, µI and σI are, respectively, the mean and standard deviation of image intensity, and the angle

brackets (<>) denote a mean over all pixels identified by m and n. The 2D autocorrelation C(i, j) was averaged over

circles of different radii ρ centered at (i = 0, j = 0). The autocorrelation was computed for both the experimental

images and synthetic images of network D with NA equal to 0.65, 0.70, and 0.75 (Fig. 3d). The variation of the auto-

correlation between the synthetic images created with different NA was minor, and all autocorrelations compared well

with the experimental images, indicating that spatial variation in image intensity matched between the experimental

and synthetic images. The NA of the objective (0.75 in our experiments) should be thought of as an upper bound,

and the resolution achieved in our experiments was reduced slightly by the fact that the pinhole size used was larger

than the size of the PSF as described in the methods. Considering that the specific choice of NA did not have a major

effect on the results and the value of 0.75 was an upper limit, we chose to use a slightly reduced value, NA = 0.70, to

generate the synthetic images for the remainder of our study.

As the autocorrelation quantifies how the intensity changes over distance, we also used it to estimate the effective

speckle size, which we defined by the radial distance r at which the autocorrelation function decreased to a value of

1/2. In the synthetic images of network D, the average autocorrelation radius had a value of 2.01 px (Fig. 3d). This

number is close to the recommend size of 2.2 px for DIC, as suggested in ref. [58]. Additionally, given that the subsets

used in our analysis were ≥ 16× 16 px, the effective speckle size of 2.01 px implies that each subset had far greater

than three speckles, which is commonly considered to be the minimum number of speckles for each subset [59].

Noise Floor and Rigid Body Translation

Our first use of DIC was to quantify the noise floor. Two networks were chosen, corresponding to the sparsest

(A) and densest (D). For each network, two images were generated in the undeformed state and, hence, differed only

by the added noise. The images were correlated by FIDIC to give the noise floor, which was random (Fig. 4a), with

histograms showing the distribution of noise to resemble a Gaussian distribution (Fig. 4b).

Next, we performed rigid body translations in the x and y directions of magnitude 2.5 µm, which was a typical

magnitude of displacement undergone by the fiber networks under applied loadings referred to “intermediate” in the

subsequent sections. Edge effects, caused by DIC subsets moving out of the field of view, were eliminated by removing

them from the data set. Representative maps of displacements in the x and y directions (u and v, respectively) indicated

a slight systematic underestimate of the applied displacement (Fig. 4c). Histograms confirmed the underestimate,

with the typical value of average error being −0.6% and standard deviation of error being 0.005% for both u and v in
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networks A and D (Fig. 4d).

Errors Under Uniform Boundary Conditions

The first boundary condition studied was simple shear, wherein a subset of nodes at the bottom of the 3D fiber

network were fixed and a subset of nodes at the top were translated in the positive x direction. The sizes of the regions

for which nodes were fixed or translated were large, which we found to be necessary to avoid strong strain localization

and to produce a nominally constant strain field in the center of the image. The regions where nodes were fixed or

translated are shaded blue in Fig. 5a. Three different magnitudes of shear strain were applied, low (2.4%), intermediate

(23%), and high (66%). Displacements were allowed to occur in the z direction for all nodes within ±0.25 µm of the

focal plane (z= 0). As described in the “Methods” section, the translation was applied in 20 load steps in the FE solver,

generating 19 intermediate states and one final deformed state. Considering that we were interested in evaluating DIC

in a state of simple shear, we defined a region of interest (ROI) (dashed rectangles in Fig. 5a, b) for which the strain

was nominally constant. Images of the ROI were generated corresponding to each load step, and the sequence of

images was correlated by DIC.

Representative images of the reference and final states are shown for intermediate shear strain (23%) in Fig. 5a–b.

These images correspond to fiber network C, which we selected to use due to it having intermediate values of nodal

density and fiber length. To observe the deformations during intermediate load steps, we also show a series of five

images of the ROI (Fig. 5c), labeled i–v, where i and v are, respectively, the reference and final states, and ii–iv
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Figure 5: Deformation in simple shear. (a) Boundary conditions used. The bottom of the network was fixed, and top of the network was translated
in the positive x direction in simple shear. Fixed and translated nodes are highlighted in blue. Results were analyzed in the ROI defined by the
yellow rectangle. (b) Image of deformed fiber network under 23% (intermediate) shear strain in the ROI. (c) Series of images showing the ROI at
different nominal strains, with i being undeformed and v being the image corresponding to 23% strain. (d) Maps of displacements u and v in the ROI
at intermediate strain showing the field of nodal displacements from FE, the smoothed FE results used for comparing to DIC, and the DIC results.
(e) Maps of normalized displacement (u/y) in the ROI showing original FE nodal, smoothed FE, and DIC results. (f) Map of absolute point-wise
error in normalized displacement (u/y) in smoothed FE and DIC results. (g) Distribution of errors in DIC estimates of normalized displacement
(u/y) for three levels of applied strain (low, 2.4%; intermediate, 23%; and high, 66%) and all four synthetic fiber networks. In panels d–g, DIC used
a subset size of 32× 32 px and subset spacing of 8 px. (h) Errors in DIC estimates of normalized displacement for varying subset sizes at small
(2.4%), intermediate (23%) and high (66%) magnitudes of applied strain. (i) Errors in DIC estimates of local strain, normalized by the applied
strain (γ), for varying subset sizes at low (2.4%), intermediate (23%) and high (66%) magnitudes of applied strain. The DIC subset spacing was a
quarter of the subset size for all cases. Black dashed line indicates zero in panels h and i. Data in panels a–f, h and i are from network C.

correspond to load steps 5, 10, and 15. A map of the total nodal displacements from the FE results (Fig. 5d) showed

a gradient of u over distance y along with strong fluctuations over space. Because DIC spatially filters the data, we

smoothed the data using a filtering scheme that matched the DIC as described in the Methods section, which gave a

displacement field that was smoother, yet still exhibited spatial fluctuations (Fig. 5d). Displacements computed by

DIC similarly showed a clear gradient in u over y with fluctuations having similar spatial frequency as the smoothed

FE data.

As a simple measure of the normalized displacement, we computed the quantity u/y, with both u and y defined

to be zero at the bottom of the ROI. Qualitative comparison of u/y between the smoothed FE and DIC data showed

regions of high and low strains matched reasonably well (Fig. 5e). Careful comparison between the FE and DIC data,
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however, showed that at some locations, large differences were present. To quantify these differences, we computed

the error in the DIC measurement of displacement, by taking the absolute value of the point-wise difference between

the DIC measurement and the smoothed FE data (Fig. 5f). Errors were computed for different levels of strain (low,

intermediate, and high) and all four fiber networks (A, B, C, and D). The distributions of point-wise errors appeared

to be approximately half-normal (Fig. 5g), with the mean errors typically near zero. For intermediate and high

magnitudes of strain and all networks, the errors were large, with standard deviations in the tens of percent. To

determine whether the large standard deviations resulted from the size of subset used for DIC, we repeated the DIC

with subset sizes ranging from 16×16 to 64×64 px (5.2×5.2 to 20.8×20.8 µm2) (Fig. 5h). For the different subset

sizes, the magnitudes of mean error were typically small (≤ 15%) except at the smallest subset sizes for which the

mean error increased rapidly at high strain (≈ 52% and 24% at subset sizes of 16× 16 and 20× 20 px), possibly

caused by noise that typically occurs when using small subsets in DIC. The standard deviations of errors decreased

with increasing subset size, at the cost of increased spatial smoothing. For all subset sizes, for intermediate and high

strains, the sums of mean and standard deviation of errors were typically between 10 and 40%, indicating large point-

wise errors in the DIC with respect to the smoothed FE data. To examine whether these errors were dependent on the

image contrast inside each DIC subset, we evaluated contrast by computing the span of the gray scale intensity within

each DIC subset and compared it to the error at each subset, but there was negligible correlation between the error and

image contrast (Fig. 8 Appendix), suggesting the errors were not related to image quality. We next considered how

these errors in displacement would lead to errors in local strain by computing the gradient of displacement field using

the Matlab function “gradient.” We took the absolute point-wise difference between the local strain data in the DIC

and the smoothed FE data and then normalized the result by the applied strain. The mean and standard deviation of

these errors depended on subset size (Fig. 5i) in the same way as in the Fig. 5h, but the standard deviation of errors

were inversely proportional to the level of applied strain. Given that this error data was normalized by applied strain,

both the numerator and denominator changed when applied strain increased, but the denominator (applied strain) had

a dominant effect in this case, meaning that the error in the local strain measurement decreased with increasing applied

strain.

To determine whether the large point-wise errors in displacement were an artifact of the specific DIC algorithm

used, we applied another DIC algorithm, ALDIC, to the images of simple shear and again quantified error at a specific

subset size of 32× 32 px (Fig. 9, Appendix). Across different strain levels, the magnitudes of mean error were

again moderate (≤ 17%), but the sums of the mean and standard deviation of errors were typically between 15–30%,

reflecting the existence of large point-wise error in ALDIC as well.

The simple shear boundary condition studied so far was a shape-changing deformation. To assess whether the

results were sensitive to other types of deformation, we considered biaxial extension, which changes area (Fig. 10,
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Appendix), and uniaxial extension, which changes both shape and area (Fig. 11, Appendix). For both cases, both

mean and standard deviation of errors in the normalized displacements were typically moderate to large, e.g., 15–45%,

with their sums often > 50%.

Frequency Content of Displacement Data

So far, our evaluation of DIC has relied on point-wise errors. As another means of evaluating the use of DIC on

images of fibrous materials, we questioned how well the spatial frequency content of the DIC results matched that of

the ground truth FE data. To this end, we used the results from simple shear (intermediate magnitude) deformation of

network C and computed the Fourier transform of the displacement field u from both the FE and DIC data. The Fourier

transformed data was averaged over angle, its absolute value was taken, and it was normalized by its maximum value,

hence giving a graph of the normalized Fourier transformed data against spatial frequency (Fig. 6). The data from

FE exhibited a peak at the smallest wave numbers, with a plateau at intermediate and large wave numbers, indicating

spatial fluctuations over a broad range of wave numbers.

Upon smoothing and interpolating the FE data onto the grids used for comparison to the gridded DIC data, the

plateau disappeared, with the curves corresponding to the smoothed data being notably lower than the unsmoothed,

ground truth data, especially for wave numbers greater than ≈0.03 µm−1, i.e., for length scales smaller than ≈33

µm. Results from gridded DIC matched reasonably closely to the smoothed FE data, consistent with the well-known

fact that DIC acts as a spatial filter. Hence, DIC would be unable to resolve accurately changes in displacements

occurring over distances ≲ 33 µm. To investigate if this loss in spatial content could be attenuated, we evaluated the

DIC displacement field directly on each FE node by using a DIC subset centered on the pixel corresponding to that FE
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node. Although the resulting nodal DIC data appeared to mitigate the loss of spatial content, a point-wise comparison

of displacements between the unsmoothed FE data and the DIC data at FE nodes exhibited large errors (mean 13.9%

and standard deviation 31.3%), indicating the nodal DIC data for wave numbers ≳0.03 µm−1 contained substantial

white noise. This again highlights the limitation of DIC in resolving displacements over distances ≲ 33 µm. It is

further interesting to note that the comparison of gridded DIC with smoothed FE revealed reduced point-wise errors

(mean 6.5% and standard deviation 8.7%), due to the spatial smoothing of displacement fields.

Contracting Cylindrical Inclusion Boundary Condition

Although errors may be large when applying DIC to our images on length scales smaller than 33 µm, it may be

that at larger length scales, errors would be tolerable. Such a situation was present in the data on point-wise error,

wherein the sums of means and standard deviations were large, but means were frequently ≤ 15%, implying that if

one computed an average over the entire ROI of the displacement computed from DIC, the result would be reasonably

accurate. We sought to test the limits of this idea using a different boundary condition and a metric of the displacement

field other than the normalized displacement field used so far. In prior work, we applied DIC to a contracting sphere

in a gel of collagen fibers, quantifying the decay of displacements away from the sphere as a means of studying

nonlinearity, heterogeneity, and anisotropy of the fiber network [17, 36, 43, 55]. To simulate these conditions, we used

a simplified case of a contracting cylindrical inclusion of diameter 60 µm at the center of fiber network C, which had

dimensions 245×245×5 µm3. Nodes present at the periphery of the inclusion (indicated by dashed circle in Fig. 7a,

b) were displaced radially inward to produce 30% contractile strain of the inclusion. As in the simulations of simple

shear, the FE model was solved using 20 load steps, and displacements were allowed to occur in the z direction for all

nodes within z =±0.25 µm across the focal plane (z = 0).

The computed nodal displacement field exhibited large fluctuations superimposed over a displacement field that

decayed over distance from the contracting inclusion (Fig. 7c). DIC results, using either FIDIC or ALDIC, showed

similar fields of displacements, though with far less spatial fluctuation, resulting from the spatial filtering of DIC (Fig.

7d, e). To analyze the decay of displacements over distance, we plotted the inward radial displacement ur of each node

against its radial position r (Fig. 7f). As in our prior work [17, 36, 43, 55, 60], we fitted the displacements to a function

of the form ur ∼ r−n, with n quantifying the decay of displacements over distance. Given that the simulated boundary

conditions were of a contracting cylinder with no variation through the z direction, the solution from linear elasticity

is the familiar Lamé problem, for which n = 1. In comparison, the fitting gave n = 0.41, indicating a long range decay

of displacements, which is caused by nonlinearity [17, 27, 60–63]. Fitted values of n from the displacement fields

from FIDIC and ALDIC matched closely to the FE data, being 0.42 and 0.43, respectively. Repeating this procedure

for a different level of contraction (10% instead of 30%) gave similar results, with a close match of fitted values of n
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in reference state. (b) Deformed state of the network after 30% contraction of inclusion. (c) Map of radial component of nodal displacement, ur
obtained from FE simulation, with inward defined as positive. (d) Inward radial displacement field measured by FIDIC (subset size, 32× 32 px;
subset spacing, 8 px). (e) Inward radial displacement field measured by ALDIC (subset size, 33×33 px; subset spacing, 8 px). The black dashed
circles in panels c–e identify a region with large spatial fluctuations in the FE displacement field that are not captured in the DIC data. (f) Plot of
true (FE) inward radial displacement ur against radial position r for all nodes on logarithmic axes. The slope of the best fit line indicates n = 0.41.
(g) Comparison of true and DIC-estimated average displacement decay rates n for 10% and 30% radial contraction. (h) Radial displacements along
radial paths drawn outward from the center of the inclusion were fit to ur ∼ r−n using data from all nodes within 2.4 µm of each radial path. Fit
powers n are shown by the color of each path. (i, j) Fit powers n for the different radial paths using displacement data computed from FIDIC (i) and
ALDIC (j). For each radial path, the error in decay rate n can be assessed by comparing the FE-computed values (h) to the DIC-computed values (i
and j). Stars show paths for which the magnitude of the error is > 50%.

between the FE data and the DIC data (Fig. 7g).

To consider how DIC performs compared to the FE data over regions smaller than the entire image, we drew several

radial paths outward from the center of the cylinder and performed separate fits for parameter n using displacements

of nodes located within a distance of 2.4 µm on either side of each radial path. The results for each path are plotted

as a line, with color indicating the value of n. For the FE data (Fig. 7h), all values of n were less than 1, but there

was notable variability for paths in different directions due to local anisotropy in fiber network [17]. In comparison,

the fitted values of n from the DIC data were also less than 1 and exhibited variability (Fig. 7i–j), but they sometimes

differed substantially from the FE data. Paths with substantial error (i.e., > 50%) are indicated by star symbols in

Fig. 7i–j. These paths of substantial errors in DIC measurements often appeared to correspond to regions with large

spatial fluctuation in the displacement field, as shown by black dashed circles in Fig. 7c–e.. The mean errors of n in

the different radial paths were 28% and 27% for FIDIC and ALDIC, respectively.

In summary, DIC was able to accurately quantify a different metric of interest, in this case n, as long as the value of

n was computed from a data set corresponding to a sufficiently large region of the image. If the fitted value of n used

a smaller data set, such as the data points nearest to a single path in Fig. 7h–j, errors increased substantially, similar to

our prior observation of large point-wise errors.
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Conclusions

Here we developed a workflow to test the efficacy of DIC on simulated images of fiber networks matching the

fibers of a collagen gel. Heterogeneity was caused by the fibrous structure, with the typical fiber length being similar

to the desired spatial resolution. The individual fibers served as random high contrast speckles. The DIC measurements

exhibited substantial errors (with sums of mean and standard deviation typically > 40%) in a point-wise sense, but the

average errors over a sufficiently large region of interest were typically moderate (≤ 15%). Therefore, applying DIC

appears to be reasonable in problems that characterize mechanical behavior of fiber networks over a sufficiently large

region (e.g., refs. [17, 43, 55]). However, in instances where point-wise displacement data is required, for example,

in determining point-wise traction applied by cells within a fibrous matrix, or in characterizing local stiffness of a

heterogeneous material, errors in the DIC data are likely to be excessively large. Such situations will require new

methodologies to complement or replace DIC. One possible way to address this issue is to complement the mesoscale

DIC measurement with a measurement at the microscale, for example, by using a model to account for deformations of

the network architecture, e.g., the struts of a cellular material as in ref. [64]. A second possibility could be to develop

new methodologies that bypass the DIC displacement measurement step altogether, as has been done in Mechanical

Shape Correlation [65], which correlated experimental data of the contour of a deformed structure to corresponding

data from an FE simulation. Building on this idea, it could be possible build full-field synthetic images from a model

to correlate directly against the experimental images, enabling the model to be improved through iteration. To this

end, the workflow described in this manuscript, which used a combination of a model and synthetic images, is a useful

starting point.
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[3] Luis Pablo Canal, Carlos González, Jon M Molina-Aldareguı́a, Javier Segurado, and Javier LLorca. Appli-

cation of digital image correlation at the microscale in fiber-reinforced composites. Compos Part A-Appl S,

43(10):1630–1638, 2012.

20



(a) (b) (c)

100 µm

v0

v = 0

B
C
D

high
intermediate 
low

A

0

2

4

Pr
ob

ab
ilit

y 
(%

) 

6

8

10

0 50 100 150
|vDIC - vFE| / y  (%)

16 20 24 32 40 48 56 64
Subset size (px)

|v
D

IC
 - 

v FE
| /

 y
  (

%
)

0

50

100

150

high
intermediate
low

Figure 11: Deformation in uniaxial extension. (a) Boundary conditions used. Nodes near the bottom of the fiber network were constrained to
have zero displacement in the y direction; nodes at the top were translated in the y direction. The dashed rectangle shows the ROI. (b) Distribution
of errors in the ROI in FIDIC estimates of normalized displacement, v/y, (subset size, 32× 32 px; subset spacing, 8 px). Colors show levels of
applied strain and line types indicate the network being considered. (c) Errors in FIDIC estimates for several different subset sizes at low (≈ 2%),
intermediate (≈ 20%) and high (≈ 60%) magnitudes of strain for representative network C. The subset spacing was a quarter of the subset size for
all cases.

[4] G Subhash, Q Liu, DF Moore, PG Ifju, and MA Haile. Concentration dependence of tensile behavior in agarose

gel using digital image correlation. Exp Mech, 51(2):255–262, 2011.

[5] Peng Wang, F Pierron, and Ole Thybo Thomsen. Identification of material parameters of pvc foams using digital

image correlation and the virtual fields method. Exp Mech, 53(6):1001–1015, 2013.

[6] Tahreer M Fayyad and Janet M Lees. Application of digital image correlation to reinforced concrete fracture.

Proc Mat Sci, 3:1585–1590, 2014.

[7] MA Tschopp, BB Bartha, WJ Porter, PT Murray, and SB Fairchild. Microstructure-dependent local strain be-

havior in polycrystals through in-situ scanning electron microscope tensile experiments. Metall Mater Trans A,

40(10):2363–2368, 2009.

[8] Samer Sadek, Magued G Iskander, and Jinyuan Liu. Accuracy of digital image correlation for measuring defor-

mations in transparent media. J Comput Civil Eng, 17(2):88–96, 2003.

[9] Brian K Bay, Tait S Smith, David P Fyhrie, and Malik Saad. Digital volume correlation: three-dimensional strain

mapping using X-ray tomography. Exp Mech, 39(3):217–226, 1999.

[10] Eelco Verhulp, Bert van Rietbergen, and Rik Huiskes. A three-dimensional digital image correlation technique

for strain measurements in microstructures. J Biomech, 37(9):1313–1320, 2004.

[11] R Zauel, YN Yeni, BK Bay, XN Dong, and David P Fyhrie. Comparison of the linear finite element prediction

of deformation and strain of human cancellous bone to 3d digital volume correlation measurements. J Biomech

Eng—T ASME, 128(1):1–6, 2006.

21



[12] Blayne A Roeder, Klod Kokini, J Paul Robinson, and Sherry L Voytik-Harbin. Local, three-dimensional strain

measurements within largely deformed extracellular matrix constructs. J Biomech Eng—T ASME, 126(6):699–

708, 2004.

[13] Ruoya Wang, Luke P Brewster, and Rudolph L Gleason Jr. In-situ characterization of the uncrimping process

of arterial collagen fibers using two-photon confocal microscopy and digital image correlation. J Biomech,

46(15):2726–2729, 2013.

[14] Jacob Notbohm, Ayelet Lesman, David A Tirrell, and Guruswami Ravichandran. Quantifying cell-induced

matrix deformation in three dimensions based on imaging matrix fibers. Integr Biol, 7(10):1186–1195, 2015.

[15] Jihan Kim, Christopher AR Jones, Nicholas Scott Groves, and Bo Sun. Three-dimensional reflectance traction

microscopy. Plos One, 11(6):e0156797, 2016.

[16] Leanna M Owen, Arjun S Adhikari, Mohak Patel, Peter Grimmer, Natascha Leijnse, Min Cheol Kim, Jacob

Notbohm, Christian Franck, and Alexander R Dunn. A cytoskeletal clutch mediates cellular force transmission

in a soft, three-dimensional extracellular matrix. Mol Biol Cell, 28(14):1959–1974, 2017.

[17] Brian Burkel and Jacob Notbohm. Mechanical response of collagen networks to nonuniform microscale loads.

Soft Matter, 13(34):5749–5758, 2017.
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