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Recently, the resource theory of asymmetric distinguishability for quantum strategies was introduced by Wang
et al. [Phys. Rev. Research 1, 033169 (2019).]. The fundamental objects in the resource theory are pairs of
quantum strategies, which are generalizations of quantum channels that provide a framework to describe an
arbitrary quantum interaction. In the present paper we provide semidefinite program characterizations of the
one-shot operational quantities in this resource theory. We then apply these semidefinite programs to study the
advantage conferred by adaptive strategies in discrimination and distinguishability distillation of generalized
amplitude damping channels. We find that there are significant gaps between what can be accomplished with an
adaptive strategy versus a nonadaptive strategy.
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I. INTRODUCTION

In quantum information theory, the tasks of quantum state
and channel discrimination have been studied in a consider-
able amount of detail; see Refs. [1–5] and [6–11], respectively.
Given the central importance of distinguishing quantum states
or channels, it is reasonable to study distinguishability itself in
the context of a resource theory [12–14], i.e., to use resource-
theoretic tools to quantify distinguishability, and to use these
tools to study the tasks of distilling distinguishability from a
pair of objects, diluting canonical units of distinguishability to
a desired pair, and transforming one pair of entities to another
pair.

References [12–14] developed some basic tools and a
framework for the resource theory of asymmetric distin-
guishability. In some sense, the resource theory of asymmetric
distinguishability can be thought of as a “meta”-resource the-
ory. The basic objects in this resource theory come in pairs,
and their worth is decided by the distinguishability of the
entities in a pair. This resource theory is also unique in the
sense that all physical operations acting on each element of
the pair are free. A variety of resource theories can be thought
of as being derived from the resource theory of asymmetric
distinguishability by setting specific restrictions on the states
or channels allowed for free [13].

The most general discrimination task in quantum informa-
tion theory is not that of discriminating channels but that of
distinguishing what are known as quantum strategies [15–17],
also known as quantum combs, memory channels, or higher-
order quantum maps [18–20]. A quantum strategy completely
represents the actions of an agent in a multiround interaction
with another party and forms the next rung in the hierar-
chical ladder that begins with quantum states and channels.
A key insight of Ref. [20] is that the hierarchy consisting
of states, channels, superchannels, etc., ends with quantum

strategies. That is, all so-called “higher-order” dynamics can
be described as quantum strategies. Given this importance
of quantum strategies and the flexibility and power offered
by the resource theory of asymmetric distinguishability, it is
worthwhile to continue the study of it for quantum strategies,
as initiated in Ref. [14].

In this paper we provide several contributions to the re-
source theory of asymmetric distinguishability [13,14]. One
of our main contributions is a semidefinite programming
(SDP) characterization of two crucial quantities in this re-
source theory: the one-shot distillable distinguishability and
the one-shot distinguishability cost of quantum strategies,
which characterize the resource theory’s distillation and di-
lution tasks, respectively. To do so, we build upon the
previous SDP characterizations of the quantum strategy dis-
tance [17,19], which provides a distance measure between
strategies.

The other main contribution of this paper is to apply
these SDPs to study particular examples of channel distin-
guishability tasks. As indicated in Ref. [14], distinguishability
distillation is closely linked to asymmetric quantum channel
discrimination. In quantum channel discrimination, one can
employ either parallel or adaptive strategies. By definition,
adaptive strategies are no less powerful than parallel ones.
It is known that in the asymptotic limit, adaptive strategies
confer no advantage over parallel ones in asymmetric chan-
nel discrimination [21–23]. This leaves open the question of
whether adaptive strategies can help in channel discrimination
when a finite number of channel uses are allowed. Our SDP
formulations help us compute and study this gap. As an exam-
ple, we consider distinguishability tasks involving generalized
amplitude damping channels (GADCs) and show that adaptive
strategies offer a significant advantage over parallel ones with
respect to various distinguishability metrics of interest, thus
extending prior work on this topic from Ref. [24].
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FIG. 1. A three-turn strategy N (3) interacts with a three-turn co-
strategy S (3). In red is the entirety of the three-turn strategy N (3),
which consists of three quantum channels N1 through N3, connected
to each other via memory systems. The co-strategy S3 consists of an
initial state on systems A1R1 as well, the quantum channels S1, S2,
and S3, and memory systems R1, R2, and R3.

II. QUANTUM STRATEGIES

The idea of quantum strategies, combs, or higher-order
maps goes back over a decade [15,20]. A quantum strategy
generalizes a quantum channel in that it allows for sequential
interactions over multiple rounds. Consider that there are two
parties, Alice and Bob. Alice’s n-turn quantum strategy de-
scribes her actions in an n-round interaction with Bob. In such
a scenario, Bob’s n-round interaction is described by a suitable
quantum co-strategy. In other words, the interaction of Alice’s
n-turn quantum strategy with another suitable n-turn strategy
(belonging to Bob) captures all possible interactive behavior
that takes place over n rounds between them. Reference [20]
introduced the term “quantum comb,” which refers to the
same physical object as a quantum strategy.

An n-turn quantum strategy N (n), with n � 1, input sys-
tems A1 through An, and output systems B1 through Bn,
consists of the following: (a) memory systems M1 through
Mn−1, and (b) quantum channels N 1

A1→M1B1
, N 2

M1A2→M2B2
, ...,

N n−1
Mn−2An−1→Mn−1Bn−1

, and N n
Mn−1An→Bn

. The definition above al-
lows for any of the input, output, or memory systems to be
trivial, which means that state preparation and measurements
can be captured in the framework of quantum strategies. For
the sake of brevity, we use the notation An to denote systems
A1 through An. Figure 1 depicts a three-turn strategy interact-
ing with a three-turn co-strategy.

A superchannel is a physical operation that converts one
quantum channel to another [18,25]. It is a particular type of
quantum strategy. Reference [18] made the important obser-
vation that a superchannel can be equivalently represented as
a bipartite channel, along with a causality constraint that de-
fines the causal order of inputs and outputs. Reference [20]’s
observation that quantum combs are all that are needed to
describe higher-order quantum dynamics ties in neatly with,
and generalizes, the superchannel-bipartite channel isomor-
phism. A superchannel can be cast as a bipartite channel, and
likewise, an object that transforms superchannels to super-
channels (which is a quantum strategy) is itself a multipartite
superchannel, which by the previously stated isomorphism is
a multipartite channel [20]. Therefore there is a “collapse” of
the hierarchy that proves to be important, which implies that
all higher-order quantum dynamics can be studied using the
framework of quantum strategies [20].

Another isomorphism that is crucial in quantum informa-
tion is the Choi isomorphism. It too establishes an equivalence
between two different classes of objects—a single-party

quantum channel can be equivalently represented by a bipar-
tite quantum state. Putting the pieces together, we see that
one can define a Choi state, or a Choi operator, not only for
quantum channels, but also in general for quantum strategies.
This isomorphism enables us to apply the tools developed
in the resource theory of asymmetric distinguishability for
states and channels to superchannels and, more generally, to
quantum strategies. This was identified and studied in Ref.
[14], and here we elaborate in much more detail on these
points.

In the remainder of this section we establish some prelim-
inaries regarding the quantum strategies formalism, and we
also provide a semidefinite program for the quantum strategy
distance between two n-round strategies that is slightly differ-
ent from that presented in Ref. [17].

A. Choi operator and causality constraints

To establish the Choi operator for a quantum strategy,
we recall that a superchannel �(A1→B1 )→(A2→B2 ) transforming
NA1→B1 to KA2→B2 is in one-to-one correspondence with a
bipartite channel LA2B1→A1B2 that has a certain no-signaling
constraint [18,25]. The superchannel �(A1→B1 )→(A2→B2 ) can be
implemented via preprocessing and postprocessing channels
EA2→A1M and DB1M→B2 that share a memory system M. The
Choi operator of the superchannel �(A1→B1 )→(A2→B2 ), given
by ��

A1A2B1B2
, is identified with the Choi operator of the cor-

responding bipartite channel

LA2B1→A1B2
:= DB1M→B2 ◦ EA2→A1M, (1)

along with a causality constraint that ensures no backward sig-
naling in time; i.e., the A systems can signal to the B systems,
but not vice versa. This is mathematically represented as

��
A1A2B1

= ��
A1A2

⊗ πB1 , (2)

where πB1 is the maximally mixed state. This reasoning can
be extended to quantum strategies.

A general n-turn quantum strategy N (n) : An → Bn is
uniquely associated to its Choi operator �N (n)

AnBn via [15]

�N (n)

AnBn := N (n)
A′n→Bn (�A′

1A1 ⊗ �A′
2A2 ⊗ · · · ⊗ �A′

nAn ), (3)

where �A′A ≡ |�〉〈�|A′A, and |�〉A′A = ∑
i |i〉A′ |i〉A is the un-

normalized maximally entangled vector on systems A′A. The
constraints on the Choi operator �N (n)

AnBn are that

�N (n)

AnBn � 0, (4)

and that there exist n positive semidefinite operators N[1], N[2],

..., N[n], with N[i] acting on systems AiBi for 1 � i � n, such
that

N[n] = �N (n)

AnBn ,

TrBn

[
N[n]

] = N[n−1] ⊗ IAn ,

TrBn−1

[
N[n−1]

] = N[n−2] ⊗ IAn−1 ,

...

TrB2

[
N[2]

] = N[1] ⊗ IA2 ,

TrB1

[
N[1]

] = IA1 .

(5)
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These latter constraints (5) are causality constraints that
arise due to the flow of information in the strategy. They
generalize the single causality constraint imposed on the Choi
operator of a superchannel. Conversely, if an operator �N (n)

AnBn

satisfies the above constraints, then there is a quantum strategy
associated to it [15].

B. Link product

How do we “connect” or compose two quantum strate-
gies? To this end, the notion of link product was introduced
to denote the composition, or interaction, of two quantum
strategies [20]. Two quantum strategies are composed by con-
necting the appropriate input and output systems, with an
example being given in Fig. 1. Suppose that n-turn strategy
N (n) takes systems An to Bn and m-turn strategy S (m) takes
systems Cm to Dm. The Choi operator of the composition
N (n) ◦ S (m) is given by �N (n) ∗ �S (m)

, defined in (10). Here,
the nomenclature “comb” shines, as we connect the two
strategies as if they were interlocking pieces, making sure to
connect the appropriate input and output ports of the first and
second strategy, respectively.

Qualitatively, the link product connects and “collapses”
matching input and output systems of the two strategies. The
composition N (n) ◦ S (m) is another strategy that takes systems

(An \ Dm)(Cm \ Bn) → (Dm \ An)(Bn \ Cm). (6)

The matching systems in this case are An ∩ Dm and Bn ∩ Cm.
To maintain brevity, we define

N ∩ S := (An ∩ Dm) ∪ (Bn ∩ Cm), (7)

as well as

N \ S := (AnBn) \ (CmDm) (8)

and

S \ N := (CmDm) \ (AnBn). (9)

The Choi operator of the composition N (n) ◦ S (n) is given by
the link product of strategy Choi operators �N (n)

AnBn and �S (m)

CmDm ,
and is defined as follows:

�N (n)

AnBn ∗ �S (m)

CmDm := TrN∩S[(IN\S ⊗ (�S )TN∩S )(�N ⊗ IS\N )],
(10)

where the notation TN∩S refers to taking the partial transpose
on systems N ∩ S.

C. Telling two strategies apart

It is natural to introduce a notion of distance, or dis-
tinguishability, between two strategies. In this vein, the
quantities quantum strategy distance [17,19,20], the strategy
fidelity [26], and the strategy max-relative entropy [27] were
previously defined. These are generalized by the generalized
strategy divergence of Ref. [14].

Given two n-turn strategies with the same input and output
systems, the most general discrimination strategy is defined
analogously to that in channel discrimination; instead of
passing a common state to two channels, one interacts a
common n-turn co-strategy with the unknown strategy to ob-
tain an output state on which a measurement is performed.

That is, for strategies N (n) and M(n) : An → Bn, consider an
arbitrary n-turn co-strategy S (n) : Bn−1 → AnRn. The compo-
sitions N (n) ◦ S (n) and M(n) ◦ S (n) yield states on RnBn. The
strategy distance between N (n) and M(n) is the maximum
trace distance between the states on RnBn corresponding to
strategies N (n) and M(n):

∥∥N (n) − M(n)
∥∥

�n
:= sup

S (n)

∥∥N (n) ◦ S (n) − M(n) ◦ S (n)
∥∥

1.

(11)
The quantum strategy distance denotes the maximum

classical trace distance between the output probability dis-
tributions produced by processing both strategies with a
common co-strategy. For two arbitrary n-turn strategies, the
strategy distance can be computed via a semidefinite program
[17], which provides a powerful tool that can be used to
study, among other things, the advantage provided by adaptive
strategies over parallel ones in quantum channel discrimina-
tion, explored in Sec. IV.

In what follows we present an SDP for the normal-
ized quantum strategy distance 1

2‖N (n) − M(n)‖�n of two
strategies that is slightly different from that presented pre-
viously, in Ref. [17]. This alternate form of the strategy
distance is used later to derive SDP characterizations of the
distillable distinguishability and the distinguishability cost
in Sec. III C.

Proposition 1. The normalized strategy distance
1
2‖N (n) − M(n)‖�n can be expressed as the following SDP,

where �N (n)

AnBn and �M(n)

AnBn are the Choi operators of the strategies
N (n)

An→Bn and M(n)
An→Bn :

sup
S,S[n],··· ,S[1]�0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr
[
S(�N (n) − �M(n)

)
]

:

S � S[n] ⊗ IBn ,

TrAn

[
S[n]

] = S[n−1] ⊗ IBn−1 ,

...

TrA2

[
S[2]

] = S[1] ⊗ IB1 ,

Tr
[
S[1]

] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

The dual of the normalized strategy distance is

inf
μ ∈ R,Yn � 0,

Y1, . . . ,Yn−1 ∈ Herm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ :

Yn � �N (n) − �M(n)
,

Yn−1 ⊗ IAn � TrBn [Yn],
Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1],

...

Y1 ⊗ IA2 � TrB2 [Y2],
μIA1 � TrB1 [Y1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(13)
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Proof. We start by recalling the SDP formulation of the
strategy distance from Ref. [17]:∥∥N (n) − M(n)

∥∥
�n

= sup
T0,T1�0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr[(�N (n) − �M(n)
)(T0 − T1)] :

T0 + T1 = T[n] ⊗ IBn ,

TrAn [T[n]] = T[n−1] ⊗ IBn−1 ,

...

TrA2 [T[2]] = T[1] ⊗ IB1 ,

Tr[T[1]] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (14)

In the above, {T0, T1} comprise the Choi operators of an n-
round measuring co-strategy, as defined in Ref. [17]. This
means that T = T0 + T1 is the Choi operator of an n-round
nonmeasuring co-strategy and obeys the following con-
straints:

T � 0, (15)

T = T[n] ⊗ IBn , (16)

TrAn

[
T[n]

] = T[n−1] ⊗ IBn−1 , (17)

... (18)

TrA2

[
T[2]

] = T[1] ⊗ IB1 , (19)

Tr
[
T[1]

] = 1. (20)

The objective function

Tr[(�N (n) − �M(n)
)(T0 − T1)] (21)

can be rewritten as follows:

Tr[(�N (n) − �M(n)
)(T0 − T1)]

= Tr[(�N (n) − �M(n)
)(T0 − (T − T0))]

= 2 Tr[(�N (n) − �M(n)
)T0] − Tr[(�N (n) − �M(n)

)T ]

= 2 Tr[(�N (n) − �M(n)
)T0]. (22)

In the above, the first equality arises because T = T0 + T1.
The third equality is due to the fact that for the strategy N (n),
the probabilities of obtaining outcomes corresponding to T0

and T1 add to 1, i.e.,

Tr[�N (n)
(T0 + T1)] = Tr[�N (n)

T ] = 1. (23)

The same holds for M(n) as well, and thus Tr[(�N (n) −
�M(n)

)T ] = 0.
The operator T0 is the Choi operator of an n-round measur-

ing co-strategy and so it obeys the following constraints:

T0 � 0, (24)

T0 � T[n] ⊗ IBn , (25)

TrAn

[
T[n]

] = T[n−1] ⊗ IBn−1 , (26)

... (27)

TrA2

[
T[2]

] = T[1] ⊗ IB1 , (28)

Tr[T[1] = 1. (29)

By combining (22) with the constraints on T0, we arrive at the
desired semidefinite program in (12). Note also that we can

start with (12) and run the whole proof backwards to arrive at
(14), setting T0 = S, T1 = S[n] ⊗ IBn − S, and T = S[n] ⊗ IBn .

The dual is given by (13), which can be verified by
the Lagrange multiplier method and is worked out in Ap-
pendix B 2. �

III. DISTINGUISHABILITY RESOURCE THEORY

We first recall some aspects of the resource theory of
asymmetric distinguishability, work on which was begun in
Ref. [12] and continued in Refs. [13,14,28]. The objects in
consideration in this resource theory are pairs of like objects.
These objects can be probability distributions, quantum states,
quantum channels, or most generally, quantum strategies of an
equal number of rounds. Any operation on the pair of elements
is considered free, justified by the fact that data processing
cannot increase the distinguishability of two objects.

The object (ρ, σ ), a state box, is an ordered pair of states
that is to be understood as an atomic entity: upon being handed
a state box, one does not know which state it contains. In this
paper we consider ordered pairs of n-turn quantum strategies,
which generally are represented by (N (n),M(n) ).

A. Bits of asymmetric distinguishability

Here we recall the canonical unit of asymmetric distin-
guishability (AD) [13]. The state box (|0〉〈0|, π ) encapsulates
one bit of AD, where

π := 1
2 (|0〉〈0| + |1〉〈1|) (30)

is the maximally mixed qubit state. Defining this unit enables
us to quantify the amount of resource present in an arbitrary
strategy box. As discussed in Ref. [13], the bit of AD rep-
resents a pair of experiments in which the null hypothesis
corresponds to preparing |0〉〈0|, and the alternative hypothesis
corresponds to preparing π . A number m bits of asymmetric
distinguishability corresponds to the box (|0〉〈0|⊗m, π⊗m). Al-
ternatively, the state box (|0〉〈0|, πM ), with

πM := 1

M
|0〉〈0| +

(
1 − 1

M

)
|1〉〈1|, (31)

contains log2 M bits of AD.

B. Distillation and dilution of strategy boxes

Given a strategy box (N (n),M(n) ), we are interested in two
questions: (a) how many bits of AD can be distilled from it,
and (b) how many bits of AD are required so that one can
dilute them to (N (n),M(n) )? These quantities are crucial to
the resource theory of asymmetric distinguishability. The one-
shot versions of these tasks are explained below, and we also
provide explicit semidefinite programs for them.

We start by discussing distinguishability distillation. The
goal of approximate distillation is to transform a strategy
box into as many approximate bits of AD as possi-
ble. Quantitatively, the one-shot ε-approximate distillable
distinguishability of strategy box (N (n),M(n) ) is given by

Dε
d (N (n),M(n) )

:= log2 sup
S (n)

{M : N (n) ◦ S (n) ≈ε |0〉〈0|,M(n) ◦ S (n) = πM},
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where S (n) is an n-turn co-strategy that interacts with N (n) and
M(n) to yield a qubit state, and

N (n) ◦ S (n) ≈ε |0〉〈0| ⇐⇒ 1
2‖N (n) ◦ S (n) − |0〉〈0|‖1 � ε.

(32)
The operational quantity for approximate distillation is the

smooth strategy min-relative entropy. The smooth strategy
min-relative entropy between n-turn strategies N (n) and M(n)

is defined as follows:

Dε
min(N (n)‖M(n) ) := sup

S (n)

Dε
min(N (n) ◦ S (n)‖M(n) ◦ S (n) ),

where N (n) and M(n) take systems An to Bn, and S (n) is an n-
turn co-strategy that takes systems Bn−1 to AnRn. The smooth
min-relative entropy of states is defined as [29–31]

Dε
min(ρ‖σ ) := − log2 inf

0���I
{Tr[�σ ] : Tr[�ρ] � 1 − ε}.

Distinguishability dilution, on the other hand, is the com-
plementary task to distillation. Approximate dilution refers
to the task of transforming (|0〉〈0|, πM ) to approximately
one copy of (N (n),M(n) ) with as small M as possible. The
one-shot ε-approximate distinguishability cost of the box
(N (n),M(n) ) is given by the following:

Dε
c (N (n),M(n) )

:= log2 inf
S (n)

{M : S (n)(|0〉〈0|) ≈ε N (n),S (n)(πM ) = M(n)},
(33)

where

S (n)(|0〉〈0|) ≈ε N (n) ⇐⇒ 1
2‖S (n)(|0〉〈0|) − S (n)‖�n � ε.

(34)

For the dilution task, the operational quantity is the smooth
strategy max-relative entropy of quantum channels and is
defined as

Dε
max(N (n)‖M(n) ) := inf

Ñ (n)≈εN (n)
Dmax(Ñ (n)‖M(n) ), (35)

where Dmax(Ñ (n)‖M(n) ) is equal to the max-relative entropy
for strategies, defined as [27]

Dmax(Ñ (n)‖M(n) ) := Dmax(�Ñ (n)‖�M(n)
), (36)

and the max-relative entropy for states is defined as
Dmax(ρ‖σ ) := inf{λ : ρ � 2λσ } [32].

We now state a result claimed in Ref. [14]. Its detailed
proof is given in Appendix A.

Theorem 2. As seen in Ref. [14], the approximate one-shot
distillable distinguishability of the strategy box (N (n),M(n) )
is equal to the smooth strategy min-relative entropy:

Dε
d (N (n),M(n) ) = Dε

min(N (n)‖M(n) ), (37)

and the approximate one-shot distinguishability cost is equal
to the smooth strategy max-relative entropy:

Dε
c (N (n),M(n) ) = Dε

max(N (n)‖M(n) ). (38)

C. SDPs for one-shot quantities

This section contains one of our main contributions: ex-
plicit semidefinite programs to calculate, for a given strategy

box, the approximate distillable distinguishability and approx-
imate distinguishability cost.

Proposition 3. Considering strategies N (n) and M(n) to
take systems An to Bn, the distillable distinguishability is
computable via the following semidefinite program:

2−Dε
min (N (n)‖M(n) )

= inf
S,S[n],...,S[1]�0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr[S �M(n)
] :

Tr[S �N (n)
] � 1 − ε,

S � S[n] ⊗ IBn ,

TrAn [S[n]] = S[n−1] ⊗ IBn−1 ,

...

TrA2 [S[2]] = S[1] ⊗ IB1 ,

Tr[S[1]] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (39)

with dual

sup
μ1,Yn � 0,

μ2 ∈ R,

Y1, . . . ,

Yn−1 ∈ Herm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ε)μ1 − μ2 :

Yn � μ1�
N (n) − �M(n)

,

Yn−1 ⊗ IAn � TrBn [Yn],
Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1],

...

Y1 ⊗ IA2 � TrB2 [Y2],
μ2IA1 � TrB1 [Y1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (40)

Proof. We have

Dε
d (N (n),M(n) ) = Dε

min(N (n)‖M(n) ) (41)

= sup
S (n)

Dε
min(N (n) ◦ S (n)‖M(n) ◦ S (n) ) (42)

and

Dε
min(ρ‖σ )

= − log2 inf
��0

{Tr[�σ ] : Tr[�ρ] � 1 − ε,� � I}. (43)

We consider S (n) : Bn−1 → AnRn to be a co-strategy, so that
N (n) ◦ S (n) is a quantum state on RnBn. Let �RnBn be a
measurement operator such that Tr[�RnBn (N (n) ◦ S (n) )] is a
probability. We now have

Dε
min(N (n)‖M(n) ) = − log2 inf

S (n)

{
Tr[ST �M(n)

] :

Tr[ST �N (n)
] � 1 − ε

}
(44)

such that S is the Choi operator of a valid “sub co-strategy”
corresponding to S (n) and � and we have exploited the link
product from (10). To write it out explicitly, we use the fol-
lowing constraints on the Choi operator of a sub co-strategy
[17, Sec. 2.3]:

0 � S � S[n] ⊗ IBn , (45)

TrAn [S[n]] = S[n−1] ⊗ IBn , (46)

... (47)

Tr[S[1]] = 1, (48)
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so that

2−Dε
min (N (n)‖M(n) )

= inf
S,S[n],...,S[1]�0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr
[
ST �M(n)]

:

Tr
[
ST �N (n)] � 1 − ε,

S � S[n] ⊗ IBn ,

TrAn

[
S[n]

] = S[n−1] ⊗ IBn ,

...

Tr
[
S[1]

] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (49)

Finally, the full transpose of S corresponds to a legitimate sub
co-strategy, and since we are optimizing over all of them, we
can remove the transpose in the optimization to arrive at (39).

The dual program is then given by (40), which can be
verified by means of the Lagrange multiplier method. The
details of this calculation are provided in the Appendix B 3.

Proposition 4. For strategies N (n) and M(n) taking sys-
tems An to Bn, the distinguishability cost is computable via
the following semidefinite program:

2Dε
max(N (n)‖M(n) )

= inf
λ,Yn, N � 0,

N[n], . . . , N[1] � 0

Y1, . . . ,Yn−1 ∈ Herm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ :

N � λ�M(n)

Yn � �N (n) − N,

Yn−1 ⊗ IAn � TrBn [Yn],
Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1],

...

Y1 ⊗ IA2 � TrB2 [Y2],
εIA1 � TrB1 [Y1],

TrBn [N] = N[n−1] ⊗ IAn ,

TrBn−1

[
N[n−1]

] = N[n−2] ⊗ IAn−1,

...

TrB2

[
N[2]

] = N[1] ⊗ IA2 ,

TrB1

[
N[1]

] = IA1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(50)
with dual

sup
W1,W2, . . . , Wn+2 � 0, X1, . . . , Xn ∈ Herm⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr[�N (n)
Wn+1 − εW1 + X1] :

Tr[Wn+2�
M(n)

] � 1,

Wn+2 � Wn+1 + Xn ⊗ IBn ,

Wn ⊗ IBn � Wn+1,

Wn−1 ⊗ IBn−1 � TrAn [Wn],
Wn−2 ⊗ IBn−2 � TrAn−1 [Wn−1],

...

W1 ⊗ IB1 � TrA2 [W2],
TrAn [Xn] � Xn−1 ⊗ IBn−1 ,

TrAn−1 [Xn−1] � Xn−2 ⊗ IBn−2 ,
...

TrA3 [X3] � X2 ⊗ IB2 ,

TrA2 [X2] � X1 ⊗ IB1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (51)

Proof. Firstly, we have

Dε
max(N (n)‖M(n) ) = inf

Ñ (n)≈εN (n)
Dmax(Ñ (n)‖M(n) ) (52)

and the dual of the normalized strategy distance from (13)

1

2
‖N (n) − Ñ (n)‖�n

= inf
μ ∈ R,Yn � 0,

Y1 . . .Yn−1 ∈ Herm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ :

Yn � �N (n) − �Ñ (n)
,

Yn−1 ⊗ IAn � TrBn [Yn],
Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1],

...

Y1 ⊗ IA2 � TrB2 [Y2],
μIA1 � TrB1 [Y1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(53)

For Ñ (n) the optimizer in (52) and exploiting (36), we have

2Dε
max(N (n)‖M(n) ) = inf

λ�0
{λ : �Ñ (n) � λ�M(n)}. (54)

Now we combine these while also adding constraints that
ensure that Ñ (n) is a valid quantum strategy. Therefore we use
the constraints in (5) and incorporate them into the optimiza-
tion. Thus we get

2Dε
max(N (n)‖M(n) )

= inf
λ, N,Yn � 0,

Y1, . . . ,Yn−1 ∈ Herm

N[1], . . . , N[n−1] � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ :

N � λ�M(n)
,

Yn � �N (n) − N,

Yn−1 ⊗ IAn � TrBn [Yn],
Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1],

...

Y1 ⊗ IA2 � TrB2 [Y2],
εIA1 � TrB1 [Y1],

TrBn [N] = N[n−1] ⊗ IAn ,

TrBn−1

[
N[n−1]

] = N[n−2] ⊗ IAn−1 ,

...

TrB2

[
N[2]

] = N[1] ⊗ IA2 ,

TrB1

[
N[1]

] = IA1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The dual is given by (51), which can be verified by means of
the Lagrange multiplier method accompanying this paper and
is worked out in the Appendix B 4. �

These SDPs are extensions of those presented in Ref. [14,
Appendix C-3], with the difference being that those above
incorporate causality constraints for quantum strategies. They
enable us to efficiently compute these quantities for various
scenarios of interest. We do so in the following section, where
we investigate whether adaptive strategies provide an advan-
tage over parallel ones with respect to the quantum strategy
distance, the approximate distillable distinguishability, and
the approximate distinguishability cost.

IV. ADAPTIVE VS NONADAPTIVE IN DISCRIMINATION
AND DISTILLATION

Strategies that distinguish between two channels NA→B

and MA→B using each channel n times are adaptive in general.
Parallel strategies are a special case of adaptive strategies that
are of practical interest. Parallel strategies involve a distin-
guisher inputting a possibly entangled state simultaneously to

052406-6



EVALUATING THE ADVANTAGE OF ADAPTIVE … PHYSICAL REVIEW A 104, 052406 (2021)

NA1 B1

NA2 B2

NAn Bn

...

R

Λ

NA1 B1

S1

NA2 B2

(b)

(a)

A3

R R R R
S2 · · ·

An BnN
Λ

FIG. 2. Processing n uses of a channel NA→B in (a) a parallel
manner and (b) an adaptive manner. In a parallel strategy, the input
state to the n copies of the channel can be entangled, but the channels
are all applied simultaneously. In an adaptive strategy, the channels
are applied sequentially, with interleaving channels S1 through Sn−1

providing adaptive feedback. In a channel discrimination protocol,
channels NA→B and MA→B are processed using a common apparatus
and the final measurement results are used to decide the correct
channel.

n instances of the unknown channel. Adaptive strategies, on
the other hand, involve n uses of the unknown channel that
happen sequentially. Between uses of the unknown channel,
the distinguisher can perform a quantum channel so as to
boost the chances of success. These two scenarios are de-
scribed in Fig. 2.

A parallel strategy is a special case of an adaptive strat-
egy [19]. Adaptive strategies are therefore no less powerful
than parallel ones. It is known that in the asymptotic regime,
adaptive strategies confer no advantage over nonadaptive ones
in asymmetric channel discrimination [21–23]. However, in
practical situations of interest with a finite number of uses of
the unknown channel and specific distinguishability tasks, it
is possible that adaptive strategies offer an advantage.

The formulation of quantum strategies offers a powerful
framework in which to analyze this problem. Consider a strat-
egy N (n) such as the one in Fig. 1 that consists of n uses
of the channel NA→B. This strategy can be made to interact
with a general n-turn co-strategy S (n), which encapsulates all
possible adaptive operations. To study parallel strategies, N (n)

can also be made to interact with a constrained, parallel n-turn
co-strategy. These two cases are described in Fig. 2.

In this work we study the gap between adaptive and parallel
strategies for distinguishability tasks involving two different
generalized amplitude damping channels [33]. The GADC
is a qubit-to-qubit channel that is characterized by a damp-
ing parameter γ ∈ [0, 1] and a noise parameter N ∈ [0, 1]. It
models the dynamics of a qubit system that is in contact with
a thermal bath. It is used to describe some of the noise in
superconducting-circuit-based quantum computers [34]. We
consider two strategies N (n) and M(n) that each consist of n
uses of a particular GADC. The Choi operator of a GADC
Aγ ,N with damping parameter γ and noise parameter N is

FIG. 3. Consider two GADCs with γ = 0.2 and 0.3, respec-
tively. We plot the difference between 1

2 ‖N (n) − M(n)‖�n and
1
2 ‖N⊗n − M⊗n‖�, where the strategies N (n) and M(n) each consist
of n instances of the same channel. While varying the common
parameter N , and allowing for different number of channel uses, we
see that adaptive strategies offer an advantage in discrimination over
parallel ones.

given by

�
Aγ ,N

RB :=

⎡⎢⎢⎢⎣
1 − γ N 0 0

√
1 − γ

0 γ N 0 0

0 0 γ (1 − N ) 0√
1 − γ 0 0 1 − γ (1 − N )

⎤⎥⎥⎥⎦.

(55)

In Fig. 3 we plot the difference between the strat-
egy distance 1

2‖N (n) − M(n)‖�n and the diamond distance
1
2‖N⊗n − M⊗n‖�. We consider two GADCs with damping
parameter γ = 0.2 and 0.3, respectively, while varying their
common noise parameter N . We note here that the strategy
distance 1

2‖N (n) − M(n)‖�n involves an optimization over
all costrategies, whereas the optimization involved in the
diamond distance 1

2‖N⊗n − M⊗n‖� is restricted to paral-
lel costrategies. This enables us to investigate if adaptive
strategies offer an advantage over parallel ones in channel
discrimination, and we indeed see in Fig. 3 that there is a
nonzero gap between the strategy distance and the diamond
distance.

Further, for two GADCs we study the gap between
adaptive and parallel costrategies for the distillable distin-
guishability, as well as the distinguishability cost. We consider
that both channels have γ = 0.2. The channels differ in their
noise parameter N , with the first channel having N = 0.2 and
the second channel having N = 0.3. We use the SDP formu-
lations of the smooth strategy min-relative entropy in (39) and
the smooth strategy max-relative entropy in (50) to perform
this calculation. For the distillable distinguishability, the re-
sults of the calculation are in Fig. 4, where we see that there
is a gap in the distillable distinguishability between adaptive
and parallel strategies. The results of the distinguishability
cost are in Fig. 5, where again we see a nonzero gap between
adaptive and parallel strategies. The code used to produce
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FIG. 4. Consider two GADCs with N = 0.2 and 0.3, respec-
tively. They both have γ = 0.2. We plot the difference between the
distillable distinguishabilities, which is given by Dε

min(N (n)‖M(n) )
for the most general case and by Dε

min(N⊗n‖M⊗n) for the case when
a distinguisher is limited to a parallel strategy.

these numerical results is available with the arXiv version of
the paper. It is not yet clear to us how to explain this behavior
qualitatively, and so we leave it for future work to do so.

V. CONCLUSION

In summary, in this paper we reviewed and further de-
veloped the resource theory of asymmetric distinguishability
for quantum strategies, which is a high-level and flexible
framework with which to study quantum interactions. We
provided semidefinite programs to calculate the distillable

FIG. 5. Consider two GADCs with N = 0.2 and 0.3,
respectively. They both have γ = 0.2. We plot the difference
between the approximate distinguishability cost, which is
given by Dε

max(N (n)‖M(n) ) for the most general case and by
Dε

max(N⊗n‖M⊗n) for the case when an adversary is limited to a
parallel strategy.

distinguishability and the distinguishability cost of quantum
strategy boxes, which we used to compare the power of
adaptive strategies to parallel ones. It is known that for chan-
nel discrimination and distillable distinguishability, parallel
strategies are equally powerful as adaptive strategies in the
asymptotic limit; however, an example we considered shows
that adaptive strategies provide an advantage in general when
one considers a finite number of channel uses.

Note added. There has been further work conducted on
this topic recently, with Refs. [35,36] studying the difference
between adaptive and parallel strategies in channel distin-
guishability tasks, and Refs. [37,38] studying the task of
discriminating between amplitude damping channels.
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APPENDIX A: ONE-SHOT DISTILLATION AND
DILUTION OF STRATEGY BOXES

In the following we provide the proof of Theorem 2, which
is claimed in [14]. For completeness, we restate the theorem
below:

Theorem 5. In Ref. [14] the approximate one-shot distil-
lable distinguishability of the strategy box (N (n),M(n) ) is
equal to the smooth strategy min-relative entropy:

Dε
d (N (n),M(n) ) = Dε

min(N (n)‖M(n) ), (A1)

and the approximate one-shot distinguishability cost is equal
to the smooth strategy max-relative entropy:

Dε
c (N (n),M(n) ) = Dε

max(N (n)‖M(n) ). (A2)

1. One-shot exact distillable distinguishability
is strategy min-relative entropy

We first prove the inequality

D0
d (N (n),M(n) ) � Dmin(N (n)‖M(n) ). (A3)

Let � be an arbitrary n-turn co-strategy that interacts with
strategies N (n) or M(n) to yield a state on RnBn. Consider
the projector 0 � �RnBn � IRnBn onto the support of � ◦ N (n).
Consider a postprocessing of the output state ωRnBn as follows:

ωRnBn → Tr [�RnBnωRnBn ]|0〉〈0|X
+ Tr [(IRnBn − �RnBn )ωRnBn ]|1〉〈1|X . (A4)

If the unknown strategy is N (n), then the interaction with �

followed by the above postprocessing yields |0〉〈0|X . If the
unknown strategy is M(n), then the final state is πM with

M = 1

Tr [�RnBn (� ◦ M(n) )]
, (A5)

or equivalently,

log2 M = Dmin(� ◦ N (n)‖� ◦ M(n) ). (A6)
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Taking a supremum over all interacting costrategies �, we get

D0
d (N (n),M(n) ) � sup

�

Dmin(� ◦ N (n)‖� ◦ M(n) ) (A7)

= Dmin(N (n)‖M(n) ). (A8)

Next we prove the opposite inequality,

D0
d (N (n),M(n) ) � Dmin(N (n)‖M(n) ), (A9)

which is a consequence of the data-processing inequality for
the Dmin strategy divergence [14]. Consider an arbitrary n-turn
co-strategy � that interacts with N (n) to give |0〉〈0| and with
M(n) to give πM . Then we can write

Dmin(N (n)‖M(n) ) � Dmin(� ◦ N (n)‖� ◦ M(n) ) (A10)

= Dmin(|0〉〈0|‖πM ) (A11)

= log2 M, (A12)

which yields

Dmin(N (n)‖M(n) ) � D0
d (N (n),M(n) ). (A13)

Putting (A8) and (A13) together, we get

D0
d (N (n),M(n) ) = Dmin(N (n)‖M(n) ). (A14)

2. One-shot approximate distillable distinguishability is
smooth strategy min-relative entropy

Here our aim is to prove

Dε
d (N (n),M(n) ) = Dε

min(N (n)‖M(n) ). (A15)

First we prove the inequality

Dε
d (N (n),M(n) ) � Dε

min(N (n)‖M(n) ). (A16)

Let � be an arbitrary interacting n-turn co-strategy and
�RnBn a corresponding measurement operator satisfying 0 �
�RnBn � IRnBn and

Tr[�RnBn (� ◦ N (n) )] � 1 − ε. (A17)

Consider, as in the exact case, a postprocessing of the final
state ωRnBn by the measurement channel LRnRn→X :

LRnRn→X (ωRBn ) := Tr [�RnBnωRnBn ]|0〉〈0|X
+ Tr [(IRnBn − �RnBn )ωRnBn ]|1〉〈1|X .

(A18)

Using (A17), we can conclude that L ◦ � ◦ N (n) ≈ε |0〉〈0|.
Further, for

M = 1

Tr
[
�RnBn (� ◦ M(n) )

] , (A19)

we have L ◦ � ◦ M(n) = πM . Taking a supremum over all in-
teracting costrategies � and measurement channels LRnRn→X ,
we get

Dε
d (N (n),M(n) ) � sup

�

Dε
min(� ◦ N (n)‖� ◦ M(n) )

= Dε
min(N (n)‖M(n) ). (A20)

Next we use data processing to prove the reverse inequality

Dε
d (N (n),M(n) ) � Dε

min(N (n)‖M(n) ). (A21)

Consider an n-turn co-strategy � and measurement channel
LRnRn→X such that 1

2‖L ◦ � ◦ N (n) − |0〉〈0|‖1 � ε. By a direct
calculation with trace distance, we find that

ε � 1
2‖L ◦ � ◦ N (n) − |0〉〈0|‖1 (A22)

= 1 − Tr[�(� ◦ N (n) )]. (A23)

We conclude that Tr[�(� ◦ N (n) )] � 1 − ε. In the definition
of Dε

min(� ◦ N (n)‖πM ), we can take the final measurement op-
erator to be �RB. This leaves us with Tr[�RnBn (� ◦ N (n) )] �
1 − ε and Tr[�RnBn (� ◦ M(n) )] = 1/M. Since the definition
of Dε

min for strategies involves an optimization over costrate-
gies and measurement operators, we conclude that

Dε
min(N (n)‖M(n) ) � Dε

min(L ◦ � ◦ N (n)‖πM ) (A24)

� log2 M, (A25)

where the last inequality follows from Ref. [13, Appendix F-
1]. Since the scheme considered for distillation is arbitrary, we
conclude that

Dε
min(N (n)‖M(n) ) � Dε

d (N (n),M(n) ). (A26)

Combining (A20) and (A26), we obtain the desired result:

Dε
d (N (n),M(n) ) = Dε

min(N (n)‖M(n) ). (A27)

3. One-shot exact distinguishability cost is
strategy max-relative entropy

First we aim to prove the inequality

D0
c (N (n),M(n) ) � Dmax(N (n)‖M(n) ). (A28)

To do so, we first let λ be such that

N (n) � 2λM(n). (A29)

This means that

N ′(n) := 2λM(n) − N (n)

2λ − 1
(A30)

is a quantum strategy. Further, if the Choi operators of N (n)

and M(n) are �N (n)
and �M(n)

, respectively, then

2λ�M(n) − �N (n)

2λ − 1
(A31)

is the Choi operator of N ′(n) (by linearity).
Consider an arbitrary n-turn co-strategy that is made to act

as follows, beginning with system X . It acts as follows:

σX → (� ◦ N (n) ) 〈0| σX |0〉 + (� ◦ N ′(n) ) 〈1| σX |1〉 . (A32)

In the case that σX = |0〉〈0|X , then the output is � ◦ N (n). If
the input is πM where M = 2λ, then the output is � ◦ M(n).

For this particular choice of transformation, we obtain a
distinguishability cost of λ, so if one optimizes over all pro-
tocols, one obtains D0

c (N (n),M(n) ) � λ. Now if we optimize
over all λ such that (A29) holds, we obtain

D0
c (N (n),M(n) ) � Dmax(N (n)‖M(n) ). (A33)
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The opposite inequality follows from the data processing
inequality for the strategy max-relative entropy [14]. Let � be
a strategy satisfying

�(|0〉〈0|) = N (n), and (A34)

�(πM ) = M(n), (A35)

with log2 M = D0
c (N (n),M(n) ). Then consider the following

chain of reasoning:

log2 M = D0
c (N (n),M(n) ) (A36)

= Dmax(|0〉〈0|‖πM ) (A37)

� Dmax(�(|0〉〈0|)‖�(πM )) (A38)

= Dmax(N (n)‖M(n) ). (A39)

This lets us conclude that

D0
c (N (n),M(n) ) � Dmax(N (n)‖M(n) ). (A40)

Putting together (A33) and (A40), we obtain the desired result,
which is

D0
c (N (n),M(n) ) = Dmax(N (n)‖M(n) ). (A41)

4. One-shot approximate distinguishability cost is smooth
strategy max-relative entropy

Here we aim to prove that

Dε
c (N (n),M(n) ) = Dε

max(N (n)‖M(n) ). (A42)

First, we prove the inequality

Dε
c (N (n),M(n) ) � Dε

max(N (n)‖M(n) ). (A43)

To do so, we consider a quantum strategy N ′(n) ≈ε N (n)

(which means that 1
2‖N ′(n) − N (n)‖ � ε). We use the con-

struction for the exact distinguishability cost, but instead for
N ′(n), and therefore obtain

Dε
c (N (n),M(n) ) � Dε

max(N ′(n)‖M(n) ). (A44)

By optimizing the above over all N ′(n) satisfying N ′(n) ≈ε

N (n), we obtain

Dε
c (N (n),M(n) ) � Dε

max(N (n)‖M(n) ). (A45)

To prove the reverse inequality

Dε
c (N (n),M(n) ) � Dε

max(N (n)‖M(n) ), (A46)

we again use data-processing arguments. Consider first a strat-
egy � such that

�(|0〉〈0|) ≈ε N (n), and (A47)

�(πM ) = M(n), (A48)

with log2 M = D0
c (N (n),M(n) ). Now consider the following:

Dε
c (N (n),M(n) ) = log2 M (A49)

= Dmax(|0〉〈0|‖πM ) (A50)

� Dmax(�(|0〉〈0|)‖�(πM )) (A51)

= Dmax(�(|0〉〈0|)‖M(n) ) (A52)

� Dε
max(N (n)‖M(n) ). (A53)

Putting together (A45) and (A53), we get the desired result.

APPENDIX B: DERIVATION OF SEMIDEFINITE
PROGRAMMING DUALS

Here we provide full details of how to arrive at the du-
als for the semidefinite programs for the normalized strategy
distance, the smooth strategy min-relative entropy, and the
smooth strategy max-relative entropy.

1. Background

Suppose that a semidefinite program is given in primal
form as follows:

sup
X�0

{Tr[AX ] : �1(X ) = B1,�2(X ) � B2}. (B1)

Then its dual is given by

inf
Y1∈Herm,Y2�0

{
Tr[B1Y1] + Tr[B2Y2] : �

†
1(Y1) + �

†
2(Y2) � A

}
.

(B2)

We use (B1) and (B2) in the forthcoming sections to derive
the various duals presented in our paper.

Alternatively, the following is useful as well. If the primal
can be written as

inf
X�0

{Tr[(−A)X ] : �1(X ) = B1,�2(X ) � B2}, (B3)

then its dual is given by

sup
Y1∈Herm,Y2�0

{− Tr[B1Y1] − Tr[B2Y2] : �
†
1(Y1) + �

†
2(Y2) � A

}
,

(B4)

which comes about by applying a minus sign to (B1) and
carrying it through.

2. Normalized strategy distance

First we repeat the primal for the normalized strategy dis-
tance given in (12) in the main text:

sup
S,S[1],...,S[n]�0

Tr[S(�N (n) − �M(n)
)] (B5)

subject to

S � S[n] ⊗ IBn , (B6)

TrAn

[
S[n]

] = S[n−1] ⊗ IBn−1 , (B7)

TrAn−1

[
S[n−1]

] = S[n−2] ⊗ IBn−2 , (B8)

...

TrA2

[
S[2]

] = S[1] ⊗ IB1 , (B9)

Tr
[
S[1]

] = 1. (B10)

Now mapping to (B1), we find that

X = diag
(
S, S[n], S[n−1], . . . , S[2], S[1]

)
, (B11)

A = diag(�N (n) − �M(n)
, 0, 0, . . . , 0, 0), (B12)
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�1(X ) = diag(TrAn [S[n]] − S[n−1] ⊗ IBn−1 ,

TrAn−1 [S[n−1]] − S[n−2] ⊗ IBn−2 , . . . ,

TrA2 [S[2]] − S[1] ⊗ IB1 , Tr[S[1]]), (B13)

B1 = diag(0, 0, . . . , 0, 1), (B14)

�2(X ) = S − S[n] ⊗ IBn , (B15)

B2 = 0. (B16)

We should now figure out the adjoints of �1 and �2. Consider
that

Tr[Yi�i(X )] = Tr[�†
i (Yi )X ] for i ∈ {1, 2}. (B17)

Set

Y1 = diag(Zn−1, Zn−2, . . . , Z1, μ). (B18)

Then we find that

Tr[Y1�1(X )] = Tr[Zn−1
(
TrAn

[
S[n]] − S[n−1] ⊗ IBn−1

)
] + Tr[Zn−2(TrAn−1

[
S[n−1]] − S[n−2] ⊗ IBn−2 )] + · · ·

+ Tr[Z1(TrA2

[
S[2]] − S[1] ⊗ IB1 )] + μ Tr

[
S[1]

]
(B19)

= Tr[(Zn−1 ⊗ IAn )S[n]
] − Tr[TrBn−1 [Zn−1]S[n−1]] + Tr[(Zn−2 ⊗ IAn−1 )S[n−1]] − Tr[TrBn−2 [Zn−2]S[n−2]] + · · ·

+ Tr[(Z1 ⊗ IA2 )S[2]] − Tr[TrB1 [Z1]S[1]] + Tr[μIA1 S[1]] (B20)

= Tr[(Zn−1 ⊗ IAn )S[n]] + Tr[(Zn−2 ⊗ IAn−1 − TrBn−1 [Zn−1])S[n−1]] + Tr[(Zn−3 ⊗ IAn−2 − TrBn−2 [Zn−2])S[n−2]] + · · ·
+ Tr[(Z1 ⊗ IA2 − TrB2 [Z2])S[2]] + Tr[(μIA1 − TrB1 [Z1])S[1]]. (B21)

So this implies that

�
†
1(Y1) = diag(0, Zn−1 ⊗ IAn , Zn−2 ⊗ IAn−1 − TrBn−1 [Zn−1], . . . , Z1 ⊗ IA2 − TrB2 [Z2], μIA1 − TrB1 [Z1]). (B22)

Now set

Y2 = Zn, (B23)

and we find that

Tr[Y2�2(X )] = Tr[Zn(S − S[n] ⊗ IBn )] (B24)

= Tr[ZnS] − Tr[TrBn [Zn]S[n]], (B25)

so that

�
†
2(Y2) = diag(Zn,− TrBn [Zn], 0, . . . , 0, 0). (B26)

We finally find that

�
†
1(Y1) + �

†
2(Y2) = diag(Zn, Zn−1 ⊗ IAn − TrBn [Zn], Zn−2 ⊗ IAn−1 − TrBn−1 [Zn−1], . . . , Z1 ⊗ IA2 − TrB2 [Z2], μIA1 − TrB1 [Z1]),

(B27)

and so �
†
1(Y1) + �

†
2(Y2) � A is equivalent to the following

conditions:

Zn � �N (n) − �M(n)
, (B28)

Zn−1 ⊗ IAn � TrBn [Zn], (B29)

Zn−2 ⊗ IAn−1 � TrBn−1 [Zn−1], (B30)

...

Z1 ⊗ IA2 � TrB2 [Z2], (B31)

μIA1 � TrB1 [Z1]. (B32)

So then the dual is given by plugging into (B2):

inf
Zn−1, Zn−2, . . . , Z1 ∈ Herm,

μ ∈ R, Zn � 0

μ, (B33)

subject to

Zn � �N (n) − �M(n)
, (B34)

Zn−1 ⊗ IAn � TrBn [Zn], (B35)

Zn−2 ⊗ IAn−1 � TrBn−1 [Zn−1], (B36)

...

Z1 ⊗ IA2 � TrB2 [Z2], (B37)

μIA1 � TrB1 [Z1]. (B38)

3. Smooth strategy min-relative entropy

First we repeat the primal for the smooth strategy min-
relative entropy given in (39) in the main text:

inf
S,S[1],...,S[n]�0

Tr[S �M(n)
] (B39)

subject to

Tr[S �N (n)
] � 1 − ε (B40)

S � S[n] ⊗ IBn , (B41)
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TrAn [S[n]] = S[n−1] ⊗ IBn−1 , (B42)

TrAn−1

[
S[n−1]

] = S[n−2] ⊗ IBn−2 , (B43)

...

TrA2

[
S[2]

] = S[1] ⊗ IB1 , (B44)

Tr
[
S[1]

] = 1. (B45)

Now mapping to (B3), we find that

X = diag(S, S[n], S[n−1], . . . , S[2], S[1] ), (B46)

A = diag(−�M(n)
, 0, 0, . . . , 0, 0), (B47)

�1(X ) = diag(TrAn

[
S[n]

] − S[n−1] ⊗ IBn−1 ,

TrAn−1

[
S[n−1]

] − S[n−2] ⊗ IBn−2 , . . . ,

TrA2

[
S[2]

] − S[1] ⊗ IB1 , Tr
[
S[1]

]
), (B48)

B1 = diag(0, 0, . . . , 0, 1), (B49)

�2(X ) = diag(− Tr[S �N (n)
], S − S[n] ⊗ IBn ), (B50)

B2 = diag(−(1 − ε), 0). (B51)

The variable Y1 is the same as in (B18), and the adjoint of �1

is the same as in (B22). Let us set

Y2 = diag(μ1, Zn). (B52)

Then we find that

Tr[Y2�2(X )] = −μ1 Tr[S �N (n)
] + Tr[Zn(S − S[n] ⊗ IBn )]

(B53)

= Tr[(Zn − μ1�
N (n)

)S] − Tr[TrBn [Zn]S[n]],

(B54)

so that

�
†
2(Y2) = diag(Zn − μ1�

N (n)
,− TrBn [Zn], 0, . . . , 0, 0).

(B55)
So then we find that

�
†
1(Y1) + �

†
2(Y2) = diag(Zn − μ1�

N (n)
, Zn−1 ⊗ IAn

− TrBn [Zn], Zn−2 ⊗ IAn−1 − TrBn−1 [Zn−1],

. . . , Z1 ⊗ IA2 − TrB2 [Z2], μIA1

− TrB1 [Z1]), (B56)

and so �
†
1(Y1) + �

†
2(Y2) � A is equivalent to the following

conditions:

Zn − μ1�
N (n) � −�M(n)

, (B57)

Zn−1 ⊗ IAn � TrBn [Zn], (B58)

Zn−2 ⊗ IAn−1 � TrBn−1 [Zn−1], (B59)

...

Z1 ⊗ IA2 � TrB2 [Z2], (B60)

μIA1 � TrB1 [Z1]. (B61)

Also, observe that

Tr[B1Y1] + Tr[B2Y2] = μ − μ1(1 − ε). (B62)

Thus we conclude after plugging into (B4) that the dual is
given by

sup
μ1, Zn � 0, μ ∈ R, Z1, . . . , Zn−1 ∈ Herm

μ1(1 − ε) − μ (B63)

subject to

Zn � μ1�
N (n) − �M(n)

, (B64)

Zn−1 ⊗ IAn � TrBn [Zn], (B65)

Zn−2 ⊗ IAn−1 � TrBn−1 [Zn−1], (B66)

...

Z1 ⊗ IA2 � TrB2 [Z2], (B67)

μIA1 � TrB1 [Z1]. (B68)

4. Smooth strategy max-relative entropy

First, we repeat the primal form of the smooth strategy
max-relative entropy, given in (50) in the main text:

inf
λ,Yn, N � 0, N[n−1], . . . , N[1] � 0, Y1, . . . ,Yn−1 ∈ Herm

λ (B69)

subject to

N � λ�M(n)
, (B70)

Yn � �N (n) − N, (B71)

Yn−1 ⊗ IAn � TrBn [Yn], (B72)

Yn−2 ⊗ IAn−1 � TrBn−1 [Yn−1], (B73)

...

Y1 ⊗ IA2 � TrB2 [Y2], (B74)

εIA1 � TrB1 [Y1], (B75)

TrBn [N] = N[n−1] ⊗ IAn , (B76)

TrBn−1 [N[n−1]] = N[n−2] ⊗ IAn−1 , (B77)

...

TrB2 [N[2]] = N[1] ⊗ IA2 , (B78)

TrB1 [N[1]] = IA1 . (B79)
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As a consequence of Yn � 0 and the constraints above, it
follows that Yn−1, . . . ,Y1 � 0. So the above SDP can be cast
in the form of (B3), with

X = (λ,Yn,Yn−1, . . . ,Y2,Y1, N, N[n−1], . . . , N[2], N[1] ),

(B80)

A = (−1, 0, 0, . . . , 0, 0, 0, . . . , 0), (B81)

�1(X ) = diag(TrBn [N] − N[n−1] ⊗ IAn , TrBn−1 [N[n−1]]

− N[n−2] ⊗ IAn−1 , . . . , TrB2 [N[2]]

− N[1] ⊗ IA2 , TrB1 [N[1]]), (B82)

B1 = diag(0, 0, . . . , 0, IA1 ), (B83)

�2(X ) = diag(N − λ�M(n)
,−Yn − N, TrBn [Yn] − Yn−1 ⊗ IAn ,

TrBn−1 [Yn−1] − Yn−2 ⊗ IAn−1 , . . . , TrB2 [Y2]

−Y1 ⊗ IA2 , TrB1 [Y1]), (B84)

B2 = diag(0,−�N (n)
, 0, . . . , 0, εIA1 ). (B85)

We should now figure out the adjoints of �1 and �2. Consider
that

Tr[Yi�i(X )] = Tr[�†
i (Yi )X ] for i ∈ {1, 2}. (B86)

Set

Y1 = diag(Zn, Zn−1, . . . , Z2, Z1). (B87)

Then consider that

Tr[Y1�1(X )] = Tr[Zn(TrBn [N] − N[n−1] ⊗ IAn )] + Tr[Zn−1(TrBn−1 [N[n−1]] − N[n−2] ⊗ IAn−1 )] + · · ·
+ Tr[Z2(TrB2 [N[2]] − N[1] ⊗ IA2 )] + Tr[Z1 TrB1 [N[1]]] (B88)

= Tr[(Zn ⊗ IBn )N] − Tr[TrAn [Zn]N[n−1]] + Tr[(Zn−1 ⊗ IBn−1 )N[n−1]] − Tr[TrAn−1 [Zn−1]N[n−2]] + · · ·
+ Tr[(Z2 ⊗ IB2 )N[2]] − Tr[TrA2 [Z2]N[1]] + Tr[(Z1 ⊗ IB1 )N[1]] (B89)

= Tr[(Zn ⊗ IBn )N] + Tr[(Zn−1 ⊗ IBn−1 − TrAn [Zn])N[n−1]] + Tr[(Zn−2 ⊗ IBn−2 − TrAn−1 [Zn−1])N[n−2]] + · · ·
+ Tr[(Z2 ⊗ IB2 − TrA3 [Z3])N[2]] + Tr[(Z1 ⊗ IB1 − TrA2 [Z2])N[1]]. (B90)

So then the adjoint of �1 is given by

�
†
1(Y1) = diag(0, 0, 0, . . . , 0, 0, Zn ⊗ IBn , Zn−1 ⊗ IBn−1 − TrAn [Zn], . . . , Z2 ⊗ IB2 − TrA3 [Z3], Z1 ⊗ IB1 − TrA2 [Z2]). (B91)

Set

Y2 = diag(Wn+2,Wn+1,Wn,Wn−1, . . . ,W2,W1). (B92)

Then we find that

Tr[Y2�2(X )] = Tr[Wn+2(N − λ�M(n)
)] − Tr[Wn+1(Yn + N )] + Tr[Wn(TrBn [Yn] − Yn−1 ⊗ IAn )]

+ Tr[Wn−1(TrBn−1 [Yn−1] − Yn−2 ⊗ IAn−1 )] + · · · + Tr[W2(TrB2 [Y2] − Y1 ⊗ IA2 )] + Tr[W1 TrB1 [Y1]] (B93)

= Tr[Wn+2N] − λ Tr[Wn+2�
M(n)

] − Tr[Wn+1(Yn + N )] + Tr[(Wn ⊗ IBn )Yn] − Tr[TrAn [Wn]Yn−1]

+ Tr[(Wn−1 ⊗ IBn−1 )Yn−1] − Tr[TrAn−1 [Wn−1]Yn−2] + · · · + Tr[(W2 ⊗ IB2 )Y2] − Tr[TrA2 [W2]Y1]

+ Tr[(W1 ⊗ IB1 )Y1] (B94)

= Tr[(Wn+2 − Wn+1)N] − λ Tr[Wn+2�
M(n)

] + Tr[(Wn ⊗ IBn − Wn+1)Yn] + Tr[(Wn−1 ⊗ IBn−1 − TrAn [Wn])Yn−1]

+ Tr[(Wn−2 ⊗ IBn−2 − TrAn−1 [Wn−1])Yn−2] + · · · + Tr[(W2 ⊗ IB2 − TrA3 [W3])Y2]

+ Tr[(W1 ⊗ IB1 − TrA2 [W2])Y1]. (B95)

So then the adjoint of �2 is given by

�
†
2(Y2) = diag(− Tr[Wn+2�

M(n)
],Wn ⊗ IBn − Wn+1,Wn−1 ⊗ IBn−1 − TrAn [Wn], . . . ,W2 ⊗ IB2 − TrA3 [W3],

W1 ⊗ IB1 − TrA2 [W2],Wn+2 − Wn+1, 0, . . . , 0, 0). (B96)
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Adding �
†
1(Y1) and �†(Y2) gives

�
†
1(Y1) + �†(Y2) = diag(− Tr[Wn+2�

M(n)
],Wn ⊗ IBn − Wn+1,Wn−1 ⊗ IBn−1 − TrAn [Wn], . . . ,W2 ⊗ IB2 − TrA3 [W3],

W1 ⊗ IB1 − TrA2 [W2],Wn+2 − Wn+1 + Zn ⊗ IBn , Zn−1 ⊗ IBn−1

− TrAn [Zn], . . . , Z2 ⊗ IB2 − TrA3 [Z3], Z1 ⊗ IB1 − TrA2 [Z2]). (B97)

Then the inequality �
†
1(Y1) + �

†
2(Y2) � A is equivalent to the

following set of inequalities:

− Tr[Wn+2�
M(n)

] � −1, (B98)

Wn ⊗ IBn − Wn+1 � 0, (B99)

Wn−1 ⊗ IBn−1 − TrAn [Wn] � 0, (B100)

...

W2 ⊗ IB2 − TrA3 [W3] � 0, (B101)

W1 ⊗ IB1 − TrA2 [W2] � 0, (B102)

Wn+2 − Wn+1 + Zn ⊗ IBn � 0, (B103)

Zn−1 ⊗ IBn−1 − TrAn [Zn] � 0, (B104)

...

Z2 ⊗ IB2 − TrA3 [Z3] � 0, (B105)

Z1 ⊗ IB1 − TrA2 [Z2] � 0, (B106)

which can be rewritten as

Tr[Wn+2�
M(n)

] � 1, (B107)

Wn ⊗ IBn � Wn+1, (B108)

Wn−1 ⊗ IBn−1 � TrAn [Wn], (B109)

...

W2 ⊗ IB2 � TrA3 [W3], (B110)

W1 ⊗ IB1 � TrA2 [W2], (B111)

Wn+2 + Zn ⊗ IBn � Wn+1, (B112)

Zn−1 ⊗ IBn−1 � TrAn [Zn], (B113)

...

Z2 ⊗ IB2 � TrA3 [Z3], (B114)

Z1 ⊗ IB1 � TrA2 [Z2]. (B115)

The dual objective function is given by

− Tr[B1Y1] − Tr[B2Y2]

= − Tr[Z1] + Tr[�N (n)
Wn+1] − ε Tr[W1]. (B116)

So then the dual can be written as

sup
Zn, . . . , Z1 ∈ Herm,

Wn+2, . . . ,W1 � 0

− Tr[Z1] + Tr[�N (n)
Wn+1] − ε Tr[W1]

(B117)

subject to

Tr[Wn+2�
M(n)

] � 1, (B118)

Wn ⊗ IBn � Wn+1, (B119)

Wn−1 ⊗ IBn−1 � TrAn [Wn], (B120)

...

W2 ⊗ IB2 � TrA3 [W3], (B121)

W1 ⊗ IB1 � TrA2 [W2], (B122)

Wn+2 + Zn ⊗ IBn � Wn+1, (B123)

Zn−1 ⊗ IBn−1 � TrAn [Zn], (B124)

...

Z2 ⊗ IB2 � TrA3 [Z3], (B125)

Z1 ⊗ IB1 � TrA2 [Z2]. (B126)

Since all of the Z variables are Hermitian, we can make the
substitution Zi → −Zi without affecting the optimal value.
The final form is then

sup
Zn, . . . , Z1 ∈ Herm,

Wn+2, . . . ,W1 � 0

Tr[Z1] + Tr[�N (n)
Wn+1] − ε Tr[W1] (B127)

subject to

Tr[Wn+2�
M(n)

] � 1, (B128)

Wn ⊗ IBn � Wn+1, (B129)

Wn−1 ⊗ IBn−1 � TrAn [Wn], (B130)

...

W2 ⊗ IB2 � TrA3 [W3], (B131)

W1 ⊗ IB1 � TrA2 [W2], (B132)

Wn+2 � Wn+1 + Zn ⊗ IBn , (B133)

TrAn [Zn] � Zn−1 ⊗ IBn−1 , (B134)

...

TrA3 [Z3] � Z2 ⊗ IB2 , (B135)

TrA2 [Z2] � Z1 ⊗ IB1 . (B136)
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