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Bandwidth Allocation for Multiple Federated
Learning Services in Wireless Edge Networks
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Abstract— This paper studies a federated learning (FL) system,
where multiple FL services co-exist in a wireless network and
share common wireless resources. It fills the void of wireless
resource allocation for multiple simultaneous FL services in
the existing literature. Our method designs a two-level resource
allocation framework comprising infra-service resource allocation
and inter-service resource allocation. The intra-service resource
allocation problem aims to minimize the length of FL rounds by
optimizing the bandwidth allocation among the clients of each
FL service. Based on this, an inter-service resource allocation
problem is further considered, which distributes bandwidth
resources among multiple simultaneous FL services. We consider
both cooperative and selfish providers of the FL services. For
cooperative FL service providers, we design a distributed band-
width allocation algorithm to optimize the overall performance
of multiple FL services, meanwhile catering it to the fairness
among FL services and the privacy of clients. For selfish FL
service providers, a new auction scheme is designed with the
FL service providers as the bidders and the network operator
as the auctioneer. The designed auction scheme strikes a balance
between the overall FL performance and fairness. Our simulation
results show that the proposed algorithms outperform other
benchmarks under various network conditions.

Index Terms—Federated learning (FL), bandwidth allocation,
edge computing.

I. INTRODUCTION

ODAY’S mobile devices are generating an unprecedented

amount of data every day. Leveraging the recent success
of machine learning (ML) and artificial intelligence (Al), this
rich data has the potential to power a wide range of new func-
tionalities and services, such as learning the activities of smart
phone users, predicting health events from wearable devices
or adapting to pedestrian behavior in autonomous vehicles.
With the help of multi-access edge computing (MEC) servers,
ML models can be quickly trained/updated using this data to
adapt to the changing environment without moving the data to
the remote cloud data center, which is envisioned in intelligent
next-generation communication systems [1], [2]. Furthermore,
due to the growing storage and computational power of mobile
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Fig. 1. System Overview.

devices as well as privacy concerns associated with uploading
personal data, it is increasingly attractive to store and process
data directly on mobile devices. Federate learning (FL) [3]
is thus proposed as a new distributed ML framework, where
mobile devices collaboratively train a shared ML model with
the coordination of an edge server while keeping all the
training data on device, thereby decoupling the ability to do
ML from the need to upload/store the data to/in a public entity.

A typical FL service involves a number of mobile devices
(a.k.a., participating clients) and an edge server (a.k.a., a para-
meter server) to train a ML model, which lasts for a number
of learning rounds. In each round, the clients download the
current ML model from the server, improve it by learning
from their local data, and then upload the individual model
updates to the server; the server then aggregates the local
updates to improve the shared model. For example, the sem-
inal work [4] proposed the FedAvg algorithm in which the
global model is obtained by averaging the parameters of local
models. Although other FL algorithms differ in the specifics,
the majority of them follow the same workflow. Because the
clients work in the same wireless network to download and
upload models, how to allocate the limited wireless bandwidth
among the participating clients has a crucial impact on the
resulting FL. speed and efficiency.

Although existing works have made meaningful progress
towards efficient resource allocation for wireless FL, they
share the common limitation that only a single FL service was
considered. As ML-powered applications grow and become
more diverse, it is anticipated that the wireless network will
host multiple co-existing FL services, the set of which may
also dynamically change over time. See Figure 1 for an
illustration of the multi-FL service scenario. The presence of
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multiple FL services makes resource allocation for wireless FL
much more challenging. First, the achievable FL performance
depends on not only intra-service resource allocation among
the participating clients within each FL service but also infer-
service resource allocation among different FL services, and
these two levels of allocation decisions are also strongly
coupled. Second, the FL service providers (FLSP) may adopt
different FL algorithms and choose different configurations
(e.g., number of participating clients, number of epochs of
local training, etc.), yet this information is not always available
to the wireless network operator due to privacy concerns
when making resource allocation decisions. Third, because
FLSPs have their individual goals, they may have incentives
to untruthfully reveal their valuation of the wireless bandwidth
if by doing so they gain advantages in the inter-service
bandwidth allocation. Without the correct information, there
is no guarantee on the overall system performance. Finally,
as in any multi-user system, resource allocation should strike
a good balance between efficiency and fairness — every FLSP
should obtain a reasonable share of the wireless resource to
train their ML models.

In this paper, we make an initial effort to study wireless FL
with multiple co-existing FL services, which share the same
bandwidth to train their respective ML models. Our focus
is on the efficient bandwidth allocation among different FL
services as well as among the participating clients within each
FL service, thereby understanding the interplay between these
two levels of allocation decisions. Our main contributions are
summarized as follows:

o We formalize a two-level bandwidth allocation problem
for multiple FL services co-existing in the wireless net-
work, which may start and complete at different time
depending on their own demand and FL requirements.
The model is general enough for any FL algorithm
that involves downloading, local learning, uploading and
global aggregation in each learning round, and hence
has wide applicability in real-world systems. In addition,
we explicitly take fairness into consideration when opti-
mizing bandwidth allocation to ensure that no FL service
is starved of bandwidth.

o We consider two use cases depending on the nature/goals
of the FLSPs. In the first case, FLSPs are fully cooper-
ative to maximize the overall system performance. For
this, we design a distributed optimization algorithm based
on dual decomposition to solve the two-level bandwidth
allocation problem. The algorithm keeps all FL-related
information at the individual FLSP side without sharing
it with the network operator, thereby reducing the com-
munication overhead and enhancing privacy protection.

o We further consider a second case where FLSPs are
selfishly maximizing their own performance. To address
the selfishness issue, we design a multi-bid auction mech-
anism based on [5] to elicit the FLSPs’ truthful valuation
of bandwidth according to their submitted bids, with the
following new contributions. Firstly, we prove that the
FL frequency function (defined later) is differentiable,
increasing and concave, which is needed for applying
the multi-bid auction framework to address our problem.
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Secondly, we introduce a novel fairness-adjusted ex post
charge to make a tunable trade-off between efficiency
and fairness. Thirdly, we design a uniform multi-bidding
mechanism as a deployment example.
The rest of this paper is organized as follows. Section II
discusses related works. Section III builds the system model.
Section IV formulates the problem for the cooperative case
and develops a distributed bandwidth allocation algorithm.
Section V studies the selfish FLSPs case and develops a
multi-auction mechanism. Section VI performs simulations.
Section VII Concludes the paper.

II. RELATED WORK

A lot of research has been devoted to tackling various
challenges of FL, including but not limited to developing
new optimization and model aggregation methods [6]-[8],
handling non-i.i.d. and unbalanced datasets [9]-[11], deal-
ing with the straggler problem [12], preserving model and
data privacy [13], [14], and ensuring fairness [15], [16].
A comprehensive review of these challenges can be found in
[17]-[19]. In particular, the communication aspect of FL
has been recognized as a primary bottleneck due to the
tension between uploading a large amount of model data
for aggregation and the limited network resource to support
this transmission, especially in a wireless environment [20].
In this regard, early research on communication-efficient FL
largely focuses on reducing the amount of transmitted data
while assuming that the underlying communication channel
has been established, e.g., updating clients with significant
training improvement [21], compressing the gradient vectors
via quantization [22], or accelerating training using sparse or
structured updates [23]. More recent research starts to address
this problem from a more communication system perspective,
e.g., using a hierarchical FL network architecture [24] that
allows partial model aggregation, and leveraging the wireless
transmission property to perform analog model aggregation
over the air [25], [26].

As wireless networks are envisioned as a main deployment
scenario of FL, wireless resource allocation for FL is another
active research topic. Many existing works [27]-[29] study
the trade-off between local model update and global model
aggregation. Client selection is essential to enable FL at scale
and address the straggler problem. Different types of joint
bandwidth allocation and client scheduling policies [30]-[34]
have been proposed to either minimize the training loss or the
training time. In all these works, resource allocation is carried
out among clients of a single FL service, while assuming that
the FL service itself has already received dedicated resource.
In stark contrast, our paper studies a network consisting
of multiple co-existing FL services and performs resource
allocation at both the FL service level and the client level.
We notice that a related problem where multiple FL services
are being trained at the same time is also considered in a
recent work [35]. In that paper, different FL services run on the
same set of clients and a joint computation and communication
resource scheduling problem is studied. In our paper, different
FL services have their separate client sets which may expe-
rience very different channel qualities. Moreover, while [35]

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 03,2022 at 18:44:22 UTC from IEEE Xplore. Restrictions apply.



2536 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 4, APRIL 2022

TABLE I
LIST OF NOTATIONS

Notation Description Notation Description
by k Bandwidth of client k in service n wl;lck Local computation workload of client k in service n
bn, Bandwidth of service n wSC Global model update workload of parameter server n
T Length of a single period tg:rk Download transmission latency
N; Set of active FL services at period ¢ tI;LCk Local computation latency
Kn Set of participation clients of FL service n tETk Upload transmission latency
o) Computing speed of client k tGC Global computation latency
bn Computing speed of parameter server n Lagrange multipier
gz' Uplink wireless channel gains Step size of DISBA
gil Downlink wireless channel gains Convergence gap of DISBA
P Transmission power of parameter server n Sn Set of bids submitted by service n
Py Transmission power of client k& b Requested bandwidth of service n with bid m
rBT Download transmission rate of client k o Unit price of service n with bid m
rgT Upload transmission rate of client k Fairness-adjusted parameter
SBT Size of download model in service n Cn Payment of service n
59T Size of upload model in service n M Number of bids

assumed that all clients are obedient, we study the possible
selfish nature of FLSPs and highlight the bandwidth allocation
fairness.

Considering each FL service as a “user”, our problem
is a type of multi-user wireless network resource allocation
problems. While many concepts and techniques adopted in this
paper, including proportional fairness [36], dual decomposition
[37] and multi-bid auction [5], have seen applications in other
domains, applying them in multi-service FL requires special
treatment as two levels of resource allocation are involved
in our problem. Particularly, there is no closed-form expres-
sion of how the performance (i.e., learning speed) of a FL
service depends on the resource allocation among its clients.
Therefore, understanding the inter-dependency of intra- and
inter-service bandwidth allocation is essential. Furthermore,
we emphasize the resource fairness among different FL ser-
vices by designing a new fairness-adjusted multi-bid auction
mechanism in the selfish FLSP case, thereby achieving a
tunable tradeoff between efficiency and fairness. We point
out that there are some existing works [38]-[41] on designing
incentive mechanisms for client participation of a single FL
service. These works are very different from ours in terms
of both the problem and the approach, and do not consider
fairness when designing the mechanism.

III. SYSTEM MODEL

We consider a wireless network where ML models are
trained using FL. The wireless network has a total band-
width B, and the network operator (NO) has to allocate this
bandwidth among concurrent FL services when needed to
enable their individual training. Because new FL services may
start and old FL services may finish over time, bandwidth
allocation has to be periodically performed to adapt to the
current active FL services. Therefore, we divide time into
periods and let the length of a period be T'. At the beginning
of each period 4, a set N; of FL services are active and
require wireless bandwidth to carry out their training. These
services are either newly initiated services in period ¢ or
continuing services from the previous period. A FL service

finishes and hence exits the wireless network when a certain
termination criteria is satisfied (e.g., the training loss is below
a threshold, the testing accuracy is above a threshold, or other
convergence criterion), which usually varies across FL services
and are pre-specified by the corresponding FLSP. Therefore,
a FL service may span multiple periods. The wall clock time
(i.e. the number of periods) that a FL service takes to finish
depends on the difficulty and other inherent characteristics of
the service itself as well as how much wireless resource is
allocated to this service in each period for which it stays and
how this bandwidth is further allocated among its participating
clients. In what follows, we first formulate the client-level (i.e.,
intra-service) bandwidth allocation problem and then describe
the service-level (i.e., inter-service) bandwidth allocation prob-
lem. The notations that we will encounter are summarized
in Table L.

A. Intra-Service Bandwidth Allocation

To understand how bandwidth allocation affects the FL
speed, let us consider a single representative FL service n
in one period (period index ¢ is dropped for conciseness).
Suppose that this service is allocated with a bandwidth b,, in
this period, which is further allocated among its participating
clients, the set of which is denoted by K,,. For each client
k € K., let ¢ be its computing speed, and gi! and g be the
uplink and downlink wireless channel gains to the parameter
server of service n, respectively, which are assumed to be
invariant within a period. We consider a synchronized FL
model for each FL service, where a number of FL rounds
take place in a period. Nonetheless, different FL services do
not have to be synchronized — they learn at their own pace.
See Figure 2 for an illustration.

A FL round consists of four stages: download trans-
mission, local computation, upload transmission and global
computation:

e Download Transmission (DT). Each FL round starts
with a DT stage in which each client £ downloads the
current global model from its parameter server residing
on the base station. Suppose client k is allocated with
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bandwidth bn,k. Then the DT rate is by, jlogy(1 +
P,g{'/No) following Shannon’s equation, where P, is

the transmission power of parameter server n and Ny is

the noise power. For notational convenience, we denote

logy (1 + Png'/No) £ rPT as the DT base rate of client

k. Let SBT be the download data size (e.g., the size

of the global model), then the DT latency is tBTk =
ST/ (b gr").

o Local Computation (LC). With the current global model,
each client k& then updates its local model using its
local dataset. Depending on the ML model complexity,
the local dataset size and the number of epoches in local
training, the per-round local computation workload is
denoted by wLC Therefore, the LC latency of client k
is 1,5, —wnk/¢k

o Upload Transmission (UT). Once local update is finished,
client k£ transmits the result to the parameter server n.
Given the bandwidth by, j, its UT rate is by, logy(1 +
Py gkl /No), where P, is the transmission power of client
k and Ny is the noise power. Again, for notational
convenience, we denote log,(1 + Pyg'/No) £ 7T as
the UT base rate of client k. Let sUT be the data size
that has to be transmitted to the parameter server, then
the UT latency of client & is ¢} = ;" /(b k7).

o Global Computation (GC). Flnally, once the local updates
of all clients are received by parameter server n,
the global model is updated. Let wSC be the global
model update workload and ¢,, be the computlng speed
of parameter server n, then the GC latency is tS¢ =

wSC/ On.-

Remark I: Treating the bandwidth allocation as a fractional
solution is mostly for mathematical convenience and also
has been widely adopted in the existing works. Deriving an
integer-valued solution for realistic wireless systems such as
OFDMA can be done via rounding.

Remark 2: Uplink and downlink transmissions of a user do
not occur at the same time, and hence the whole allocated
bandwidth b, can be used for uplink or downlink when
needed. For this reason, we do not use different notations for
uplink and downlink.

Remark 3: Our framework is applicable to a vast set of
FL algorithms (e.g., FedAvg, FedSGD) that can be chosen for
service n. For instance, the downloaded/uploaded data may be
the model itself, the compressed version of the model, or the
model gradient information. For the purpose of bandwidth
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allocation, it is sufficient to describe the FL service as a
tuple (sDT, {wtC }rek, , sUT, wSC). Also note that although
bandwidth allocation has no effect on the LC latency and the
GC latency, the LC latency and the GC latency will affect the
outcome of the bandwidth allocation.

In synchronized FL, the parameter server updates the global
model until it has received the local updates from all partic-
ipating clients. Hence, the length of a FL round of service n
is determined by the total latency of the slowest client, i.e.
tn = maxper, (127 nok + tn .+ 197+ 1), To minimize the FL
round length ¢,, of service n so that more FL rounds can be
executed in a period, one has to optimally allocate bandwidth
b, among the clients of service n. Given b, the intra-service
bandwidth allocation problem can be formulated as

tn({bn,k’}k’eICn) SubjeCt to Z bn,k = bn (1)
keK,

Let ¢ (b,) denote the optimal solution to Eqn. (1). Then
the optimal FL frequency of service n is f(b,) = 1/t% (by),
which is used to represent the FL speed of service n. Note
that this means T'- f;¥(b,,) FL rounds can be performed in one
period.

min
br,1yeeesbn, K

B. Inter-Service Bandwidth Allocation

In a period, multiple active FL services may be active and
require wireless bandwidth to carry out learning. Since they
share a total bandwidth B, how this bandwidth is allocated
among different services will determine their achievable learn-
ing frequencies f;(by,), thus the convergence speed in terms of
the wall clock time. In this paper, we consider two scenarios
depending on the goals of the FLSPs and how inter-service
bandwidth allocation is implemented. In the first scenario,
all FLSPs are cooperative, and their goal is to maximize
the FL performance of the overall system. Therefore, it is
equivalent to the NO solving a system-wide optimization
problem. In the second scenario, FLSPs are selfish who only
care about their own FL performance. As these FLSPs are
competing for the limited bandwidth resource, addressing
their incentive issues is crucial. In this paper, we design a
fairness-adjusted multi-bid auction mechanism for this case.
In the following two sections, we discuss these two scenarios
separately.

IV. COOPERATIVE SERVICE PROVIDERS

In the cooperative FLSPs scenario, the NO directly decides
the bandwidth allocation to maximize the overall system per-
formance. As in any multi-user network, bandwidth allocation
for multi-service FL has to address both efficiency and fairness
— every active FL service should get a reasonable share of the
bandwidth. Thus, we adopt the notion of proportional fairness
[36], a metric widely used in multi-user resource allocation,
and aim to solve the following optimization problem:

N
max nZ::l log(1 + f;:(by))

N
subject to Z b, = B and f(b,) solves (1), ¥n (2)

n=1
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where we drop the period index ¢ and let IV be the number of
active FL services in the period for conciseness. The objective
function adds a “1” inside the logarithmic to ensure that the
function value is always non-negative. This change has very
little impact on the final allocation since the frequency is often
much larger than 1 in a period. Note also that the above
inter-service bandwidth allocation problem Eqn. (2) implicitly
incorporates the intra-service problem as f;: (b,,) is the solution
to Eqn. (1).

A. Optimal Solution to the Intra-Service Problem

We first investigate the optimal solution to the intra-service
bandwidth allocation problem and see how it can be used
to solve the inter-service problem. According to our system
model and Eqn. (1), the intra-service bandwidth allocation is
equivalent to

i t 3
bn,lwr-{llllgfotn " 3)
subject to t%}k + i /bnk <ty 4)

Z bn,k = bn (5)

where we let tg’ = tLC +15€ and a, j, £ sPT/rPT 4 sUT /p T
for notational convenience. Clearly, the optimal solution t*
must satisfy t kT ok /b =t , Vk. Therefore, the optimal
ty, solves the followmg equahty,

> e
x« _ 4C
k tn tn,k’

Although we do not have a closed-form solution of ¢ (b,,),
a bi-section algorithm can be constructed to easily solve the
above problem to obtain the optimal ¢} (b,,) and consequently
the optimal frequency f,(by,) = 1/t (b,) as a function of b,,.
Furthermore, the property of f;f(b,) can be characterized in
the following lemma.

Lemma 1: f}(by) is a differentiable, increasing and con-
cave function for b, > 0.

Proof: Let us consider the inverse function b,,( f,,) defined
by Eqn. (6). It is easy to see that for f,, € [0,1/maxy tS ),
b.(F,) is a monotonically increasing function in f, with
b, (0) = 0 and b, (f,) — oo as f, — 1/ maxy tffk. Therefore,
for b, > 0, f.(b,) is also monotonically increasing. The
first-order derivative of b, (f,) is, Vf, € [0,1/ maxy, tg’ b

dbn dbn dtn Qn Lk
b/ = = = _—
" dfn dtn dfn zk: (1 - t%,k ”)2

Therefore, f,(by,) is differentiable for b,, > 0 and

-1
dfn_ Qn K
<27(1—tckfn)> >0, Vb, >0 (8)

db,,
The second-order derivative f;/ can also be computed as
follows: VB > 0,

—2
" o__ On k a"vkt%k
e (Srtny) (Satiy) <

©)

=bn (6)

>0

(N

fo=
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This proves that f,(b,) is a concave function for
b, > 0. O

With Lemma 1, it is straightforward to see that the
inter-service bandwidth allocation problem (2) is a convex
optimization problem.

Proposition 1: The inter-service bandwidth allocation
problem (2) is an equality-constrained convex optimization
problem.

Proof: Because f* is concave, log is concave and increas-
ing, the composition log(1 + f*) is also a concave function.
Then it is straightforward to see that the problem is a concave
maximization problem with an equality constraint. 0

B. Distributed Algorithm for Inter-Service Bandwidth
Allocation

We now proceed with solving the inter-service bandwidth
allocation problem. While various centralized convex opti-
mization algorithms, such as the Newton’s method, can effi-
ciently solve the inter-service problem Eqn. (2), we prefer a
distributed algorithm where individual FLSPs do not share
their FL algorithm details and client-level information with
each other or the NO. This way reduces the communica-
tion overhead and preserves privacy of the client devices of
individual FLSPs. Our algorithm is developed based on dual
decomposition [37] as follows.

We first relax the total bandwidth constraint ) b, = B to
be >, b, < B, and then form the Lagrangian by relaxing the

coupling constraint:
D3 (e -o)

(10)

L(by,..., Zlog 14 f5(b

= ZL (b, \) + AB

bNa

where A is the Lagrange multipier associated with the total
bandwidth constraint, and Ly, (b,, ) = log(1+ f:(bn)) — \by,
is the Lagrangian to be maximized by FLSP n. Such dual
decomposition results in each FLSP n solving, for a given A,
the following problem

b7 (A)

arg ini)é Ly (bn, A)

= argmax (log(1 + f,(bn)) = Abn) (1D
where the solution is unique due to the strict concavity of f
according to Lemma 1. Specifically, to solve this maximization

problem, we only need to solve its first-order condition,

n (bT?)/(1+fn( 77)):)‘ (12)
which can be converted to solve f* using
L+ Y ety =2 (13)

e, (1= tkfi)?

Clearly, the left-hand side is an increasing function of f,; for
fr €10,1/max; t5 ;) and thus, a simple bi-section algorithm
can be devised to solve Eqn. (13) to obtain f;(\). Then
plugging f(\) (hence t (\)) into Eqn. (6) yields the optimal
b= (N).
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Let gn(/\) = 1naxp,>0 Ln(bn;/\) = Ln(b:z(A)7A) be
the local dual function for FLSP n. Then the master dual
problem is

. _ ; >
m}}ng()\) zn:gn()\) + AB subjectto A >0  (14)

Since b} () is unique, it follows that the dual function g, ()
is differentiable and the following gradient method can be used
to iteratively update A:

.,
AG+1) = [A(j) — (B - meu»)] 1)

where 7 is the iteration index, v > 0 is a sufficiently small
positive step-size, and [-]T denotes the projection onto the
non-negative orthant. The dual variable A(j) will converge to
the dual optimum A\* as j — oo. Since the duality gap for
the inter-service problem is zero and the solution to Eqn. (11)
is unique, b (A(j)) will also converge to the primal optimal
variable b .

Algorithm 1 summarizes the proposed DISBA algorithm.
The computation complexity in each iteration is as fol-
lows: each FLSP (in parallel to other FLSPs) computes
b%(A(j)) by solving Equation (11). As we mentioned, this
can be done by using a bi-section algorithm, which requires
O(log(maxy, 1/(t§k))) iterations. The NO uses Eqn. (15) to
update the dual variable, whose complexity is O(1). Our
algorithm uses a gradient method with a constant step size
to update the dual variable, which is proven to converge to
the optimal value [42].

Algorithm 1 Distributed Inter-Service Bandwidth Allocation
(DISBA)

1: Input to NO: total bandwidth B, step size «y, convergence

gap €
2: Input to FLSP n: FL service n parameters
(sPT, {wI;LCk Yrere, s9T,wSC),  channel  gains  and

computing speed of its clients /C,,.
3: Initialization: set j = 0 and A(0) equal to some
non-negative value
4 while \(j) — A(j — 1) > € do
5. NO sends A(j) to all FLSPs
Each FLSP n obtains b} (A(j)) by solving Eqn. (11)
using bi-section
Each FLSP n sends b} (\(j)) to NO
NO updates A(j + 1) according to Eqn. (15)
J—Jj+1
10: end while

V. SELFISH SERVICE PROVIDERS

In the previous section, DISBA works by letting each
FLSP compute the allocated bandwidth b} (A(j)) given A(j).
This, however, creates an opportunity for a selfish FLSP to
mis-report its computation result that favors itself but reduces
the system performance as a whole. In fact, even if the
inter-service bandwidth allocation problem (2) is solved in a
centralized way, similar selfish behavior may still undermine
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the efficient system operation as a selfish FLSP may mis-report
its FL service and client parameters (e.g., FL. workload, client
computing power and channel gains etc.), which will alter the
frequency function f used at the NO side. With a wrong
frequency function f,;, the NO will not be able to determine
the true optimal bandwidth allocation.

In this section, we address the selfishness issue in
inter-service bandwidth allocation by designing a multi-bid
auction mechanism. This auction mechanism will ensure that
the FLSPs are using their true FL frequency functions f,; when
making bandwidth bids.

A. Multi-Bid Auction

First, we describe the general rules of the multi-bid auction
mechanism.

1) Bidding: At the beginning of each bandwidth alloca-
tion period, each FLSP n submits a set of M bids s, =
{sL,...,sM} For each m € {1,..., M}, s = (b, p™) is
a two-dimensional bid, where b is the requested bandwidth
and p;* is the unit price that FLSP n is willing to pay to
get the requested bandwidth b]'. Without loss of generality,
we assume that bids are sorted according to the price such
that pL < p?2 < ... <pM. Let S € Rt x RT denote the set
of multi-bids that a FLSP can submit.

2) Bandwidth Allocation and Charges: Once the NO col-
lects all multi-bids from all FLSPs, denoted by s = {s, }nenrs
it computes and implements the inter-service bandwidth allo-
cation (by,...,by). Each FLSP n then further allocates b,, to
its clients to perform FL. At the end of the period, the NO
determines the charges (c1,...,cn) for all FLSPs depending
on the allocated bandwidth and the realized FL performance.

Now, a couple of issues remain to be addressed. First, how
to compute the bandwidth allocation and determine the charges
given the FLSP-submitted multi-bids? Second, do the FLSPs
have incentives to truthfully report their valuations of the
bandwidth? These are the questions to be addressed in the
next subsections.

B. Market Clearing Prices With Full Information

We first consider a simpler case where the FLSPs truthfully
report the complete FL frequency function f(b),Vn to the
NO. This analysis will provide us with insights on how to
design bandwidth allocation and charging rules in the more
difficult multi-bid auction case.

Recall that f;5(b) is the optimal FL frequency of service n
if it has bandwidth b. Taking into account the price paid to
obtain this bandwidth, the (net) utility of FLSP n is

Now, if the bandwidth were sold at the unit price p, then
FLSP n would buy b, (p) = argmaxp u, (b; p) bandwidth in
order to maximize its utility. We call b, (p) the bandwidth
demand function (BDF), and it is easy to show that b,,(p) =
(fx")~1(p) by checking the first-order condition of Eqn. (16).
On the other hand, if FLSP n requires a bandwidth b, then the
FLSP would pay a unit price no more than p, (b) = f'(b).
We call p,,(b) the marginal valuation function (MVF).

(16)
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1) Market Clearing Price: With the complete information
of fX(b) and hence BDF b,(p) for all FLSPs, the NO
can compute the market clearing price (MCP) p so that
Zﬁle bn(p) = B. One can prove that the MCP is unique and
optimal in the sense that it maximizes the total (equivalently,
average) FL frequency.

Proposition 2: The market clearinﬁ price p is unique and
maximizes the total FL frequency ), fr(by).

Proof: According to Lemma 1, f7'(b) is an increasing
function. Therefore, the BDF, which is the inverse function
of f*(b) is also increasing. As a result, there exists a
unique solution to the increasing function Zﬁle bn(pn) = B.
To show that p maximizes Zgzl fx(by), consider the
following maximization problem

N N
ma *(b,,) subject to b, =B 17
e n;fn( ) subj ; (17)

This is clearly a convex optimization problem. Consider its
Karush-Kuhn-Tucker conditions. In particular, the stationarity
condition is

N

N
VY frbn) + AV by — B) =0
n=1

n=1

(18)

where A is the Lagrangian multiplier associated with the
constraint. The solution requires

(b)) =\, ¥n

n

19)

Together with the feasibility constraint, this is equivalent to
imposing a homogeneous market clearing price. t

Because b, (p) is a monotonically decreasing function in
p, a bi-section algorithm can be easily designed to find the
unique market clearing price so that Zgzl bn(p) = B.

2) Fairness-Adjusted Costs: One major issue with the above
pricing scheme is that it ignores fairness among the FLSPs:
although it maximizes efficiency in terms of the average
FL frequency according to Proposition 2, it is possible that
the average FL frequency is maximized at an operating
point where a few FLSPs are allocated with most of the
bandwidth while some FLSPs obtain very little. In this
paper, we design and incorporate a fairness-adjusted charging
scheme. The payment of FLSP n now consists of two parts as
follows:

o The first part of the payment depends on the amount of

bandwidth b,, allocated to the FLSP n, and the unit price
p set by the NO. Specifically, this payment is p - b,,.

o The second part of the payment depends on the realized
FL frequency f,, of FLSP n. Specifically, FLSP n will be
charged a fairness-adjusted cost of a-( f,, —log(1+ f,,))
at the end of the period once f,, has been realized, where
a € [0,1] is a tunable parameter.

With these payments, FLSP n’s utility becomes
un(b;p) = fr(0) —p-b—a- (f;(b) —log(1 + f7(b)))
=gn(b) —p-b (20)

where g, (b) = (1 — a)f*(b) + alog(1l + f;(b)). Comparing
this new utility function Eqn. (20) with Eqn. (16), we make the
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following remarks. First, the fairness-adjusted cost essentially
replaces f;5(b) with g¢,,(b). The decision problem remains
largely the same except that now we have a different benefit
function. Second, in the new utility function Eqn. (16), given
any allocated bandwidth b, it is still in the FLSP’s interest to
perform the optimal client-level bandwidth allocation to max-
imize f,(b). This is because g, (b) is an increasing function in
fn(b) for a € [0, 1]. Therefore, we can directly write g,,(b) as
a function of the optimal FL frequency f;:(b). Third, to charge
the fairness-adjusted cost, the NO does not need to know the
exact function f(b). Rather, it only has to know the realized
FL frequency f, at the end of the current period. This is key
to achieving fairness in multi-bid auction where FLSPs do not
report the complete FL frequency function f(b).

We call d,,(p) = (g/,) ~*(p) the modified bandwidth demand
function (mBDF). Likewise, we call ¢,(b) = g, (b) the
modified marginal valuation function (mMVF). The NO can
similarly compute the modified market clearing price (mMCP)
¢ so that Zﬁle d,(¢) = B. Using a similar argument
that proves Proposition 2, one can prove Proposition 3 as
follows.

Proposition 3: The mMCP (s
resulting  bandwidth  allocation  (by, ..
S [(1 = @) £ (bn) + alog(L + £3(b))]-

Proof: Because f(b) is a concave increasing function,
log(1 + f;(b)) is also concave and increasing. This further
shows that g,,(b) is concave and increasing. The rest follows
similar arguments in the proof of Theorem 2. 0

The parameter o makes a tradeoff between efficiency and
fairness. On the one hand, setting o = 0 reduces the problem
to the total FL frequency maximization problem. On the other
hand, setting o = 1 achieves proportional fairness among the
FLSPs.

and  the
maximizes

unique
LX) bN)

C. Bandwidth Allocation and Charging Rules

Now, we are ready to describe the bandwidth allocation and
charging rules in fairness-adjusted multi-bid auction. In this
subsection, each FLSP n submits only a multi-bid s, =
(sk,...,sM) instead of the complete FL frequency function
f(b). However, we will assume that the FLSPs are rruthfully
submitting their bids, which will be proven indeed true in the
next subsection. Specifically, we say that a bid s* = (b, p!™*)
is truthful if the bandwidth demand 0] and the price p)"
that FLSP n is willing to pay satisfy the mBDF because it
reveals FLSP n’s true valuation of bandwidth after taking
into consideration the fairness-adjusted costs. A multi-bid is
truthful if all bids are truthful.

Definition 1 (Truthful Multi-Bid): A  multi-bid
(sk,...,sM) is truthful if Vm, s =
P = gn ().

The NO does not know the BDF (and hence the mBDF)
of each FLSP n because it does not have access to the
FL frequency function f;;. Nonetheless, suppose FLSP n
submitted a truthful multi-bid s,,, then the NO can compute
a pseudo-mBDF using these bids to have some idea of the
actual mBDF. Specifically, given the submitted multi-bid s,
a left-continuous step function can be used to describe the

Sn =

(b, pi™) is such that
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Fig. 3. Pseudo-mBDF and Pseudo-mMVF.
pseudo-mBDF as follows,
o M
i ) 0, if p,, <p en
ni\P) = max {b)' : pI" > p}, otherwise
1<m<M

Essentially, the pseudo-mBDF uses b]' to approximate
the bandwidth demand for prices in the range (p~!,p™].
Similarly, the NO can also construct a pseudo-mMVF
(pseudo-MVF), an approximation of FLSP n’s actual mMVF
using the submitted multi-bid, as follows,

if b) < b

0,
) gnrlnaSXM{pn :bpt > b}, otherwise

(22)

In other words, the pseudo-mMVF uses p!* to approximate
the marginal value for bandwidth allocation in the range
[bm, b F1). We illustrate pseudo-mBDF and pseudo-mMVF

n’ n

in Figure 3.
The aggregated pseudo-mBDF is the sum of
pseudo-mBDFs of all FLSPs:
N
d(p) = dn(p) (23)
n=1

The pseudo-mMCP ( is the largest possible price so
that the aggregated pseudo-mBDF exceeds the total available
bandwidth, i.e.,

¢ = sup{p: d(p) > B}

This implies that reducing the mMCP by just a little bit
will result in the supply (i.e., the total available bandwidth B)
being no greater than the demand. Because every individual
pseudo-mBDF function is a step function with K steps,
the aggregated pseudo-mBDF is also a step function with at
most NK steps. Therefore, the complexity of computing C is
at most O(NK).

Next, we describe our bandwidth allocation and charg-
ing rules. For notational convenience, let y(z*) =
lim,_,; .~, y(x) when this limit exists for a functiony : R —
R and all z € R.

1) Bandwidth Allocation: With the pseudo-mMCP (, our
bandwidth allocation rule is as follows: if FLSP n submits the
multi-bid s,, (and thereby declares the associated functions d,,
and @), then it receives bandwidth b,, (s, s_, ), with

3 A+ Czn(@ — J7z(€+)

Pnlon o) = G g e

(24)

(B—d(ch))
(25)
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In other words: (1) Each FLSP n receives an amount of
bandwidth it asks for at the lowest price (* for which supply
exceeds the pseudo-bandwidth demand. (2) If all bandwidth
is not allocated yet, the surplus B — d(¢*) is shared among
FLSPs. This sharing is done proportionally to d,,(¢) —d,, (C)
as we notice that d(C) — d(¢t) = Y0 (d,(C) — dn(CT)),
and ensures that all bandwidth is allocated.

2) Charging: Given the submitted multi-bids s, each FLSP
n is charged ¢, (s) as follows,

cn(8n,5-n)

bJ(S—n)
-y / G (0)db + o (£5(ba) — log(1 + £2(ba)))
j#n i (s)

(26)

The first term on the right-hand side is based on the
exclusion-compensation principle in second-price auction
mechanisms [43]: FLSP n pays so as to cover the ‘“social
opportunity cost”, namely the loss of utility it imposes on
all other FLSPs by its presence. The second term on the
right-hand side is the fairness-adjusted cost, which is charged
at the end of each period after the actual FL frequency is
realized and observed.

Considering both the achieved FL frequency and the
payment, FLSP n’s utility is therefore

u(s) = fr(bn(s)) = cn(s)

The multi-bid auction-based inter-service bandwidth alloca-
tio (MISBA) algorithm is summarized in Algorithm 2.

27)

Algorithm 2 Multi-Bid Auction-Based Inter-Service Band-

width Allocation (MISBA)

1: Input to NO: total bandwidth B, fairness parameter c,
number of bids M.

2: Input to FLSP n:
DT DT UT ,.UT

FL service mn parameters

Sy Ty Sy Ty » and number of clients in FL service n
as K.
3: Each FLSP n sends multi-bid s, = (sl,...,sM) where

sp = (b, py') to NO

4: NO calculates the clearing price according to Eqn.(21) -
Eqn.(24)

5: NO allocates the bandwidth b,, to each FLSP n according
to Eqn.(25)

6: Each FLSP n solves the intra-service problem with allo-
cated bandwidth b,,

7: NO charges each FLSP according to Eqn. (26)

D. Incentives of Truthful Reporting

In the previous subsection, we assumed that the every FLSP
truthfully submits its bid. Now, we prove that this assumption
indeed “approximately” holds under the designed bandwidth
allocation and charging rules. We first study the individual
rationality of the designed mechanism.

Definition 2: A mechanism is said to be individual rational
if no FLSP can be worse off from participating in the auction
than if it had declined to participate.
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Proposition 4: If FLSP n submits a truthful multi-bid s,

then u,(s) > 0.
Proof: By Lemma 1, it is straightforward to see that g,, ()

has the following properties:

o gn(b) is differentiable and g¢,,(0) =0

o g,(b) is positive, non-increasing and continuous

. Ty >0,V >0, g, () = 0 = Vb < b, ¢,(b) < gh() -
Therefore, g, (b) satisfies [Assumption 1, [5]]. According to
[Property 10, [5]], we have

bj(s—n)
S [ am < gty )
j#n T 0i(s)
which is equivalent t0 ¢ (Sn,5—n) < fF(bn(Sn,S—n)).
Therefore, u(s) > 0. O

Next, we show that truthful reporting is approximately
incentive compatible, i.e., a FLSP cannot do much better than
simply revealing its true valuation.

Proposition 5: Consider any truthful multi-bid s,, for
FLSP n, and any other multi-bid 3, # S, VS_p,
we have u“’(S"’sTn”) > Un(Sn,S—n) — Ay, where A, =
maxo<m<M (Z:Lgﬁjl)(%(b)—ﬁmdb with pp'™ = ¢,,(0) and
P?,, = Do.

Proof: The proof follows [Proposition 2, [5]]. O

The above proposition shows that if FLSP n submits a
truthful multi-bid s,,, then every other multi-bid S,, necessarily
corresponds to an increase of utility no larger than A,,. In other
words, a truthful bidding brings FLSP n the best utility
possible up to a gap A,. Importantly, this value does not
depend on the number of other FLSPs or the multi-bids they
submit.

E. An Uniform Multi-Bidding Example

To conclude the multi-bid auction mechanism design,
we illustrate a uniform multi-bidding approach as an example
of how to decide the multi-bid of an individual FLSP. Instead
of having the FLSP submit both prices and bandwidth requests,
the NO can announce M prices (p.,...,pM) to FLSP n and
let FLSP n report its requested bandwidth (bl ... bA%) at
these price points. This way, the NO has a better control
over how the FLSPs make multi-bids to avoid multi-bids
that may result in a large A,, which may reduce FLSP’s
incentives to truthfully report. Because the NO does not know
the demand function of FLSP n, a natural approach is to
uniformly distribute these M prices in the range [po, pi*]
where p;®* is the largest price at which the FLSP may still
request a positive amount of bandwidth. Specifically,

= pa(0) = £,/(0)

K, -1 Kn DT UT -t

=D omr| =(DCx+p) @
— Tk Tk
k=1

k=1

Assume that the NO has prior knowledge K,,, sPT, sUT

2n 2 2n o
70T and 7UT on the lower/upper bounds on the parameters,
maX can be upper bounded by

n
DT Ut !
<§n 4 Sn > L pmax
»DT wUT n
n n

then p

< KLt (30)

— =n
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Thus, the NO can set the uniform prices as

Hmax

bn" — Do

M+1"

Note that there is an intrinsic trade-off on the choice of
M. On the one hand, a larger M allows the pseudo-BDF
and pseudo-MVF to more accurately reflect the true BDF
and MVF at an increased complexity and signaling overhead.
On the other hand, a smaller M makes multi-biding easier
but the discrepancy between the pseudo functions and the true
functions will introduce a larger performance loss.

Pt =po+m- Ym=A{1,...,M} (31

VI. SIMULATIONS

In this section, we conduct simulations to evaluate the
performance of the proposed methods. Since our algorithm
does not touch the actual FL learning procedure, it will not
affect the FL performance in terms of accuracy or function
loss in convergence, or even the number of learning rounds to
meet a pre-selected convergence criterion. Our algorithm will
only affect the absolute time length of a learning round and
hence the absolute time (i.e. wall clock time) to converge. For
this reason, using simulated FL convergence traces is sufficient
to evaluate our algorithm.

A. Simulation Setup

The simulated wireless network has a total bandwidth of
B = 10 MHz. The period length is set as 7" = 20 s. The
number of clients of a FL service is drawn from a Gaussian
distribution with mean 25. In every period, a new FL task
may start following a scheduled plan, which is defined by a
Poisson distribution with the mean interval pyyive. By tuning
Parrives W adjust the FL service demand, and a smaller puyive
will more likely lead to more concurrent FL services in a
period as an FL service often lasts multiple periods. Each
FL service has a pre-determined target training accuracy, and
when the accuracy reaches the target, the FL service terminates
and exits the wireless network. In our simulation, each FL
service is considered as being converged after 2000 learning
rounds. The clients’ wireless channel gain is modeled as
independent free-space fading where the average path loss is
from a Gaussian distribution with different mean and variance
in different circumstances. The variance of the complex white
Gaussian channel noise is set as 10~ !2. For each client,
the local training time is uniformly randomly drawn from
[0.01,0.05] sec. We fix the global aggregation time to be
1 x 1075 sec. We consider typical neural network sizes in
the range of [0.2,0.5] Mbits. The upload transmission power
is uniformly randomly between 0.05 and 0.15 W, and the
download transmission power is uniformly randomly between
0.1 and 0.3 W.

B. Convergence of DISBA in the Cooperative Case

We first illustrate the convergence behavior of DISBA in
the cooperative FLSPs case in a representative period with 5
concurrent FLL services. These services have 10, 12, 14, 16,
18 clients, respectively. In Figure 4, we show the computed FL
frequency for each service before convergence. As Figure 5
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TABLE I

RESULTED BANDWIDTH ALLOCATION AND FREQUENCY OF
EAcCH FL SERVICE (COOPERATIVE)

Service Index ~ Number of Clients  Bandwidth Ratio  Frequency
1 10 0.182 113
2 12 0.196 107
3 14 0.209 102.6
4 16 0.205 90.4
5 18 0.205 81.2

TABLE III

COMPUTATIONAL COMPLEXITY FOR THE COOPERATIVE PROVIDER CASE.
THE TIME VALUES ARE MEASURED ON A DESKTOP COMPUTER WITH
INTEL CORE 15-9400 2.9GHZ GPU AND 16GB MEMORY

Tolerated Gap  Step Size  # of Iterations  Time(s)
le-3 0.1 131 0.332
le-3 0.5 37 0.094
5e-3 0.1 72 0.169
Se-3 0.5 26 0.069

shows, the bandwidth allocation quickly converges to the
optimal allocation for a convergence tolerance gap € = le — 3.
Eventually, the resulting FL frequencies of these FL services
in this period are reported in Table II. We further show
in Table III the computation time of DISBA for different values
of the tolerance gap and the step size.

C. Fairness-Adjusted Multi-Bid Auction in the Selfish Case

We perform fairness-adjusted multi-bid auction in the same
representative period as in the last subsection, with M = 5 and
a = 0.5. The pseudo-mBDFs of the FLSPs and the aggregated
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TABLE IV
OPTIMAL BANDWIDTH AND FREQUENCY OF EACH SERVICE (SELFISH)

Service Index =~ Number of Clients  Bandwidth Ratio ~ Frequency
1 10 0.164 105.82
2 12 0.177 99.52
3 14 0.217 105.46
4 16 0.218 94.4
5 18 0.223 86.56

16.55

16.5

3 4 5 6 7 8 9 10
Value M

Fig. 8. Overall performance in the selfish FLSPs case with different M.

pseudo-mBDF are illustrated in Figures 6 and 7, respectively.
The pseudo-MCP is also shown in Figure 7. Table IV reports
the resulting bandwidth allocation and achieved FL frequency.

As we mentioned in Section V, there is a trade-off when
selecting the number of bids M. In Figure 8, we demonstrate
the overall performance by varying M. As can be seen, as M
increases, the overall performance will increase while each
FLSP needs to submit more bids to the server which will
cause transmission delays and data backlogs.
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The parameter o plays an important role in the selfish
FLSP case, which makes a tradeoff between efficiency and
fairness. With a larger «, the whole system sees fairness as
more important, and conversely, the whole system is more
concerned with the overall efficiency. The market clearing
price is reflected in Figure 9 and the overall utility is shown
in Figure 10. With the increase of «, the market clearing
price and the total utility will decrease, which can be treated
as a compromise to achieving fairness between different FL
services.

D. Performance Comparison

In the following experiments, we compare our proposed
algorithms with three benchmark algorithms.

o Equal-Client (EC): Bandwidth is equally allocated to
the clients. Therefore, each client gets a bandwidth of
B/, Kn.

o Equal-Service (ES): Bandwidth is equally allocated to
the FL services. That is, each FL service gets a bandwidth
of B/N. However, each FLSP still performs the optimal
intra-service bandwidth allocation among its clients.

o Proportional (PP): Each FL service obtains a bandwidth
that is proportional to the number of its client. That
is, FL service n obtains a bandwidth of ZI.(;{”B. This

bandwidth is further allocated among its clients following

the optimal intra-service bandwidth allocation.

We start by comparing the proposed algorithms with bench-
marks in the per-period setting. The overall performance is
shown in Figure 11. In this setting, there are five FL services
with a random number of clients drawn from a Gaussian
distribution with mean 20 and variance 10 and random channel
conditions drawn from a Gaussian distribution with mean 85
and variance 15, and the result is averaged over 20 runs.
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Fig. 11. Per-period FL performance of different algorithms.
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As can be seen, DISBA for the cooperative case (labeled
as Coop) has the best performance, and the MISBA for
the selfish case (labeled as Self) also outperforms the other
benchmarks. Although ES and PP also solve the optimal
intra-service bandwidth allocation, the heterogeneity of the
client number and channel conditions render them suboptimal
for the two-level problem.

Because FL is a long-term process, we further investigate
the long-term performance of the proposed algorithms. In the
long-term setting, 10 FL services join the wireless network at
different times controlled by the p,uive-parameterized Poisson
process and the FL service will be removed from the wireless
network when it has converged. Although the convergence
of FL is complexly affected by many factors including the
adopted FL algorithm, dataset and the selected clients, we con-
sider that each of these 10 FL services requires 2000 FL rounds
to converge, which is a typical value observed in the literature
[3] to reach convergence. This way provides a meaningful
comparison of the algorithms in a controlled environment.

Figure 12 illustrates the average duration (in terms of the
number of periods) of all FL services by running different
algorithms for pyive 5, where the client number of a
FL service is drawn from a Gaussian distribution with mean
25 and variance 15 and the channel condition of a FL service
is drawn from a Gaussian distribution with mean 85 and
variance 15. The results are averaged over 20 runs. We can
see that the proposed algorithms achieve the smallest average
duration compared to the benchmarks, confirming their fast
FL convergence even in the long-run.

Next, we study the impact of the client number heterogene-
ity (which reflects the FL service scale heterogeneity) on the
performance of different algorithms. To this end, the client
number of a FL service is drawn from a Gaussian distrib-
ution with mean 25 and we change the variance between 0
and 15 to adjust the heterogeneity degree. The result is
shown in Figure 13: as the variance increases (i.e. a higher
degree of heterogeneity), the mean of the average duration
decreases, while the standard deviation of average duration
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increases. This is understandable because a higher degree of
heterogeneity causes wireless bandwidth to be more unevenly
distributed among the FL services, thereby degrading the
overall FL performance. Notably, the performance gain of our
proposed algorithms increases as the variance increases, which
demonstrates the superior ability of our algorithms to handle
the heterogeneous case.

Furthermore, we also investigate the impact of the channel
condition heterogeneity on the FL performance. In these simu-
lations, the average channel condition of a FL service is drawn
from a Gaussian distribution with mean 85 and we change the
variance between 0 and 15 to adjust the heterogeneity degree.
The channel conditions of clients of this FL are further drawn
from a Gaussian distribution with a mean being the instantiated
average channel condition. In Figure 14, we observe a similar
phenomenon as in Figure 13, which further confirms the
advantage of adopting our proposed algorithms.

Finally, we study the influence of the arrival interval para-
meter Parive ON the resulting average FL duration. in Figure 15,
with the increase of pumive, the average duration of the FL
services decreases. This is because when payive 1S small, many
FL services pile up and co-exist in the wireless network,
thereby reducing the wireless bandwidth an individual FL
service can receive.
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VII. CONCLUSION

This paper studied a bandwidth allocation problem for
multiple FL services in a wireless network, a new topic
in the literature. The considered problem consists of two
interconnected subproblems, intra-service resource allocation,
and inter-service resource allocation. By solving these prob-
lems, we optimally allocate bandwidth resources to multiple
FL services and their corresponding clients to speed up the
training process and meanwhile guarantee fairness for both
cooperative and selfish FLSPs cases.

We note that FL is captured in our work via its unique work-
flow rather than its specific learning procedure. Precisely, FL is
an iterative process where every round involves four steps (DT,
LC, UT and GC), and the slowest client determines the length
of a round and hence the speed of learning. Such a workflow
results in a new two-level bandwidth allocation problem where
bandwidth needs to be allocated among not only clients but
also the simultaneous services to ensure an efficient and fair
system operation. We did not consider the learning-specific
factor in our bandwidth allocation problem because it does
not matter in determining the time needed to complete one
learning round. We are more inclined to consider this as a merit
of our approach rather than a drawback, because it decouples
the wireless resource allocation from the learning algorithm
design. Thus our approach is able to handle a wide range of FL
algorithms that adopt the common workflow. In particular, one
does not have to re-design the entire wireless system and the
bandwidth allocation scheme for every single FL algorithm.
However, tailoring the bandwidth allocation design to specific
learning factors may further improve the FL performance,
likely with added complexity. This could be an interesting
future research direction to explore. In addition, bandwidth
allocation can be further performed in conjunction with client
selection to deal with cases where some clients experience
extremely low computation capacity and/or extremely poor
wireless channel condition. This could be another interesting
future research topic.
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