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Abstract

Environmental change, accelerated by anthropogenic activities, threatens many

species and can be especially challenging for rare species given their potentially

limited capacity for migration and adaptation relative to more common species.

The ability to acclimate via phenotypic plasticity could provide an important

path to species persistence in the face of such change. We investigated the

responses of an endangered plant species endemic to a highly dynamic riparian

habitat in southeastern Tennessee, USA, and its most widespread congener to

environmental change to elucidate their current statuses and future vulnerabil-

ity. Specifically, we compared the population- and species-level plasticity of rare

Pityopsis ruthii and common P. graminifolia to contrasting light, temperature,

and water conditions in a growth chamber experiment to evaluate their poten-

tial to acclimate to environmental change. Contrary to our expectations,

P. ruthii had greater phenotypic plasticity than its common congener in response

to both altered light and water availability. But this plasticity was not associated

with increased fitness, suggesting that it was not adaptive. Concurrently, we

genotyped these individuals at nine putatively neutral microsatellite loci to con-

trast genetic diversity across the range of each species. As expected, P. ruthii

exhibited reduced genetic diversity relative to its more common congener. Over-

all, our findings accord with the narrow range and current habitat specificity of

P. ruthii, especially its tolerance of highly variable water, and highlight its poten-

tial vulnerability to future environmental change.
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INTRODUCTION

Many ecosystems globally are experiencing unprece-
dented rates of anthropogenic environmental change,

which threatens populations, species, and overall biodi-
versity (Malhi et al., 2020). To persist in the face of
such change, populations and species must successfully
respond by migrating to more suitable habitats (Chen
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et al., 2011; Crickenberger & Wethey, 2018; Hickling
et al., 2006; Parmesan, 2006), adapting to novel natural
selection (Hamann et al., 2020; Jump & Peñuelas, 2005;
Sheth et al., 2018), and/or acclimating to new conditions
(Chevin et al., 2010; Nicotra et al., 2010; Seebacher
et al., 2015). The capacity to persist through change can
differ dramatically among species and particularly chal-
lenge those that are rare (Enquist et al., 2019; Xu
et al., 2015). For example, models suggest that migratory
potential depends on abundance near existing range
boundaries, which could impede the potential for rare
species to migrate (Iverson et al., 2004). Additionally,
the limited genetic diversity characteristic of many rare
species could constrain adaptation to environmental
change (Cole, 2003; Gitzendanner & Soltis, 2000;
Leimu & Fischer, 2008).

The capacity to acclimate in the face of rapid environ-
mental change through phenotypic plasticity could be espe-
cially important for the persistence of species that have
limited capacities for migration and adaptation. Plants gen-
erally exhibit high degrees of phenotypic plasticity relative
to other types of organisms (Sultan, 2000), but plant
populations and species can vary dramatically in their
responses to environmental change due to variation in
the extent of adaptive plasticity (Balaguer et al., 2001;
Cleavitt, 2002; Dangremond et al., 2015; Godoy et al., 2012;
Nicotra & Davidson, 2010; Osunkoya & Swanborough,
2001; Pohlman et al., 2005; Sultan, 2000; Valladares
et al., 2000, 2007). For rare species characterized by low
numbers and genetic diversity, high phenotypic plasticity
could provide an important path to persistence in the face
of environmental change. In contrast, low phenotypic plas-
ticity combined with low numbers and genetic diversity
could comprise a combination of limited acclimatory,
migratory, and adaptive potential that could lead to extinc-
tion. Comparisons of rare and common species can eluci-
date factors that contribute to species rarity in a dynamic
natural world and inform the conservation of biodiversity
in a time of rapid environmental change (Bevill &
Louda, 1999) while controlling for life history and phylog-
eny (Farnsworth, 2006; Murray et al., 2002). Studies com-
paring congeneric species in particular could be especially
impactful to advancing our understanding of species’ rarity
by providing for control of the potential influences of life
history and phylogeny on outcomes (Combs et al., 2013;
Farnsworth, 2006; Godt & Hamrick, 2001; Kunin &
Gaston, 1997; Murray et al., 2002).

Riparian habitats are characterized by disproportion-
ately high amounts of biodiversity and ecosystem services
(Capon et al., 2013). These unique systems also experi-
ence very high anthropogenic pressures and are among
the most altered ecosystems in the world (Perry
et al., 2012). The narrow endemic Pityopsis ruthii (Small)

(Asteraceae; Ruth’s golden aster) inhabits the banks of
dammed rivers in southeastern Tennessee, USA, which
are characterized by extreme events ranging from fre-
quent, often prolonged droughts, to periodic high-flow
events with total inundation (Moore et al., 2016).
Changes in management practices along these rivers
against an ongoing backdrop of climate and land use
change have the potential to severely alter P. ruthii habi-
tat in the future. In contrast, P. graminifolia (Michx.)
Nutt. (narrowleaf silkgrass) is widespread throughout the
southeastern United States and northern Central Amer-
ica across a variety of habitat types (Clewell, 1985;
Duncan & Duncan, 1987; Radford et al., 1968;
Wunderlin, 1998). Although not restricted to a strongly
perturbed system like its rare congener, P. graminifolia is
subject throughout its range to global change factors.

We contrasted P. ruthii and P. graminifolia to investi-
gate the potential responses of rare and common species
to environmental change. Specifically, we compared their
phenotypic plasticity and genetic diversity. Given the nar-
row geographical distribution and habitat specificity of
P. ruthii, we hypothesized that it would exhibit reduced
plasticity and genetic diversity relative to P. graminifolia.
Given the restricted distribution, we also expected lower
intraspecific variation across P. ruthii populations in plas-
ticity and genetic diversity than for the widespread con-
gener P. graminifolia.

METHODS

Study system

Pityopsis ruthii is a historically rare plant species restricted
primarily to soil-filled cracks in boulders on exposed banks
and in the channel of a �5.7-km section of the Hiwassee
River (HR) and a �4.6-km section of the Ocoee River in
Polk County, Tennessee, USA (Appendix S1: Figure S1a),
downstream of dams operated by the Tennessee Valley
Authority (TVA) that divert water around P. ruthii habitat
for hydroelectric power generation. The TVA has delin-
eated 67 distinct occurrences of this species, which we treat
as populations, ranging in size from <5 to �1000 plants (A.
Dattilo, Botanist, TVA, personal communication). Ende-
mism is the most common type of species rarity
(May, 1988; Rabinowitz, 1981), and we categorize P. ruthii
as “endemic” based on its small geographic range, narrow
habitat specificity, and large size of at least a single popula-
tion (see Rabinowitz, 1981). Given its rarity and associated
conservation concerns, P. ruthii is listed as both federally
and state endangered (United States Fish and Wildlife
Service [USFWS], 1985). In contrast, P. graminifolia is
the most widespread species in the genus, occurring
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throughout the southeastern United States (Appendix S1:
Figure S1b) and northern Central America across a variety
of habitat types including sandhills, flatwoods, old fields,
bogs, grasslands, upland hardwood forests, and roadsides
(Clewell, 1985; Duncan & Duncan, 1987; Radford et al.,
1968; Wunderlin, 1998). This species is sometimes treated
as five varieties that intergrade and hybridize when the
ploidy level is the same (Semple & Bowers, 1985). We
followed Weakley’s (2020) taxonomy for P. graminifolia.

Seed collection and propagation

We collected seed from parent individuals of P. ruthii and
common P. graminifolia throughout the ranges of P. ruthi
and P. graminifolia to account for genetic and phenotypic
variation within each species. Specifically, seeds of
P. ruthii were collected from one population along the
HR and three populations along the Ocoee River (O1,
O2, O3; Polk County, Tennessee, USA; Appendix S1:
Table S1). The sites for P. ruthii seed collection were
determined in cooperation with the U.S. Fish and Wild-
life Service with consideration of the endangered status
of the species, population sizes and observed numbers of
flowering individuals during recent monitoring, and site
accessibility during the period in which seeds were pre-
sent. The sampled populations are separated by at least
1 km such that gene flow between populations is unlikely
(NatureServe, 2020). Given the restricted distribution and
threatened status of this species, we cannot provide geo-
graphic coordinates for P. ruthii populations. Seeds of
P. graminifolia were collected from five populations:
Ocoee River (TN; Polk County, Tennessee, USA), Black
Mountain Road (GA1; Stephens County, Georgia, USA),
Currahee Mountain (GA2; Stephens County, Georgia,
USA), Little Manatee River State Park (FL; Hillsborough
County, Florida, USA), and Zube Park (TX; Harris
County, Texas, USA; Appendix S1: Table S1). All
P. ruthii seeds and P. graminifolia seeds from the Ten-
nessee and Georgia populations were collected by the
authors; P. graminifolia seeds from the Florida and Texas
populations were collected by local contacts made through
the biodiversity information platform iNaturalist (http://
inaturalist.org). For both species, numerous seeds from
each of 10–25 distinct parent individuals per population
were collected in separate paper bags (i.e., to retain
maternal information) and stratified in cold storage for
4 months prior to germination.

We identified viable seeds as described by Wadl
et al. (2014) and sowed six to eight viable seeds representing
half to full siblings per parent individual from each sampled
population into each of four 7-cm2 � 8.5-cm-deep pots
filled with a potting medium (Pro-Mix Bx Biofungicide +

Mycorrhizae, Premier Tech Horticulture, Quakertown, PA,
USA). Although this growth environment differs from the
boulder cracks in which P. ruthii is generally found, our use
of pottingmix in pots was informed by previously successful
protocol for growing P. ruthii (Wadl et al., 2014) with the
consideration of the endangered status of this species and
our limited seed supply. Using a common potting medium
for both P. ruthii and P. graminifolia also allowed us to con-
trol for the influence of soil type on measured outcomes.
The four pots containing seeds from each parent plant were
randomly assigned to each of four growth chambers (model
PGR15, Conviron Controlled Environments Limited, Win-
nipeg, Manitoba, Canada) such that each chamber con-
tained one pot from each parent plant. All chambers were
set initially to a 12-h photoperiod at constant 25�C, and pots
were watered as needed to maintain moist soil during a
1-month germination period. We then thinned each pot to
the single individual that exhibited the earliest third leaf
development. We transplanted these individuals into sepa-
rate 11-cm2 � 9.5-cm-deep pots filled with the same potting
medium to minimize the potential for plants to become
root-bound (n reported in Appendix S2: Table S1).

Environmental treatments

To assess plasticity of P. ruthii and P. graminifolia in
response to light, temperature, and water, we set four
growth chambers to different conditions. Following the
germination period, one chamber (i.e., the “ambient”
chamber) was programmed to replicate field conditions
during the P. ruthii growing season based on historical
weather data, field measurements, and water manage-
ment. We programmed the three other growth chambers
to provide the same conditions but each with a contra-
sting level of a single condition (light, temperature, or
water) to mimic how that abiotic factor could change as a
result of climate change, land use, and management
practices (USFWS, 2018). Environmental treatment
details are provided in Appendix S1.

Growth, allocation, and photosynthesis
measures

All individuals were grown for 4 months following treat-
ment initiation during which time growth and photosyn-
thetic data were collected. We rotated the positions of
pots within each chamber weekly to control for spatial
differences in microclimate. We reassigned treatment
levels to each chamber monthly with all plants moved
accordingly to minimize any chamber effects and allevi-
ate pseudoreplication (Gibson, 2014). We measured
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instantaneous rates of leaf-level photosynthesis (A; μmol
photons m�2 s�1) at 3 months after treatment initiation
using a portable gas exchange system (6800XT, LI-COR,
Inc., Lincoln, Nebraska, USA). At 4 months, we recorded
plant height (in centimeters) and counted the numbers of
leaves and buds/flowers of each individual. All individ-
uals were then destructively harvested to quantify root
length, shoot dry mass, root dry mass, total dry mass, spe-
cific leaf area, mass-based root-to-shoot ratio (RSRmass),
length-based root-to-shoot ratio (RSRlength), root mass
fraction (RMF), and specific root length (SRL). Details of
data collection are provided in Appendix S1.

Analyses

We analyzed the probability of flowering as a function of
species, growth chamber treatment, and their interaction
in a general linear mixed model framework with a bino-
mial distribution with a logit link using Firth’s (1993)
bias-reduction method (R package brglm, version 0.7.1;
see Kosmidis, 2020, Kosmidis & Firth, 2020). We incorpo-
rated source population as a fixed effect because this ana-
lytical framework does not accommodate random effects.
We evaluated the significance of each fixed effect via like-
lihood ratio tests of models with and without that effect.

We used a two-way fixed-design analysis of variance
(ANOVA) in SPSS (version 26; IBM Corp., Armonk, New
York, USA) to test for the main effects and interaction of
species and abiotic treatment (i.e., light, temperature, and
water) on each measured trait. In these analyses, a signifi-
cant interaction indicates that P. ruthii and P. graminifolia
responded differently to a change in the environmental
factor (i.e., that the species exhibited differences in plastic-
ity). To explore population-level differences in plasticity
within each species, we used a two-way mixed-design
ANOVA to test for the interaction of population as a ran-
dom factor and abiotic treatment as a fixed factor on each
measured trait within each experiment. We tested for dif-
ferences among species and populations within each abi-
otic treatment level with Games-Howell post hoc tests
because the assumption of homogeneity of variances was
not always met. To account for the numerous traits ana-
lyzed, we calculated and utilized corrected p values to con-
trol the false discovery rate (FDR) for each group of tests
(Benjamini & Hochberg, 1995). Results of statistical tests
were considered significant if FDR-corrected p ≤ 0.05.

A relative distance plasticity index (RDPI; see
Valladares et al., 2007) was used to calculate plasticity of
traits to light, temperature, and soil moisture differences.
The RDPI is based on the absolute phenotypic distances of
genotypes across different environments and allows for sta-
tistical comparison of plasticity for species and populations

within species (Valladares et al., 2007). We used the index
to calculate individual-level trait plasticity as:

RDPI¼ dij!i0j0

xi0j0 þ xij

where j and j0 are two individuals of the same species
(half to full siblings from the same parent), i and i0

represent two different environments (i.e., ambient
vs. reduced light, ambient vs. elevated temperature, and
ambient vs. increased water in our experiment), dij!i0j0

is the distance among trait values for the pair of individ-
uals (with distance defined as the absolute value of the
difference in trait values), and xi0j0 þxij is the sum of the
trait values (see Valladares et al., 2007). RDPI values
range from 0 (no plasticity) to 1 (maximum plasticity);
this standardized range allows for comparisons across
traits.

To assess whether plasticity increases fitness, we con-
ducted across-environment multivariate genotypic selec-
tion analysis (Stinchcombe et al., 2004; Van Kleunen &
Fischer, 2001), using the lmer (linear mixed model) func-
tion of the R package lme4 (version 1.1-21; Bates
et al., 2015). To assess the effects of plasticity on fitness,
we focused on traits for which we found significant evi-
dence for plasticity (i.e., traits with significant effects of
abiotic factor or abiotic factor by species interactions).
We analyzed fitness as a function of mean trait values,
plasticities (RDPI), species, and two-way interactions
between mean traits and species and RDPI and species
in separate models for each manipulated environmental
condition (light, temperature, and water). We used total
biomass as a fitness proxy in these regressions because it
was measurable for all individuals included in our study
and because there is a general positive association
between vegetative size and greater reproductive output
(Weiner et al., 2009). Prior to analysis, we calculated the
average biomass across ambient and manipulated envi-
ronmental conditions (e.g., ambient and reduced light)
for each family, which we used as the response variable
in our analyses. Significant effects of RDPI in a trait indi-
cate selection for plasticity in both species if the slope is
positive and selection against plasticity if the slope is
negative. A significant interaction between species
and RDPI suggests that the magnitude or directionality
of selection differs across the two species. We used a
Bonferroni-corrected α = 0.0167 (=0.05/3) to assess sig-
nificance and control for type I errors because we con-
ducted three separate analyses of selection on plasticity.
We visualized selection landscapes from these multiple
regression models as partial residual plots using the
predictorEffects function of the R package effects (version
4.2-0; Fox & Weisberg, 2018).
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DNA extraction and microsatellite
genotyping

DNA was extracted from leaf tissue collected from all
P. ruthii and P. graminifolia individuals included in the
growth chamber experiments prior to harvest. Individ-
uals were genotyped using nine microsatellite loci
(Boggess et al., 2014; Wadl et al., 2011) that amplified in
all populations for both species and were polymorphic in
at least one of the species (Appendix S1: Table S2). Poly-
merase chain reaction products were multiplexed, and
fragment analysis was completed by the Georgia Geno-
mics and Bioinformatics Core (University of Georgia,
Athens, Georgia, USA). Details of genotyping protocols
are described in Appendix S1.

Analysis of genetic diversity

A total of 170 P. ruthii and 147 P. graminifolia individuals
amplified successfully and were included in the analysis. Ini-
tial review of alleles indicated that three of the
P. graminifolia populations may include polyploids or a mix
of ploidy as suggested by Semple and Bowers (1985),
Weakley (2020), and Boggess et al. (2014). To account for a
mix of ploidy, we followed recommendations fromMeirmans
et al. (2018) and Machado et al. (2021) and estimated three
diversity indices: Shannon (1948), Simpson (1949), and
Nei (1978), two of which are also used in ecology to quantify
the species diversity of communities. Genetic diversity indices
were calculated using the R package Poppr (version 4.0.3;
Kamvar et al., 2014). To compare the genetic diversity of
P. ruthii and P. graminifolia, we used a multivariate analysis
of variance (MANOVA) that included all three diversity indi-
ces simultaneously with the manova(f) function in base R.
To assess population structure and grouping of individuals in
the study, we used a discriminant analysis of principal com-
ponents (Jombart et al., 2010; Machado et al., 2021). This
nonparametric approach combines principal component
analysis, K-means clustering, and discriminant analysis to
visualize population structure and can be applied to poly-
ploid datasets (Meirmans et al., 2018).

RESULTS

Germination, survival, and flowering

Germination was highly successful for all populations
except for the FL P. graminifolia population, which was
eliminated from the experiment due to poor germination.
In addition, 99.3% of P. ruthii individuals and 97.8% of
P. graminifolia individuals used in our plasticity

experiment survived to harvest (Appendix S2: Table S1).
Overall, <25% of plants flowered during the experiments
(Appendix S2: Table S1), but the probability of flowering
varied as a function of the interaction between treatment
and species (χ 2 = 28.64, df = 3, p < 0.0001). Rare
P. ruthii had a significantly lower flowering probability
than common P. graminifolia in elevated temperature
(z = 3.84, p = 0.0031) and with increased water (z = 3.19,
p = 0.031). In contrast, we found no evidence that the
probability of flowering differed across species in ambient
conditions (z = 2.70, p = 0.13) or when light was reduced
(z = 0.17, p = 1.00; Appendix S2: Figure S1).

Growth, allocation, and photosynthesis
trait values

In all three comparisons (i.e., ambient vs. altered light,
temperature, and water), there were significant differences
in most measured traits of P. ruthii and P. graminifolia
across treatment levels (Appendix S2: Table S2). In gen-
eral, P. graminifolia individuals were taller and had greater
above- and belowground biomass than P. ruthii, as well as
more leaves and longer roots when these traits differed
between species (Appendix S2: Table S3). In contrast, the
mean values of allocation traits and photosynthetic rate
(hereafter: leaf A) were all greater in P. ruthii than in
P. graminifolia when differences between species were sig-
nificant (Appendix S2: Table S3).

Abiotic conditions had a significant effect on some of
the measured traits in each experiment across species
(Appendix S2: Table S2). When light was reduced relative
to ambient conditions, plants generally produced fewer
leaves and less root mass and had lower RSRlength, RMF,
and leaf A (Appendix S2: Table S4). In contrast, increased
temperature had an overall positive effect on plant
height, number of leaves, and shoot mass (Appendix S2:
Table S4). Under increased water, plants generally had
longer roots, greater RSRlength and RMF, fewer leaves,
and reduced leaf A than plants in ambient conditions
(Appendix S2: Table S4).

Phenotypic plasticity

We found significant differences in phenotypic plasticity
between P. ruthii and P. graminifolia for RSRlength and leaf
A in response to light; plant height, number of leaves, and
shoot mass in response to temperature; and number of
leaves, root mass, RSRlength, and leaf A in response to water
(Appendix S2: Table S2). These differences were context-
dependent. In response to light, P. ruthii exhibited plasticity,
while P. graminifolia did not (Figure 1). In contrast,
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P. graminifolia exhibited plasticity in response to tempera-
ture, while P. ruthii did not (Figure 2). In response to water
availability, P. ruthii exhibited plasticity of more traits than
did P. graminifolia (Figure 3).

Despite observable population-level trends in both
species (see Figures 1–3), significant differences in plas-
ticity among populations were limited. Plasticity of two
traits differed between populations of P. ruthii, while
P. graminifolia populations exhibited no plasticity differ-
ences (Appendix S2: Table S5). Specifically, the plasticity
of shoot mass in response to temperature of the OR1 pop-
ulation of P. ruthii differed from that of populations OR2
(F1,66 = 7.148, p = 0.009; Figure 2c) and HR (F1,71 = 8.274,
p = 0.005; Figure 2c). Similarly, the plasticity of RMF in
response to water of the OR1 population differed from that
of populations OR2 (F1,64 = 8.593, p = 0.005) and HR
(F1,71 = 8.577, p = 0.005; Appendix S2: Figure S2).

Adaptive nature of plasticity

Selection via biomass operated on trait plasticity under
light and water manipulations, but not under temperature

manipulation (Appendix S2: Tables S6–S8 and Figures S3
and S4). We found significant species by plasticity interac-
tions for four traits in response to light level. In two cases,
these interactions signified that the magnitude of selection
differed across species. Specifically, selection for adaptive
plasticity in root mass was stronger in P. graminifolia than
P. ruthii (Appendix S2: Figure S3b) and selection against
plasticity (i.e., for trait canalization) in SRL was stronger
in P. graminifolia than P. ruthii (Appendix S2: Figure S3d).
For plasticity in RMF, the direction of selection differed
across species, with selection favoring adaptive plasticity
in P. graminifolia and reduced plasticity (canalization) in
P. ruthii (Appendix S2: Figure S3c). Finally, selection acted
against plasticity in a number of leaves of P. graminifolia
but did not operate on plasticity of this trait in P. ruthii
(Appendix S2: Figure S3a). Under variation in water level,
selection favored adaptive plasticity in the number of
leaves of P. graminifolia but did not operate on plasticity
in this trait in P. ruthii (Appendix S2: Figure S4a). In con-
trast, selection acted similarly in both species for reduced
plasticity (canalization) in root mass (Appendix S2:
Figure S4b). Finally, we found divergent selection on plas-
ticity in RSRlength across species, with selection for
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adaptive plasticity in P. graminifolia and for trait canaliza-
tion in P. ruthii (Appendix S2: Figure S4c).

Genetic diversity

The average number of alleles per population at nine poly-
morphic loci of P. graminifolia (4.98 � 0.23, mean � 1 SE)
was about double that of P. ruthii (2.58 � 0.33; F1,6 = 34.8,
FDR-corrected p = 0.001) despite the greater sample size
of P. ruthii (Appendix S2: Table S9). There was no signifi-
cant difference in the Shannon or Simpson diversity esti-
mates between the two species; however, Nei’s diversity

index was greater in P. graminifolia than in P. ruthii (0.739
vs. 0.467, respectively; F1,6 = 25.3, FDR-corrected
p = 0.048; Appendix S2: Table S10). Population clustering
for P. graminifolia and P. ruthii populations was consistent
with the distinct geographic locations of the populations
sampled (Appendix S2: Figure S5).

DISCUSSION

Across taxa, species with small geographic distributions
and narrow habitat specificity have greater extinction
risks relative to species with broader distributions and
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and common P. graminifolia (d, e, f) grown in ambient conditions of P. ruthii habitat and with increased temperature. Solid lines and symbols

depict species-level means and norms; dashed lines and colored symbols depict population-level means and norms. Error bars represent �1 SE

of the mean; p values denote the significance of differences in species means between abiotic treatment levels (i.e., species-level plasticity)
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ecological specificity (Chichorro et al., 2019; Harnik
et al., 2012; Staude et al., 2020). Limited phenotypic plas-
ticity could play an important role in constraining the
current distributions and/or habitat breadths of species
or could result from such constraints. Generalist species
occurring across broad habitat types may be character-
ized by high plasticity relative to species with narrow
habitat specificity (see review by Murray et al., 2002);
however, our findings indicate that instead, plasticity
could facilitate or result from specialization to habitats
characterized by temporally dynamic environmental con-
ditions. Specifically, we found that the rare endemic
P. ruthii exhibited low plasticity in response to changes in
temperature (Figure 2) but high plasticity in response to
altered light (Figure 1) and water availability (Figure 3)
relative to its widespread congener P. graminifolia.
Although contrary to expected differences in rare/common
species, these findings could help to explain the specific
habitat restriction of P. ruthii to boulder crevices along two
rivers with variable water flow regimes (Thomson &
Schwartz, 2006) and the persistence of plants in locations
ranging from sunny to fully shaded (Moore et al., 2016)
despite early reports describing this species as performing
best in high light environments (White, 1977).

Phenotypic plastically could enable species to persist
through rapid environmental change in the short term
and could potentially afford time for adaptation to new
conditions in the longer term (i.e., “plastic rescue”;
Chevin et al., 2010; Snell-Rood et al., 2018). It is possible
that the plasticity of P. ruthii in response to changes in
light and water availability could buffer this rare species
against changes in those abiotic conditions in the future,
such as altered precipitation, river management, and sur-
rounding land use. In contrast, the limited plasticity of
P. ruthii in response to temperature could suggest that it
may be less able than P. graminifolia to persist in the face
of a warming climate. Plasticity also can be maladaptive,
which is especially likely when it is elicited in response
to environmental conditions that are novel, under which
selection would not yet have occurred (Snell-Rood
et al., 2018). But research on the adaptive nature of phe-
notypic plasticity in plant traits has been limited (Wei
et al., 2020; but see Anderson et al., 2021; Baythavong
et al., 2011; Baythavong & Stanton, 2010). The relatively
high plasticity of P. ruthii in response to altered light and
water availability in our study was associated with reduc-
tions in photosynthetic rate (which generally correlates
with growth; Kruger & Volin, 2006; Figures 1b and 3d),
leaf production (as a measure of growth; Figure 3a), and
flowering (Appendix 2: Figure S1) in the directions of
future change that we anticipated. These results suggest
that P. ruthii may be less resilient to environmental
change than its common congener, despite its plasticity.

Riparian plants often exhibit phenotypic plasticity of
shoot and root traits in response to changes in water
flow, especially flooding (Bailey-Serres & Colmer, 2014),
yet few studies have tested whether such plasticity is
adaptive (Wei et al., 2020). We found that P. ruthii
exhibited flexibility in the allocation of above- and below-
ground biomass that could support light and water acqui-
sition in resource-limited conditions and to potentially
strengthen mechanical anchoring in high-flow scenarios
(Figures 1a and 3c). But selection operated only weakly
on plasticity of belowground biomass allocation traits in
P. ruthii in response to both light and water availability
(Appendix S2: Figures S3 and S4) in comparison with
P. graminifolia, suggesting that plasticity of these traits does
not confer a strong fitness advantage and can be maladap-
tive in some scenarios. Theoretical work has suggested that
plasticity reduces fitness when environmental stochasticity
is high and unpredictable (Reed et al., 2010), and we pro-
pose that the dramatic effects of river management on
P. ruthii habitat may have selected against plasticity in addi-
tion to the potential for plasticity to be maladaptive in
response to novel conditions. We encourage future studies
that evaluate the lifetime fitness consequences of pheno-
typic plasticity under realistic field conditions (Anderson
et al., 2021; Baythavong et al., 2011; Baythavong &
Stanton, 2010; Van Buskirk & Steiner, 2009).

Differences in management along the rivers where
P. ruthii occurs can provide insight into the fitness conse-
quences of changes in water availability historically and
currently experienced by this species. To allow for both
hydroelectric generation and recreational whitewater activ-
ities, P. ruthii populations along the Ocoee River experience
more frequent changes in water flow than those along the
HR, which are subject only to dammed conditions. Annual
monitoring indicates that populations of P. ruthii along the
Ocoee River generally have been increasing in size, while
those along the HR have been experiencing declines in
recent decades (Moore et al., 2016). These differences could
arise through indirect impacts that differences in water flow
may have on the encroachment of competing vegetation
(Thomson & Schwartz, 2006; White, 1977). However, we sug-
gest that the ability of P. ruthii to persist along the Ocoee
River also may be influenced by its adaptation and/or an
ability to adjust to short-term changes in water availability.
Temperate and freshwater environments, like those in which
P. ruthii occurs, are often characterized by highly dynamic
conditions, but most research on phenotypic plasticity has
focused on long-term environmental change rather than
short-term dynamics (Burggren, 2018). Future research that
includes a broader gradient of water availability and more
complex aspects of water flow could help to further elucidate
the unique habitat specificity of P. ruthii and its responses to
environmental change.
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The niche breadth hypothesis suggests that species
distributions are influenced by niche limits (Cardillo
et al., 2019; Gaston, 2000; Slatyer et al., 2013), such that
geographically restricted rare species like P. ruthii may be
constrained by their narrow niche breadths. Within the
contexts of both light and water availability, our plasticity
results suggest that the fundamental niche of P. ruthii
could be larger than its current distribution, while the
limited plasticity of P. ruthii in response to temperature
could suggest that its current latitudinal and elevational
extent may be constrained by a relatively low ability to
acclimate to a wide range of temperatures (Figure 2). It
has been proposed that the small range of P. ruthii along
the Ocoee River and HR could represent a relic of a
broader historical distribution when climate was gener-
ally cooler (Cruzan & Estill, 2001). However, factors such
as the east–west orientation of these rivers, surrounding
steep topography, and poor seed dispersal ability of
P. ruthii likely also restrict its ability to migrate north-
ward and/or to higher elevations (Cruzan & Estill, 2001).
In addition, it has been long proposed that P. ruthii is
constrained by its poor competitive ability relative to sur-
rounding and encroaching vegetation (USFWS, 1992);
however, the role of competition in restricting the real-
ized niche of this species is supported by limited observa-
tion (Cruzan & Estill, 2001, Thomson & Schwartz, 2006,
United States Forest Service, 2008; USFWS, 2018) and
warrants empirical testing. Although the 2�C of warming
in our experiment did not significantly influence growth
of P. ruthii (Figure 2), further warming under climate
change could affect this rare species. Here, we limited
our investigations of plasticity to comparisons of
responses in current versus near-future conditions, but
future research focused on investigating plasticity in
response to temperature could consider a wider range
and number of treatment levels that could better capture
phenotypic responses (see Arnold et al., 2019) and allow
for a more robust assessment of acclimatory constraints.
In addition, future multifactorial studies could generate
robust predictions about the biological consequences of
the simultaneous effects of warming and other abiotic
environmental change factors along with biotic factors
on P. ruthii and other rare species compared with com-
mon species.

Although limited variation in plasticity among
populations was expected for P. ruthii given its small
range and habitat specificity (see Darwin, 1859; Sides
et al., 2014), we expected to find more differences among
populations of P. graminifolia given its broader range and
habitat associations. We suggest that the relatively high
plasticity of P. graminifolia populations within the con-
text of temperature (Figure 2) could have influenced its
distribution across latitudes and that perhaps other

environmental conditions such as light and water avail-
ability could be more consistent among locations where
this species is found. It has been suggested that plasticity
could underlie the success of polyploids (Levin, 2002),
which have been evidenced in P. graminifolia (Boggess
et al., 2014; Semple & Bowers, 1985; Weakley, 2020) includ-
ing some of the populations that we sampled. However,
tests of this hypotheses have been inconclusive
(Bretagnolle & Thompson, 2001; Hahn et al., 2012;
Münzbergova, 2007; Petit et al., 1996; Petit &
Thompson, 1997; S�anchez Vilas & Pannell, 2017) and any
differences in ploidy between the P. graminifolia
populations that we sampled were not associated with
population-level differences in plasticity. Although we
found lower genetic diversity in P. ruthii compared to its
widespread congener as expected, we note that a previous
survey of P. ruthii across its range found relatively high
levels of genetic diversity compared with other plant spe-
cies, including other rare and endemic species (Hatmaker
et al., 2018). This finding, along with robust gene flow esti-
mates (Hatmaker et al., 2018), plasticity in response to
water availability, and clonal nature of P. ruthii, could help
to explain its persistence in highly variable and stressful
conditions along the two rivers within its limited range.
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