'-) Check for updates

New

Phytologist ~

Eco-evolutionary causes and consequences of rarity in plants:

a meta-analysis

Jennifer Nagel Boyd'*
Jennifer Cruse-Sanders’

, Jill T. Anderson®*

, Jessica Brzyski3 , Carol Baskauf* () and

lDepartment of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403, USA; zDepartment of Genetics,

University of Georgia, 120 Green Street, Athens, GA 30602, USA; 3Department of Biology, Seton Hill University, 1 Seton Hill Drive, Greensburg, PA 15601, USA; 4Department of Biology,

Austin Peay State University, PO Box 4718, Clarksville, TN 37044, USA; °State Botanical Garden of Georgia, University of Georgia, 2450 S. Milledge Avenue, Athens, GA 30605, USA

Authors for correspondence:
Jennifer Nagel Boyd
Email: jennifer-boyd@utc.edu

Jill T. Anderson
Email: jta24@uga.edu

Received: 3 December 2021
Accepted: 77 April 2022

New Phytologist (2022) 235: 1272-1286
doi: 10.1111/nph.18172

Key words: acclimation, adaptation, genetic
diversity, geographic distribution, habitat
specificity, local abundance, migration, rare
species.

Introduction

In the natural world, species differ drastically in their prevalence
(Stebbins, 1942; Preston, 1948; MacArthur, 1957; Rabinowitz
etal., 1986; Darwin, 1988; May, 1999; Murray etal, 2002;
McGill et al., 2007), but the biological factors that influence such
patterns are not well understood. Rare species are generally char-
acterized by restricted geographic distribution, low local abun-
dance and/or narrow habitat specialization (Rabinowitz, 1981).
More than one-third of land plant species are rare or very rare
(Enquist ezal., 2019). As a broad taxonomic group, plants show
historically persistent patterns of rarity and commonness inde-
pendent of modern anthropogenic influences (Stein ez al., 20005
Dominguez Lozano & Schwartz, 2005; Enquist ezal, 2019).
Despite their limited representation in communities, rare species
play various important roles in ecosystem functions, such as
nutrient cycling (Theodose eral, 1996), trophic dynamics
(Bracken & Low, 2012) and resistance to biological invasions
(Lyons & Schwartz, 2001). Rare species can also act as indicators

Summary

¢ Species differ dramatically in their prevalence in the natural world, with many species char-
acterized as rare due to restricted geographic distribution, low local abundance and/or habitat
specialization.

¢ We investigated the ecoevolutionary causes and consequences of rarity with phylogeneti-
cally controlled metaanalyses of population genetic diversity, fitness and functional traits in
rare and common congeneric plant species. Our syntheses included 252 rare species and 267
common congeners reported in 153 peer-reviewed articles published from 1978 to 2020 and
one manuscript in press.

¢ Rare species have reduced population genetic diversity, depressed fitness and smaller repro-
ductive structures than common congeners. Rare species also could suffer from inbreeding
depression and reduced fertilization efficiency.

¢ By limiting their capacity to adapt and migrate, these characteristics could influence con-
temporary patterns of rarity and increase the susceptibility of rare species to rapid environ-
mental change. We recommend that future studies present more nuanced data on the extent
of rarity in focal species, expose rare and common species to ecologically relevant treatments,
including reciprocal transplants, and conduct quantitative genetic and population genomic
analyses across a greater array of systems. This research could elucidate the processes that
contribute to rarity and generate robust predictions of extinction risks under global change.

of biodiversity (Zavaleta & Hulvey, 2004), and guide conserva-
tion priorities (Lawler ezal, 2003). Investigating the ecological
and evolutionary causes and consequences of rarity could advance
ecological theory and guide conservation efforts (Bevill & Louda,
1999), especially in the context of rapid global change (Van Cal-
ster et al., 2008; Mouillot ez al., 2013).

Functional traits strongly affect species performance (Kunin &
Gaston, 1997; Albert etal., 2011) and coexistence (Kraft ezal,
2015). Studies contrasting rare and common congeneric species
could illuminate the ecoevolutionary factors that contribute to
rarity (Combs ezal., 2013) by controlling for the effects of life
history and phylogeny (Kunin & Gaston, 1997; Godt & Ham-
rick, 2001; Murray et al., 2002; Farnsworth, 2007). Murray ez al.
(2002) reviewed ¢. 50 comparative studies that collectively exam-
ined a wide range of traits and fitness components in congeneric
rare vs common species published before 2002; while most stud-
ies investigated different traits, those that measured similar traits
often generated mixed results. Bevill & Louda (1999) reviewed c.
40 studies comparing the demography of rare and common
species, and concluded that studies were inconsistent in the traits
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measured. Overall, comparisons of fitness and/or functional traits
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of rare and common species have been relatively infrequent, and
those that exist tend to be autoecological in nature and inconclu-
sive (Bevill & Louda, 1999; Munzbergova, 2005; Combs ez al.,
2013). Some empirical studies have found that rare endemic
species are shorter in stature, produce fewer but larger seeds and
are less likely to reproduce vegetatively than common species
(Lavergne etal., 2004; Farnsworth, 2007), all of which could
impede their ability to disperse and establish in new locations.
Additionally, rare species could exhibit low phenotypic plasticity
(Murray eral, 2002), which could restrict range expansions
across variable environments and acclimation 77 situ to global
change (Nicotra eral., 2010). However, the degree of adaptive
plasticity expressed by a rare species will depend on the extent of
spatial and temporal heterogeneity in conditions, and rare species
from more variable habitats can exhibit greater plasticity than
their common congeners (Boyd ez al., 2022). To date, few studies
have examined plasticity in the context of rarity (Liao ez al., 2006;
Lovell & McKay, 2015; Rutherford ez al., 2017).

The capacity of species to adapt to environmental change
depends on their genetic diversity (Frankham, 2005; Futuyma,
2010), but theory suggests that rare species suffer from low genetic
variability due to the effects of genetic drift (Wright, 1931) and
persistent directional natural selection in rare habitats (Van Valen,
1965). Indeed, rare species often exhibit reduced population
genetic variation (Karron, 1987; Gitzendanner & Solds, 2000;
Cole, 2003). However, genetic differences between rare and com-
mon species can be minimal. For example, Daviesia suaveolens
(Fabaceae) is a rare shrub with a restricted geographic range, but
large population sizes within that range; this rare species had simi-
lar levels of genetic variation as its widespread and common con-
gener, Daviesia mimosoides (Young & Brown, 1996).

Ultimately, comparisons of genetic diversity, fitness and func-
tional traits of rare and more common congeneric species could
provide insight into species rarity especially within the context of
environmental change. Yet, this broad body of such research has
not been comprehensively reviewed in nearly two decades and
has not yet been synthesized with metaanalytic techniques. Fur-
thermore, the extent of rarity could influence ecological and

i)

evolutionary outcomes. Rabinowitz (1981) proposed seven types
of rarity that exist across three axes: geographic distribution
(widespread vs restricted), local abundance (locally common vs
sparse), and habitat specificity (generalist or specialist to a fre-
quent habitat type vs specialist to a rare habitat). Variation along
these axes results in eight different categories of species, one of
which Rabinowitz (1981) defined as common (widespread,
locally common, generalist) and seven of which can be classified
as rare. Species that exist along multiple dimensions of rarity
could display more severe reductions in genetic diversity and fit-
ness relative to their common congeners, and could be more vul-
nerable to global change than species categorized as rare along
only one axis. To examine if rarity is associated with reduced
genetic variation, lower fitness and differences in functional traits
(Table 1), we conducted a series of comprehensive phylogeneti-
cally controlled metaanalyses of comparative congeneric studies
of plants from the past four decades, and we discuss these results
in the context of the seven types of rarity originally proposed by
Rabinowitz (1981).

Materials and Methods

Literature search, eligibility criteria and datasets

We searched IS Web of Science (Thompson Reuters, New York,
NY, USA) in January 2021 to screen the primary literature for
studies published before 2021 that compared population genetic
diversity, fitness and functional traits of rare and common con-
generic plant species. We used the syntax 78= (((rare AND (com-
mon OR widespread OR dominant*)) OR rarity) AND species
AND plant*) in the advanced search tool to return a list of 4096
articles. We filtered this list by article type to exclude reviews,
proceedings papers, editorial material, book chapters, corrections,
notes, letters, data papers and news items, which resulted in 3777
articles. We defined strict eligibility criteria for inclusion in our
metaanalysis, which we describe in depth in the Supporting
Information Methods S1 along with details about data extrac-
tion. This initial literature review identified 330 studies from

Table 1 Hypotheses, predictions and results for our metaanalysis comparing rare plant species with their common congeners.

Hypothesis Prediction

Metaanalysis results

Rare species have restricted genetic
variation
Rare species have reduced fitness

inbreeding (lower Fis)

fecundity
Rare species differ in functional traits

Reduced population genetic variation and more
Lower juvenile recruitment, survival, growth and

Smaller size of vegetative and reproductive organs,
reduced physiological performance, delayed

Confirmed for genetic diversity parameters, but no
signal of rarity for Fs (Fig. 1)

Confirmed for survival and later components of
fitness (Fig. 2)

Smaller reproductive organs, but no additional
signature of rarity in functional traits (Fig. 2)

phenology, increased damage from natural enemies,
reduced interactions with mutualists such as pollinators,

reduced plasticity
Rare species have less efficient
pollination syndromes and are limited
by mating opportunities

field studies

Less efficient pollination, reduced rates of outcrossing in

Preliminary mating system metaanalysis shows that
rare species could have less efficient pollination
(reduced fitness under hand-pollination and self-
pollination; Fig. 3). Additional research is required
to test for pollinator limitation
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1978 to 2020 that could yield species-level fitness measures, func-
tional trait values and/or population genetic diversity parameters
of rare and common plant congeners. In all cases, the authors of
the original studies classified the focal species as rare vs com-
mon. Importantly, we included only studies in which the data
for both the common and the rare species were reported; to con-
trol for methodological differences, we did not compare com-
mon and rare congeners across studies. We eliminated studies
using nonnative species because their occurrence does not reflect
entirely natural processes. We screened the full text of these
studies for relevant data, retaining 153 studies (Table S1). For
rare and common species, we extracted means, standard devia-
tions and sample sizes for neutral genetic parameters, continu-
ous functional trait values and fitness components, and the
numbers of events and sample sizes for binary fitness measures
(e.g. germination success).

For each rare species in each study, we categorized the type of
rarity along Rabinowitz’s (1981) three primary axes: geographic
distribution, habitat specialization and local abundance. All stud-
ies included in our metaanalysis referenced these rarity dimen-
sions directly and/or described the rare species in ways that
allowed us to classify rarity along these dimensions. Specifically,
rare species were categorized as having narrow geographic distribu-
tion if their range was described as smaller than that of more
widespread common species. Rare species were categorized as hav-
ing low local abundance if the numbers of individuals, percentage
cover or frequency of occurrence in a defined location were
described as less than that of more abundant common species.
Lastly, rare species were categorized as habitat specialists if their
habitat association was described as limited and in more restrictive
terms than the habitat(s) in which more generalist common species
occurred. Some studies described species rarity across multiple
dimensions. For example, Pityopsis ruthii was described as ‘en-
demic’ given its narrow geographic distribution and habitat spe-
cialization to exposed boulders along just two rivers in Tennessee
(Boyd et al., 2022); we categorized this species along both of these
axes of rarity for our analyses. In cases in which multiple studies of
a single rare species described rarity differently, we elected to use
the most restrictive description. Most rare species in our datasets
were described as geographically restricted.

Population genetic dataset We retained 31 studies that evalu-
ated population genetic parameters in natural populations of rare
and widespread congeners (Table S2). Most studies quantified
genetic diversity through the number of alleles per locus (27 stud-
ies), the percentage of loci that were polymorphic (22 studies),
and observed and expected heterozygosity (22 studies for both).
Only 10 studies reported Fg (the inbreeding coefficient) and
seven studies reported Fsr (the fixation index). This dataset
includes 37 rare and 37 common species or subspecies from 31
genera and 20 families; the retained studies sampled an average
of 6.64 (£3.8 SD, range: 2-15) natural populations of rare
species and an average of 8.67 (£7.5 SD, range: 2—43) popula-
tions of the common congener. All but eight of the studies
focused on a single pair of rare-common congeners species. Most
studies used allozymes (21 studies), with fewer studies relying on
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microsatellite (six studies), random amplification of polymorphic
DNA (RAPD; one study) or intersimple sequence repeat (ISSR)
markers (three studies). Only two rare and four common species
had a primarily self-fertilizing mating system; the remaining
species were either obligate outcrossers or had mixed mating sys-
tems. Most species in the dataset were perennials, with only four
rare and six common species having annual life history strategies.

Fitness and functional traits We extracted data from 73 studies
reporting binary components of fitness (i.e. recruitment, survival,
reproductive success and damage from natural enemies;
Table S3). This dataset includes 131 rare and 132 common
species or subspecies representing 88 genera from 45 families.
Approximately two-thirds of the studies focused on a single rare
species, which was contrasted with one or more common con-
geners. Additionally, we retained 99 studies for data extraction
reporting continuous measures of functional traits and fitness
components (fecundity, growth, demographic transitions and
vegetative reproduction; Table S3). The studies that we included
in this analysis can be classified into five categories: observational
studies of natural populations in the field; laboratory experiments
under controlled conditions using accessions collected from natu-
ral populations; ecological experiments in natural field settings,
manipulating abiotic or biotic factors and measuring naturally
occurring focal individuals; common garden or reciprocal trans-
plant experiments in the field using transplanted accessions; and
a combination of the last two approaches (ecological manipula-
tions in common garden or transplant experiments in the field;
Table S4).

We classified metrics associated with flower and seed produc-
tion, vegetative reproduction and male fitness as fitness. We also
categorized seed size as a fitness component because it can influ-
ence germination and seedling establishment success (Moles &
Westoby, 2004). Many studies reported multiple components of
fitness (e.g. number of inflorescences, number of flowers per
inflorescence and seed set per flower) along with composite fit-
ness values (e.g. total seed set). In those cases, we extracted data
from the variable that most closely reflected lifetime fitness (e.g.
seeds per plant). We also extracted data on functional traits that
are often subject to strong selection and could influence plant
responses to rapid environmental change, including plant size,
biomass allocation, physiology, phenology, plasticity, size of
reproductive structures, and interactions with mutualists (i.e. pol-
linator visitation rates, mycorrhizal associations) and antagonists
(i.e. herbivores; Table S3). The size of reproductive structures
included floral organ size and fruit dimensions, as pollinators typ-
ically prefer larger flowers (Krizek & Anderson, 2013), thereby
augmenting outcrossing rates, and fruit size can influence disper-
sal dynamics (Correa ez al., 2018; Valenta & Nevo, 2020). This
dataset includes 163 rare and 178 common species from 108 gen-
era and 49 families. As with our binary dataset, most species were
the focus of a single study, and approximately two-thirds of the
studies focused on a single rare species. Only c. 40% of studies
in either dataset manipulated the abiotic or biotic environment
(e.g. light, temperature, water, pollination, competition and her-
bivory) with some studies including multiple factors.

© 2022 The Authors
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Data analyses

We conducted phylogenetically corrected multilevel mixed effect
metaanalyses using the R package METAFOR (v.2.1-0; Viechtbauer,
2010), with random effects for publication identity, effect size
within publication, nonphylogenetic species effects and phy-
logeny to account for nonindependence of multiple measure-
ments from the same study and phylogenetic relatedness. By
including a random effect for nonphylogenetic species effects, we
accounted for evolutionary history and similarities due to ecolog-
ical factors and life histories (Hadfield & Nakagawa, 2010; Cinar
etal., 2022). Additionally, we accounted for phylogenetic simi-
larity across genera by including a phylogenetic correlation
matrix as a random effect in all metaanalyses. These steps reduced
the risk of spurious results from shared ancestry (Lajeunesse,
2009). To reconstruct these phylogenies, we used the Open Tree
of Life (ROTL package; Hinchliff ezal, 2015; Michonneau ez al.,
2016), the compute.brlen function of the APE package (Paradis &
Schliep, 2019) to calculate branch lengths and the vev.phylo func-
tion of the APE package to calculate the phylogenetic correlation
matrix. We did not include moderators for publication year, lati-
tude, longitude or elevation, as preliminary analyses of all datasets
indicated that these covariates were nonsignificant.

For continuous data, we calculated the standardized mean dif-
ference (Hedge’s g) as the effect size through contrasting various
parameters (i.e. genetic diversity, functional traits or fitness com-
ponents) of rare and common congeners measured in the same
study. For the dataset on binary components of fitness, we used
the log of the odds ratio as the effect size. We computed effect
sizes such that values of Hedge’s g or log of the odds ratio <0
indicated that the rare species had lower trait, fitness or genetic
diversity values relative to the common species. To include binary
and continuous metrics of fitness and functional traits within the
same metaanalysis, we converted the log odds ratio effect sizes for
binary variables to Hedge’s g using the R package COMPUTE.ES
(Del Re, 2013), based on previously developed computations
(Chinn, 2000). Combined, the continuous and binary datasets
included 124 studies, which quantified fitness components and
functional traits in 223 rare species and 236 common species
from 141 genera and 57 families (Table S3).

Some studies included more than one rare or common species
of the same genus; for example, Lovell & McKay (2015) com-
pared neutral and quantitative genetic diversity of two common
vs two rare species of Boechera (Brassicaceae). In those cases, we
used the R package DMETAR (v.0.0.9; Harrer etal, 2019) to
aggregate means, standard deviations and sample sizes within
studies across species to create one set of values for the common
species (e.g. common Boechera) to contrast against one set for the
rare species (e.g. rare Boechera). In the trait and fecundity dataset,
we also used this procedure to pool across separate populations,
sites or other grouping factors (e.g. replicates or developmental
stages). For binary data, we aggregated data within a study by
summing the numbers of events and sample sizes. In some cases,
studies reported correlated traits (e.g. biomass, height, number of
leaves); thus, we calculated weighted mean effect sizes across these
traits through preliminary within-study fixed-effect metaanalyses

© 2022 The Authors
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(the two-step method recommended by Song eral, 2020),
which we grouped into one larger category (e.g. size) to avoid
pseudoreplication.

For the 40% of studies that quantified fitness or trait differ-
ences between rare and common congeneric species in response
to experimental treatments, we aggregated effect sizes across treat-
ment levels using the R package DMETAR (v.0.0.9) (Harrer ezal,
2019) when the ecological relevance of treatment levels was not
clear (e.g. different sites without clear environmental differences,
living samples vs herbarium samples, herbicide types but not con-
centrations, etc.). When treatment levels were ecologically rele-
vant, we did not aggregate effect sizes within a study. However,
manipulations and treatment levels were idiosyncratic, with very
few similarities across studies, leading to a dataset with > 90 types
of experiments (e.g. abscisic acid application, soil nutrient
amendment, drought vs waterlogging, competition manipula-
tions). To enable synthesis of studies that applied very different
conditions, we characterized treatments as varying in abiotic
(light, nutrient, temperature, water or fire) or biotic (pollination,
competition, herbivory, belowground associates) factors. If there
were more than three levels of an environmental treatment in a
study, treatment levels were condensed to three by pooling effect
sizes to represent low, intermediate and high treatment levels.
We recorded if each study was conducted in a field, glasshouse,
growth chamber or other setting.

Population genetics We tested the hypotheses that rare species
have reduced genetic diversity, greater levels of neutral popula-
tion genetic divergence and increased inbreeding. A preliminary
analysis revealed no significant effect of life history stage or breed-
ing system on effect sizes; thus, we excluded these terms from the
model. The final phylogenetic multilevel metaanalysis model
included a moderating factor for neutral genetic parameters (i.e.
percentage polymorphism, number of alleles per locus, observed
and expected heterozygosity, s and Fsr), as well as all four ran-
dom effects described above (publication identity, effect size,
nonphylogenetic species effect and phylogeny).

Fitness components and functional traits We used the binary
and continuous datasets to test the hypothesis that rare species
express different trait values and have reduced fitness than com-
mon congeners. To do so, our multilevel phylogenetically cor-
rected mixed effect metaanalysis contrasted rare and common
species for the aforementioned functional traits and fitness com-
ponents, and included all four random effects (publication iden-
tity, effect size, nonphylogenetic species effect and phylogeny).
We explored the effect of various moderators on this contrast,
including rarity type, fitness or trait category, and environment.
The final model included a moderator for the fitness/trait cate-
gory because preliminary models found no significant effects of
other moderators. The dataset did not have sufficient replication
across studies to examine synergistic effects of fitness/trait type
with other variables such as rarity type or environment. We
excluded data from treatments in which the mating system was
manipulated (see below), but included studies that recorded fit-
ness under other treatments.

New Phytologist (2022) 235: 1272-1286
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Pollination manipulations We hypothesize that rare species
could be limited by mating opportunities, which could favor the
evolution of self-compatibility. To test this hypothesis, we exam-
ined reproductive fitness in the subset of studies that manipulated
pollination through selfing (via emasculation and application of
selfed pollen to the stigma), supplemental pollination (additional
pollen provided to open-pollinated flowers) or hand pollination
(emasculation and application of pollen from a distinct individ-
ual or pool of individuals of the same species). For studies that
conducted these manipulations, we also retained open pollination
treatments as unmanipulated controls. If rare species are more
pollen-limited than common species, they would show greater
fitness under supplemental pollination than would their common
congeners. If rare species have greater rates of self-compatibility,
they would have higher fitness than their common congeners
under selfing. Finally, if fertilization after pollen deposition is less
efficient in rare than in common species, we expect rare species to
be at a fitness disadvantage under hand pollination. Species in
this metaanalysis either had a mixed-mating or obligate outcross-
ing breeding system; only three rare species differed in mating
system from their common congener (Table S3). Only »=14
studies manipulated mating system dynamics in a total of 25 rare
and 25 common species from 15 genera and 12 families

(Table S3).

Publication bias diagnostics To assess publication bias, we
computed the fail-safe number for each metaanalysis using
Rosenthal’s (1979) method. The fail-safe number estimates the
number of additional nonsignificant studies that would have to
be added to the dataset to make the metaanalysis results non-
significant. When the fail-safe number is large compared with the
sample size, results of metaanalysis are considered to reflect the
true effect, and indicate that the metaanalysis is robust to publica-
tion bias. We also calculated the ratio of the fail-safe number to
Rosenthal’s critical value (>57+ 10, where n=sample size of
studies), with ratios > 1 exceeding Rosenthal’s (1979) criterion.
The fail-safe number does not account for random effects, and
should, therefore, be interpreted cautiously. Second, we visual-
ized potential publication bias through funnel plots of standard
error vs effect size. If publication bias exists against small studies
showing no statistical difference between rare and common
species, these funnel plots would show asymmetry toward studies
with higher standard errors (near the base of the funnel).

Results

Population genetic dataset

We detected a significant effect of population genetic parameter
type on the comparison of rare and common species
(QM =28.3, df=6, P<0.0001; TableS5). As predicted, rare
species have significantly lower genetic diversity than common
species, measured as the percentage of loci that are polymorphic,
the number of alleles per locus, and expected and observed
heterozygosity (Fig. 1). We detected no signature of rarity on
population genetic differentiation (Fsr) or the inbreeding
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coefficient (Fs), yet few studies reported these parameters, and
the fail-safe numbers for these parameters were quite low (fail-
safe numbers: Fg=14; For=0; Table S5; Fig. 1). The overall
fail-safe number (5050, £<0.0001) was high, as were the fail-
safe numbers for all genetic diversity parameters (Fig. 1;
Table S5), suggesting limited publication bias. This dataset had
31 total studies, leading to a fail-safe ratio (fail-safe number
divided by 57+ 10, where n=sample size of studies) of 30.6,
which is greater than the value of 1 needed to pass Rosenthal’s
test (Rosenthal, 1979). However, the funnel plot (Fig. S1) was
not symmetrical (z=—7.85, £<0.0001), indicating that more
studies are needed to evaluate the degree to which rarity reduces
genetic diversity. Furthermore, limited sample sizes prevented us
from evaluating the effects of rarity type, life history or other eco-
logical factors on population genetic parameters.

Fitness components and functional traits

We detected a significant main effect of fitness/trait type
(QM=31.5, df=14, P=0.0048), with rare species showing
lower survival and fitness, along with smaller reproductive struc-
tures than their common congeners (Fig. 2; Table S6). However,
we found no differences in functional traits across rare and com-
mon congeners. The overall fail-safe number was high (fail-safe
n=3609, P<0.0001), suggesting limited publication bias. With
125 studies in the dataset, the fail-safe ratio of 5.7 exceeds the
value of 1 needed to pass Rosenthal’s (1979) test. The funnel plot
does not appear to be asymmetrical (z=-0.61, P=0.54,
Fig. §2). Nevertheless, the low fail-safe numbers and limited sam-
ple sizes for some trait/fitness categories indicate that additional
studies are needed (Table S6). For example, the fail-safe number
was 0 for survival, suggesting that additional studies are war-
ranted. Similarly, low fail-safe numbers for growth rates, biomass
allocation to shoots and to leaves, and interactions with mutual-
ists such as pollinators indicate the need for additional empirical
examinations.

Pollination manipulations

Our metaanalysis revealed that the type of cross influenced fitness
differences between rare and common species (QM =9.96,
df=4, P=0.041; Fig. 3; Table S7). Rare species had reduced
fecundity compared with their common congeners under hand-
pollination and self-pollination (Fig. 3). Despite the limited
numbers of studies (z=14), the overall fail-safe number was
high (fail-safe #=5490, P<0.0001) and the fail-safe ratio
(68.6) passes Rosenthal’s (1979) test, suggesting that these pre-
liminary results could be robust, at least for hand-pollination
and selfing treatments (Fig. 3). The funnel plot (Fig. S3) was
significantly asymmetrical (z=—4.28, P<0.0001), suggesting
publication bias. We highlight that the main metaanalyses also
include fecundity data from studies with unmanipulated fow-
ers (open pollination); the low sample sizes of the open pollina-
tion studies here occurred only because we focused this
metaanalysis on studies that explicitly manipulated some aspect
of the mating system.
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Fig. 1 (a) Population genetic metrics differed between rare and common congeners. Plotted are the estimates and 95% confidence intervals for the effect
sizes (Hedge's g) of each population genetic parameter. In our metaanalysis, rare species had reduced population genetic diversity than their common
congeners, as demonstrated by effect size values <0 for the percentage of loci that were polymorphic, the number of alleles per locus, and the observed
and expected heterozygosity. For each parameter, we indicate the fail-safe number (FSN), the number of studies (n) and Rosenthal’s critical threshold
(RCT). RCT values > 1 pass Rosenthal's test (see the Materials and Methods section). We assessed significance of effect sizes through Z-tests (*, P <0.05;
** P <0.01). (b) Phylogeny of rare and common species included in the metaanalysis, with taxa color-coded based on the rarity criteria used to classify
each species. (c) Geographic distribution of studies included in the metaanalysis, color-coded based on the classification of the rare species. Rare species

were contrasted with one or more common species in each location.

common congeners. However, we did not detect broad differ-
ences in the functional traits of rare vs common species. Col-
lectively, these results support our hypotheses about genetic
diversity and fitness, but demonstrate our continued limited
understanding of the ecoevolutionary factors associated with

Discussion

Our metaanalyses revealed that rare species maintain lower
population genetic diversity than their common congeners and
have depressed fitness, smaller reproductive structures and pos-
sibly reduced survival. Our preliminary metaanalysis of polli-  species rarity.

A metaanalysis of invasive species, as an extreme contrast to

nation manipulation studies suggested that rare species also
could suffer from reduced fertilization efficiency relative to rare species, revealed that they express distinct suites of
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Fig. 2 (a) Metaanalysis of fitness and functional traits in a single combined analysis of binary and continuous datasets. Plotted are the estimates and 95%
confidence intervals for the effect sizes (Hedge's g). Effect size values <O for fitness, survival and size of reproductive structures indicate that rare species
underperformed relative to their common congeners. By contrast, the positive effect size for physiology suggests that rare species had greater physiological
performance than their common congeners. For each parameter, we indicate the fail-safe number (FSN), the number of studies (n) and Rosenthal’s critical
threshold (RCT). RCT values > 1 pass Rosenthal's test (see the Materials and Methods section). We assessed significance of effect sizes through Z-tests (*,
P <0.05). (b) Phylogeny of rare and common species included in the metaanalysis, with taxa color-coded based on the rarity criteria used to classify each
species. (c) Geographic distribution of studies included in the metaanalysis, color-coded based on the classification of the rare species. Rare species were
contrasted with one or more common species in each location.

functional traits compared with native species (van Kleunen their evolutionary history (Hodgson, 1986; Jetz ez al., 2004),
etal., 2010). Many invasive species inhabit disturbed ecosys-  specialization to rare habitats (Miller-Struttmann, 2013),
tems (Catford ezal., 2012; Jauni eral., 2015), and similarities  biotic interactions such as competition or herbivory (Speed

in those systems, such as increased resource availability & Austrheim, 2017; Zhang & van Kleunen, 2019; Xi ez al.,
(Davis etal., 2000), could favor traits generally associated 2021), and/or anthropogenic factors including habitat loss
with invasiveness, including rapid growth rates, high fecun- and climate change (Lavergne eral, 2005; Van Calster ez al.,
dity and highly efficient seed dispersal (Hamilton eral,  2008; Harrison eral, 2019). The myriad reasons underlying
2005; Pysek & Richardson, 2007; van Kleunen eral, 2010).  rarity could explain our findings of limited phenotypic
By contrast, species can be rare for many reasons, including  differences.
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through Z-tests (*, P<0.05). (b) Phylogeny of rare and common species included in the metaanalysis, with taxa color-coded based on the rarity criteria

used to classify each species. (c) Geographic distribution of studies included in the metaanalysis, color-coded based on the classification of the rare species.
Rare species were contrasted with one or more common species in each location.

Distinctions among rarity types

Our understanding of rarity can be complicated by its various manifes-
tations. The seven rarity types — as defined by geographic distribution,
habitat specificity and local abundance (Rabinowitz, 1981) — could be
associated with distinct ecoevolutionary causes and consequences

(Murray ez al, 2002; Jiménez-Mejias et al., 2015; Forrest ez al., 2017).

Geographic distribution Species with constrained geographic
distributions probably maintain lower levels of genetic diversity

© 2022 The Authors
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than more widespread species (Hamrick & Godt, 1990), a find-
ing supported by the results of our metaanalysis across rarity
types. Our ability to draw nuanced conclusions about specific rar-
ity types was limited by a bias toward studies of geographically
restricted rare species in our metaanalysis. Species with wide dis-
tributions often have broad ecological niches, leading to the
corollary that geographically restricted rare species inhabit rela-
tively narrow niche spaces (Gaston, 2000; Slatyer ezal, 2013;

Cardillo ezal., 2019). Niche breadth can be measured by assess-
ing performance across a range of environmental conditions;
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species with broad niches will experience less fitness variation
across conditions than species with narrow niches (Sexton et al,
2017). Although numerous studies of geographically restricted
species in our datasets included abiotic treatments (Table S3), the
vast majority did not describe niche breadth measures, such as fit-
ness or performance curves or plasticity. Transplant experiments of
rare species beyond their natural range could assess fundamental
niche size relative to more common species (Sexton ez al., 2017).

Local abundance Low local abundance could constrain adapta-
tion to environmental change given the reduced genetic variation
associated with small populations (Ellstrand & Elam, 1993;
Wagenius et al., 2007; Leimu & Fischer, 2008; Hoffmann ez al.,
2017), limit colonization of recently disturbed habitats and
reduce competitive ability in later successional systems (Tilman,
1990; Levine & Rees, 2002; Zhang ezal, 2018). Life history
traits such as greater stature, seed production and weight can
enhance dispersal (Grime, 1974; Moles & Westoby, 2004;
Thomson et al., 2011), and self-fertilization can enable establish-
ment in new locations (Pannell, 2015). Our results suggest that
reduced fitness could impede the migration abilities of rare
species. Two studies in our dataset contrasted the competitive
abilities of locally rare and common congeners (Moora etal.,
2003; Moora & Jogar, 2006), with both suggesting that rare
Viola elatior is a poorer competitor than common Viola mirabilis.
Research focused on the abilities of locally rare vs common
species to adapt, migrate and compete could further our under-
standing of their abilities to establish and persist during rapid
global change.

Habitat specificity Habitat specialists may have limited poten-
tial to migrate to new locations or adapt to novel conditions
under climate change. However, specialists could be highly
adapted to their native environments in ways that could enable
them to outperform common congeners in those habitats. Many
studies included in our metaanalyses applied experimental treat-
ments for which ecological relevance was not always apparent,
making it challenging to compare the effects of environmental
factors on rare vs common species. Only eight studies (Osunkoya
& Swanborough, 2001; Poot & Lambers, 2003a,b, 2008;
Maliakal-Witt ez al., 2005; Powell & Knight, 2009; Ranieri ez al.,
2012; Hirst eral, 2017) included reciprocal transplant-like
experiments that exposed both species to conditions relevant to
the native environments of each. Reciprocal transplants in the
field could investigate if rare habitat specialists are relegated to
peripheral habitats because they are poor competitors in more
prevalent habitat types or because they are well adapted to the
conditions in marginal locations.

Complexities of rarity The majority of studies in our metaanal-
ysis described species along a single dimension of rarity, limiting
our ability to investigate the synergistic causes and consequences
of restricted geographic ranges, low local abundance and narrow
habitat specificity. Just eight studies reported on rare species char-
acterized along all three dimensions of rarity (Tables S2, S3) As a
result, our understanding of the rarest of species is extremely
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limited. We emphasize the need for additional studies examining
the causes and consequences of rarity across multiple dimensions.

Approximately two-thirds of the studies included in our meta-
analysis did not quantify rarity or provide information that
would allow quantification (e.g. scaled range maps), precluding
tests of how the extent of rarity influences genetic diversity, fit-
ness and functional traits, and could guide the conservation of
species of different rarity degrees. We encourage future studies to
quantify rarity explicitly. For example, geographic distribution
could be reported as the total area of occurrence (Lloyd ezal.,
2002; Lovell & McKay, 2015), local abundance as the density of
individuals or percentage cover in an area (Burne eral, 2003;
Egan etal., 2014), and habitat specificity as frequency of occur-
rence in various habitat types (Wagner & Edwards, 2001) or den-
sity in the preferred habitat type relative to other habitat types
(Oliver et al., 2009).

Rare plant species are not evenly distributed across the
Earth’s surface (Enquist ezal, 2019). Distinct rarity hotspots
occur in montane regions of the Americas, the Cape Floristic
Region of South Africa, the Ethiopian Highlands, southwestern
China and parts of Mediterranean Europe, among other loca-
tions (Enquist ezal, 2019). Such hotspots provide opportuni-
ties to investigate historical and contemporary drivers of rarity,
and conservation efforts can target multiple species vulnerable
to extinction. Rarity hotspots tend to occur in areas with high
climate stability, and the rapid pace of contemporary climate
change could threaten the persistence of rare species in these
locations and elsewhere (Sandel eral, 2011, 2017; Mouillot
eral., 2013; Enquist eral, 2019). Future studies in rarity
hotspots could investigate biological factors associated with rar-
ity by comparing genetic and genomic diversity, fitness and
functional traits of large numbers of diverse rare species, and
investigate the responses of resident species to simulated climate
change to examine extinction risks.

Implications for persistence through environmental change

Studies that examine the ecoevolutionary causes and consequences
of rarity can help to elucidate the potential for rare species to per-
sist through unprecedented environmental change due to human
activities (Malhi ez al., 2020). To persist, species will need to adapt
to novel selection 7 situ (Sheth ez al, 2018; Hamann ez al, 2021),
acclimate to altered conditions (Chevin ez al., 2010; Nicotra et al.,
2010; Seebacher ez al, 2015) and/or migrate to suitable locations
(Parmesan, 2006; Chen et al., 2011; Pardi & Smith, 2012; Crick-
enberger & Wethey, 2018; Cazzolla Gatti ezal, 2019). Under-
standing how rare species could respond to future environmental
change requires that studies manipulate the factors that are most
likely to change (De Boeck et 4/, 2015).

Adaptation Genetic  drift,
inbreeding depression, and increased demographic and genetic

reduced mating opportunities,

stochasticity can deplete genetic variation in small populations
and restrict the adaptive potential of rare species (Ellstrand &
Elam, 1993; Wagenius ezal, 2007; Leimu & Fischer, 2008;
Luque eral., 2016; Hoffmann ezal, 2017). Our findings that
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rare species have reduced population genetic diversity suggest that
their ability to adapt to environmental change may be limited if
genetic variability at neutral markers is correlated with variability
at fitness-related markers. Owing to the historical nature of our
dataset, population genetic parameters were measured via markers
such as allozymes and microsatellites and were based on very few
markers, representing a small fraction of the overall genome. Con-
tinued improvements in next-generation sequencing technologies
hold great promise for identifying loci implicated in adaptation,
assessing nucleotide diversity at those loci, examining the genomic
signatures of demographic history, quantifying effective population
size, evaluating the extent of populations genomic differentiation
and gene flow, and examining rates of inbreeding (Fournier-Level
etal., 2011; Hoban ezal, 2016; Vallebueno-Estrada ez al, 2016;
Bemmels ezal., 2019; Fitzpatrick etal, 2021). Nevertheless, few
studies have harnessed the power of sequence data to investigate
the causes and consequences of rarity or to predict extinction risks
(Helmstetter ez al., 2021).

To test whether limited genetic variation restricts the adap-
tive potential of rare species, quantitative genetic studies under
ecologically realistic field conditions could estimate genetic vari-
ation in fitness and functional traits subject to selection. A
recent analysis of tropical tree seedlings suggests that common
species express trait values that are more adaptive than those
expressed by rare species (Umana etal., 2015). Selection analy-
ses (Rausher, 1992) that evaluate fitness as a function of func-
tional traits under ecologically relevant conditions could test
the hypothesis that locally rare or geographically restricted rare
species are more poorly adapted, exhibiting trait values that fall
farther from optimal values, than are common species. Further-
more, reciprocal transplant experiments could determine
whether phenotypes of rare habitat specialists and common
species are closer to the optimum in their respective home envi-
ronments. Evolutionary genetic studies that evaluate quantita-
tive genetic parameters in the context of global change
(Etterson & Shaw, 2001; Bemmels & Anderson, 2019; Peschel
etal, 2021) could test whether common species maintain
greater genetic variation in fitness than rare species in treat-
ments that simulate future climates, and could examine whether
genetic trade-offs across traits could restrict adaptation to envi-
ronmental change (Etterson & Shaw, 2001). In particular, we
call for manipulative studies that simulate projected future cli-
mates in field-based common garden experiments.

Acclimation Phenotypic plasticity could enable population per-
sistence in the face of environmental change without genetic
change (Nicotra & Davidson, 2010; Godoy et al., 2012). Plant
species can differ extensively in their plastic responses to environ-
mental change (Sultan, 2000; Nicotra & Davidson, 2010; Godoy
etal., 2012; Dangremond ezal., 2015), and widespread species
could have relatively high plasticity owing to greater spatial varia-
tion across their ranges (Murray ez al., 2002). Few studies explic-
itly contrasted plasticity across rare and common congeners (Liao
etal., 2006; Lovell & McKay, 2015; Hirst ezal., 2017; Ruther-
ford etal., 2017; Boyd et al., 2022), even though numerous stud-
ies exposed rare and common species to multiple environmental
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conditions. Additionally, the plasticity studies in our dataset
mostly neglected to test whether plasticity confers a fitness advan-
tage in rare or common species (but see Boyd ez al., 2022), which
is critical because plasticity can be a passive or maladaptive stress
response (Palacio-Lopez eral, 2015; Hendry, 2016; Bonser,
2021). Studies that compare plasticity in rare and common
species and link plasticity to performance in the context of proba-
ble environmental change could test the hypothesis that geo-
graphically restricted species or habitat specialists could be
limited in their ability to acclimate to a broader range of environ-
mental conditions.

Migration Migratory potential probably depends on species’
abundance near existing range boundaries, which could impede
the capacity for locally rare species to migrate in response to climate
change (Iverson etal, 2004) and constrain species distributions
(Loveless & Hamrick, 1984). Limited flower, fruit and seed produc-
tion and/or sizes also can restrict the dispersal potential of species
(Angert et al., 2011; Anderson, 2016; Schupp ez al., 2019; Schreiber
& Beckman, 2020). The reduced fitness of rare species revealed by
our metaanalyses (Fig. 2) could constrain their ability to migrate.
Mismatches in the rapid ability of pollinator species to migrate rela-
tive to plant species (McKinney eral, 2012; Gezon eral, 2016;
Richman ez 4/, 2020) could compound such effects, while extensive
habitat fragmentation could further challenge migration in contem-
porary landscapes (Angert eral., 2011). Although the influence of
fragmentation on migratdon is not restricted to rare species
(Dullinger eral., 2015), species with low abundance are most sus-
ceptible to the genetic consequences of fragmentation (Reed &
Frankham, 2003; Honnay & Jacquemyn, 2007).

Pollination manipulations Rare species could be limited by
mating opportunities if populations are sparse and geographi-
cally disjointed, such that mates are few or pollinators infre-
quently visit flowers (Moeller, 2004; Benadi & Pauw, 2018). If
rare and common congeners coexist, receipt of heterospecific
pollen could further reduce fecundity in rare species (Ashman
& Arceo-Gémez, 2013). However, these disadvantages could
be offset by interspecific facilitation, as rare species can benefit
from sharing pollinators with common species in diverse com-
munities even when there is competition for pollinators
(Moeller, 2004; Tur eral., 2016; Benadi & Pauw, 2018; Berg-
amo etal., 2020; Wei ezal., 2021). Our preliminary metaanaly-
sis of mating systems revealed that rare species had reduced
fecundity compared with their common congeners under self-
and hand-pollination (Fig. 3), suggesting that they could expe-
rience reduced pollen germination and pollen tube growth or
depressed efficiency of fertilization compared with their con-
geners. Alternatively, rare species may have reduced tolerance
of floral manipulations, such as emasculation, relative to their
common congeners. Our results could also be an artifact of
variation in mating systems; for example, reduced seed set
under selfing could have arisen if rare species are less self-
compatible than their common congeners. We encourage
future experiments to test the extent to which rare species may
be limited by mating opportunities, and if the type of rarity
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influences mating system evolution. Studies that examine polli-
nator interactions and rates of inbreeding in rare species in the
context of global declines in pollinator abundance and diversity
(Biesmeijer eral, 2006; Williams eral, 2009; Burkle eral,
2013; Potts eral, 2016) will yield insights into their risk of
extinction under global change.

Conclusions

Two decades ago, Bevill & Louda (1999) and Murray ez al. (2002)
reviewed plant life histories and traits in the context of species rar-
ity and found very few patterns. These limited findings were
attributed in part to a restricted body of autecological studies that
measured different variables. By contrast, previous metaanalyses
revealed that rare species tend to have lower levels of genetic diver-
sity than their common congeners (Gitzendanner & Soltds, 2000;
Cole, 2003). Our metaanalysis of a now larger body of research
confirmed that rare species have reduced population genetic diver-
sity and also revealed that rare species have depressed fitness rela-
tive to common congeners and could suffer from reduced
efficiency of ferdlization. However, we found few differences in
functional traits. Discerning the ecological and evolutionary causes
and consequences of rarity remains challenging, and our metaanal-
yses revealed persistent gaps in our understanding of species rarity.
To fill those gaps, we advocate for ecologically relevant studies that
examine additional elements of rarity, estimate quantitative genetic
variation in fitness and functional traits, quantify the extent of
adaptive phenotypic plasticity, evaluate the contributions of life
history and mating system variation to rarity, and explicitly assess
the potential for rare species to persist through global change via
adaptation, acclimation and migration. Studies that examine the
reasons for rarity could inform robust plans for the conservation of
rare species and overall biodiversity against the pressures of con-
temporary environmental change.
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Fig. S2 Funnel plot for metaanalysis of fitness and functional
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