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Gaussian Multiple and Random Access Channels:
Finite-Blocklength Analysis

Recep Can Yavas, Victoria Kostina, and Michelle Effros

Abstract—This paper presents finite-blocklength achievabil-
ity bounds for the Gaussian multiple access channel (MAC)
and random access channel (RAC) under average-error and
maximal-power constraints. Using random codewords uniformly
distributed on a sphere and a maximum likelihood decoder, the
derived MAC bound on each transmitter’s rate matches the
MolavianJazi-Laneman bound (2015) in its first- and second-
order terms, improving the remaining terms to 1
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)
bits per channel use. The result then extends to a RAC model
in which neither the encoders nor the decoder knows which
of K possible transmitters are active. In the proposed rateless
coding strategy, decoding occurs at a time nt that depends on
the decoder’s estimate t of the number of active transmitters
k. Single-bit feedback from the decoder to all encoders at each
potential decoding time ni, i ≤ t, informs the encoders when
to stop transmitting. For this RAC model, the proposed code
achieves the same first-, second-, and third-order performance
as the best known result for the Gaussian MAC in operation.

Index Terms—Gaussian multiple access channel, Gaussian ran-
dom access channel, third-order asymptotics, finite blocklength,
maximum likelihood decoder, dispersion.

I. INTRODUCTION

Emerging communication systems such as the Internet of
Things, wireless cellular networks, and machine-to-machine
communication systems impose two significant requirements
on the code design: low latency constraints and random
activity in a large number of communicating devices. These
constraints lead us to study random access channels in the
finite blocklength regime, where an unknown number of trans-
mitters is active, and communication delay is finite. Current
random access strategies mostly use either orthogonalization
(TDMA, FDMA, and CDMA) or collision avoidance (e.g.,
slotted ALOHA). Orthogonalization methods divide up re-
sources (e.g., time, frequency, or signal space) among the
transmitters. In slotted ALOHA, each transmitter randomly
chooses a time slot to transmit its message, and the decoder
declares an error if two or more transmitters are active in
a time slot. Performance of these methods is inferior to the
information-theoretic bounds achieved through simultaneous
resource use. For example, slotted ALOHA achieves only 37%
of the single-transmitter capacity [2].

We consider a communication scenario where K trans-
mitters are communicating with a single receiver through a
Gaussian channel. We study two problems in this network:
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multiple access and random access communication. In the
multiple access problem, the identity of active transmitters is
known to all transmitters and to the receiver. In the random
access problem, the set of active transmitters is unknown to
the transmitters and to the receiver.

For K = 1, Shannon’s 1948 paper [3] derives the capacity

C(P ) =
1

2
log(1 + P ) (1)

using codewords with symbols drawn independently and iden-
tically distributed (i.i.d.) according to the Gaussian distribution
with variance P − δ for a very small value δ; here P is
the maximal (per-codeword) power constraint, and the noise
variance is 1. In [4], Shannon shows the performance improve-
ment in the achievable reliability function using codewords
drawn uniformly at random on an n-dimensional sphere of
radius

√
nP and a maximum likelihood decoder. Tan and

Tomamichel [5] use the same distribution and decoder to prove
the achievability of a maximal rate of
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√
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)
(2)

at blocklength n, average error probability ϵ, and maximal
power P , where

V (P ) =
P (P + 2)

2(1 + P )2
(3)

is the dispersion of the point-to-point Gaussian channel;
Polyanskiy et al. prove a matching converse in [6]. Under
a maximal-error constraint, the first- and second-order terms
in (2) remain the same under both maximal- and average-
power constraints across codewords; under an average-error
constraint, average- and maximal-power constraints yield dif-
ferent first- and second-order performance limits [7, Ch. 4]. In
this paper, we only consider average-error and maximal-power
constraints.

MolavianJazi and Laneman [8] and Scarlett et al. [9] gen-
eralize the asymptotic expansion in (2) to the two-transmitter
Gaussian MAC, bounding the achievable rate as a function of
the 3 × 3 dispersion matrix V(P1, P2), an analogue of V (P )
assuming transmitters with per-codeword power constraints P1

and P2. The bound in [8] uses codewords uniformly distributed
on the power sphere and threshold decoding based on the in-
formation density; the bound in [9] uses constant composition
codes and a quantization argument for the Gaussian channel.
This paper improves those bounds using codewords uniformly
distributed on the power sphere and a maximum likelihood
decoding rule.
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The literature on RAC communications includes works
like [10]–[12], where the number of active transmitters is
known, and [13], where neither the transmitters nor the
receiver knows the number of active transmitters. In [13],
Ordentlich and Polyanskiy propose a concatenated code with
a linear inner code that detects the number of active users and
an outer code that decodes their messages. A two-layer code
for joint erasure correction and collision resolution appears
in [14].

Recently, RACs with massive numbers of users have at-
tracted significant attention. The Gaussian “many access”
channel, with a total number of users, K, that grows with the
blocklength, n, as K = O(n), is considered in [13], [15], [16].
Chen and Guo [15] find the capacity of the Gaussian many
access channel, and Chen et al. [16] derive the capacity of the
Gaussian many access channel in a random access scenario
where the number of users, K, is unknown. For the criterion of
average per-user error probability, Polyanskiy [17] and Zadik
et al. [18] derive non-asymptotic random coding achievability
bounds when K transmitters are active. Extensions of these
ideas to quasi-static fading MACs and RACs appear in [19]
and [20], respectively. Unlike [13], [15]–[20], we here assume
that K does not grow with n.

In [21], we develop a communication strategy for a general
RAC where neither the transmitters nor the receiver knows the
set of active transmitters. A central result of that work shows
that for permutation-invariant RACs, under mild conditions
it is possible to achieve performance identical in the first-
and second-order terms to the best performance known to be
achievable for the underlying MAC. These results are obtained
using a rateless coding scheme where decoding occurs at one
of a fixed collection of possible decoding times n0, . . . , nK ,
and K is the maximal number of transmitters. The chosen
decoding time nt depends on the receiver’s estimate t of the
number of active transmitters. At each decoding time, the
receiver makes an attempt to decode by applying a single
threshold rule; the receiver sends a single bit of feedback
to all transmitters in order to specify when communication
is completed. In [22], Liu and Effros achieve improved third-
order bounds using a maximum likelihood decoder under both
i.i.d. random code and random LDPC code constructions.
Although the coding strategies proposed in [21], [22] apply to
the Gaussian RAC, the random encoder design in [21] uses an
i.i.d. input distribution. As shown in [23], this codeword distri-
bution guarantees performance strictly inferior to that obtained
when blocklength-n codewords are uniformly distributed on
the n-dimensional sphere of radius

√
nP .

Motivated by the desire to build superior RAC codes for
Gaussian channels, we here propose a new code design for
the Gaussian RAC. In the proposed code design, random
codewords are designed by concatenating K partial codewords
of blocklengths n1, n2−n1, . . . , nK−nK−1, each drawn from
a uniform distribution on a sphere of radius

√
(ni − ni−1)P .

When k transmitters are active, the resulting codewords are
uniformly distributed on a restricted subset of the sphere of
radius

√
nkP . The receiver uses output typicality to determine

the number of transmitters and then applies a maximum
likelihood decoding rule. Despite the restricted subset of

codewords that result from our design, we achieve the same
first-, second-, and third-order performance as the MAC code.
While this paper focuses on Gaussian channels with maximal-
power and average-error constraints, we note that the ideas
developed here may be useful beyond this example channel
and communication scenario.

The use of codes with multiple possible decoding times
arises in a variety of communication scenarios. Codes that
allow arbitrary decoding times are called rateless or variable-
length codes. In [24], Burnashev finds the optimal error
exponent of variable-length feedback (VLF) codes for discrete
memoryless channels. Extending [24] to the finite blocklength
regime, Polyanskiy et al. [25] formalize VLF and variable-
length feedback with termination (VLFT) codes for discrete
memoryless channels. They show that the second-order term in
the asymptotic expansion of the maximum achievable message
size for VLF and VLFT codes is O(log n), which means that
the dispersion is zero. Truong and Tan [26] extend the zero-
dispersion result for VLF and VLFT codes to the Gaussian
point-to-point channel under an average-power constraint. In
[27], Truong and Tan study VLF and VLFT codes for the
Gaussian MAC. Building upon the results in the present paper,
in [28] we derive an achievability bound for the Gaussian
point-to-point channel with a maximal-power constraint, an
average decoding delay constraint, and at most K decoding
times. The coding schemes in [25]–[28] utilize so-called ‘stop-
feedback’ [25], i.e., feedback that is only used to direct the
encoder to stop transmitting. While VLF and VLFT codes in
[24]–[28] employ multiple decoding times for a fixed number
of transmitters, the Gaussian RAC codes studied in the present
paper allow a single decoding time nk to decode messages
from k active transmitters.

The proposed coding problem is also related to the sparse
recovery problem, which is a RAC problem in which each
transmitter has only a single message to transmit; this message
conveys the encoder’s identity, and the decoder is tasked only
with determining the identities of active transmitters. The
group testing problem is a special case of the sparse recov-
ery problem where the MAC output applies the logical OR
operation to all inputs. For example, [29]–[32] study a group
testing problem where an unknown subset of k out of K items
is defective, and the decoder uses item signatures to identify
which items are defective with an average probability of error
approaching to zero. In the scenario where k = O(1), Atia
and Saligrama [30] show that the number of measurements
(i.e., the blocklength n) required to identify k out of K items
behaves as O(k log K

k ). In [31], Scarlett and Cevher extend
this result to the scenario where k = O(Kθ) and θ ∈ (0, 1);
in [32], they study a general channel model, which also covers
the Gaussian MAC. In [31], [32], 2k − 1 information density
threshold tests are used at the decoder, and a fixed number of
defective items is considered. In the present paper, we combine
a maximum likelihood decoding rule with a single threshold
test based on the received power to decode messages from an
unknown number of active transmitters.

The organization of the paper is as follows. In Section II,
we define notation. The system model, main result, and
discussions for the Gaussian MAC and Gaussian RAC appear
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in Sections III and IV. The proofs of the achievability bounds
for the two-transmitter Gaussian MAC, the K-transmitter
Gaussian MAC, and the Gaussian RAC appear in Sections
V, VI, and VII–VIII. Section IX concludes the paper.

II. NOTATION

We use bold symbols to denote vectors (e.g., x). For any
integer k ≥ 1, we define [k] ≜ {1, . . . , k}. For any set A,
we denote by P(A) ≜ {S ⊆ A,S ̸= ∅} the set of non-
empty subsets of A. For any x = (x1, . . . , xn) ∈ Rn and
N ⊆ [n], xN = (xi : i ∈ N ) denotes the sub-vector of x
with components in N . For vectors x1, . . . ,xK of the same
dimension and index set S ∈ P([K]), xS = (xs : s ∈ S).
and x⟨S⟩ ≜

∑
s∈S xs. Our notation for vectors and their

collections is summarized in Table I, below.
For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we

write x
π
= y if there exists a permutation π of the elements

of y such that x = π (y), and x
π

̸= y if x ̸= π (y)
for all permutations π of the elements of y. We denote the
inner product of x and y by ⟨x,y⟩ =

∑n
i=1 xiyi and the

Euclidean norm of x by ∥x∥ ≜
√
⟨x,x⟩. Vector inequalities

are understood element-wise, i.e., x ≤ y if and only if xi ≤ yi
for all i ∈ [n]. All-zero and all-one vectors are denoted by 0
and 1, respectively.

Matrices are denoted by sans serif font (e.g., A). The n×n
identity matrix is denoted by In. Logarithms and exponents
are base e. The indicator function is denoted by 1 {·}. For any
scalar function f(·) and any vector x ∈ Rn, we form the vector
of function values f(x) = (f(xi) : i ∈ [n]). For a set D ⊆ Rn,
a vector c ∈ Rn, and a scalar a, aD+ c ≜ {ax+ c : x ∈ D}.
The sphere with dimension n, radius r, and center at the origin
is denoted by Sn(r) ≜ {x ∈ Rn : ∥x∥ = r}.

The distribution of a random variable X is denoted by PX .
We write PX → PY |X → PY to indicate that PY is the
marginal distribution of PXPY |X . To indicate that the random
variables (or vectors) X and Y are identically distributed, we
write X ∼ Y . The multivariate Gaussian distribution with
mean µ and covariance matrix Σ is denoted by N (µ,Σ). We
employ the complementary Gaussian cumulative distribution
function Q(x) = 1√

2π

∫∞
x

exp
{
− t2

2

}
dt. The functional in-

verse of Q(·) is denoted by Q−1(·).
We use big-O notation f(n) = O(g(n)) if and only if there

exist constants c and n0 such that |f(n)| ≤ c|g(n)| for all
n > n0; we use little-o notation f(n) = o(g(n)) if and only
if for every ϵ > 0, there exists a constant n0 such that |f(n)| ≤
ϵ|g(n)| for all n > n0.

III. AN RCU BOUND AND ITS ANALYSIS FOR THE
GAUSSIAN MAC

A. An RCU Bound for General MACs
We begin by defining a two-transmitter MAC code.
Definition 1: An (M1,M2, ϵ)-MAC code for the channel

with transition law PY2|X1X2
consists of two encoding func-

tions f1 : [M1] → X1 and f2 : [M2] → X2 and a decoding
function g : Y2 → [M1]× [M2] such that

1

M1M2

M1∑
m1=1

M2∑
m2=1

P
[
g(Y2) ̸= (m1,m2) |

TABLE I
VECTOR NOTATION EXAMPLE

Notation Description

xs = (xs,1, . . . , xs,n)
The length-n vector that is a member
of a collection indexed by s ∈ S

xS = (xs : s ∈ S) The size-|S| ordered collection of
length-n vectors

xN
S = ((xs,t : t ∈ N ) : s ∈ S)

The size-|S| ordered collection of
length-|N | vectors with time indices
in N ⊆ [n]

x⟨S⟩ =
∑

s∈S xs
Summation of length-n vectors from
the collection S

(X1, X2) = (f1(m1), f2(m2))
]
≤ ϵ, (4)

where Y2 is the channel output under inputs X1 and X2, and
ϵ is the average-error constraint.

We define the information densities for a MAC with channel
transition law PY2|X1X2

as

ı1(x1; y|x2) ≜ log
PY2|X1X2

(y|x1, x2)
PY2|X2

(y|x2)
(5a)

ı2(x2; y|x1) ≜ log
PY2|X1X2

(y|x1, x2)
PY2|X1

(y|x1)
(5b)

ı1,2(x1, x2; y) ≜ log
PY2|X1X2

(y|x1, x2)
PY2

(y)
, (5c)

where PX1
and PX2

are the channel input distributions, and
PX1

PX2
→ PY2|X1X2

→ PY2
. The information density

random vector is defined as

ı2 ≜

 ı1(X1;Y2|X2)
ı2(X2;Y2|X1)
ı1,2(X1, X2;Y2)

 , (6)

where (X1, X2, Y2) is distributed according to
PX1PX2PY2|X1X2

.
Theorem 1, below, generalizes Polyanskiy et al.’s random-

coding union (RCU) achievability bound [6, Th. 16] to
the MAC. Theorem 1 is derived by Liu and Effros [22] in
their work on LDPC codes and is inspired by a new RCU
bound for the Slepian-Wolf setting [33, Th. 2]. Its proof
combines random code design and a maximum likelihood
decoder, which decodes to the message pair with the maximum
information density ı1,2(X1, X2;Y2). Our main result on the
Gaussian MAC, Theorem 2, below, analyzes the RCU bound
with PX1

and PX2
uniform on the power spheres.

Theorem 1 (RCU bound for the MAC [22, Th. 6]): Fix input
distributions PX1 and PX2 . Let

PX1,X̄1,X2,X̄2,Y2
(x1, x̄1, x2, x̄2, y)

= PX1
(x1)PX1

(x̄1)PX2
(x2)PX2

(x̄2)PY2|X1X2
(y|x1, x2). (7)

There exists an (M1,M2, ϵ)-MAC code for PY2|X1X2
such

that

ϵ ≤ E
[
min

{
1,

(M1 − 1)P
[
ı1(X̄1;Y2|X2) ≥ ı1(X1;Y2|X2) | X1, X2, Y2

]
+(M2 − 1)P

[
ı2(X̄2;Y2|X1) ≥ ı2(X2;Y2|X1) | X1, X2, Y2

]
+(M1 − 1)(M2 − 1)P

[
ı1,2(X̄1, X̄2;Y2) ≥ ı1,2(X1, X2;Y2)

| X1, X2, Y2
]}]

. (8)
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Remark 1: As noted in [34], Theorem 1 generalizes to
the K-transmitter MAC. Define the conditional information
densities for the K-transmitter MAC as

ıS(xS ; y|xSc) ≜ log
PYK |X[K]

(y|x[K])

PYK |XSc (y|xSc)
, (9)

where S ⊂ [K], S ̸= ∅, and Sc = [K] \ S , and the
unconditional information density as

ı[K](x[K]; y) ≜ log
PYK |X[K]

(y|x[K])

PYK
(y)

. (10)

Following arguments identical to those in the proof of Theo-
rem 1, inequality (8) extends to the K-transmitter MAC as

ϵ ≤ E
[
min

{
1,

∑
S∈P([K])

(∏
s∈S

(Ms − 1)

)
P
[
ıS(X̄S ;YK |XSc)

≥ ıS(XS ;YK |XSc) | X[K], YK
]}]

. (11)

B. A Third-order Achievability Bound for the Gaussian MAC

We begin by modifying our code definition to incorporate
maximal-power constraints (P1, P2) on the channel inputs. Let
(X1,X2) and Y2 be the MAC inputs and output, respectively.

Definition 2: An (n,M1,M2, ϵ, P1, P2)-MAC code for
a two-transmitter MAC comprises encoding functions
f1 : [M1] → Rn and f2 : [M2] → Rn, and a decoding function
g : Rn → [M1]× [M2] such that

∥fi(mi)∥2 ≤ nPi ∀i ∈ {1, 2}, mi ∈ [Mi]

1

M1M2

M1∑
m1=1

M2∑
m2=1

P [g(Y2) ̸= (m1,m2) |

(X1,X2) = (f1(m1), f2(m2))] ≤ ϵ.

The following notation is used in presenting our achievabil-
ity result for the Gaussian MAC with k ≥ 1 transmitters. Over
n channel uses, the channel has inputs X1, . . . ,Xk ∈ Rn,
additive noise Z ∼ N (0, In), and output

Yk = X⟨[k]⟩ + Z. (12)

The channel transition law induced by (12) can be written as

PYk|X[k]
(y|x[k]) =

n∏
i=1

PYk|X[k]
(yi|x1i, . . . , xki), (13)

where

PYk|X[k]
(y|x[k]) =

1√
2π

exp

{
−
(
y − x⟨[k]⟩

)2
2

}
. (14)

When Z ∼ N (0,V), and V is a d × d positive semi-definite
matrix, the multidimensional analogue of the inverse Q−1(·)
of the complementary Gaussian cumulative distribution is

Qinv(V, ϵ) ≜
{
z ∈ Rd : P [Z ≤ z] ≥ 1− ϵ

}
. (15)

For d = 1, we have Q−1(ϵ) = min{z : z ∈ Qinv(1, ϵ)}.
Recall that C(P ) is the capacity function (1). The capacity

vector for the two-transmitter Gaussian MAC is defined as

C(P1, P2) ≜

 C(P1)
C(P2)

C(P1 + P2)

 . (16)

The dispersion matrix [8, eq. (25)] for the two-transmitter
Gaussian MAC is defined as

V(P1, P2)

≜

 V (P1) V1,2(P1, P2) V1,12(P1, P2)
V1,2(P1, P2) V (P2) V2,12(P1, P2)
V1,12(P1, P2) V2,12(P1, P2) V12(P1, P2)

 , (17)

where V (P ) is the dispersion function (3), and

V1,2(P1, P2) =
1

2

P1P2

(1 + P1)(1 + P2)
(18)

Vi,12(P1, P2) =
1

2

Pi(2 + P1 + P2)

(1 + Pi)(1 + P1 + P2)
, i ∈ {1, 2} (19)

V12(P1, P2) = V (P1 + P2) +
P1P2

(1 + P1 + P2)2
. (20)

The following theorem is the main result of this section.
Theorem 2: For any ϵ ∈ (0, 1) and any P1, P2 > 0,

an (n,M1,M2, ϵ, P1, P2)-MAC code for the two-transmitter
Gaussian MAC exists provided that logM1

logM2

logM1M2

 ∈ nC(P1, P2)−
√
nQinv(V(P1, P2), ϵ)

+
1

2
log n1+O(1)1. (21)

Proof: See Section V.
Theorem 2 extends to the general K-transmitter Gaussian

MAC. The definition of an (n,M[K], ϵ, P[K])-MAC code for
the K-transmitter Gaussian MAC with message set sizes
M1, . . . ,MK and power constraints P1, . . . , PK is a natural
extension of Definition 2, which defines the two-transmitter
MAC code. The following theorem bounds the achievable
region for the K-transmitter Gaussian MAC.

Theorem 3: For any ϵ ∈ (0, 1), and Pi > 0, i ∈ [K], an
(n,M[K], ϵ, P[K])-MAC code for the K-transmitter Gaussian
MAC exists provided that(∑

s∈S
logMs : S ∈ P([K])

)
∈ nC(P[K])

−
√
nQinv(V(P[K]), ϵ) +

1

2
log n1+O (1)1, (22)

where C(P[K]) is the capacity vector

C(P[K]) ≜
(
C(P⟨S⟩) : S ∈ P([K])

)
∈ R2K−1, (23)

and V(P[K]) is the
(
2K − 1

)
×
(
2K − 1

)
dispersion matrix

with the elements VS1,S2
(P[K]), S1,S2 ∈ P([K]), given by

VS1,S2(P[K])

≜
P⟨S1⟩P⟨S2⟩ + 2P⟨S1∩S2⟩ +

(
P⟨S1∩S2⟩

)2 − P 2
⟨S1∩S2⟩

2(1 + P⟨S1⟩)(1 + P⟨S2⟩)
. (24)

Proof: See Section VI.
Before concluding this section, we make several remarks

about Theorems 2 and 3 above.
1) Theorems 2 and 3 apply the RCU bound (Theorem 1)

with independent inputs uniformly distributed on the n-
dimensional origin-centered spheres with radii

√
nPi, i ∈
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[K]. Theorem 2 matches the first- and second-order terms
of MolavianJazi and Laneman [8] and Scarlett et al. [9],
and improves the third-order term from O

(
n1/4

)
1 in [8]

and O
(
n1/4 log n

)
1 in [9] to 1

2 log n1+O(1)1.
2) Our proof technique in Theorem 2 differs from the tech-

nique in [8] in two key ways. First, we use a maximum
likelihood decoder in place of the set of simultaneous
threshold rules based on unconditional and conditional
information densities from [8]; the change of the decod-
ing rule is essential for obtaining the third-order term
1
2 log n1 + O(1)1 in Theorem 2. Second, we refine the
analysis bounding the probability that the information
density random vector ı2 belongs to a set D ⊆ R3. Our
non-i.i.d. input distribution prevents direct application of
the Berry-Esseen theorem. However, given that the inner
product of the inputs ⟨X1,X2⟩ equals a constant, the
information density random vector ı2 can be written as
a sum of independent random vectors. Therefore, we
apply the Berry-Esseen theorem after conditioning on the
inner product ⟨X1,X2⟩ and then integrate the resulting
probabilities over the range of the inner product. In order
to approximate the resulting probability by the probability
that a Gaussian vector belongs to the same set, we use
a result (Lemma 5 in Section V-A, below) that approxi-
mates the normalized inner product 1√

nP1P2
⟨X1,X2⟩ by

a standard Gaussian random variable. We then derive a
bound (Lemma 4 in Section V-A, below) on the total
variation distance between two Gaussian vectors. This
analysis appears in Section V-F.
This approach contrasts with [8], which bounds the
probability that the information density random vector
ı2 belongs to a set D. Writing ı2 as a vector-valued
function of an average of i.i.d. Gaussian vectors, [8,
Prop. 1] applies a central limit theorem for functions
of sums to prove O

(
1

n1/4

)
convergence to normality.

Our technique, described above, improves the rate of
convergence to normality to O

(
1√
n

)
, which is the rate

of convergence for i.i.d. sums. This improvement implies
that the threshold-based decoding rule in [8] achieves a
third-order term O(1)1.

3) Our technique for proving Theorems 2 and 3 parallels
those used for non-singular discrete memoryless channels
[7, Th. 53] and for the point-to-point Gaussian channel
[5]. In [7, Th. 53], Polyanskiy applies the RCU bound
using a refined large deviations result [6, Lemma 47];
the use of a non-i.i.d. input distribution for the Gaussian
channel prevents the direct application of [6, Lemma 47].
In [5, eq. (52)], Tan and Tomamichel derive an alternative
to [6, Lemma 47] for the point-to-point Gaussian channel
in order to accommodate codewords drawn uniformly
on an n-dimensional sphere. While evaluating the RCU
bound in this paper, we extend the bound in [5, eq. (52)]
to the Gaussian MAC.

4) For the symmetric setting, where Pi = P and Mi = M
for all i ∈ [K], Theorem 3 reduces to the scalar inequal-
ity, below. This result refines the result in [8, Th. 2] to the
third-order term and generalizes it to the K-transmitter

MAC.
Corollary 1: For any ϵ ∈ (0, 1) and P > 0, an
(n,M1, ϵ, P1)-MAC code for the K-transmitter Gaus-
sian MAC exists provided that

K logM ≤ nC(KP )

−
√
n(V (KP ) + Vcr(K,P ))Q

−1(ϵ) +
1

2
log n+O(1).

(25)

Again, C(·) and V (·) are the capacity (1) and dispersion
(3) functions, respectively, and Vcr(K,P ) is the cross
dispersion term

Vcr(K,P ) ≜
K(K − 1)P 2

2(1 +KP )2
. (26)

Proof: See Appendix A.
5) In [35], Fong and Tan derive a converse for the Gaussian

MAC with a second-order term O(
√
n log n)1. Kosut

[36] improves the second-order term in the converse to
O (

√
n)1. The coefficients of the second-order term in

[36] do not match the second-order term in the achiev-
ability bounds proven in Theorem 2. As discussed in [21],
closing the gap between the second-order terms of the
MAC achievability and converse results is a challenging
open problem.

IV. A NONASYMPTOTIC BOUND AND ITS ANALYSIS FOR
THE GAUSSIAN RANDOM ACCESS CHANNEL

A. System Model

Channel model: Given an unknown set of active transmit-
ters A, the Gaussian channel (14) depends on A only through
the number of active transmitters, |A| = k, that is, PYk|XA =
PYk|X[k]

. Therefore, in order to capture the scenario of a
memoryless Gaussian channel with K possible transmitters,
a single receiver, and an unknown activity pattern A ⊆ [K],
we describe the Gaussian RAC by a family of Gaussian MACs
{PYk|X[k]

}Kk=0 (14), each indexed by the number of active
transmitters k ∈ {0, . . . ,K}. This RAC model is introduced
in [21] for general channels satisfying permutation-invariance
and reducibility assumptions; the Gaussian RAC satisfies these
assumptions. As in [21], we choose a compound channel
model in order to avoid the need to assign probabilities to
each activity pattern A.

Communication strategy: We apply the epoch-based rate-
less communication strategy that we proposed in [21]. Each
transmitter is either active or silent during a whole epoch.
At each of times n0, n1, . . . , the decoder broadcasts to all
transmitters a single bit — sending value 1 if it can decode
and 0 otherwise. The transmission of 1 at time nt ends the
current epoch and starts the next, indicating that the decoder’s
estimate of the number of transmitters is t. As in [17], [21],
we employ identical encoding, with each active transmitter
i using the same encoding function to describe its message
Wi ∈ [M ]. Identical encoding here requires Pi = P and
Mi = M for all i. The task of the decoder is to decode
a list of messages sent by the active transmitters A but not
the identities of those transmitters. The messages in WA are
independent and uniformly distributed on alphabet [M ].



6

Since encoding is identical and the channel is invariant to
permutation of its inputs, we assume without loss of generality
that |A| = k implies A = [k]. Intuitively, given identical
encoding and our Gaussian channel, one would expect that
interference increases with the number of active transmitters
k, and therefore that the decoding time nk increases with
k. Since the capacity per transmitter for the k-transmitter
Gaussian MAC, 1

kC(kP ), decreases with k, we can choose
n0 < · · · < nK for M large enough. (See [21, Lemma 1] for
more general sufficient conditions under which n0 < · · · <
nK is optimal.) As a notational convenience, we use nK
to represent the largest decoding time. Unless it stops the
encoders’ transmissions earlier, at time nK , the decoder sees

Yk = X⟨[k]⟩ + Z ∈ RnK for k ∈ [K], (27)

where X1, . . . ,Xk are nK-dimensional channel inputs, Z ∼
N (0, InK

) is the Gaussian noise, and Yk is the nK-
dimensional output when k transmitters are active. When no
transmitters are active, X⟨[0]⟩ = 0 and Y0 = Z. At each time
nt < nK , the decoder has access to the first nt components
of vector Yk, which is denoted by Y

[nt]
k .

As in [21], we assume an agnostic random access model,
where the transmitters know nothing about the set A of active
transmitters except their own membership and the feedback
from the receiver. The receiver knows nothing about A except
what it can learn from the channel output Yk.

Code definition: The following definition formalizes the
rateless Gaussian RAC code described above.

Definition 3: An
(
{nj , ϵj}Kj=0,M, P

)
-RAC code for the

Gaussian RAC with K transmitters consists of a single en-
coding function f : U × [M ] → RnK and decoding functions
gk : U×Rnk → [M ]k∪{e} for k = 0, . . . ,K , where the input
u ∈ U to the encoder and decoders is common randomness
shared by all transmitters and the receiver.1 If it cannot decode
at time nk, the decoder outputs the erasure symbol “e” and
broadcasts value 0 to the transmitters, informing them that
they should keep transmitting. If it can decode at time nk, the
decoder broadcasts value 1 to the transmitters, informing them
that they should stop transmitting. The codewords satisfy the
maximal-power constraints∥∥∥f(u,m)[nj ]

∥∥∥2 ≤ njP for m ∈ [M ], u ∈ U , j ∈ [K]. (28)

If k transmitters are active, then the average error probability
in decoding k messages at time nk is bounded as

1

Mk

∑
m[k]∈[M ]k

P
[{ ⋃

t : nt≤nk,t ̸=k

{
gt(U,Y

[nt]
k ) ̸= e

}}⋃
{
gk(U,Y

[nk]
k )

π

̸= m[k]

}∣∣∣∣X[nk]
[k] = f(U,m[k])

[nk]

]
≤ ϵk, (29)

where f(U,mi) is the codeword for the message mi ∈ [M ], U
is the common randomness random variable, and the output
Yk is generated according to (27). If no transmitters are active,

1The realization u of the common randomness random variable U initializes
the encoders and the decoder. At the start of each communication epoch, u
is shared by all transmitters and the receiver. We show in [21, Appendix D]
that the alphabet size of U need never exceed K + 1.

then the decoder decodes to the unique message [M ]0 ≜ {0}
with probability of error bounded as

P
[
g0(U,Y

[n0]
0 ) ̸= 0

]
≤ ϵ0. (30)

B. A Third-order Achievability Result for the Gaussian RAC

The following theorem is the main result of this section.
Theorem 4: Fix K <∞, ϵk ∈ (0, 1) for k ∈ {0}∪ [K], and

M . An
(
{nj , ϵj}Kj=0,M, P

)
-RAC code exists for the Gaussian

RAC with K possible transmitters provided that

k logM ≤ nkC(kP )−
√
nk(V (kP ) + Vcr(k, P ))Q

−1(ϵk)

+
1

2
log nk +O(1) (31)

for k ∈ [K], and

n0 ≥ 4(1 + P 2)

P 2
log n1 + o(log n1), (32)

where C(·), V (·), and Vcr(·, ·) are the capacity (1), dispersion
(3), and cross dispersion functions (26), respectively. All uses
of O(·) and o(·) are taken with respect to n1.

Remark 2: From (31), n1 → ∞ implies that n2, . . . , nK

also grow without bound. Since all target error values ϵk are
assumed to be constants with respect to n1, choosing decoding
times n0, . . . , nK so that (31) and (32) hold with equality
results in nk = O(n1) for k ≥ 2, and n0 = O(log n1) (see
(35), below).

Proof: Theorem 4 follows from the non-asymptotic achiev-
ability bound in Theorem 5, below, which bounds the average
error probability of the proposed Gaussian RAC code. See
Section VIII for details.

Theorem 5: Fix constants λk > 0 for k ∈ {0} ∪
[K] and distribution PX on RnK . Then, there exists an(
{nj , ϵj}Kj=0,M, P

)
-RAC code with

ϵ0 ≤ P
[∣∣∣∥∥∥Y[n0]

0

∥∥∥2 − n0

∣∣∣ > n0λ0

]
(33)

ϵk ≤ k(k − 1)

2M
+ P

 k⋃
i=1

⋃
j:nj≤nk

j≥1

{∥∥∥X[nj ]
i

∥∥∥2 > njP
}(34a)

+ P

[ ⋃
t:nt≤nk

t ̸=k

{∣∣∣ ∥∥∥Y[nt]
k

∥∥∥2 − nt(1 + tP )
∣∣∣ ≤ ntλt

}
⋃{∣∣∣ ∥∥∥Y[nk]

k

∥∥∥2 − nk(1 + kP )
∣∣∣ > nkλk

}]
(34b)

+ E
[
min

{
1,

k∑
s=1

(
k

s

)(
M − k

s

)
P
[
ı[s](X̄

[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k])

≥ ı[s](X
[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k]) | X
[nk]
[k] ,Y

[nk]
k

]}]
(34c)

for all k ∈ [K], where X[K], X̄[K],Yk ∈ RnK are
distributed according to PX[K],X̄[K],Yk

(x[K], x̄[K],yk) =(∏
j∈[K] PX(xj)PX(x̄j)

)
PYk|X[k]

(yk|x[k]), and PYk|X[k]
is

given in (27).
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Proof: The terms in (34a) capture the probability that at least
two transmitters send the same message and the probability of
a power constraint violation, respectively. We treat the event
that at least two transmitters send the same message as an
error because the analysis relies on the codeword independence
across transmitters. The probability in (34b) captures the
probability that the decoder decodes at a wrong decoding
time, and the expectation in (34c) captures the probability that
the decoder decodes an incorrect message list at the correct
decoding time nk for k active transmitters. See Section VII
for details.

We conclude this section with some remarks concerning
Theorems 4 and 5.

1) Theorem 4 shows that for the Gaussian RAC, our pro-
posed rateless code performs as well in the first-, second-,
and third-order terms as the best known MAC commu-
nication scheme without feedback (Corollary 1). In other
words, the first three terms on the right-hand side of (31)
for k active transmitters match the first three terms of the
largest achievable sum-rate in our achievability bound in
(25) for the k-transmitter MAC.

2) To prove Theorem 4, we particularize the distribution of
the random codewords, PX, in Theorem 5 as follows. The
first n1 symbols are drawn uniformly from Sn1(

√
n1P ).

The sub-vector of symbols indexed from nj−1 + 1 to nj
is drawn uniformly from Snj−nj−1(

√
(nj − nj−1)P ) for

j = 2, . . . ,K . These K sub-codewords, each uniformly
distributed on an incremental power sphere, are indepen-
dent. Under this PX, the maximal-power constraint in
(28) is satisfied with equality for each number of active
transmitters. Rather than using an encoding function that
depends on the feedback from the receiver to the transmit-
ters, we use an encoding function that is suitable for all
possible transmitter activity patterns and does not depend
on the receiver’s feedback. Given that a decision is made
at time nk, the active transmitters have transmitted only
the first nk symbols of the codewords representing their
messages during that epoch, and the remaining nK − nk
symbols of the codewords are not transmitted.

3) As noted in [13], our achievability proofs leverage the
fact that the number of active transmitters can be reliably
estimated from the total received power. This is possi-
ble because when k active transmitters send k distinct
messages, the average received power 1

nk
E
[∥∥∥Y[nk]

k

∥∥∥2]
at time nk, concentrates around its mean value, 1 + kP ,
and this mean is distinct for each k ∈ {0} ∪ [K].
The decoding function used at time nk combines the
maximum likelihood decoding rule for the k-transmitter
MAC with a typicality rule based on the power of the
output. The typicality rule decides to decode at time
nk if the average received power at time nk lies in
the interval

[
1 + kP − P

2 , 1 + kP + P
2

]
for k ≥ 1 and[

1−O(n0
− 1

2 ), 1 +O(n0
− 1

2 )
]

for k = 0. In this case,
the decoder decodes k messages at time nk by using the
maximum likelihood decoding rule. When at least two
transmitters send the same message (e.g., X[nk]

1 = X
[nk]
2 ),

100 200 300 400 500 600 700 800 900 1000

250

500
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1000

1250

1500

1750

2000

2250

Fig. 1. Let P = 1, ϵk = 10−3 for all k. The decoding times {nk}6k=1 are
given according to (35), where the O(1) term in (35) is ignored,

and n1 ∈ [100, 1000].

1
nk

E
[∥∥∥Y[nk]

k

∥∥∥2] ≥ 1 + (k + 2)P . In our decoder

design, we choose not to handle this scenario because
the probability that at least two transmitters send the same
message is negligible as shown in (177) in Section VII-B,
below.

4) Theorem 5 applies without change to non-Gaussian RACs
with power constraints satisfying the conditions in [21,
Th. 1]; the tightness of the bound depends on how well
k can be estimated from the received power.

5) The proof of Theorem 4 indicates that the constant term
O(1) in (31) depends on the number of active transmitters
k, but not on the total number of transmitters K. Not
requiring the decoder to determine transmitter identity is
crucial for this O(1) bound to hold.

6) By choosing n1, . . . , nK such that the inequalities in (31)
are satisfied with equality for each k, we can express each
nk as a function of n1, ϵ1, ϵk, k, and P , given by

nk = n1
kC1

Ck
+

√
n1

(
1

Ck

√
kC1Vk
Ck

Q−1(ϵk)

− k

Ck

√
V1Q

−1(ϵ1)

)
+
k − 1

2Ck
log n1 +O(1), (35)

where Ck = C(kP ) and Vk = V (kP ) + Vcr(k, P ). We
derive (35) by computing the Taylor series expansion of
the equation for nk (31) in terms of k, P, ϵk, and logM ;
we then replace logM by (31) for k = 1. Fig. 1 shows
the approximate decoding times {nk}6k=1 (neglecting the
O(1) term in (35)), where P = 1, ϵk = 10−3 for all k,
and the smallest decoding time n1 ∈ [100, 1000].

7) Theorem 4 implies that the input distribution used for
the Gaussian RAC also achieves the performance in
Theorem 3 for the K-transmitter Gaussian MAC. As long
as nj − nj−1 ≥ cnK holds for some constant c > 0 for
all j ∈ [K], requiring separate power constraints on each
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Fig. 2. Let K = 2, n1 = 2, n2 = 3, and P1 = P2 = P = 1
3

. The support
of the input distribution for the Gaussian RAC is the Cartesian product of
Sn1 (

√
n1P ) (here a circle with radius

√
2P ) and Sn2−n1 (

√
(n2 − n1)P )

(here the set {−
√
P ,

√
P}.) This set, shown above as a pair of circles, is

a subset of Sn2 (
√
n2P ); the set Sn2 (

√
n2P ) is the support of the input

distribution used in Theorem 3 for the Gaussian MAC.

sub-block of the codewords as∥∥∥fi(mi)
[nj ]
∥∥∥2 ≤ njPi for mi ∈ [Mi], i ∈ [K], j ∈ [K]

(36)

does not degrade our performance bound, which matches
the first three terms in the expansion in Theorem 3. The
support of the distribution from which the codewords are
drawn for the Gaussian MAC and RAC is illustrated in
Fig. 2.

8) The coding strategy we propose in [21, Th. 1] requires
an i.i.d. input distribution. One can also employ the
coding strategy in [21, Th. 1] to the Gaussian MAC,
drawing codewords i.i.d. from N (0, P ′) for some P ′ =
P − δn and δn decaying to 0 sufficiently quickly as
blocklength n grows without bound, provided that we
discard codewords that violate the maximal-power P
constraint. However, [23, eq. (5.113)] shows that the
resulting achievable second-order term is inferior to that
achieved by the uniform distribution on the sphere.

9) As described above, the number of active transmitters in
an epoch is estimated via a sequence of decodability tests.
An alternative strategy is to estimate the number of active
transmitters in one shot from the received power at time
n0, and to inform the transmitters about the estimate, t,
of the number of active transmitters via a ⌈log(K +1)⌉-
bit feedback at time n0. Given this knowledge, active
transmitters can employ an encoding function matched to
t. We show in Appendix B-A that this modified coding
strategy affects our bound in (31) only in the O(1) term.

10) By using distinct codebooks for each transmitter, the
decoder can associate transmitter identities with the de-
coded messages. We show that the first three terms of the

expansion in (31) are still achievable in this setting. This
scenario is discussed in Appendix B-B.

V. PROOF OF THEOREM 2

A. Supporting Lemmas

We begin by presenting the lemmas that play a key role
in the proof of Theorem 2. The first two lemmas are used
to bound the probability that the squared norm of the output
of the channel, Y2 = X1 +X2 + Z, does not belong to its
typical interval around 1 + P1 + P2.

Lemma 1 from [8, Prop. 2] uniformly bounds the Radon-
Nikodym derivative of the conditional and unconditional out-
put distributions of the Gaussian MAC (13) in response to
the spherical inputs with respect to the output distributions
that result under i.i.d. Gaussian inputs. The squared norm of
the output in response to the i.i.d. Gaussian inputs has a chi-
squared distribution.

Lemma 1 (MolavianJazi and Laneman [8, Prop. 2]):
1) 2-Transmitter MAC: Let X1 and X2 be independent,

distributed uniformly on Sn(
√
nP1) and Sn(

√
nP2), re-

spectively. Let X̃i ∼ N (0, PiIn), i ∈ [2], be independent
of each other. Let PX1X2

→ PY2|X1X2
→ PY2

, and
PX̃1X̃2

→ PY2|X1X2
→ PỸ2

, where PY2|X1X2
is the

Gaussian MAC (13) with k = 2 transmitters. Then there
exists n0 ∈ N such that for all n ≥ n0, ∀ (x1,x2,y) ∈
Rn⊗3, it holds that

PY2|X2
(y|x2)

PỸ2|X̃2
(y|x2)

≤ κ1(P1) = 27

√
π

8

1 + P1√
1 + 2P1

(37)

PY2(y)

PỸ2
(y)

≤ κ2(P1, P2) =
9

2π
√
2

P1 + P2√
P1P2

. (38)

If there is no additive noise Z in (12), (38) continues
to hold. Inequalities (37)–(38) are generalized to the K-
transmitter Gaussian MAC as follows.

2) K-Transmitter MAC: Let X1, . . . ,XK be independent,
and for each i ∈ [K], let Xi be distributed uniformly on
Sn(

√
nPi). Let X̃i ∼ N (0, PiIn) for i ∈ [K], where Xi

are independent of each other. Let PX[K]
→ PYK |X[K]

→
PYK

, and PX̃[K]
→ PYK |X[K]

→ PỸK
, where PYK |X[K]

is the Gaussian MAC in (13) with K transmitters. Then
there exists nK ∈ N such that for all n ≥ nK , for any
x[K] ∈ Rn⊗K , y ∈ Rn, and non-empty S ∈ P([K]), it
holds that

PYK |XSc (y|xSc)

PỸK |X̃Sc
(y|xSc)

≤ κ|S|(Ps : s ∈ S), (39)

where κ|S|(Ps : s ∈ S) is a constant depending only on
the power values (Ps : s ∈ S).

The proof of (39), which is given in [23, eq. (5.138)], relies
on a recursive formula for the distribution of YK .

Lemma 2, stated next, bounds the tail probabilities of the
chi-squared distribution from above.

Lemma 2 (Laurent and Massart [37, Lemma 1]): Let χ2
n

be a random variable with a chi-squared distribution and n
degrees of freedom. Then for t > 0,

P
[
χ2
n − n ≥ 2

√
nt+ 2t

]
≤ exp{−t} (40)
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P
[
χ2
n − n ≤ −2

√
nt
]
≤ exp{−t}. (41)

Lemma 3, stated next, is used as the main tool to obtain
large deviation bounds on the information density random
variables that arise when we apply the RCU bound.

Lemma 3 (Tan and Tomamichel [5, eq. (52)]): Let Z =
(Z1, . . . , Zn) ∼ N (0, In), x = (

√
nP , 0, . . . , 0), and let s > 0

and P > 0 be constants. Then for any a ∈ R, µ > 0, and n
large enough,

P
[
Z1 ∈

[
a√
nP

,
a+ µ√
nP

]∣∣∣∣∥x+ Z∥2 = ns

]
≤ L(P, s)µ√

n
,

(42)

where

L(P, s) ≜
8(Ps)3/2√

2π

√
1 + 4Ps−

√
1 + 4Ps

(
√
1 + 4Ps− 1)5

. (43)

We state the multidimensional Berry-Esseen theorem for
sums of independent but not necessarily identical random
vectors. The theorem is used as the main tool to bound the
probability that the information density random vector belongs
to a given set.

Theorem 6 (Bentkus [38]): Let U1, . . . ,Un be zero mean,
independent random vectors in Rd, and let Z ∼ N (0, Id).
Denote S =

∑n
i=1 Ui, and T =

∑n
i=1 E

[
∥Ui∥3

]
. Assume

that Cov [S] = Id. Then, there exists a constant c > 0 such
that

sup
A∈Cd

|P [S ∈ A]− P[Z ∈ A]| ≤ cd1/4T , (44)

where Cd is the set of all convex, Borel measurable subsets
of Rd.
Raič [39, Th. 1.1] establishes that the constant cd1/4 in (44)
can be replaced by 42d1/4 + 16. Tan and Kosut [40] provide
the following corollary to Theorem 6 for the case of a general
nonsingular Cov [S].

Corollary 2 (Tan and Kosut [40, Corollary 8]): For the
setup in Theorem 6, assume that Cov [S] = nV, where
λmin(V) > 0 denotes the minimum eigenvalue of V, and
T = 1

n

∑n
i=1 E

[
∥Ui∥3

]
. Let Z ∼ N (0,V). Then, there exists

a constant c > 0 such that

sup
A∈Cd

∣∣∣∣P [ 1√
n
S ∈ A

]
− P[Z ∈ A]

∣∣∣∣ ≤ cd1/4T√
nλmin(V)3/2

. (45)

Lemmas 4 and 5, below, are used to bound the probability
that the information density random vector belongs to a set.
The total variation distance between the measures PX and PY

on Rd is defined as

TV(PX , PY ) ≜ sup
D∈Rd

|P [X ∈ D]− P [Y ∈ D]|

=
1

2

∫
x∈Rd

|dPX(x)− dPY (x)| . (46)

Lemma 4, stated next, bounds the total variation distance
between two Gaussian vectors.

Lemma 4: Let Σ1 and Σ2 be two positive definite d × d
matrices, and let µ1,µ2 ∈ Rd be two constant vectors. Then,

TV(N (µ1,Σ1),N (µ2,Σ2))

≤ 2 +
√
6

4

∥∥∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id

∥∥∥
F

+
1

2

√
(µ1 − µ2)TΣ

−1
1 (µ1 − µ2), (47)

where ∥·∥F denotes the Frobenius norm.
Proof: See Appendix C.

A weaker version of the bound in Lemma 4 by Devroye et
al. appears in [41, Th. 1.1]. Like our proof, the proof of [41,
Th. 1.1] relies on Pinsker’s inequality. We improve the factor
in front of the Frobenius norm from 1.5 in [41, Th 1.1] to
2+

√
6

4 ≈ 1.113 by using the result in [42, Th. 1.1] to lower
bound the logdeterminant of the matrix Σ

−1/2
1 Σ2Σ

−1/2
1 − Id

in (47).
Lemma 5, stated next, gives an upper bound on the total

variation distance between the marginal distribution of the
first k dimensions of a random variable distributed uniformly
on Sn(

√
n) and the k-dimensional standard Gaussian random

vector.
Lemma 5 (Stam [43, Th. 2]): Let X = (X1, . . . , Xn) be

distributed uniformly on Sn(
√
n). Let X[k] = (X1, . . . , Xk)

contain the first k coordinates of X. Then,

TV(PX[k] ,N (0, Ik)) ≤ n
1
2k(n− k − 2)−

1
2k − 1 (48)

for n > k + 2.
We use Lemma 5 with k = 1 to approximate the inner prod-

uct ⟨X1,X2⟩ by a Gaussian random variable, which facilitates
an application of the Berry-Esseen theorem in Section V-F.

The proof of Theorem 2 relies on a random coding argument
and Theorem 1. The asymptotic analysis of the RCU bound
(Theorem 1) borrows some techniques from the point-to-point
case [5].

B. Encoding and Decoding for the MAC

We select the distributions of the independent inputs X1 and
X2 as the uniform distributions on Sn(

√
nP1) and Sn(

√
nP2),

which are the n-dimensional spheres centered at the origin
with radii

√
nP1 and

√
nP2, respectively. The resulting distri-

bution is

PX1(x1)PX2(x2) =
δ(∥x1∥2 − nP1)

Sn(
√
nP1)

δ(∥x2∥2 − nP2)

Sn(
√
nP2)

,

(49)

where δ(·) is the Dirac delta function, and

Sn(r) ≜
2πn/2

Γ(n/2)
rn−1 (50)

is the surface area of an n-dimensional sphere Sn(r) with
radius r. We draw M1 codewords i.i.d. from PX1

and M2

codewords i.i.d. from PX2
, respectively. We denote these by

fi(mi) for mi ∈ [Mi], i ∈ {1, 2}.
In order to use Theorem 1, the channel PY2|X1X2

is
particularized to the two-transmitter Gaussian MAC in (13).
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Upon receiving the output sequence y, the decoder employs
a maximum likelihood decoding rule, given by

g(y) =



(m1,m2) if ı1,2(f1(m1), f2(m2);y)

> ı1,2(f1(m
′
1), f2(m

′
2);y)

for all (m′
1,m

′
2) ̸= (m1,m2),

(m′
1,m

′
2) ∈ [M1]× [M2]

error otherwise.

(51)

We treat all ties in (51) as errors because the probability that
two codewords result in exactly the same information density
is negligible due to the continuity of the noise. Substituting
the transition law of the Gaussian MAC (13) and the uniform
input distributions on the power spheres (49) into (5a)–(5c),
we compute for any (x1,x2,y) ∈ Rn⊗3

ı1(x1;y|x2) =
n

2
log

1

2π
+ ⟨y − x2,x1⟩ −

∥y − x2∥2

2

−nP1

2
− logPY2|X2

(y|x2) (52)

ı2(x2;y|x1) =
n

2
log

1

2π
+ ⟨y − x1,x2⟩ −

∥y − x1∥2

2

−nP2

2
− logPY2|X1

(y|x1) (53)

ı1,2(x1,x2;y) =
n

2
log

1

2π
+ ⟨y,x1 + x2⟩ −

∥y∥2

2

−∥x1 + x2∥2

2
− logPY2(y). (54)

Observe that for each x2 and y, ı1(x1;y|x2) depends on x1

only through the inner product ⟨y − x2,x1⟩, and for each y,
ı1,2(x1,x2;y) depends on (x1,x2) only through ⟨y,x1+x2⟩−
⟨x1,x2⟩. By the input-output relation in (12), the conditional
information density for two transmitters, ı1(x1;y|x2), can be
reduced to the unconditional information density for a single
transmitter as

ı1(x1;y|x2) = ı1(x1;y − x2) ≜ log
PY1|X1

(y − x2|x1)

PY1
(y − x2)

,

(55)

where Y1 = X1+Z is the output of the channel with a single
transmitter.

C. Typical Set for the MAC

For the rest of the proof, Z ∼ N (0, In) denotes the Gaussian
noise, which is independent of the channel inputs X1 and
X2. Note that the expectations of the squared norms of X1 +
Z,X2+Z and Y2 are n(1+P1), n(1+P2), and n(1+P1+P2),
respectively. We define a typical set for vector (X1+Z,X2+
Z,Y2) by

F ≜ ×
S∈P([2])

F(S) ⊆ Rn⊗3, (56)

where

F(S) ≜
{
x⟨S⟩ + z ∈ Rn :

1

n

∥∥x⟨S⟩ + z
∥∥2 ∈ I(S)

}
(57)

I(S) ≜ [1 + P⟨S⟩ − n−1/3, 1 + P⟨S⟩ + n−1/3]. (58)

We next show that for n large enough,

P [(X1 + Z,X2 + Z,Y2) /∈ F ] ≤ exp{−c2n1/3}, (59)

where c2 > 0 is a constant.
To bound the probability that the triplet (X1 + Z,X2 +

Z,Y2) does not belong to the typical set F , we use Lemma 1
to approximate the squared norms ∥X1 + Z∥2, ∥X2 + Z∥2,
and ∥Y2∥2 by multiples of chi-squared distributed random
variables with n degrees of freedom. We then use Lemma 2
to bound the two-sided tail probability of these chi-squared
distributed random variables. Weakening the upper bound (40)
in Lemma 2 using 2

√
2nt ≥ 2

√
nt + 2t for 0 < t ≤ n

8 ≤
(3 − 2

√
2)n, we get the following concentration inequalities

for the squared norms of the random vectors X1 +Z and Y2

P
[∣∣∣∥X1 + Z∥2 − n(1 + P1)

∣∣∣ > nt1

]
≤ 2κ1(P1) exp

{
− nt21
8(1 + P1)2

}
(60)

P
[∣∣∣∥Y2∥2 − n(1 + P1 + P2)

∣∣∣ > nt2

]
≤ 2κ2(P1, P2) exp

{
− nt22
8(1 + P1 + P2)2

}
(61)

for t1 ∈ (0, 1+P1), and t2 ∈ (0, 1+P1 +P2), where κ1(P1)
and κ2(P1, P2) are constants defined in Lemma 1. We deduce
(59) by the union bound and setting t1 = t2 = n−1/3 in
(60)–(61).

D. A Large Deviation Bound on the Mutual Information
Random Variables

We introduce the following functions that are analogous to
the one used in the point-to-point channel in [5, eq. (27)]

g1(t;y,x2) ≜ P
[
ı1(X̄1;Y2|X2) ≥ t | X2 = x2,Y2 = y

]
(62)

g2(t;y,x1) ≜ P
[
ı2(X̄2;Y2|X1) ≥ t | X1 = x1,Y2 = y

]
(63)

g1,2(t;y) ≜ P
[
ı1,2(X̄1, X̄2;Y2) ≥ t | Y2 = y

]
, (64)

where

PX1X2X̄1X̄2Y2
(x1,x2, x̄1, x̄2,y)

= PX1(x1)PX2(x2)PX1(x̄1)PX2(x̄2)PY2|X1X2
(y|x1,x2).

The following lemma, which generalizes [5, eq. (53)] to
the Gaussian MAC, gives upper bounds on these functions.
We use Lemma 6 in the evaluation of the RCU bound.

Lemma 6: Let (y − x2,y − x1,y) ∈ F , where the set F
is defined in (56). Then, for n large enough,

g1(t;y,x2) ≤
G1 exp {−t}√

n
(65a)

g2(t;y,x1) ≤
G2 exp {−t}√

n
(65b)

g1,2(t;y) ≤
G1,2 exp {−t}√

n
, (65c)

where G1, G2, and G1,2 are positive constants depending only
on P1, P2, and (P1, P2), respectively.
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Proof: The bounds in (65a) and (65b) follow from the equiv-
alence (stated in (55)) between the conditional information
density for two transmitters and the unconditional information
density for a single transmitter combined with the analysis in
[5, Sec. IV-E]. The constants in (65a) and (65b) are

Gi = (3 log 2)L(Pi, 1 + Pi), i ∈ {1, 2}, (66)

where L(·, ·) is the function defined in (43).
Bounding the function g1,2(t;y) is more challenging. While

∥X1∥2 is a constant under the uniform distribution on a power
sphere, ∥X1 +X2∥2 is not. The proof of (65c) follows steps
similar to [5, Sec. IV-E]. First, we change the measure from
PX1

PX2
PY2

to PX1
PX2

PY2|X1X2
to get

g1,2(t;y) = E[exp{−ı1,2(X1,X2;Y2)}
1{ı1,2(X1,X2;Y2) ≥ t} | Y2 = y]. (67)

To bound (67), we define function h1,2(y; a, µ) for constants
a ∈ R and µ > 0 as

h1,2(y; a, µ)

≜ P
[
ı1,2(X1,X2;Y2) ∈ [a, a+ µ]

∣∣∣Y2 = y
]

(68)

= P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥2

2

∈ [a′, a′ + µ]

∣∣∣∣Y2 = y

]
, (69)

where a′ is shifted from a by some amount depending on
y, and (69) follows from (54). By spherical symmetry of the
distribution of Y2, (69) depends on y only through its norm
∥y∥. We have

h1,2(s; a, µ) ≜ h1,2(y; a, µ)

= P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥2

2

∈ [a′, a′ + µ]

∣∣∣∣ ∥Y2∥2 = ns

]
, (70)

where ∥y∥2 = ns, and s ∈ I([2]), and I(S) is defined
in (58). Recall that the support of the norm ∥X1 +X2∥2 is
[n(

√
P1−

√
P2)

2, n(
√
P1+

√
P2)

2]. To avoid the cases where
∥X1 +X2∥2 is too small, we separate the probability term
(70) according to whether or not the event

B =
{
∥X1 +X2∥2 < n(P1 + P2 −

√
P1P2)

}
(71)

occurs under the condition that ∥Y2∥2 = ns. Here, the choice√
P1P2 is arbitrary and can be replaced by any constant in

(0, 2
√
P1P2).

In (70), conditioning on the event B and then bounding the
corresponding probability terms by 1 gives

h1,2(s; a, µ) ≤ P
[
B
∣∣∣ ∥Y2∥2 = ns

]
+ P

[
⟨X1 +X2,Y2⟩

− ∥X1 +X2∥2

2
∈ [a′, a′ + µ]

∣∣∣∣ ∥Y2∥2 = ns,Bc

]
. (72)

For n large enough, we bound the first term on the right-hand
side of (72) by

P
[
B
∣∣∣ ∥X1 +X2 + Z∥2 = ns

]
≤ exp{−nC}, (73)

where C > 0 is a constant. The proof of (73) appears in
Appendix D.

By spherical symmetry, the distribution of ⟨X1 +
X2,X1 + X2 + Z⟩ depends on X1 +X2 only through
the norm ∥X1 +X2∥. Therefore, fixing X1 +X2 to x =
(
√
nu, 0, . . . , 0), we find that for any u ∈ [P1 + P2 −√
P1P2, (

√
P1 +

√
P2)

2], s ∈ I([2]), and n large enough,

P
[
⟨X1 +X2,X1 +X2 + Z⟩ − nu

2
∈ [a′, a′ + µ]∣∣∣ ∥X1 +X2 + Z∥2 = ns, ∥X1 +X2∥2 = nu

]
= P

[
Z1 +

√
nu

2
∈
[
a′√
nu
,
a′ + µ√
nu

] ∣∣∣∣ ∥x+ Z∥2 = ns

]
(74)

≤ L(u, s)µ√
n

(75)

≤ 3

2

L(u, 1 + P1 + P2)µ√
n

, (76)

where (75) follows by Lemma 3, and (76) holds for n large
enough by the continuity of the map s 7→ L(u, s) since s ∈
I([2]). Using (76), we bound the second term in (72) as

P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥2

2
∈ [a′, a′ + µ]∣∣∣ ∥X1 +X2 + Z∥2 = ns,Bc

]
≤ max

u∈[P1+P2−
√
P1P2,(

√
P1+

√
P2)2]

3µL(u, 1 + P1 + P2)

2
√
n

. (77)

By (72), (73), (77), and because L(u, 1+P1+P2) is bounded
above for u ∈ [P1+P2−

√
P1P2, (

√
P1+

√
P2)

2], there exists
a constant K2(P1, P2) > 0 such that

h1,2(s; a, µ) ≤ K2(P1, P2)
µ√
n

(78)

for n large enough. By following the same steps as [5, eq.
(55)-(57)], we conclude that

g1,2(t;y) ≤
G1,2 exp {−t}√

n
, (79)

where G1,2 = (2 log 2)K2(P1, P2).

E. Evaluating the RCU Bound for the MAC

We here bound the right-hand side of (8) in Theorem 1. The
information density random vector is defined as

ı2 ≜

 ı1(X1;Y2|X2)
ı2(X2;Y2|X1)
ı1,2(X1, X2;Y2)

 , (80)

where X1 and X2 are distributed according to (49), and
PX1

PX2
→ PY2|X1+X2

→ PY2
.

Define the typical events

E(S) ≜
{
X⟨S⟩ + Z ∈ F(S)

}
(81)

E ≜
⋂

S∈P([2])

E(S) (82)
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A ≜

ı2 ≥ log

 M1(G1)
2α1

M2(G2)
2α1

M1M2(G1,2)
2α2

− 1

2
log n1

 , (83)

where G1, G2 and G1,2 are the constants given in (65), F(S)
is defined in (57), and

αs ≜ 2

(
2

s

)
, s = 1, 2. (84)

Denote for brevity

g1 ≜ g1(ı1(X1;Y2|X2);Y2,X2) (85a)
g2 ≜ g2(ı2(X2;Y2|X1);Y2,X1) (85b)
g1,2 ≜ g1,2(ı1,2(X1,X2;Y2);Y2), (85c)

where g1(·), g2(·), and g1,2(·), are defined in (62)–(64).
The right-hand side of (8) is bounded in (86)–(90) at the

top of the next page. Here, c2 is the positive constant
defined in (59). Equality (86) follows from the definitions
of the functions g1(t;y,x2) and g1,2(t;y) and splitting the
expectation into two cases according to whether the event
{Ac ∪Ec} occurs or not. Inequality (87) follows by bounding
the minimum inside the first expectation in (86) by 1; bounding
the minimum inside the second expectation in (86) by its
second argument; writing the indicator function 1 {A ∩ E} as
a multiplication of 3 indicator functions using the definitions
in (82) and (83) and distributing that multiplication over
the summation. Inequality (88) follows from Lemma 6 and
by bounding the probability terms by 1. Inequality (89) is
obtained by applying the union bound to P [Ac ∪ Ec] and by
using Lemma 6 with t = log M1(G1)

2α1√
n

, t = log M2(G2)
2α1√

n
,

and t = log
M1M2(G1,2)

2α2√
n

to bound the three remaining
terms, respectively. Inequality (90) follows from (59).

F. A Multidimensional Berry-Esseen Type Inequality

To complete the proof of Theorem 2, it remains only to
evaluate the probability P [Ac] in (90). If the operational
rate pair

(
logM1

n , logM2

n

)
does not lie at a corner point of

the achievable capacity region, applying the union bound to
P [Ac] gives a tight achievability bound since two of the
three probability terms that appear after applying the union
bound to P [Ac] are O

(
1√
n

)
. However, for the corner points,

P [Ac] needs to be bounded without using the union bound
in order to obtain a tighter achievability bound (see [23,
Sec. 5.1.1]). In this section, we bound P [Ac] jointly by
deriving a multidimensional Berry-Esseen type inequality.

Due to the non-i.i.d. input distribution, the random vector ı2
cannot be separated into a sum of n random vectors. Therefore,
to approximate ı2, we define the modified conditional and
unconditional information densities whose denominators have
Gaussian distributions corresponding to

ı̃1(x1;y|x2) ≜
n∑

i=1

log
PY2|X1X2

(yi|x1i, x2i)
PỸ2|X̃2

(yi|x2i)
(91a)

ı̃2(x2;y|x1) ≜
n∑

i=1

log
PY2|X1X2

(yi|x1i, x2i)
PỸ2|X̃1

(yi|x1i)
(91b)

ı̃1,2(x1,x2;y) ≜
n∑

i=1

log
PY2|X1X2

(yi|x1i, x2i)
PỸ2

(yi)
, (91c)

where X̃i ∼ N (0, Pi), i ∈ [2], and PX̃1
PX̃2

→ PY2|X1X2
→

PỸ2
= N (0, 1 + P1 + P2). Denote the modified and centered

information density random vector by

ı̃2 ≜
1√
n

 ı̃1(X1;Y2|X2)
ı̃2(X2;Y2|X1)
ı̃1,2(X1,X2;Y2)

− nC(P1, P2)

 , (92)

where C(P1, P2) =
1
nE [ı2] is the capacity vector defined in

(16). Define the threshold vector

τ ≜ log

 M1(G1)
2κ1(P1)α1

M2(G2)
2κ1(P2)α1

M1M2(G1,2)
2κ2(P1, P2)α2


− 1

2
log n1− nC(P1, P2). (93)

Our method to bound the probability P [Ac] involves 5 steps.
Step 1: We first replace ı2 by ı̃2. Unlike ı2, ı̃2 can be

written as a sum of n dependent random vectors. Prior uses
of this approach include [5, eq. (65)] for the point-to-point
channel and [8, eq. (2)] for the MAC. We then bound P [Ac]
in terms of the modified information density random vector ı̃2.
By (83) and Lemma 1,

P [Ac] = 1− P

ı2 − E [ı2] ≥

τ − log

 κ1(P1)
κ1(P2)

κ2(P1, P2)


(94)

≤ 1− P
[
ı̃2 ≥ 1√

n
τ

]
. (95)

From (91a)–(91c), we see that

ı̃2 ∼ 1√
n


(n−∥Z∥2)P1+2⟨X1,Z⟩

2(1+P1)
(n−∥Z∥2)P2+2⟨X2,Z⟩

2(1+P2)
(n−∥Z∥2)(P1+P2)+2⟨X1,X2⟩+2⟨Z,X1+X2⟩

2(1+P1+P2)

 . (96)

Although the right-hand side of (96) is not a sum of n
independent random vectors, the conditional distribution of ı̃2
given (X1,X2) is such a sum. Therefore, the multidimensional
Berry-Esseen theorem is applicable to the corresponding con-
ditional probability. In the remainder of Step 1, we detail the
distribution of ı̃2.

By spherical symmetry, the conditional distribution of ı̃2
given (X1,X2) = (x1,x2) depends on (x1,x2) only through
the inner product ⟨x1,x2⟩ given that each squared norm
satisfies ∥xi∥2 = nPi, i ∈ [2]. Define the normalized inner
product random variable

H ≜
⟨X1,X2⟩√
nP1P2

, (97)

and set

x1 = (
√
nP1, 0, . . . , 0) (98)

x2 = (h
√
P2,
√

(n− h2)P2, 0, . . . , 0) (99)

for some h ∈ [−
√
n,

√
n], which satisfy

⟨x1,x2⟩√
nP1P2

= h. (100)
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E
[
min

{
1, (M1 − 1)P

[
ı1(X̄1;Y2|X2) ≥ ı1(X1;Y2|X2) | X1,X2,Y2

]
+(M2 − 1)P

[
ı2(X̄2;Y2|X1) ≥ ı2(X2;Y2|X1) | X1,X2,Y2

]
+(M1 − 1)(M2 − 1)P

[
ı1,2(X̄1, X̄2;Y2) ≥ ı1,2(X1,X2;Y2) | X1,X2,Y2

] }]
= E

[
min

{
1, (M1 − 1)g1 + (M2 − 1)g2 + (M1 − 1)(M2 − 1)g1,2

}
1 {Ac ∪ Ec}

]
+E
[
min

{
1, (M1 − 1)g1 + (M2 − 1)g2 + (M1 − 1)(M2 − 1)g1,2

}
1 {A ∩ E}

]
(86)

≤ P [Ac ∪ Ec] + P [E({1})] M1 E
[
g11

{
ı1(X1;Y2|X2) ≥ log

M1(G1)
2α1√

n

} ∣∣∣∣ E({1})]
+P [E({2})] M2 E

[
g21

{
ı2(X2;Y2|X1) ≥ log

M2(G2)
2α1√

n

} ∣∣∣∣ E({2})]
+P [E({1, 2})] M1M2 E

[
g1,21

{
ı1,2(X1,X2;Y2) ≥ log

M1M2(G1,2)
2α2√

n

} ∣∣∣∣ E({1, 2})] (87)

≤ P [Ac ∪ Ec] +
M1G1√

n
E
[
exp{−ı1(X1;Y2|X2)}1

{
ı1(X1;Y2|X2) ≥ log

M1(G1)
2α1√

n

} ∣∣∣∣ E({1})]
+
M2G2√

n
E
[
exp{−ı2(X2;Y2|X1)}1

{
ı2(X2;Y2|X1) ≥ log

M2(G2)
2α1√

n

} ∣∣∣∣ E({2})]
+
M1M2G1,2√

n
E
[
exp{−ı1,2(X1,X2;Y2)}1

{
ı1,2(X1,X2;Y2) ≥ log

M1M2(G1,2)
2α2√

n

} ∣∣∣∣ E({1, 2})] (88)

≤ P [Ac] + P [Ec] +
2
α1

+ 1
α2√
n

(89)

≤ P [Ac] + exp
{
−c2n1/3

}
+

1√
n

(90)

Putting (98)–(99) into (96) gives that the conditional distribu-
tion of ı̃2 given H = h equals the conditional distribution of
ı̃2 given (X1,X2) = (x1,x2), which equals the conditional
distribution of the random variable

µ(h) +
1√
n

n∑
i=1

Ji(h), (101)

where

µ(h) ≜ E [̃ı2|H = h] = h

 0
0√
P1P2

1+P1+P2

 (102)

Ji(h) ≜


(1−Z2

i )P1+2x1iZi

2(1+P1)
(1−Z2

i )P2+2x2iZi

2(1+P2)
(1−Z2

i )(P1+P2)+2(x1i+x2i)Zi

2(1+P1+P2)

 , i ∈ [n]. (103)

Here, Ji(h) depends on h through the vectors x1 and x2

given in (98)–(99). Conditioned on the event that H = h,
the modified information density random vector ı̃2 behaves as
a sum of conditionally independent but not identical random
vectors 1

nµ(h) +
1√
n
Ji(h) in (101).

We next find the distribution of H . By spherical symmetry,
the distribution of H does not depend on X1. Therefore, we
can set X1 = x1 and get

H ∼ X21√
P2

, (104)

where X21 denotes the first coordinate of X2. Therefore, H
is distributed according to the marginal distribution of the

first coordinate of a random vector distributed uniformly on
Sn(

√
n). The distribution of H is computed as (e.g., [43,

Th. 1])

PH(h) =
Γ(n2 )√

πnΓ(n−1
2 )

(
1− h2

n

)n−3
2

+

, (105)

where Γ(·) denotes the Gamma function, and x+ ≜
max {0, x} for all x ∈ R. The support of H is [−

√
n,

√
n].

From (105), we compute

E [H] = 0, Var [H] = 1. (106)

By Stirling’s approximation, H → N (0, 1) in distribution as
n→ ∞ (e.g., [43, Th. 1]). Recall that an upper bound on the
total variation distance between PH and N (0, 1) is given in
Lemma 5.

From (101), we find the conditional covariance matrix of
the modified information density random vector as

Σ(h) ≜ Cov [̃ı2|H = h] (107)

= Cov

[
1√
n

n∑
i=1

Ji(h)

]
(108)

= Σ+
h√
n
B, (109)

where

Σ ≜

 V (P1) V1,2(P1, P2) V1,12(P1, P2)
V1,2(P1, P2) V (P2) V2,12(P1, P2),
V1,12(P1, P2) V2,12(P1, P2) V (P1 + P2)


(110)
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B ≜

√
P1P2

(1 + P1)(1 + P2)(1 + P1 + P2)

·

 0 1 + P1 + P2 1 + P2

1 + P1 + P2 0 1 + P1

1 + P2 1 + P1
(1+P1)(1+P2)
(1+P1+P2)

 , (111)

and V (P ), V1,2(P1, P2), and Vi,12(P1, P2), i ∈ [2], are given
in (3), (18), and (19), respectively. Note that Σ and B depend
only on P1 and P2. Using (102), (106), (109), by the law of
total expectation and variance, we compute

E [̃ı2] = 0 (112)
Cov [̃ı2] = V(P1, P2), (113)

where V(P1, P2) is the dispersion matrix defined in (17).
Step 2: We next approximate the distribution of ı̃2 by

a Gaussian. Toward that end, we consider some auxiliary
random variables. Based on our observation in (101), we
express the probability on the right-hand side of (95) by
conditioning on H and taking the expectation with respect
to PH . Define the probability measure PH̃ , and the transition
probability kernels PV|H and PW|H as

PH̃ ≜ N (0, 1) (114)

PV|H=h ≜

{
N (µ(h),Σ(h)) if |h| ≤

√
n

N (µ(h),Σ) if |h| >
√
n

(115)

PW|H=h ≜ N (µ(h),Σ) for h ∈ (−∞,∞). (116)

As with PV|H , we extend the definition of the kernel Pı̃2|H
given in (101) for |H| >

√
n by choosing Pı̃2|H=h =

N (µ(h),Σ) for |h| >
√
n in order for the joint distribution

PH̃Pı̃2|H to be valid. Recall that H̃ is a Gaussian random
variable with the same mean and variance as H , and the mean
and covariance matrix according to PV|H=h are the same as
those for Pı̃2|H=h. The Gaussian kernel PW|H is obtained
from PV|H by replacing its covariance matrix Σ(H) by the
mean value of Σ(H), Σ.

We define the joint distributions PH ı̃2 , PH̃ ı∗2
, PH̃ V and

PH̃ W as

PH ı̃2 = PHPı̃2|H (117a)
PH̃ ı∗2

= PH̃Pı̃2|H (117b)
PH̃ V = PH̃PV|H (117c)
PH̃ W = PH̃PW|H , (117d)

where

W ∼ N (0,V(P1, P2)), (118)

which has the desired Gaussian distribution in our Berry-
Esseen type bound.

Let D be any convex, Borel-measurable subset of R3. Then,

|P [̃ı2 ∈ D]− P [W ∈ D]| (119a)
≤ |P [̃ı2 ∈ D]− P [ı∗2 ∈ D]| (119b)

+ |P [ı∗2 ∈ D]− P [V ∈ D]| (119c)
+ |P [V ∈ D]− P [W ∈ D]| , (119d)

where the inequality in (119b) follows from the triangle
inequality. The absolute differences in (119b), (119c), and

(119d) reflect the change of the input measure from PH to
PH̃ , the change of the transition probability kernel from Pı̃2|H
to PV|H , and the change of the transition probability kernel
from PV|H to PW|H , respectively. We next bound (119a) by
showing that the absolute difference in each of (119b)–(119d)
is O

(
1√
n

)
. In the next three steps, we bound each of these

absolute differences in turn.
Step 3: We bound the absolute difference in the right-hand

side of (119b) as

|P [̃ı2 ∈ D]− P [ı∗2 ∈ D]|

=

∣∣∣∣∫ ∞

−∞
P [̃ı2 ∈ D|H = h] (PH(h)− PH̃(h)) dh

∣∣∣∣ (120)

≤
∫ ∞

−∞
|PH(h)− PH̃(h)| dh (121)

= 2TV(PH , PH̃) (122)

≤ 2

√
n√

n− 3
− 2 (123)

≤ CH

n
, (124)

where CH = 8. Inequality (121) follows by moving the
absolute value to the inside of the integral and bounding the
conditional probability by 1 for all h, and (123) holds for any
n ≥ 4 by Lemma 5. Inequality (124) holds for n ≥ 4. We
conclude that (124) holds for any n since (120) is trivially
bounded by 1.

Step 4: We bound the absolute difference due to changing
the transition probability kernel from Pı̃2|H to the Gaussian
kernel PV|H as

|P [ı∗2 ∈ D]− P [V ∈ D]|
=
∣∣∣E [P [ı∗2 ∈ D

∣∣∣H̃]− P
[
V ∈ D

∣∣∣H̃]]∣∣∣ (125)

≤ E
[∣∣∣P [ı∗2 ∈ D

∣∣∣H̃]− P
[
V ∈ D

∣∣∣H̃]∣∣∣ 1{∣∣∣H̃∣∣∣ ≤ √
n

2

}]
+P
[∣∣∣H̃∣∣∣ > √

n

2

]
(126)

≤ max
h∈

[
−

√
n
2 ,

√
n
2

] C(h)√
n

+ P
[∣∣∣H̃∣∣∣ > √

n

2

]
(127)

≤ CBE√
n

+ 2 exp
{
−n
8

}
(128)

≤ CBE + CCh√
n

, (129)

where

T (h) ≜
1

n

n∑
i=1

E
[
∥Ji(h)∥3

]
(130)

C(h) ≜
c 31/4T (h)

λmin(Σ(h))3/2
(131)

CBE ≜ max
h∈

[
−

√
n
2 ,

√
n
2

]C(h) (132)

CCh ≜ 4 exp

{
−1

2

}
, (133)

each Ji(h) is defined in (103), and c is the Berry-Esseen
constant given in Theorem 6. Here, (126) moves the absolute
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value in (125) to the inside of the expectation. We then
separate the expectation into two cases in order to guarantee
that we apply the Berry-Esseen theorem for values of h
such that Σ(h) is positive-definite. Inequality (127) follows
from Corollary 2, and (128) follows from the Chernoff bound
applied to a Gaussian random variable. Inequality (129) holds
for any n. For every h ∈

[
−

√
n
2 ,

√
n
2

]
, Σ(h) is a non-

degenerate covariance matrix, and T (h) < ∞. Therefore, we
conclude that CBE <∞.

Step 5: We next bound the probability in (119d), which is
the absolute difference due to changing the covariance matrix
of the Gaussian kernel from Σ(h) to Σ, using Lemma 4, which
bounds the total variation distance between two Gaussian
vectors. Denote the spectral radius of a d×d symmetric matrix
M by

ρ(M) ≜ max
i∈[d]

|λi(M)| , (134)

where λi(·) is the i-th largest eigenvalue of its matrix argu-
ment. Let

A ≜ Σ−1/2BΣ−1/2, (135)

where matrices Σ and B are defined in (110)–(111). Then

|P [V ∈ D]− P [W ∈ D]|
=
∣∣∣E [P [V ∈ D

∣∣∣H̃]− P
[
W ∈ D

∣∣∣H̃]]∣∣∣ (136)

≤ E
[∣∣∣P [V ∈ D

∣∣∣H̃]− P
[
W ∈ D

∣∣∣H̃]∣∣∣] (137)

≤ E
[
TV(N (µ(H̃),Σ),N (µ(H̃),Σ(H̃)))

]
(138)

≤ 2 +
√
6

4
∥A∥F

E
[∣∣∣H̃∣∣∣]
√
n

, (139)

where (137) follows by moving the absolute value inside the
expectation in (136), µ(·) and Σ(·) are defined in (102) and
(107), respectively, and (139) follows from Lemma 4.

The matrices Σ, Σ + B, and Σ − B are all positive
semidefinite as they are special cases of Cov [̃ı2|H = h] in
(107) with h equal to 0,

√
n, and −

√
n, respectively. Hence

Σ−1/2(Σ+B)Σ−1/2 and Σ−1/2(Σ−B)Σ−1/2 are also positive
semidefinite. Since their eigenvalues are respectively given by
1+λi(A) and 1−λi(A), it follows then that −1 ≤ λi(A) ≤ 1
for i ∈ [d], giving ρ(A) ≤ 1.2 Using the fact that ∥M∥F ≤√
dρ(M) for any d × d symmetric matrix M, and employing

the value of the expectation in (139), we conclude that

|P [V ∈ D]− P [W ∈ D]| ≤ CG√
n
, (140)

where CG = 2
√
6+6

4
√
π

.
Combining the bounds in (124), (129), and (140), we have

the following Berry-Esseen-type inequality

|P [̃ı2 ∈ D]− P [W ∈ D]| ≤ CH + CBE + CCh + CG√
n

(141)

for the modified information density random vector.

2Actually, ρ(A) = 1. Indeed, for h =
√
n, the random variables in the first

and the second index of the vectors in (103) are identical. Therefore, both
Σ(

√
n) = Σ + B and Σ−1/2(Σ + B)Σ−1/2 have an eigenvalue 0, and A

has an eigenvalue −1.

G. Completion of the Proof of Theorem 2

We employ the set D =
{
x ∈ R3 : x ≥ 1√

n
τ
}

in (141),
where τ is given in (93). Combining (95) and (141), we
conclude that the probability P [Ac] in (90) satisfies

P [Ac] ≤ 1− P
[
W ≥ 1√

n
τ

]
+
CH + CBE + CCh + CG√

n
(142)

= 1− P
[
W ≤ − 1√

n
τ

]
+
COut√
n
, (143)

where W ∼ N (0,V(P1, P2)) and

COut ≜ CH + CBE + CCh + CG. (144)

Equality (143) follows since W ∼ −W. Suppose that τ
satisfies

− 1√
n
τ ∈ Qinv (V(P1, P2), ϵ− γn) (145)

γn ≜ exp
{
−c2n1/3

}
+

1 + COut√
n

, (146)

where the constant c2 is as in (90). Then, the right-hand side
of (90) is bounded by ϵ. From the Taylor series expansion
of Qinv(V, ·) (e.g., [33, Lemma 13]), we conclude that (145)
is equivalent to the inequality in (21), which completes the
proof.

VI. PROOF OF THEOREM 3
In this section, we sketch the proof of Theorem 3 by de-

tailing the modifications to generalize the proof of Theorem 2
from 2 to K ≥ 2 transmitters. Assume that S ∈ P([K]).
Define the information densities as

ıS(xS ;y|xSc) ≜ log
PYK |X[K]

(y|x[K])

PYK |XSc (y|xSc)
, (147)

where Sc = [K] \ S . The information density random vector
for K transmitters is

ıK ≜ (ıS(XS ;YK |XSc) : S ∈ P([K])) ∈ R2K−1, (148)

where Xk is distributed uniformly on Sn(
√
nPk) for k ∈ [K],

Z ∼ N (0, In), X1, . . . ,XK and Z are independent, and
YK = X⟨[K]⟩ + Z.

Below, we use Lemma 1 and the generalization of Lemma
6 given in (152). The following lemma, which generalizes
Lemma 5 to K transmitters, is the critical part of the proof of
Theorem 3.

Lemma 7: Let Xi = (Xi1, . . . , Xin), i = 1, . . . ,K , be K
independent random vectors, distributed uniformly on Sn(1).
Let Hij =

√
n⟨Xi,Xj⟩ for 1 ≤ i < j ≤ K, and H =

(Hij : 1 ≤ i < j ≤ K). Then

TV
(
PH,N

(
0, IK(K−1)

2

))
≤ CK√

n
(149)

for some constant CK depending only on K.
Proof: See Appendix E.
The modifications in Section V are as follows.

1) The two-transmitter maximum likelihood decoder given
in (51) is replaced by a K-transmitter maximum likeli-
hood decoder, which chooses the message vector m[K] =
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(m1, . . . ,mK) corresponding to the maximal information
density ı[K](f[K](m[K]);y).

2) The typical set F defined in (56) is replaced by

FK ≜ ×
S∈P([K])

F(S) ⊆ Rn⊗(2K−1), (150)

where F(S) is defined in (57). Inequality (59) extends to
FK by Lemma 1.

3) The functions given in (62)–(64) are extended as

gS(t;y,xSc)

≜ P
[
ıS(X̄S ;YK |XSc) ≥ t | XSc = xSc ,YK = y

]
. (151)

In the proof of Lemma 6, we replace P1 + P2 by P⟨S⟩,
and P1P2 by

∑
i,j∈[K]
i<j

PiPj . Inequality (73) generalizes

to the K-transmitter MAC by applying its proof from
Appendix D with Lemma 1 from Section V-A. Hence,
Lemma 6 generalizes as

gS(t;y,xSc) ≤ G(S) exp {−t}√
n

, (152)

where G(S) is a constant depending only on the powers
(Ps : s ∈ S).

4) The high probability events given in (82) and (83) are
replaced by

EK ≜
⋂

S∈P([K])

E(S), (153)

AK ≜

{
ıK ≥

(
log

((∏
s∈S

Ms

)
(G(S)2)α|S|,K

)
:

S ∈ P([K])

)
− 1

2
log n1

}
, (154)

where

αs,K ≜ K

(
K

s

)
, s = 1, . . . ,K. (155)

Using the extension of the RCU bound for K transmitters
given in Remark 1 and following the same steps as Sec-
tion V-E, we replace the right-hand side of the inequality
in (90) by

P [Ac
K ] + exp

{
−cKn1/3

}
+

1√
n
, (156)

where cK is a constant.
5) To understand the differences between bounding P [Ac

K ]
and P [Ac], we first extend the definition of the modified
and centered information density random vector to K
transmitters by defining

ı̃S(xS ;yK |xSc) ≜
n∑

i=1

log
PYK |X[K]

(yi|x[K]i)

PỸK |X̃Sc
(yi|xSci)

(157)

ı̃K ≜
1√
n

[
(̃ıS(XS ;YK |XSc) : S ∈ P([K]))

− nC(P[K])
]
, (158)

where C(P[K]) is the capacity vector defined in (23),
X̃k ∼ N (0, Pk) for k ∈ [K], and

∏K
k=1 PX̃k

→
PYK |X[K]

→ PỸK
= N (0, 1 + P[K]).

We replace the threshold value in (93) by

τ ≜ log

((∏
s∈S Ms

)
(G(S))2κ|S|(PS)α|S|,K√

n
:

S ∈ P([K])

)
− nC(P[K]), (159)

where κ|S|(PS) is the constant (which depends only on
PS ) in (39). Using the joint distribution of (X[K],YK),
we get

ı̃K ∼ 1√
n

(
(n− ∥Z∥2)P⟨S⟩

2(1 + P⟨S⟩)

+

∑
i,j∈S
i<j

⟨Xi,Xj⟩+ ⟨Z,X⟨S⟩⟩

1 + P⟨S⟩
: S ∈ P([K])

)
.

(160)

Define the random vector

H ≜ (Hij : 1 ≤ i < j ≤ K) ∈ R(
K
2 ), (161)

where Hij =
⟨Xi,Xj⟩√

nPiPj

denotes the normalized inner

product of Xi and Xj . The inner product random vector
H replaces H in (104). Observe that for all different
(i1, j1) and (i2, j2) pairs, Hi1j1 and Hi2j2 are inde-
pendent of each other, which follows by independence
of X1, . . . ,XK . However, H does not have a product
distribution due to the fact that any triplets in H are
not jointly independent.3 While PH is not a product
distribution, Lemma 7 implies that PH converges to
the distribution of

(
K
2

)
i.i.d. standard Gaussian random

variables in total variation, allowing us to use the Berry-
Esseen theorem just as we did for the two-transmitter
MAC.
As for the two-transmitter MAC, the distribution in (160)
depends on X[K] only through the inner product random
vector H. The conditional distribution of ı̃K given H = h
is the same as the conditional distribution of

µ(h) +
1√
n

n∑
i=1

Ji(h), (162)

where

µ(h) ≜ E [ıK |H = h]

=
∑

i,j∈[K]
i<j

hij

( √PiPj

1 + P⟨S⟩
1 {i, j ∈ S} : S ∈ P([K])

)
(163)

Ji(h) ≜
( (1− Z2

i )P⟨S⟩ + 2
∑

s∈S xsiZi

2(1 + P⟨S⟩)
: S ∈ P([K])

)
(164)

for i ∈ [n], and x[K] are vectors on the n-dimensional
power spheres, satisfying ⟨xi,xj⟩√

nPiPj

= hij for all i < j ∈

3Given that H12 = H13 =
√
n, we have that X1 = X2 = X3. Therefore,

H23 is necessarily equal to
√
n under this condition, and H12, H13, H23 are

not jointly independent.
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[K]. The conditional covariance matrix given in (109) is
extended to K transmitters as

Σ(h) = Cov [ı̃K |H = h] = ΣK +
∑

i,j∈[K],i<j

hij√
n
Bij ,

(165)

where the
(
R2K−1

)
×
(
R2K−1

)
matrices ΣK and Bij

have elements

ΣS1S2
=

PS1PS2 + 2PS1∩S2

2(1 + PS1
)(1 + PS2)

(166)

bS1S2
=

√
PiPj

(1 + PS1
)(1 + PS2

)

·1 {{i ∈ S1, j ∈ S2} ∪ {i ∈ S2, j ∈ S1}} (167)

for S1,S2 ∈ P([K]). These formulas generalize the
formulas for the two-transmitter MAC given in (110) and
(111). By (163), (165), and the pairwise independence of
Hi1j1 , Hi2j2 for all different (i1, j1) and (i2, j2) pairs,
using the law of total expectation and variance, we find
that

E [ı̃K ] = 0 (168)
Cov [ı̃K ] = V(P[K]), (169)

where the covariance matrix V(P[K]) is defined in (24).
The rest of the proof follows the proof in Section V-F,
where we replace H by H, H̃ by the

(
K
2

)
-dimensional

standard Gaussian random vector H̃, Pı̃2|H by Pı̃K |H,
PV|H by PV|H, and PW|H by PW|H. For the probability
transition kernels PV|H and PW|H, we replace µ(h) by
µ(h), Σ by ΣK , and Σ(h) by Σ(h). We replace all
conditions in the form |h| ≤ t by |h| ≤ t1.
The only critical modification is that the bound on the
total variation distance TV(PH , PH̃) in (123) is replaced
by the bound on the total variation distance TV(PH, PH̃),
which is O

(
1√
n

)
by Lemma 7. We conclude that

|P [ı̃K ∈ D]− P [W ∈ D]| ≤ CK√
n

(170)

for some constant CK > 0, where W ∼ N (0,V(P[K])).
By combining (156) and (170) as in Section V-G, we
complete the proof of Theorem 3.

VII. PROOF OF THEOREM 5

The main difference between the coding strategies for the
Gaussian MAC and RAC is that for the Gaussian RAC, an
output typicality condition is added to the decoding function
in order to reliably detect the number of active transmitters.

A. Encoding and Decoding

Encoding: Recall that nK is the largest decoding time. In
our encoding strategy, rather than adapting the codebook to the
estimate of the number of active transmitters at the receiver, we
generate codewords with length nK . Each active transmitter
transmits one symbol of its message codeword at each time
step until the decoder signals at time nk ∈ {n0, . . . , nK} that

it is able to decode. If decoding happens at time nk, only the
initial sub-codeword of length nk is used.

The common randomness random variable U ∈ RMnK has
the distribution

PU = PU(1) × PU(2) × · · · × PU(M)︸ ︷︷ ︸
M times

, (171)

where PU(m) = PX for m ∈ [M ]. The realization of U defines
M length-nK i.i.d. codewords. In other words, the encoding
function is given by

f(U,m) = U(m), m ∈ [M ]. (172)

The need for using common randomness in encoding is due
to the requirement that a single code must satisfy multiple
constraints, i.e., the error probability constraints in (29). Show-
ing that a random code satisfies multiple constraints does not
imply the existence of a deterministic code. This issue arises in
[25], where a variable-length feedback code must satisfy both
an average decoding time and an average-error constraint, and
in [21], where a RAC code must satisfy K + 1 average error
probability constraints. See [21, Sec. II.C] for details.

Decoding: Unlike the MAC, for the Gaussian RAC, we
require the decoder to determine the time nk ∈ {n0, . . . , nK}
at which to decode. Therefore, we couple the maximum
likelihood decoder given in (51) with a threshold rule, used
to estimate the number of transmitters and a single bit of
feedback at each time ni up to and including the time nk at
which the decoder decides to decode. The maximum likelihood
decoder is applied only if the threshold test is satisfied. Here,
the role of the threshold rule is to reliably determine the true
channel in the communication epoch. We use a threshold rule
to determine the number of active transmitters because for any
P > 0, under an input distribution PX such that the expected
input power meets the power constraint in (28) with equality
(i.e., 1

nk
E
[∥∥X[nk]

∥∥2] = P ), for each k, the normalized

squared norm of the output Y
[nk]
k concentrates around its

mean. That mean is different for each k ∈ {0, 1, . . . ,K};
specifically

1

nk
E
[∥∥∥Y[nk]

k

∥∥∥2] = 1 + kP, ∀k ∈ {0} ∪ [K]. (173)

Upon receiving the first n0 symbols of the output, y[n0], the
decoder computes the following function

g0(U,y
[n0]) =

{
0 if

∣∣∣ 1
n0

∥∥y[n0]
∥∥2 − 1

∣∣∣ ≤ λ0

e otherwise
(174)

to decide whether there are any active transmitters; here λ0
is a parameter that is determined by the error criterion ϵ0. At
time n0, if g0(U,y[n0]) = 0, the receiver broadcasts a bit value
1 to all transmitters, signaling that the receiver estimates “no
active transmitters” and the epoch ends. Otherwise the receiver
broadcasts a bit value 0 and the epoch continues.
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For k ≥ 1, the decoder applies the following function to
make a decision at each subsequent time nk ≤ nK

gk(U,y
[nk]) =



m[k] if ı[k](f(U,m[k])
[nk];y[nk])

> ı[k](f(U,m
′
[k])

[nk];y[nk])

for all m′
[k]

π

̸= m[k],

m1 ≤ · · · ≤ mk,∣∣∣ 1
nk

∥∥y[nk]
∥∥2 − (1 + kP )

∣∣∣ ≤ λk

e otherwise,
(175)

where λk is a parameter chosen to satisfy the error criterion
ϵk. At time nk, if gk(U,y[nk]) ̸= e or k = K, then the receiver
broadcasts the bit value 1 to all transmitters, signaling the end
of epoch and the start of next one. Otherwise, the receiver
sends feedback 0 and the epoch continues.

By the permutation-invariance of the channel in terms
of the inputs X[k] and the identical encoding in (172), all
permutations of the messages m[k] give the same information
density. Therefore, without loss of generality, the output of
our decoder is always the ordered message vector in (175).
The condition

∣∣∣ 1
nk

∥∥y[nk]
∥∥2 − (1 + kP )

∣∣∣ ≤ λk, which does
not depend on the randomly generated codebook, allows us
with high probability to decode at time nk when the number
of active transmitters is k, rather than decoding earlier or
failing to decode at the time nk intended for the k-transmitter
scenario.

B. Error Analysis

In this section, we bound the probability of error for the
random access code in Definition 3.

No active transmitters: For k = 0, the only error event is
that the squared norm of the output Y

[n0]
0 is away from its

mean:

ϵ0 ≤ P
[∣∣∣∣ 1n0

∥∥∥Y[n0]
0

∥∥∥2 − 1

∣∣∣∣ > λ0

]
. (176)

k ≥ 1 active transmitters: When there is at least one active
transmitter, the encoding function (172) and decoding rule
(175) yield an error if and only if at least one of the following
events occurs:

• Ecodeword: At least one of the k codewords associated with
the sent messages m[k] violates the power constraint in
(28) in the first nk symbols. In this case, an error occurs
since it is forbidden to transmit those codewords. We do
not need to include the power constraint violation beyond
the nk-th symbol since that event is captured by the event
of decoding time error, stated next.

• Etime: A list of messages is decoded at a wrong decoding
time nt ̸= nk, or no messages is decoded during the
entire epoch.

• Emessage: A list of messages m′
[k] ̸= m[k] is decoded at

time nk.
In the following discussion, we bound the probability of these
events separately, and apply the union bound to combine them.

Since we are employing identical encoders at all encoders,
we simplify the analysis by treating the event Erep = {Wi =

Wj for some i ̸= j} that at least one message among transmit-
ted messages is repeated as an error. While this case is actually
advantageous to decoding, it requires special treatment since it
violates the assumption of codeword independence employed
in our analysis.

By the union bound,

P [Erep] ≤
k(k − 1)

2M
. (177)

Applying the union bound, we bound the error probability as

ϵk =
1

Mk

∑
m[k]∈[M ]k

P
[ ⋃
t : nt≤nk,t ̸=k

{
gt(U,Y

[nt]
k ) ̸= e

}
⋃{

gk(U,Y
[nk]
k )

π

̸= m[k]

} ∣∣∣W[k] = m[k]

]
(178)

≤ P [Erep] + P
[
Ec

rep

] (
P
[
Ecodeword

∣∣Ec
rep

]
(179)

+P
[
Etime

∣∣Ec
rep

]
+ P

[
Emessage

∣∣Ec
rep

] )
(180)

≤ P [Erep] + P
[
Ecodeword

∣∣Ec
rep

]
+P
[
Etime

∣∣Ec
rep

]
+ P

[
Emessage

∣∣Ec
rep

]
. (181)

Power constraint violation: The probability that a power
constraint violation occurs in the first nk symbols for at least
one of the k distinct messages is

P
[
Ecodeword

∣∣Ec
rep

]
= P

 k⋃
i=1

⋃
j:nj≤nk

j≥1

{
1

nj

∥∥∥X[nj ]
i

∥∥∥2 > P

} .
(182)

Wrong decoding time: According to the decoding rule in (175),
decoding occurs at time nk if and only if the output typicality
criterion is not satisfied for any t with nt ≤ nk and t ̸= k

(that is
∣∣∣ 1
nt

∥∥y[nt]
∥∥2 − (1 + tP )

∣∣∣ > λt), and is satisfied for

k (that is
∣∣∣ 1
nk

∥∥y[nk]
∥∥2 − (1 + kP )

∣∣∣ ≤ λk). Note that it is
possible that no message set is decoded during an entire epoch.
This would happen if

∣∣∣ 1
nt

∥∥y[nt]
∥∥2 − (1 + tP )

∣∣∣ > λt for t ∈
{0, . . . ,K}. The probability P

[
Etime

∣∣Ec
rep

]
is computed as

P
[
Etime

∣∣Ec
rep

]
= P

[ ⋃
t:nt≤nk

t ̸=k

{∣∣∣∣ 1nt
∥∥∥Y[nt]

k

∥∥∥2 − (1 + tP )

∣∣∣∣ ≤ λt

}
⋃{∣∣∣∣ 1nk

∥∥∥Y[nk]
k

∥∥∥2 − (1 + kP )

∣∣∣∣ > λk

}]
.

(183)

Wrong message: By using the RCU bound in Remark 1 and the
permutation-invariance of the information density, we bound
P
[
Emessage

∣∣Ec
rep

]
as

P
[
Emessage

∣∣Ec
rep

]
≤ E

[
min

{
1,

k∑
s=1

(
k

s

)(
M − k

s

)
P
[
ı[s](X̄

[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k])

≥ ı[s](X
[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k])
∣∣∣ X[nk]

[k] ,Y
[nk]
k

]}]
. (184)
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Combining (176), (177) and (181)–(184) completes the proof.
Note that compared to the achievability proof of the Gaussian
MAC in (11), the multiplicative constant in (184) is

(
M−k

s

)
instead of (M − 1)s since we are given that the transmitted
messages are distinct.

VIII. PROOF OF THEOREM 4

In this section, we analyze the achievability bound in
Theorem 5 by particularizing the input distribution, PX in
Theorem 5, choosing the free parameters λk, decoding times
n0, n1, . . . , nK , and bounding the probability and expectation
terms in (34). In the rest of the proof, we assume that the
decoding times satisfy n0 < n1 < · · · < nK , which we make
explicit in (211).

A. Particularizing PX

We modify the input distribution used in Theorem 2 for
the Gaussian MAC so that the randomly generated codewords
meet the power constraints with probability 1.

A random codeword distributed according to PX has length
nK and consists of K independent sub-codewords. The j-th
sub-codeword has length |N (j)|, where

N (j) ≜

{
[n1] if j = 1

{nj−1 + 1, nj−1 + 2, . . . , nj} if 2 ≤ j ≤ K

(185)

for j ∈ [K] is the index set for the j-th block in our code
design. Thus, the input distribution PX in Theorem 5 is

PX(x) =
K∏
j=1

PXN(j)

(
xN (j)

)
, (186)

where

PXN(j)

(
xN (j)

)
=
δ
(∥∥xN (j)

∥∥2 − |N (j)|P
)

S|N (j)|(
√
|N (j)|P )

, (187)

that is, XN (j) ∼ Uniform
(
S|N (j)|(

√
|N (j)|P )

)
, and

XN (1), . . . ,XN (K) are independent.
Codewords chosen according to (186) satisfy the power

constraints in (28) with equality, giving

P

 k⋃
i=1

k⋃
j=1

{
1

nj

∥∥∥X[nj ]
i

∥∥∥2 > P

} = 0. (188)

B. Error Analysis

We separate the analysis into 3 steps: deriving an output
typicality bound, evaluation of the RCU bound, and evaluation
of a Berry-Esseen type inequality.

Step 1: In this step, we bound the probability that the output
Y

[nk]
k does not satisfy the condition∣∣∣∣ 1

nk

∥∥∥Y[nk]
k

∥∥∥2 − (1 + kP )

∣∣∣∣ ≤ λk given in the decoding rule

(175). Since for k ≥ 1, YN (1)
k ,Y

N (2)
k , . . . ,Y

N (K)
k are inde-

pendent due to the input distribution in (186), Lemma 1 and
Lemma 2 imply

P
[∣∣∣∣∥∥∥Y[nk]

k

∥∥∥2 − nk(1 + kP )

∣∣∣∣ > nkλk

]
≤ 2 (κk(P1))

k
exp

{
− nkλ

2
k

8(1 + kP )2

}
(189)

for λk ∈ (0, 1 + kP ), where κj(P1) is the constant defined
in Lemma 1. For k = 0, we have

P
[∣∣∣∣∥∥∥Y[n0]

0

∥∥∥2 − n0

∣∣∣∣ > n0λ0

]
≤ 2 exp

{
−n0λ

2
0

8

}
(190)

for λ0 ∈ (0, 1). We pick

λ0 =

√
−8 log ϵ0

2

n0
(191)

to ensure that the right-hand side of (190) is bounded above
by ϵ0. By setting λt = P

2 for t ≥ 1, using (189) and (190),
and applying the union bound, we bound the probability of
decoding time error in (34b) by

B ≜ 2κ1(P ) exp

{
−
n0((k − λ0

P )P )2

8(1 + kP )2

}

+ 2
k∑

t=1

(κk(P1))
t
exp

{
−
nt((k − t− 1

2 )P )
2

8(1 + kP )2

}
.

(192)

Step 2: To bound the expectation in (34c), we first modify
the definition of the typical output set F(S) in (57) as

F(S)RAC ≜
{
y[nk] ∈ Rnk :

1

|N (j)|

∥∥∥yN (j)
∥∥∥2 ∈ I(j,S) for j ∈ [k]

}
. (193)

I(j,S) ≜ [1 + |S|P − |N (j)|−1/3,

1 + |S|P + |N (j)|−1/3]. (194)

We then show that Lemma 6 holds under input distribution
(186) with typical output set (193). That is, for every 0 <

s ≤ k, and y[nk] and x
[nk]
[k]\[s] such that y[nk] − x

[nk]
⟨[k]\[s]⟩ ∈

F([s])RAC, we prove that

g[s](t;y
[nk],x

[nk]
[k]\[s])

≜ P
[
ı[s](X̄

[nk]
[s] ;Y

[nk]
k |X[nk]

[k]\[s]) ≥ t∣∣∣ X[nk]
[k]\[s] = x

[nk]
[k]\[s],Y

[nk]
k = y[nk]

]
(195)

≤
G′

s,k exp {−t}√
nk

, (196)

where G′
s,k is a positive constant depending on s, k and P .

The derivation of the bound in (196) follows the analysis in
Section V-D. The critical goal is to verify steps (74)–(76) for
the modified input distribution in (186). This requires showing
that

P

⟨X[nk]
⟨[s]⟩,X

[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣∣E

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≤ O

(
1

√
nk

)
, (197)

where

E =
{∥∥∥XN (j)

⟨[s]⟩ + ZN (j)
∥∥∥2 = |N (j)|sj ,∥∥∥XN (j)

⟨[s]⟩

∥∥∥2 = |N (j)|uj for j ∈ [k]
}
, (198)

sj ∈ I(j, [s]), and uj > 0. The proof of (197) is similar to
the one in [5, Appendix A] for parallel Gaussian channels
since we can consider K independent sub-codewords with
lengths |N (j)|, j ∈ [K], as K parallel channels, each having
blocklength |N (j)|, j ∈ [K].

Taking an arbitrary t ∈ [k], we get

P

⟨X[nk]
⟨[s]⟩,X

[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣∣E


=

∫
Rk−1

P
[
Znt−1+1 +

√
|N (j)|
2

∈
[

a′√
|N (j)|

,
a′ + µ√
|N (j)|

]
∣∣∣∣ E ,{Znj−1+1 = zj , j ∈ [k] \ {t}

}]
·
( ∏

j∈[k]
j ̸=t

fZnj−1+1|E(zj)dzj

)
(199)

≤ L(ut, st)µ√
|N (t)|

(200)

≤ 3

2

L(ut, 1 + sP )µ√
|N (t)|

(201)

≤ 3

2

maxj∈[k] L(uj , 1 + sP )µ√
|N (t)|

, (202)

where a′ is related to a by a constant shift, and (199) follows
by setting X

N (j)
⟨[s]⟩ = (

√
|N (j)|uj , 0, . . . , 0), and conditioning

on the event that {Znj−1+1 = zj for j ̸= t}. Since t is
arbitrary in (199), we have

P

⟨X[nk]
⟨[s]⟩,X

[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣∣E


≤ 3

2

maxj∈[k] L(uj , 1 + sP )µ√
maxt∈[k] |N (t)|

(203)

≤ 3

2

√
kmaxj∈[k] L(uj , 1 + sP )µ

√
nk

, (204)

which implies (197), and (196) follows.
In the following discussion, we modify the analysis in

Section V-E according to the input distribution in (186). Define
the information density random vector ık and the typical
events analogous to (81)–(83) as

ık ≜ (ıS(X
[nk]
S ;Y

[nk]
k |X[nk]

Sc ) : S ∈ P([k])) (205)

E(S)RAC ≜
{
X

[nk]
⟨S⟩ + Z[nk] ∈ F(S)RAC

}
(206)

ERAC ≜
⋂

S∈P([k])

E(S)RAC (207)

Ak ≜

{
ık ≥

(
log

((
M − k

|S|

)
(G′

|S|,k)
2α|S|,k

)

: S ∈ P([k])

)
− 1

2
log nk1

}
, (208)

where αs,k is given in (155). By Lemma 2 and the union
bound, we have

P [Ec
RAC] ≤

k∑
j=1

exp
{
−ck|N (j)|1/3

}
, (209)

where ck is a positive constant. Combining (196) and (209)
and following the analysis in Section V-E, we bound the
expectation in (34c) by

P [Ac
k] +

k∑
j=1

exp
{
−ck|N (j)|1/3

}
+

1
√
nk
. (210)

Step 3: Given M and {ϵk}Kk=0, we set the decoding times
n1, . . . , nK according to the equalities

k logM = nkC(kP )

−
√
nk(V (kP ) + Vcr(k, P ))Q

−1

(
ϵk − Dk√

nk

)
+

1

2
log nk + ηk − k log κk(P1) (211)

for all k ∈ [K], where Dk is a positive constant to be chosen
later in (225), and ηk ≜ −2 logG′

k,k+(k−1) log k−k. Since
1
sC(sP ) >

1
kC(kP ) for s < k and (211), we reach a sequence

of conclusions.
1) There exists a constant c0 > 0 such that

minj∈[k] |N (j)| ≥ c0nk for large enough M . In
other words, |N (j)| is of the same order as nk for all
j ∈ [k].

2) The bound on the probability of message repetition,
k(k−1)
2M , decays exponentially with nk.

3) In order to bound the expression in (192) as B ≤
O
(

1√
nk

)
, we choose n0 ≥ 4(1+P 2)

P 2 log n1 + o(log n1).
4) By the union bound, Chebyshev’s inequality, αk,k = k in

(155), and the fact that(
M

k

)
≤
(
eM

k

)k

, (212)

we get

P [Ac
k] ≤

Ek

nk
+ P

[
ı[k](X

[nk]
[k] ;Y

[nk]
k ) < k logM

− 1

2
log nk − ηk

]
(213)

for some positive constant Ek.
Therefore, it remains only to evaluate the probability term in
(213). Define the modified and centered information density
random variable

ı̃k ≜
1

√
nk

(
nk∑
i=1

log
PYk|X[k]

(Yi|X[k],i)

PỸk
(Yi)

− nkC(kP )

)
,

(214)

where Ỹk ∼ N (0, 1 + kP ). By Lemma 1 and (211), we get

P
[
ı[k](X

[nk]
[k] ;Y

[nk]
k ) < k logM − 1

2
log nk − ηk

]
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≤ P
[
ı̃k < −

√
V (kP ) + Vcr(k, P )Q

−1

(
ϵk − Dk√

nk

)]
.

(215)

The conditional distribution of ı̃k given X
[nk]
[k] = x

[nk]
[k] is the

same as the conditional distribution of ı̃k given H = h, where

H = (Hij : i, j ∈ [k], i < j) ∈ R(
k
2), (216)

and Hij =
⟨X[nk]

i ,X
[nk]

j ⟩√
nkP 2

. To bound the right-hand side of

(215), in a manner similar to the arguments in Section VI,
we only need to verify that

TV(PH, PH̃) ≤ ψk√
nk

(217)

for some constant ψk, where H̃ ∼ N
(
0, I(k2)

)
. To show (217),

we define

H(t) ≜ (H
(t)
ij : i, j ∈ [k], i < j) ∈ R(

k
2), (218)

where H(t)
ij =

⟨XN(t)
i ,X

N(t)
j ⟩√

|N (t)|P 2
, then write

H =

k∑
t=1

√
|N (t)|
√
nk

H(t). (219)

By the data processing inequality of the total variation distance
and the independence of H(t), t ∈ [k], we get

TV(PH, PH̃) ≤ TV

(
k∏

t=1

PH(t) , P k
H̃

)
(220)

≤
k∑

t=1

TV(PH(t) , PH̃) (221)

≤
k∑

t=1

Fk√
|N (t)|

(222)

≤ kFk√
c0nk

, (223)

where (221) applies [44, eq. (4.5)], which bounds the total
variation distance between two product measures P k and
Qk by k times the total variation distances between P and
Q. The bound in [44, eq. (4.5)] is extended to arbitrary
product measures

∏k
i=1 Pi and

∏k
i=1Qi in [45, Lemma 2.1].

Inequality (222) follows from Lemma 7, Fk is the constant
from Lemma 7, and (223) follows from (211), which proves
(217).

By (223), and following arguments similar to those in
Section VI, we conclude that

P
[
ı̃k < −

√
V (kP ) + Vcr(k, P )Q

−1

(
ϵk − Dk√

nk

)]
≤ ϵk − Dk√

nk
+

Ck√
nk
, (224)

where Ck is a Berry-Esseen constant. We choose the constant
Dk such that

Dk√
nk

≤ k(k − 1)

2M
+B +

Ck√
nk

+
Ek

nk

+k exp
{
−ck(c0nk)1/3

}
+

1
√
nk
, (225)

where B is in (192). For large enough nk, such a constant
exists by the enumerated consequences of (211), above. From
Theorem 5 and the inequalities (188), (210)–(213), (215),
(224) and (225), we conclude that the probability of error is
bounded by ϵk. By the Taylor series expansion of the function
Q−1(·) in (211), we complete the proof.

IX. CONCLUDING REMARKS

This paper studies the Gaussian multi-access channels in the
finite-blocklength regime for two communication scenarios.
In the first scenario, called the Gaussian MAC, K active
transmitters are fixed and known to the transmitters and the
receiver; in the second scenario, called the Gaussian RAC, an
unknown subset of K transmitters is active, and neither the
transmitters nor the receiver knows the set of active transmitter.

For the Gaussian MAC problem, we build on the RCU
bound (Theorem 1) for general MACs to prove a third-order
achievability result (Theorem 2). Our random encoder design
chooses codewords distributed independently and uniformly
on the n-dimensional sphere. At the receiver, we employ a
maximum likelihood decoder. Compared to the result of Mola-
vianJazi and Laneman [8], our coding scheme improves the
achievable third-order term to 1

2 log n1 + O(1)1. Theorem 3
extends our result for the Gaussian MAC with two transmitters
to the K-transmitter Gaussian MAC.

We generalize the rateless coding strategy in [21] for the
permutation-invariant random access channels by allowing
non-i.i.d. input distributions at the random encoding function.
For the Gaussian RAC, our strategy uses concatenated code-
words such that each sub-codeword is uniformly distributed on
a power sphere and independent of the other sub-codewords.
In our proposed coding strategy, the decoding occurs at
finitely many time instants n0, . . . , nK , with the choice of nk
indicating that the decoder’s estimate of the number of active
transmitters is k. The receiver broadcasts a single bit to all
transmitters at each decoding time, indicating whether or not
it is ready to decode. The decoding rule combines a threshold
rule based on the total received power and a maximum
likelihood decoder. Building upon our result on the Gaussian
MAC, we show in Theorem 4 that our rateless Gaussian RAC
code achieves the same performance up to the third-order term
as the best known code for the Gaussian MAC in operation
(Corollary 1). Furthermore, by forcing decoding at time nK
our feedback RAC code in Theorem 4 can be used with a K-
transmitter MAC without feedback. While this can only reduce
the error probability determined in Theorem 5 by eliminating
the error events that result from deciding upon an incorrect
number of active transmitters, that reduction is negligible in
our asymptotic regime (see the proof of Theorem 4). Thus,
Theorem 4 also describes the performance of the length-nK
codebook of the RAC code when used with a K-transmitter
MAC without feedback. That means that although the length-
nK codebook of the RAC code is supported on only a subset
of the power sphere (see Fig. 2), it achieves the same first three
order terms on a K-transmitter MAC as the more traditional
code in Corollary 1 that uses the entire power sphere.
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APPENDIX A
PROOF OF COROLLARY 1

In order to prove Corollary 1, we show that for any M that
satisfies the inequality (25), it holds that

(|S| logM : S) ∈ P([K]) ∈ nC(P1)−
√
nQinv(V(P1), ϵ)

+
1

2
log n1+O (1)1. (226)

Let Z = (Z(S) : S ∈ P([K])) ∼ N (0,V(P1), ϵ)). Take M
such that the asymptotic expansion in (25) holds, implying
that

P
[
Z([K]) >

√
n

(
C(KP )− K logM

n

)
+

1

2

log n√
n

+O

(
1√
n

)]
≤ ϵ. (227)

Consider any S ∈ P([K]) with |S| < K. Then

P
[
Z(S) >

√
n

(
C(|S|P )− |S| logM

n

)
+

1

2

log n√
n

+O

(
1√
n

)]
≤ O

(
1

n

)
, (228)

which follows from Chebyshev’s inequality since C(sP ) −
s
KC(KP ) > 0 for s < K.

By the union bound, (227) and (228), we get

P

[ ⋃
S∈P([K])

{
Z(S) >

√
n

(
C(|S|P )− |S| logM

n

)

+
1

2

log n√
n

+O

(
1√
n

)}]
≤ ϵ+O

(
1

n

)
, (229)

which, by the definition (15), is equivalent to

(|S| logM : S ∈ P([K])) ∈ nC(P1)

−
√
nQinv

(
V(P1), ϵ+O

(
1

n

))
+

1

2
log n1+O (1)1.

(230)

Applying the Taylor series expansion to Qinv(V(P1), ·) com-
pletes the proof.

APPENDIX B
CODE DESIGN VARIATIONS

A. Adopting the Codebooks Based on the Channel Estimate
at Time n0

In our encoder and decoder design, we use the fact that
the received output power concentrates around its mean value.
In the proof of Theorem 2, we show that n0 = O(log n1)
symbols are sufficient to ensure that the probability that the
decision is made at the correct decoding time, i.e., nk when k
transmitters are active, decays with O

(
1√
nk

)
. In our strategy,

we make a binary decision at each decoding time n0, . . . , nK

of whether or not to decode. An alternative to this strategy
would be to decide the number of active transmitters at time
n0, which is much smaller than the rest of the decoding
times, and to inform the transmitters about the decoding
time in the epoch at time n0. This alternative allows for a

code design that depends on the feedback from the receiver
to the transmitters at time n0. Using its knowledge of the
typical interval, in which the squared norm of the output,
1
n0

∥∥∥Y[n0]
k

∥∥∥2, lies for each k ≤ K, the decoder estimates
the number of active transmitters. We denote this value by
t. The decoder could then transmit t to all transmitters, so
that all parties understand that the communication epoch is
going to end at time nt. This strategy requires ⌈log(K + 1)⌉
bits of feedback from the receiver to transmitters at time n0;
in contrast, the strategy in the proof of Theorem 4 requires
a number of bits of feedback that varies with the decoder’s
estimate of the number of active transmitters with a maximum
of K +1 bits. Let the decoder choose t as the nearest integer
to 1

P

(
1
n0

∥∥y[n0]
∥∥2 − 1

)
. Then, the bound in (192) on the

probability that the decoder errs in determining the number
of active transmitters can be bounded as

P
[
Etime

∣∣Ec
rep

]
≤ 2

 k∏
j=1

κj(P1)

 exp

{
−

n0(
P
2 )

2

8(1 + kP )2

}
(231)

in the case when the decision is made at time n0. Like (192),
this bound decays exponentially with n0. Here, however, the
exponential rate is smaller than (192). Hence, this modification
in the strategy increases the constant c in (32), and affects the
achievable O(1) term in (31).

As the encoders learn the estimate of the number of
active transmitters at an earlier time, an encoding function
that depends on the feedback from the receiver could be
employed as follows. Recall from (28) that the maximal-power
constraints apply to the decoding times n1, . . . , nK , but not to
n0. Given the estimate t of the number of active transmitters
k, length-nt codewords are drawn such that the first n1
symbols are uniformly distributed on n1-dimensional sphere
with radius

√
n1P , and the symbols indexed from n1 + 1

to nt are distributed on (nt − n1)-dimensional sphere with
radius

√
(nt − n1)P , i.e., instead of K independent spherical

sub-codewords, we use two independent sub-codewords. The
length of the second sub-codeword depends on the estimate
t. The effect of this modification on the error analysis is that
under this input distribution, the total variation bound in (223)
can be improved to

TV(PH, PH̃) ≤ Fk√
n1

+
Fk√

nk − n1
, (232)

which decays with the same asymptotic rate as (223). There-
fore, this modification affects only the O(1) term in (31),
meaning that the same expansion as Theorem 4 is achieved.

B. Decoding Transmitter Identity

Another scenario of possible interest is the case, where
the decoder must decode transmitter identities as well as
messages. For this scenario, as we observed in the context
of RACs without codeword cost constraints [21, Section V.D],
one can again use the encoding and decoding rules employed
in Section VII-A with a message set size of KM such that the
messages indexed from (k−1)M+1 to kM are associated with
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transmitter k. If the decoder decides to decode k messages
at time nk, a list of k out of KM messages is decoded,
which automatically reveals the identities of the transmitters.
By our RAC code design, it is possible that the decoder
decodes multiple messages belonging to the same transmitter;
this would not have been possible with the MAC decoder.
Given that there are k active transmitters, in the proposed
coding scheme, the random message W[k] is not uniformly
distributed over a set of size

(
KM
k

)
, as it would be if any

combination of k of the KM codewords could be transmitted.
Instead, it is uniformly distributed over a set of size Mk since
each of the k active transmitters sends exactly one of its M
codewords. Nonetheless, replacing M by KM in Theorem 4
gives a valid upper bound on the resulting error probability
since the codewords for each transmitter and each message
are generated i.i.d. While the inclusion of all

(
KM
k

)
codeword

combinations in (178)–(181) may yield looser than necessary
bounds on the error probability, their implication is that to
decode transmitter identities the RAC code pays a penalty of
−k logK on the right-hand side of (31). Since K does not
grow with n1, decoding transmitter identities affects only the
O(1) term in (31).

APPENDIX C
PROOF OF LEMMA 4

Pinsker’s inequality (e.g., [46, Th. 6.5]) states that for any
distributions P and Q,

TV(P,Q) ≤
√

1

2
D(P∥Q). (233)

Let tr(·) denote trace of its matrix argument. The relative en-
tropy between two d-dimensional Gaussian distributions with
positive covariance matrices is given (e.g., [46, eq. (1.18)]) by

D(N (µ1,Σ1)∥N (µ2,Σ2))

=
1

2

(
tr(Σ

−1/2
1 Σ2Σ

−1/2
1 − Id) + (µ1 − µ2)

TΣ−1
1 (µ1 − µ2)

− log det(Σ
−1/2
1 Σ2Σ

−1/2
1 )

)
. (234)

Define

G ≜ Σ
−1/2
1 Σ2Σ

−1/2
1 − Id (235)

a ≜
1

2

√
(µ1 − µ2)TΣ

−1
1 (µ1 − µ2). (236)

Combining (233) and (234) and using the inequality
√
x+ y ≤√

x+
√
y, we get

TV(N (µ1,Σ1),N (µ2,Σ2))

≤ a+
1

2

√
tr(G)− log det(Id + G). (237)

To bound the logdeterminant term in (237) from below, we
use the following result from [42, Th. 1.1]. Let ρ(·) denote the
spectral radius, i.e., the maximum absolute eigenvalue, and let
∥·∥F denote the Frobenius norm. If ρ(G) < 1, then

exp

{
tr(G)−

∥G∥2F
2(1− ρ(G))

}
≤ det(Id + G). (238)

For ρ(G) < 1, we apply (238) to (237) and get

TV(N (µ1,Σ1),N (µ2,Σ2)) ≤
1

2
√
2

∥G∥F√
1− ρ(G)

+ a.

(239)

In addition, trivially, we have that

TV(N (µ1,Σ1),N (µ2,Σ2)) ≤ 1 (240)

≤
∥G∥F
ρ(G)

+ a, (241)

where in (241), we use the fact that Frobenius norm is an
upper bound to the spectral radius. Taking the tighter bound
among (239) and (241), we conclude that for ρ(G) < 1,

TV(N (µ1,Σ1),N (µ2,Σ2))

≤ min

{
1

2
√
2

1√
1− ρ(G)

,
1

ρ(G)

}
∥G∥F + a (242)

≤ 2 +
√
6

4
∥G∥F + a. (243)

Inequality (243) follows since the maximum of the minimum
term in (242) is achieved by ρ(G) = 2

√
6 − 4 ≈ 0.899 and

that maximum value is 2+
√
6

4 . Since the coefficient 2+
√
6

4 >
1 ≥ 1

ρ(G) for ρ(G) ≥ 1, we conclude that (243) holds for any
ρ(G).

APPENDIX D
PROOF OF (73)

We show a more general result. Fix any constant u < P1 +
P2. We prove below that for n large enough,

g(y) ≜ P
[
∥X1 +X2∥2 ≤ nu

∣∣∣∥X1 +X2 + Z∥2 = y
]

(244)

≤ exp {−nC} (245)

for all y ∈ I, where

I ≜ [n(1 + P1 + P2 − ϵ), n(1 + P1 + P2 + ϵ)] (246)

ϵ ≜ n−1/3, (247)

and C is a positive constant depending on u. Taking u =
P1 +P2 −

√
P1P2 in (244) then proves the desired inequality

(73).
We proceed to prove (245). Since the support of

∥X1 +X2∥2 is

S = [n(
√
P1 −

√
P2)

2, n(
√
P1 +

√
P2)

2], (248)

inequality (245) is trivially satisfied for u < (
√
P1 −

√
P2)

2.
To show (245) for (

√
P1 −

√
P2)

2 ≤ u < P1 + P2, we show
two concentration results. First, we show that

g(y) = g(n(1 + P1 + P2)) exp{O(nϵ)} (249)

for all y ∈ I; second, we show that for n large enough,

p ≜ P
[
∥X1 +X2∥2 ≤ nu

∣∣∣A] (250)

≤ exp{−nC ′} (251)

for some C ′ > 0, where the event A is defined as

A ≜
{
∥X1 +X2 + Z∥2 ∈ I

}
. (252)
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Using (249) and (251), we show (245) as follows. By
conditioning the probability in (250) on each value of
∥X1 +X2 + Z∥2, we express p as

p =

∫
I
g(y)f∥X1+X2+Z∥2|A(y)dy (253)

= g(n(1 + P1 + P2)) exp{O(nϵ)} (254)
≤ exp{−nC ′}, (255)

where (254) follows from (249) and

min
y∈I

g(y) ≤
∫
I
g(y)f∥X1+X2+Z∥2|A(y)dy ≤ max

y∈I
g(y).

(256)

Inequality (255) follows from (251). Inequalities (249) and
(255) imply that since O(nϵ) = o(n), there exists a constant
C > 0 such that for n large enough, (245) holds for all y ∈ I.

We proceed to show (251). By Bayes’ rule, we have

p =
P
[
∥X1 +X2∥2 ≤ nu

]
P
[
A
∣∣∣ ∥X1 +X2∥2 ≤ nu

]
P [A]

.

(257)

Changing measure from PX1+X2PZ to PŨPZ, where Ũ ∼
N (0, (P1 + P2)In), and then applying Lemma 1, we get

p ≤
κ2(P1, P2)P

[∥∥∥Ũ∥∥∥2 ≤ nu

]
· 1

1− κ2(P1, P2)P
[∣∣∣∣∥∥∥Ũ+ Z

∥∥∥2 − n(1 + P1 + P2)

∣∣∣∣ > nϵ

]
(258)

≤ κ2(P1, P2)
exp

{
−n(P1+P2−u)2

4(P1+P2)2

}
1− 2κ2(P1, P2) exp{ −nϵ2

8(1+P1+P2)2
}

(259)

≤ 2κ2(P1, P2) exp

{
−n(P1 + P2 − u)2

4(P1 + P2)2

}
(260)

≤ exp{−nC ′} (261)

for all n large enough, where κ2(P1, P2) is the constant
defined in (38), and C ′ is a positive constant. Inequality (259)
follows from the tail bounds on the chi-squared distribution
in Lemma 2, and (260) follows since the denominator on the
right-hand side of (259) is greater than 1

2 for n large enough.
Inequality (261) holds since u < P1 + P2.

We proceed to prove (249). Define the events B ≜
{∥X1 +X2∥2 ≤ nu} and B(λ) ≜ {∥X1 +X2∥2 = λ} for
any λ ∈ S . By Bayes’ rule, we can express g(y) as

g(y) =
P [B] f∥X1+X2+Z∥2|B(y)

f∥X1+X2+Z∥2(y)
. (262)

By the spherical symmetry of the distribution of X1 +X2,
the conditional distribution of ∥X1 +X2 + Z∥2 given B(λ)
does not depend on u when we fix X1 +X2 to any u such
that ∥u∥2 = λ ∈ S . Therefore, the conditional distribution of
∥X1 +X2 + Z∥2 given B(λ) equals the distribution of

n∑
i=1

∥∥∥∥∥Zi +

√
λ√
n

∥∥∥∥∥
2

, (263)

which has non-central chi-squared distribution with n degrees
of freedom and non-centrality parameter λ. That is, the prob-
ability density function is

f(x;n, λ) =
1

2
exp

{
− (x+ λ)

2

}(x
λ

)n
4 − 1

2

In
2 −1(

√
λx),

(264)

where Iν(x) denotes the modified Bessel function of the first
kind with order ν. Fix some λ > 0, x1 = nb, and x2 =
n(b+ δ), where 0 < δ ≤ ϵ and b > 0. Consider the ratio

f(x1;n, λ)

f(x2;n, λ)
= exp{x2 − x1}

(
x1
x2

)n
4 − 1

2 In
2 −1(

√
λx1)

In
2 −1(

√
λx2)

.

(265)

Paris [47] bounds Iν(x)/Iν(y) as

exp {x− y}
(
x

y

)ν

<
Iν(x)

Iν(y)
<

(
x

y

)ν

(266)

for any 0 < x < y and ν > −1/2. Using (266), we bound
(265) as

exp{nδ}
(
1− δ

b+ δ

)n
2 −1

exp
{
−
√
nλ
(√

b+ δ −
√
b
)}

≤ f(x1;n, λ)

f(x2;n, λ)
(267)

≤ exp{nδ}
(
1− δ

b+ δ

)n
2 −1

. (268)

Applying the Taylor series expansion at δ = 0 gives

log

(
1− δ

b+ δ

)
= −δ

b
+O(δ2) (269)

−
√
nλ
(√

b+ δ −
√
b
)
= −

√
nλ

(
δ

2
√
b
+O(δ2)

)
. (270)

Substituting (269) and (270) in (267) and (268), we get

f(x1;n, λ)

f(x2;n, λ)
= exp{O(nδ)}. (271)

We can also verify the validity of (271) for λ = 0 by using the
probability density function of chi-squared distribution with n
degrees of freedom instead of (264). Particularizing (271) to
b = 1 + P1 + P2, we get for all λ ∈ S that

f∥X1+X2+Z∥2|B(λ)(y)

= f∥X1+X2+Z∥2|B(λ)(n(1 + P1 + P2)) exp{O(nϵ)},(272)

which together with (262) implies (249).

APPENDIX E
PROOF OF LEMMA 7

We use the induction technique from [43, Th. 4] to prove
this lemma, showing that the total variation distance in (149)
diminishes as n goes to infinity. We here prove that the
convergence rate is O

(
1√
n

)
. Since the distribution of H is

invariant to rotation, we fix

X1 = (1, 0, 0, . . . , 0). (273)
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Then H1j =
√
nXj1 for 2 ≤ j ≤ K. Define the vectors

H1 ≜ (H1j : 2 ≤ j ≤ K) (274)

H2 ≜ (Hij : 2 ≤ i < j ≤ K), (275)

which consist of all the inner product random variables
including X1, and not including X1, respectively. Hence
H = (H1,H2). Notice that H1 is a product distribution since
Xj1’s are independent.

Note that we have for 2 ≤ i < j ≤ K

Hij =
√
nXi1Xj1 +

√
n√

n− 1
(1−X2

i1)
1
2 (1−X2

j1)
1
2Vij

(276)

Vij =
√
n− 1⟨Yi,Yj⟩, (277)

where Yi = (1 − X2
i1)

− 1
2 (Xi2, . . . , Xin) ∈ Rn−1 for

i = 2, . . . ,K . Denote by p
(n)
K the distribution of the

(
K
2

)
-

dimensional random vector (
√
n⟨Zi,Zj⟩ : 1 ≤ i < j ≤ K),

where the Zi, i ∈ [K], are distributed independently and
uniformly on Sn(1).

Since Yi, i ∈ {2, . . . ,K}, are distributed independently and
uniformly on Sn−1(1), the joint distribution of V = (Vij : 2 ≤
i < j ≤ K) is p(n−1)

K−1 . By (276), the conditional distribution
of Hij given H1 = h1 is the same as the distribution of

h1ih1j√
n

+

√
n√

n− 1

(
1− h21i

n

) 1
2

(
1−

h21j
n

) 1
2

Vij (278)

for 2 ≤ i < j ≤ K. We define the random vector
H∗

2 = (H∗
ij : 2 ≤ i < j ≤ K) through H1 as follows. The

conditional distribution of H∗
ij given H1 = q1 is the same as

the distribution of

h1ih1j√
n

+

√
n√

n− 1

(
1− h21i

n

) 1
2

(
1−

h21j
n

) 1
2

Zij (279)

for 2 ≤ i < j ≤ K, where Zij ∼ N (0, 1), and H∗
ij , 2 ≤ i <

j ≤ K, are conditionally independent given H1. Now, we are
ready to apply the mathematical induction.

Base case: For K = 2, we have

TV(p
(n)
2 ,N (0, 1)) ≤ 4

n
(280)

by Lemma 5 with k = 1.
Inductive step: For K > 2, assume that for any n,

TV
(
p
(n)
K−1,N

(
0, I 1

2 (K−1)(K−2)

))
≤ CK−1√

n
(281)

for some constant CK−1. Let PH̃1
= N (0, IK−1) and PH̃2

=

N
(
0, I(K−1

2 )

)
. Since the total variation distance is ℓ1 norm,

applying the triangle inequality gives

TV
(
p
(n)
K ,N

(
0, I(K2 )

))
= TV

(
PH1PH2|H1

, PH̃1
PH̃2

)
(282)

≤ TV
(
PH1PH2|H1

, PH̃1
PH2|H1

)
(283)

+TV
(
PH̃1

PH2|H1
, PH̃1

PH∗
2 |H1

)
(284)

+TV
(
PH̃1

PH∗
2 |H1

, PH̃1
PH̃2

)
. (285)

Here, (283) approximates the input measure PH1
with the cor-

responding i.i.d. Gaussian measure PH̃1
, (284) approximates

the inner product random variables Vij in the definition of the
probability transition kernel given in (278) with i.i.d. standard
Gaussian random variables, and (285) approximates the mean
in (279) by 0 and the variance by 1. We next bound the right-
hand sides of (283)–(285) in that order. We have

TV
(
PH1

PH2|H1
, PH̃1

PH2|H1

)
= TV

(
PH1

, PH̃1

)
(286)

≤ (K − 1)TV (PH12
,N (0, 1)) (287)

≤ 4(K − 1)

n
, (288)

where (287) follows from [45, Lemma 2.1] since PH1
=

(PH12)
K−1 and PH̃1

= (N (0, 1))K−1 are both product
distributions, and (288) follows from Lemma 5. The total
variation distance in (284) is bounded as

TV
(
PH̃1

PH2|H1
, PH̃1

PH∗
2 |H1

)
= E

[
TV

(
PH2|H1=H̃1

, PH∗
2 |H1=H̃1

)∣∣∣H̃1

]
(289)

= TV
(
p
(n−1)
K−1 ,N

(
0, I(K−1

2 )

))
(290)

≤ CK−1√
n− 1

, (291)

where (290) follows from the definitions (278) and (279) since
the total variation distance is shift and scale invariant and
(291) follows from the inductive assumption (281). The total
variation distance in (285) is bounded as

TV
(
PH̃1

PH∗
2 |H1

, PH̃1
PH̃2

)
= E

[
TV

(
PH∗

2 |H1=H̃1
, PH̃2

)∣∣∣H̃1

]
(292)

≤ E

 ∑
2≤i<j≤K

TV
(
PH∗

ij |H1=H̃1
,N (0, 1)

)∣∣∣∣∣∣H̃1

 (293)

=

(
K − 1

2

)
E
[
TV

(
N
(
H̃12H̃13√

n
,

n

n− 1

(
1− H̃2

12

n

)
(
1− H̃2

13

n

))
,N (0, 1)

)]
(294)

≤
(
K − 1

2

){
1

2

E
[∣∣∣H̃12

∣∣∣]2
√
n

+
2 +

√
6

4

∣∣∣∣∣∣ n

n− 1

(
E

[
1− H̃2

12

n

])2

− 1

∣∣∣∣∣∣
}

(295)

=

(
K − 1

2

)(
1

π
√
n
+

2 +
√
6

4n

)
, (296)

where (293) follows from [45, Lemma 2.1] since the con-
ditional distribution of H∗

2 given H1 = h1 is a product
distribution and PH̃2

is an i.i.d. standard Gaussian. Equality
(294) follows since the conditional distribution of H∗

ij given
H1 = h1 is identically distributed for 2 ≤ i < j ≤ K.
Inequality (295) follows from Lemma 4 with d = 1 using the
i.i.d. distribution of H̃12 and H̃13. Combining (288), (291),
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(296), and the inequality in (283) completes the proof by
induction.

We note that the convergence rate of the total variation
distance of interest is O

(
1√
n

)
for K > 2, while it is faster(

O
(
1
n

))
for K = 2.
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