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Abstract—The distillable entanglement of a bipartite quantum
state does not exceed its entanglement cost. This well known
inequality can be understood as a second law of entanglement dy-
namics in the asymptotic regime of entanglement manipulation,
excluding the possibility of perpetual entanglement extraction
machines that generate boundless entanglement from a finite
reserve. In this paper, I establish a refined second law of
entanglement dynamics that holds for the non-asymptotic regime
of entanglement manipulation.

I. INTRODUCTION

Entanglement is a fundamental resource for quantum in-
formation processing, as it is the enabling fuel for critical
protocols like teleportation [1], super-dense coding [2], and
quantum key distribution [3]. As such, it has been a longstand-
ing challenge to understand entanglement as a resource and to
quantify it [4], [5], and this subject is known as entanglement
theory (see [6]-[9] for reviews of the topic, as well as the
latest results).

Two basic operational quantities of interest in entanglement
theory are the distillable entanglement and the entanglement
cost of a bipartite state pap [5], [10]. The physical scenario
corresponding to these quantities is that Alice and Bob are in
distant laboratories, a third party distributes system A of pap
to Alice and system B of p4p to Bob, and they are allowed to
perform local operations and classical communication (LOCC)
on this state. The distillable entanglement is defined to be
the maximal rate at which ebits (Bell states) can be extracted
from a large number n of copies of psp by means of an
entanglement distillation protocol, i.e., when using LOCC for
free and such that the fidelity of the actual output state to the
desired ideal ebits approaches one in the limit n — oo. The
entanglement cost is defined to be the minimal rate at which
ebits are needed to generate a large number n of copies of
pAp by means of an entanglement dilution protocol, i.e., when
using LOCC for free and such that the fidelity of the actual
output to the ideal state p%’é approaches one in the limit n —
oo. Both the distillable entanglement and the entanglement
cost are notoriously difficult to calculate in general, and it is
even suspected that these quantities are uncomputable in the
Turing sense [11].

It has long been understood that the distillable entangle-
ment does not exceed the entanglement cost [5], [12]. This
inequality can be interpreted as a “second law of entanglement
dynamics,” preventing the existence of perpetual entanglement
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extraction devices that generate an unbounded amount of
entanglement from a finite reserve. The inequality indeed
follows from basic reasoning akin to that for the second law
of thermodynamics and against perpetual motion machines: If
the inequality were not to hold, then it would be possible to
produce a boundless amount of entanglement, by repeatedly
executing a protocol for entanglement distillation followed by
one for entanglement dilution. This is intuitively impossible,
and so the distillable entanglement cannot exceed the entan-
glement cost. See [13] for a formal proof and [14], [15] for a
strengthened second law of entanglement dynamics that holds
for free operations beyond LOCC.

The reasoning given above applies in the asymptotic regime
of a large number n of copies of the state pap and with
fidelities tending to one in the limit n — oo. However,
this reasoning does not apply in the non-asymptotic regime
[16], [17] of interest for practical applications and near-term
quantum devices. As such, we are left to wonder what kind
of relationship might hold in the non-asymptotic regime; i.e.,
what is a second law of entanglement dynamics for the non-
asymptotic regime?

In this paper, I establish a fundamental inequality relating
distillable entanglement and entanglement cost in the non-
asymptotic regime (see Theorem 1), which addresses the afore-
mentioned question. This inequality states that the one-shot
distillable entanglement does not exceed the one-shot entan-
glement cost plus an additional finite-size correction term that
depends on the errors of the transformations corresponding
to distillation and dilution. In the regime in which the errors
are small, this correction term is approximately linear in the
total error, indicating that the one-shot distillable entanglement
cannot be much larger than the one-shot entanglement cost.
However, when the errors are large (i.e., near to one), the
correction term can be rather large, so that the inequality is not
particularly relevant. Furthermore, the asymptotic statement
mentioned above is recovered from Theorem 1 by applying
limits and the definitions of distillable entanglement and
entanglement cost in the asymptotic regime.

The rest of this paper proceeds by establishing notation
and defining the one-shot distillable entanglement and one-
shot entanglement cost of a bipartite state. I then prove the
main result (Theorem 1) in three parts. First, I recall that the
e-Rains relative entropy [18], [19] is an upper bound on the
one-shot distillable entanglement [9], [20]. The second part is
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the main technical result: an exact evaluation of the £-Rains
relative entropy of a maximally entangled state. The third part
consists of applying this identity in the analysis of a quasi-
cyclic process that dilutes a maximally entangled state to a
generic bipartite state and then distills that back to another
maximally entangled state. After that, I show how to recover
the asymptotic statement of the second law by taking limits,
and I establish an alternate non-asymptotic second law when
errors are measured with normalized trace distance rather
than fidelity. Finally, I discuss how this inequality extends
much more generally to the entanglement theory of bipartite
quantum channels [21]-[25].

II. DEFINITIONS

Nearly all concepts discussed in this preliminary section are
reviewed in detail in [9]. Let us begin by defining ®¢ ; as the
following maximally entangled state of Schmidt rank d:

d—1
@ =5 3 li)ila © s, m
i,j=0
where {|i)4}; and {|i)p}; are orthonormal bases.
A bipartite channel is an LOCC channel if it can be realized
as a finite, yet arbitrarily large number of compositions of one-
way LOCC channels of the following form [9], [26]:

Lipap = Z Ehn @ Fp prs 2
Lapap = Z Gasa ®Kp ,p, 3)

where {£%_, 4/ }» and {K%_, 5.} are sets of completely posi-
tive maps such that the sum maps > €%, 4, and >~ K%_, 5/
are trace preserving and {F5_, 5, }, and {G% _, 4, }, are sets of
quantum channels (i.e., completely positive, trace-preserving
maps). An LOCC channel £4p_, /5 can be written in the
following separable form:

Lapoas =Y Phou®Q% b, )
Yy

where {PY_, 4, }, and {QY_. 5.}, are sets of completely pos-
itive maps such that £L4p5_, 4/’ is trace preserving. However,
the converse statement is not true [27]; i.e., not every channel
that can be written as in (4) can be realized by LOCC.

The fidelity of quantum states w and 7 is defined as

Flw,7) = Hﬁﬁ“f [28], and the trace distance as
llw — 7|y, where ||All; = Tr[\/m] is the trace norm (i.e.,

Schatten 1-norm). The sine distance of w and 7 is defined
as P(w,7) = /1 — F(w,7) [29]-[32], and it obeys the
triangle inequality, as well as the data-processing inequality
P(w,7) > P(N(w),N (7)), where N is a quantum channel.

The one-shot distillable entanglement E,(A; B), of a bi-
partite state p4p is defined for € € [0, 1] as [16]

E5(A;B), =
sup {logyd: F(L,p , i5(pan), ®%s) > 1—c}. (5

deN,
LELOCC

In words, it is equal to the maximum number of e-approximate
ebits that one can distill from p4p by means of LOCC. The
one-shot entanglement cost of p4p is defined for ¢ € [0,1] as
[17]

E¢(A;B), =

jg§ {logyd: F(Lp ,4p(®%5),pa8) 21 —c}. (6)
LELOCC

In words, it is equal to the minimum number of ebits that is
required to generate p4p approximately by means of LOCC.
Observe that the function ¢ - E,(A; B), is monotone non-
decreasing while the function ¢ — EZ(A; B), is monotone
non-increasing. One can alternatively define the approximation
error for E5,(A; B), and Eg(A; B), in terms of normalized
trace distance instead of fidelity, which we consider later on
in Section V.

III. SECOND LAW OF ENTANGLEMENT DYNAMICS IN THE
NON-ASYMPTOTIC REGIME

The main result of this paper is the following inequality
that relates distillable entanglement and entanglement cost in
the non-asymptotic regime, interpreted as a second law of
entanglement dynamics:

Theorem 1: Let pap be a bipartite state, and let 1,2 €
[0,1] be such that &’ := [\/e1 + \/5]2 < 1. Then

15 €1 1
B3 (AB), < B2 (4iB), +om( 125 ). O

Remark 1: Given that log, (ﬁ) = 2/In2 + O(2?)
for z ~ 0, the inequality in (7) asserts that the one-shot
distillable entanglement is bounded from above by the one-
shot entanglement cost plus a small correction term when the
error sum &’ is small. When the error sum ¢’ is large (i.e., = 1),
the inequality is loose and it does not exclude the possibility of
the one-shot distillable entanglement exceeding the one-shot
entanglement cost.

Proof of Theorem 1: The proof involves three parts.
First, let us recall that the one-shot distillable entanglement
E%(A;B), is bounded from above by the e-Rains relative
entropy for all € € [0, 1]:

ED(A; B), < Ry (4; By, ()
where the e-Rains relative entropy is defined as [18], [19]

R% (A B)p =

min

D3 9
oABEPPT/ (A:B) u(paslloas), 9)

the hypothesis testing relative entropy D5, (w/||7) is defined for
a state w and a positive semi-definite operator 7 as [33]-[35]
D5 (w|7) = —log, {rl&irolTr[AT] Tr[Aw] > 1—¢,A < I} ,

(10

and the set PPT'(A : B) as [36]
PPT/(A : B) = {UAB 0AB Z O, HTB(JAB)Hl S 1} (11)
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Note that [9], [37]

D% (w||T) = —logy {mirgTr[AT} Tr[Aw]=1—-¢,A < I} .

A>
(12)
In the above, T denotes the partial transpose. The inequality
in (8) follows as a consequence of Theorem 4 of [20].
Alternatively, see Theorem 8.7 of [9].
The next step involves the following identity for the -Rains
relative entropy of a maximally entangled state ®% -
R5(A; B)ga = log, d + log, <115) . (13)
This identity is established in Proposition 1 and is the main
technical contribution of this paper.
Finally, let us consider the following sequence of transfor-
mations:

o, €y pap 2 Pl o, (14)
where the arrows indicate that the transformations take place
by means of LOCC channels LY, 5 45 and L35 4150,
with an approximation error of €; and eg, respectively. By
making use of the definition of and the triangle inequality for
the sine distance and its data-processing inequality, the total
error of the transformation from ®%: , to <I>fi§,“,‘ g 18 no larger
than &’ because the following inequalities hold by assumption

F(LY g ap(®p), pan) > 1— e, (15)
F(LAp anpr(paB), ®Gtip.) > 1 -2, (16)

so that
P((L3parpioLhipap) (@), ¥4 p,) < Ve1+/e2.
(17

The transformation in (14) can be understood as a particular
way to perform entanglement distillation of the state ®%! ,, to
the state CI)‘i",“,‘ g With error €’. As such, we find that

1
logy dout < logs din + logy (1_5/> , (18)
because
10gy dow < E5 (A" B')ga, (19)
< RS (A'; B ) pa (20)
1
= 10g2 din + 10g2 (1€/> . (21)

The first inequality is a consequence of the definition of one-
shot distillable entanglement in (5). The second inequality
follows from (8), and the equality follows from (13). Since
the inequality in (18) holds for every entanglement dilution
protocol LY, 5, 4 taking ®%: ., to p4p with error &, and for
every entanglement distillation protocol £% 5 , 4. 5. taking
pAB to @ﬁ’,“,‘ g~ With error €3, we can take an infimum over
din and a supremum over dqy, apply the definitions in (6) and
(5), respectively, and conclude the inequality in (7). ]

Let us now prove (13):

Proposition 1: For € € [0,1), the e-Rains relative entropy
of the maximally entangled state ®¢  is as follows:

1

Proof: The maximally entangled state ®4 , is invariant

under a bilateral twirl:
%5 = Tan(®4p), (23)

where
Tap(Xap) = /dU (Ua®@Up) Xap (Ua ®UB)T~ (24)
Recall that [13]

Tap(Xap) =Pap Tr[®PapXap]

Iy — @
S Tl(Iap — Pap)Xas].

The twirling channel 745 is an LOCC channel. As such,
for every operator oo € PPT(A : B), it follows that
Tap(ocap) € PPT'(A : B) [18], [38], [39], and we find that

D3 (®aglloas) > Dy (Tas(®an)||Tap(cas))
= Dy (®ap||Tas(oan)),

(25)

(26)
27)

where we used the data-processing inequality for the hypoth-
esis testing relative entropy. Thus, it suffices to minimize
RS, (A; B)ga with respect to Tap(oap). By applying (25),
it follows that all such states have the following form:

d? -1

where o, 8 € [0,1] are such that Typ(cap) € PPT'(A : B).
We now determine the conditions on « and 3 such that
Tap(ocap) € PPT'(A : B). We first require a, 5 > 0 so
that Tap(ocap) is positive semi-definite. Also, consider that

Iap — @
Tap(oap) =a®ap + <ABAB> , (28)

Iap— @
aTp(®ap) + BTs M
a? -1 1
a Inp — 3Fap
=|=F - 29
g as+ 5 < 21 1 (29)
1 B B
== — = | F —1 30
Hd<a d2—1> ap + o5 1as . (30)
where we applied the fact that
1
Tp(®ap) = PRE (€29)
with Fl4p the unitary swap operator:
d—1
Fap =Y |i)ila @ |iXils- (32)
i,j=0

Now consider defining the projections T1S 5 and I14 ; onto the
symmetric and antisymmetric subspaces, respectively, in terms
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of I4p =115 5 + 1145 and Fap = 115 5 — 7 5. Plugging in
to (30), we find that

‘ % (0‘ - %) (HjB - fo‘B)
"‘% (IG5 + 14p)

1

_ (é (O‘ - %) + %) I35 (33)
+ (d2ﬂ—1 — (O‘* %)) g
1
= d(a_d26—1>+d6—1 Tr[1IS 5]
B 1 B
+d2_1—d<a d2_1> Tr[I14 5] (34)
1 B B |d(d+1)
_d<0‘ d2—1>+d2—1 >
B 1 B d(d—1)
+d2—1d<0‘d2—1> 5 -
Continuing, the last line above is equal to
Ié] g |d+1
“CeEiTe1 e
g B d—1
+cz2—1<0‘d2—1> 2
d-=1)pld+1 (d+1)p d—1
_’oﬁ— ‘ ‘d2—1 —a’ 5 (36)
B B |d+1 B d—1
O‘+d+1‘ 2 +'d—1_0‘ 2 37)
1
=5lad+)+5+|6—a(d-1)] (38)
_Ja+p B>a(d-1)
{ ad B<a(d-1) (39

Thus, to have that Tap(cap) € PPT'(A : B), we require that
a,f0>0and a+ 8 <1if 8> a(d—1) and ad < 1 if
B < a(d—1). Let PPT’ be a shorthand for the set of a and
B satisfying these conditions. Note that 5 > « (d — 1) implies
that

1>a+B8>a+a(d—1)=ad, (40)
so that L
a< p for all (o, 3) € PPT'. 41)
Then we find that
inf D5
O'ABG;II:}T/(AZB) H(,OABHUAB)
_ Iap — Pun
= f Dyl ® —
(a,Bl)nePPT/ H< Ap||a®ap + 0 ( ? -1 >>
f(Aap, o, B)
= inf —log, inf Aap < Iap,
(o, 8)€PPT’ Aap>0 Tr[Aap®Pap| =1—¢
f(AABa «, B) :
—log, sup  inf Aap < Iap, ;
(e )epp AAB20 | y[A g b g =1—¢
(42)

where

=l oo (55|
)

d2

43
Since @45 and aP 45 + ( ) are both isotropic in
form, it suffices to optimize over measurement operators Aag
that satisfy the same symmetry, giving that

IAB ‘I’AB

Iap— @
Tan(Aap) = £®ap + A (W) )

where we again apply (25). The conditions on x and A such
that T4 B(A AB) s a measurement operator are that K, A > 0
and K < 1. Then we find that

=Tr[Tap(Aap)Pag] = &,

’d2 1
TI‘[AAB@AB]

so that kK = 1 — €. Plugging into (43), we find that

(o2
—Tx [TAB<AAB) (o@AB " (W))] (46)

(KCI)AB +A (M)) X

(45)

=Tr @
(qu)AB + 4 (%))
_ AB 3
=rat oy =0-gat (48)
Thus, we find that
L D
UABEI;IIJIT’(A:B) H(paBlloas)
- ] -Da+ 2
e (a,S)ueI;PT/ Hfif{ o< A<d2-1 49)
—log, sup (1—¢)a (50)
(a,8)€PPT’
1 1
_10g2(1—8)8210g2d+10g2 ) (51)
This concludes the proof. -

IV. SECOND LAW OF ENTANGLEMENT DYNAMICS IN THE
ASYMPTOTIC REGIME

As a consequence of Theorem 1, it follows that the dis-
tillable entanglement does not exceed the entanglement cost
(which we recalled in the introduction is often argued based on
physical grounds). To see this, let us first define the distillable
entanglement and entanglement cost of a bipartite state p4p.
The distillable entanglement is defined as

1
inf liminf —EL (A" B"),0n,

Ep(A;B), = 52
D( ’ )p €€(0,1) n—oo N ( )
and the entanglement cost as
1
Ec(A;B), = sup limsup —E¢(A";B"),en.  (53)

€€(0,1) n—oo N

In words, the distillable entanglement Ep(A; B), is equal to
the largest rate at which ebits can be extracted approximately
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from pf% by means of LOCC, such that the error converges
to zero in the limit n — oo, and the entanglement cost
Ec(A; B), is the smallest rate at which ebits are needed to
generate p%% approximately by means of LOCC, such that
the error converges to zero in the limit n — oco. The values
of Ep(A; B), and Ec(A; B), in (52) and (53), respectively,
are unchanged by optimizing over € € (0,¢) for ¢ € (0,1),
due to the monotonicity fact stated after (6).

Corollary 1: For every bipartite state p4p, the following

inequality holds
Ep(A; B), < Ec(A; B),. (54)
Proof: Using the inequality from Theorem 1, we find for
e € (0,1/2) that

1 1
liminf — B (A" B") jon < limsup —EL (A" B") 00

n—oo n n—oo N
1 1

<1 — |E5(A™: B™) on +1 _—

= 1T€risolipn C( ) )p® + Og2<1—4€(1—6)):|
1

= limsup —E¢(A"; B") jon. (55)

n—oo T

Taking the infimum over ¢ € (0,1/2) on the left and the
supremum over ¢ € (0,1/2) on the right, we conclude the
inequality in (54). [ |

The strong converse distillable entanglement and strong
converse entanglement cost are defined respectively as follows:

~ 1

Ep(A;B), = sup limsup —Ef(A"; B"),en,  (56)
£€(0,1) n—oo M

~ 1

Ec(A;B), = inf liminf —E;(A™; B"),en. (57)

€€(0,1) n—oo N

The inequalities Ep(4; B), < Ep(4; B), and Ec(A; B), <
Ec(A;B), are an immediate consequence of definitions.
However, it is not clear how to use the inequality from
Theorem 1 to arrive at a similar statement for the strong
converse quantities. That is, the following remains an open
question:

~ 7
Ep(A;B), < Ec(A; B),.

V. RESULTS FOR NORMALIZED TRACE DISTANCE ERROR

(58)

We can extend the results here to the case when errors are
measured by normalized trace distance, rather than fidelity.
Let us define one-shot distillable entanglement and one-shot
entanglement cost using this modified notion of error:

E3"(A;B), =
1
sup {logzd: S 1€apsanlpan) — @54, < 5} ;
deN, 2
LeLOoCC
(59
Eé’T(A; B), =
. 1 d
jnf {logzdr 5 12455 45(®%5p) — pas|, < E} :
LeLOCC
(60)

Theorem 2: Let psp be a bipartite state, and let £1,e2 €
[0, 1] be such that e; + 5 < 1. Then

Ep " (A B), < BG (A B), + 10%2(1 =

1
) . (61)
€1 — &2
Proof: The proof idea is essentially the same as that for
Theorem 1, but we substitute the first part of its proof with
the following bound:

B3 (A;B), < Ry(A;B), VYeelo,1],  (62)

and the last part with the triangle inequality for the normalized
trace distance. The inequality in (62) follows from the fact that

1
3 |[Pap —waBll; <e = Tr[®@apwap]>1—¢, (63)

along with Proposition 8.6 and Theorem 8.7 of [9]. To see
(63), consider that applying the measurement channel (-) —
Tr[@ap()]1){1] + Tr[(Iap — Pap)(-)]|0)X0| and the data-
processing inequality for trace distance implies that

e> L @an —wasl, (64)
1 H [1(1] = Te[@.4pewas] 1)1 ©5)
2 || —Tr[(lap — ®an)was]|0X0] ||,
= % 11 = Tr[®apwas]) ([1)(1] = [0X0])]l; (66)
=1-—Tr[®Papwasl. (67)
This concludes the proof. [ ]

VI. DISCUSSION

The result of Theorem 1 applies far more generally to the
resource theory of entanglement for bipartite channels [21]-
[25]. This follows because the proof of Theorem 1 relies
on the sequence of transformations in (14). By substituting
the state psp there with a bipartite channel, or n sequential
uses of it, we conclude that the same bound holds with
E7;(A; B), replaced by the one-shot distillable entanglement
of a bipartite channel and E¢; (A; B), replaced by the one-shot
entanglement cost of the same bipartite channel. Alternatively,
these could be replaced by the n-shot distillable entanglement
and n-shot entanglement cost, respectively, defined in the
sequential way outlined in [24], [25].

More generally, one can extend the reasoning here to arbi-
trary quantum resource theories [40] (in fact the method used
here is the same conceptually as that used to arrive at Eq. (51)
of [41] and Eq. (50) of [42]). The main ingredients needed are
a golden-unit resource like the maximally entangled state, a
bound on one-shot distillable resource like the c-Rains relative
entropy, and an exact evaluation of the golden-unit resource
for this bound.
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