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Although it is well known that the amount of resources that can be asymptotically distilled from a
quantum state or channel does not exceed the resource cost needed to produce it, the corresponding relation
in the nonasymptotic regime hitherto has not been well understood. Here, we establish a quantitative
relation between the one-shot distillable resource yield and dilution cost in terms of transformation errors
involved in these processes. Notably, our bound is applicable to quantum state and channel manipulation
with respect to any type of quantum resource and any class of free transformations thereof, encompassing
broad types of settings, including entanglement, quantum thermodynamics, and quantum communication.
We also show that our techniques provide strong converse bounds relating the distillable resource and the
resource dilution cost in the asymptotic regime. Moreover, we introduce a class of channels that generalize
the twirling maps encountered in many resource theories, and by directly connecting it with resource
quantification, we compute analytically several smoothed resource measures and improve our one-shot
yield-cost bound in relevant theories. We use these operational insights to exactly evaluate important
measures for various resource states in the resource theory of magic states.
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I. INTRODUCTION

Resource distillation and dilution are two fundamental
resource manipulation tasks concerned, respectively, with
the purification of noisy quantum resources and with the
synthesis of general resources from pure ones. There have
been many efforts to investigate the optimal rates of these
tasks, which are known, respectively, as the distillable
resource yield and the resource dilution cost, under various
physical settings in the asymptotic regime with vanishing
error [1–6] and in the nonasymptotic regime with nonzero
error [7–12]. In the asymptotic regime, an operational
argument paralleling the second law of thermodynamics
implies that the distillable resource is bounded from above
by the dilution cost, because otherwise one could pro-
duce an unbounded amount of resources by repeating the
distillation-dilution cycle ad infinitum [2,5,13–19]. (For
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related discussions of second-order asymptotics in the con-
text of entanglement theory, see also Refs. [20–22]). How-
ever, in the nonasymptotic regime, the relation between the
distillable resource and the resource cost is more subtle,
especially when errors incurred in the transformations are
also taken into account.

The recent work of Ref. [23] has established a quanti-
tative relation in the nonasymptotic regime for entangle-
ment transformations that use local operations and classi-
cal communication and it has recovered the well-known
asymptotic relation as a limit of the one-shot bound. A nat-
ural question following these findings is to what extent we
can strengthen the relations obtained there and establish
the corresponding bounds in more general settings beyond
the distillation and dilution of entangled states.

One possibility is to extend the result for entanglement
manipulation to the manipulation of other types of quan-
tum resources, such as quantum superposition [9,10,24,25]
and thermal nonequilibrium [3,26]. The ultimate form of
this extension is to consider general resource theories [27],
which encompass diverse types of physical resources in a
single framework. Results obtained for general resource
theories are not only readily applicable to practical set-
tings of interest but also provide foundational insights into
what properties are universally shared by wide classes of
quantum resources, which might seem very different from

2691-3399/22/3(1)/010348(33) 010348-1 Published by the American Physical Society

https://orcid.org/0000-0003-3837-8159
https://orcid.org/0000-0001-7225-071X
https://orcid.org/0000-0002-3916-4462
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.010348&domain=pdf&date_stamp=2022-04-12
http://dx.doi.org/10.1103/PRXQuantum.3.010348
https://creativecommons.org/licenses/by/4.0/


TAKAGI, REGULA, and WILDE PRX QUANTUM 3, 010348 (2022)

each other on the surface. Despite the apparent difficulty of
getting meaningful results out of this abstract setup, recent
years have seen significant development in the understand-
ing of operational aspects of general resource theories,
including the settings of resource erasure [28,29], discrim-
ination tasks [30–35], resource quantification [27,36,37],
and resource transformations [4,12,16,19,31,38–42].

Another possible extension is to the setting of quan-
tum channel manipulation. Although research in resource
theories has largely focused on quantum states, there are
various situations in which quantum dynamics, generally
represented by quantum channels, play the role of the
main objects of study. As a framework to accommodate
these settings, resource theories of quantum channels have
recently been under rapid development [11,31,43–69].
These dynamical resources include resource theories of
states as special cases, because quantum states can be
equivalently represented as quantum channels that pre-
pare them. Thus, channel theories are strictly more general
than state theories and results that hold for arbitrary quan-
tum channel resources are automatically carried over to
state theories. Importantly, we can impose additional struc-
tures to channels under study so that the resulting resource
theory can describe various settings involving quantum
channels with predetermined structures, such as the sce-
nario of Bell nonlocality represented by no-signaling boxes
[70–72], and measurement incompatibility [73], where a
channel describes a set of positive operator-valued mea-
sures (POVMs) [63]. Although the performance of channel
distillation and one-shot channel manipulation in gen-
eral resource theories has recently been studied [58,59,
63,67,68], the relation between the one-shot distillable
resource and the resource cost under arbitrary free-channel
transformations has still been elusive.

In this work, we establish a fundamental quantitative
relation between the one-shot distillable resource and the
dilution cost that is applicable to general resource theories
of quantum channels, accomplishing the two extensions
in a single framework. We further extend the one-shot
bound to the asymptotic regime and obtain strong con-
verse bounds between transformation rates, also revealing
new relations in the asymptotic manipulation of quantum
states. Our framework not only accommodates well-known
quantum resources that have been previously studied using
related approaches—such as quantum entanglement and
coherence—but also other settings that involve dynamical
resources as central objects of study, e.g., quantum com-
munication. Notably, a major part of our main results does
not even assume the convexity or closedness of the set
of free channels, unlike most of the works dealing with
general resource theories. Moreover, our bounds hold for
all chosen sets of free operations satisfying only minimal
requirements, thus accommodating all physically moti-
vated choices of free operations, including ones that may
be equipped with complex structures.

An important technical aspect of our result is that, for
the bounds to be most effective, they require the collapse
of a class of resource measures based on Rényi diver-
gences. Focusing on resource theories of states, we provide
an operational interpretation for this and related conditions
in terms of a special class of free operations that reflects
the essential features of the “twirling” operation commonly
encountered in various theories [74,75]. We use this class
of operations to obtain analytical expressions for a num-
ber of smoothed resource measures, leading also to an
improved yield-cost bound for the case of state manipula-
tion. Finally, to demonstrate the applicability of our results,
we use these operational insights in the resource theory
of magic [54,76,77] and compute resource measures for
several special states of interest.

We focus on discussing the main results and their impli-
cations in the main text, while deferring all proofs and
technical details to the appendices.

II. RESOURCE THEORIES OF STATES

We begin by introducing the framework of resource
theories of quantum states, in which quantum states are
the central objects under study [78]. Quantum informa-
tion processing necessarily involves the manipulation of
quantum states but is commonly performed under some
physical restrictions, which limits the accessible set of
quantum states and operations. A primary example is a
scenario in which two parties, Alice and Bob, are physi-
cally separated. Unless they are connected by a quantum
communication channel, they can only apply local quan-
tum operations and exchange classical messages. This
restriction limits the accessible set of operations to the
class known as local operations and classical communica-
tion (LOCC). Importantly, LOCC channels cannot create
entanglement for free but can only prepare states that are
separable [79].

The framework of resource theories allows us to deal
formally with such restrictions [27]. It provides a recipe to
quantify the amount of resource that cannot be created due
to the restriction and characterize feasible resource manip-
ulation using only accessible operations. Each resource
theory comes with a set F of free states and a set O of free
operations. They are subsets of quantum states and quan-
tum channels (completely positive trace-preserving maps),
respectively, and are considered to be accessible for free
under a given setting. The minimal requirement for free
operations is that they should not create resourceful states
out of free states, i.e.,� ∈ O ⇒ �(σ) ∈ F, ∀σ ∈ F. Phys-
ical considerations usually impose more constraints but it
is useful to consider the set of free operations consisting of
all the operations satisfying this minimal requirement; we
call this the maximal set of free operations and write it as
Omax. Consequently, any valid set of free operations is a
subset of Omax.
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A major strength of resource theories is that they allow
us to evaluate the resourcefulness of a given state quan-
titatively. This is made possible by introducing resource
measures, which are functions from quantum states to real
numbers that represent the amount of resource contained
in the state. The requirement for resource measures is that
they output the same value for free states and that they do
not increase under the application of free operations.

Here, we consider two resource measures that can be
defined for an arbitrary set F of free states and an arbi-
trary set O of free operations. The first one is known as the
generalized robustness or, alternatively, the max-relative
entropy measure [80–83], defined as

Dmax,F(ρ) := inf
{

log(1 + s)
∣∣ ρ + sτ

1 + s
∈ F, τ ∈ D

}

= inf
{
λ
∣∣ ρ ≤ 2λσ , σ ∈ F

}
, (1)

where D is the set of all quantum states. The other type of
resource measure relevant to this work is the min-relative
entropy measure [82], defined as

Dmin,F(ρ) := inf
σ∈F

Dmin(ρ‖σ), (2)

where Dmin(ρ‖σ) := − log Tr[�ρσ ], with �ρ denoting
the projector onto the support of ρ.

These quantities lay out a platform for establishing rela-
tions between resource manipulation and resource quan-
tification. Resource distillation and dilution in particular
stand out as important subclasses of resource manipula-
tion tasks. Resource distillation is a protocol to transform
a given state to a state in the family T of reference states
using free operations, while resource dilution is the oppo-
site task, in which a reference state is to be transformed to
the desired state. The optimal performance of these tasks is
characterized by the one-shot distillable resource and the
dilution cost, defined, respectively, as

dε
O
(ρ) := sup

{
RF(	)

∣∣ F(�(ρ),	) ≥ 1 − ε,

	 ∈ T,� ∈ O
}

,

cε
O
(ρ) := inf

{
RF(	)

∣∣ F(ρ,�(	)) ≥ 1 − ε,

	 ∈ T,� ∈ O
}

,

(3)

where F(ρ, σ) := ‖√ρ√
σ‖2

1 is the fidelity [84] and RF

refers to an arbitrary resource monotone. For simplicity, we
take RF = Dmin,F in the above definition throughout this
paper.

To provide more insight into these definitions and con-
nect them with notions of distillation and dilution familiar
from commonly encountered resource theories, let us con-
sider the case of quantum entanglement. Here, F denotes

all separable quantum states and the family T of refer-
ence states can be taken simply as copies of the maximally
entangled qubit Bell state:

T = {	⊗n
2 |n ∈ N}, (4)

where |	2〉 := 1√
2
(|00〉 + |11〉) and we use the shorthand

notation 	2 = |	2〉〈	2|. Combined with the fact that [85]

Dmin,F(	
⊗n
2 ) = n, (5)

the quantities dε
O

and cε
O

can be alternatively understood
as asking, respectively, how many copies of |	2〉 can be
obtained from a given state, or how many copies of |	2〉
are necessary to produce a given state. We use more gen-
eral definitions of distillation yield and resource cost to
accommodate potentially more complex families of refer-
ence states and resource theories where a simple choice of
reference states T might not be available.

III. RESOURCE THEORIES OF CHANNELS

We now introduce resource theories of quantum chan-
nels, extending the framework described in the previous
section. To take into account the various structures that
may be imposed on channels, we employ the approach of
Ref. [63] and consider a subset Oall of quantum channels
as the set of channels of interest. Each situation desig-
nates a set O ⊂ Oall of free channels that does not contain
any resource considered precious under the given setting.
We also need to introduce the set of free operations that
are accessible to manipulate channels. General channel
transformations are described by quantum superchannels
[86,87]. Superchannels are linear maps that map quan-
tum channels to quantum channels and they are physically
realizable by sandwiching an input channel with a pre-
processing channel and a postprocessing channel, both of
which can also be connected by a quantum memory. Let-
ting O

′
all denote the set of output channels of interest, the

set of relevant superchannels is specified as

Sall := {
 ∣∣ 
(E) ∈ O
′
all, ∀E ∈ Oall

}
. (6)

Then, one can consider a subset S ⊂ Sall of superchan-
nels as free superchannels, serving as free operations. The
minimal requirement for free operations forces � ∈ S ⇒
�(M) ∈ O

′, ∀M ∈ O. Analogous to the case of state the-
ories, we also define the maximal set of free superchannels
as the set of superchannels satisfying the above minimal
condition and call it Smax.

We can analogously introduce resource quantifiers that
do not increase under any set of free superchannels. The
relevant channel resource measures that we need are the
max-relative entropy measure [31,46,56,57], defined for
every E ∈ Oall as
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Dmax,O(E) := inf
M∈O

sup
ψ

Dmax(id ⊗ E(ψ)‖id ⊗ M(ψ)),

(7)

and the min-relative entropy measure [56,57], defined as

Dmin,O(E) := inf
M∈O

sup
ψ

Dmin(id ⊗ E(ψ)‖id ⊗ M(ψ)),

(8)

where the optimization is restricted to every pure input
state ψ , without loss of generality [88].

Then, we can formalize the tasks of resource distillation
and dilution. Resource distillation is a task that transforms
a given channel E ∈ Oall to a channel in the set T ⊂ O

′
all

of reference channels using free superchannels S, while
resource dilution transforms a reference channel to the
desired channel E . The optimal performance of these tasks
is characterized by the one-shot distillable resource and
dilution cost, defined, respectively, as

dε
S
(E) := sup

{
RO′(T )

∣∣ F(�(E),T ) ≥ 1 − ε,

T ∈T,� ∈ S
}

,

cε
S
(E) := inf

{
RO′(T )

∣∣ F(E ,�(T )) ≥ 1 − ε,

T ∈ T,� ∈ S
}

,

(9)

where

F(E1, E2) := min
ψ

F(id ⊗ E1(ψ), id ⊗ E2(ψ)) (10)

is the worst-case fidelity [88] (also called the channel
fidelity) and RO refers to an arbitrary resource monotone,
which we take as RO = Dmin,O in the above definition for
simplicity.

In our discussion below, we make the natural assump-
tion that the reference channel T is a pure target channel,
in the sense that id ⊗ T (ψ) is pure for every pure state ψ .
This covers general types of distillation processes encoun-
tered in physical resource theories, where T plays the role
of a noiseless resource. If the input and output systems
are identical, then the condition implies that T is uni-
tary, while if the input and output systems have different
dimensions, then it implies that T is an isometry. When
the input space is trivial—which is the case, e.g., in the
special case of resource theories of states—then T reduces
to a pure-state-preparation channel.

IV. YIELD-COST RELATIONS

Our first main result is a relation between the one-shot
distillable resource and dilution cost, which we dub a yield-
cost relation, applicable to (1) dynamical resource theories
of channels, (2) any set of free channels, and (3) any set of
free superchannels defined for the given free channels.

Theorem 1: Suppose that for every channel T in the cho-
sen reference set T, id ⊗ T (ψ) is pure for every pure state
ψ and T satisfies Dmin,O(T ) = Dmax,O(T ). Then, for all
ε1 ∈ [0, 1) and ε2 ∈ [0, 1 − ε1], for every quantum chan-
nel E , and for every set S ⊆ Smax of free superchannels,
the following inequality holds:

dε1
S
(E) ≤ cε2

S
(E)+ log f (ε1, ε2), (11)

where f (ε1, ε2) is a function defined as

f (ε1, ε2) := min
{
(1 − ε1 − √

ε2)
−1, (
√

1 − ε2 − √
ε1)

−2
}

(12)

for ε1 + √
ε2 < 1 and

f (ε1, ε2) := (
√

1 − ε2 − √
ε1)

−2 (13)

otherwise.

For ε1 + √
ε2 < 1, each quantity can be tighter than

the other for certain error regions. Indeed, direct calcula-
tion reveals that (1 − ε1 − √

ε2)
−1 ≤ (

√
1 − ε2 − √

ε1)
−2

if and only if

1
2
(1 −
√

1 − ε2)(1 − √
ε2)

≤ ε1 ≤ 1
2
(1 +
√

1 − ε2)(1 − √
ε2). (14)

This gives a fundamental relation between distillable
resource and dilution cost in the one-shot regime under any
chosen set of free superchannels. In particular, when trans-
formation errors are taken into account, the one-shot cost
could be smaller than the one-shot yield. Our result estab-
lishes a quantitative trade-off relation between a potential
yield-cost gap and the transformation inaccuracy.

The only assumption required for the result to hold is
the choice of reference channels that satisfy Dmin,O(T ) =
Dmax,O(T ). The collapse of the two measures to the same
value is a common property of maximally resourceful
states or channels [12,41,63], which are precisely the
most appropriate references employed in distillation and
dilution protocols in practice. We review examples of ref-
erence states and channels in several physical settings in
Appendix B. We also return to this condition in Sec. V to
provide more intuition behind the assumption and give an
operationally motivated understanding of it.

Theorem 1 is a direct consequence of the following
lemma.

Lemma 2: Let E be an arbitrary quantum channel and let
ε1, ε2 be arbitrary real numbers such that ε1 ∈ [0, 1), ε2 ∈
[0, 1 − ε1]. Also, let T1 be a channel for which id ⊗ T1(ψ)
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is pure for every pure state ψ and there exists �1 ∈ S

such that F(�1(E),T1) ≥ 1 − ε1 and let T2 be an arbi-
trary channel for which there exists �2 ∈ S such that
F(�2(T2), E) ≥ 1 − ε2. Then,

Dmin,O(T1) ≤ Dmax,O(T2)+ log f (ε1, ε2), (15)

where f (·, ·) is the function introduced in Theorem 1.

A natural question following these results is whether
they smoothly connect to an asymptotic yield-cost relation.
In asymptotic distillation (and analogously for dilution),
the goal of the tasks is commonly to obtain as many copies
of a fixed reference channel as possible from multiple
copies of the given channel, in such a way that the trans-
formation error vanishes in the limit of infinite copies. The
figure of merit is then the ratio of the number of obtained
copies of the reference channel to the number of used
copies of the given channel. The following result provides
a relation between the optimal rates for the asymptotic dis-
tillation and dilution in a more general setting, in which the
errors do not necessarily approach zero in the asymptotic
limit.

Theorem 3: Let E be an arbitrary input channel and let
T be some target reference channel for which id ⊗ T (ψ)
is pure for every pure state ψ . Let d be any rate of dis-
tillation such that there exists a sequence {�n}n of free
superchannels with

1 − F
(
�n(E⊗n),T ⊗�dn�) =: δn. (16)

Also, let c be any rate of dilution such that there exists a
sequence {�n}n of free superchannels with

1 − F
(
�n(T ⊗�cn�), E⊗n) =: εn. (17)

Suppose that the following conditions are satisfied:

(i) It holds that lim infn→∞ εn + δn < 1.
(ii) The resource theory is closed under tensor prod-

ucts; that is, M1,M2 ∈ O ⇒ M1 ⊗ M2 ∈ O.

Then the following inequality holds:

d · D∞
min,O(T ) ≤ c D∞

max,O(T ), (18)

where

D∞
min,O(T ) := lim

n→∞
1
n

Dmin
(
T ⊗n) ,

D∞
max,O(T ) := lim

n→∞
1
n

Dmax
(
T ⊗n) .

(19)

Let us briefly discuss the assumptions of Theorem 3.
Condition (i) simply means that the errors of distillation

and dilution do not get too large at the same time; it is
satisfied, for instance, when we take limn→∞ εn = 0 and
lim infn→∞ δn < 1 or vice versa. Condition (ii) is a basic
property obeyed by virtually all theories encountered in
practice.

Although the result of Theorem 3 is appealing since
it follows straightforwardly from our one-shot relation in
Theorem 1, one can ask whether it is possible to derive
asymptotic relations that have a better dependence on
quantities such as D∞

max,O(T ) and D∞
min,O(T ), as well as

being free from the constraint on the target channel T ;
that is, the constraint that id ⊗ T (ψ) is pure for every
pure state ψ . We discuss several variations on this idea in
Appendix C, where we present other bounds that are poten-
tially tighter and do not impose any condition on T but
come with an additional condition on the sequences {εn}n
and {δn}n of achievable errors or require the computation
of more complicated regularized quantities. For our pur-
poses, it is sufficient to use the condition of Theorem 3 and,
indeed, we see that the reliance on the max-/min-relative
entropies is not a problem in most theories of practical
interest.

The result of Theorem 3 implies in particular the strong
converse bounds given in Corollary 4 below, for the rates
of resource manipulation tasks. Before stating this result,
let us recall the definitions of the basic asymptotic quanti-
ties involved. We define the asymptotic distillable resource
d∞

S
as the largest achievable rate at which copies of T

can be extracted from a given channel and, analogously,
the asymptotic resource cost c∞

S
as the least rate at which

copies of T are needed to produce a given channel. Impos-
ing that the error in such transformations vanishes in the
asymptotic limit, we have

d∞
S
(E ,T ) := sup

{
d
∣∣∣∣ limn→∞ sup

�n∈S

F
(
�n(E⊗n),T ⊗�dn�)=1

}
,

c∞
S
(E ,T ) := inf

{
c
∣∣∣∣ limn→∞ sup

�n∈S

F
(
�n(T ⊗�cn�), E⊗n)=1

}
.

(20)

As counterparts to the above asymptotic quantities, we
also define the corresponding strong converse quantities as
[17,89]

d̃∞
S
(E ,T ) := inf

{
d
∣∣∣∣ limn→∞ sup

�n∈S

F
(
�n(E⊗n),T ⊗�dn�)=0

}
,

c̃∞
S
(E ,T ) := sup

{
c
∣∣∣∣ limn→∞ sup

�n∈S

F
(
�n(T ⊗�cn�), E⊗n)=0

}
,

(21)

with the interpretation of the strong converse distillable
resource as the smallest rate at which the error is guaran-
teed to converge to one in the asymptotic limit and that for
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the strong converse dilution cost as the largest rate at which
the error is guaranteed to converge to one. The following
equivalent expressions for the strong converse quantities
hold:

d̃∞
S
(E ,T )

= sup
{

d
∣∣∣∣ lim sup

n→∞
sup
�n∈S

F
(
�n(E⊗n),T ⊗�dn�) > 0

}
,

c̃∞
S
(E ,T )

= inf
{

c
∣∣∣∣ lim sup

n→∞
sup
�n∈S

F
(
�n(T ⊗�cn�), E⊗n) > 0

}
,

(22)

which can alternatively be understood as weakening the
requirements imposed on the transformation error in
Eq. (20). Here, the interpretation is as follows: unlike the
quantities in Eq. (20), the strong converse quantities no
longer ask that the error converges to zero but represent
the best rates at which the error does not converge to
one—they therefore provide a general threshold on achiev-
able asymptotic transformations even when perfect con-
version is not required. Note that d∞

S
(E ,T ) ≤ d̃∞

S
(E ,T )

and c∞
S
(E ,T ) ≥ c̃∞

S
(E ,T ) by definition.

Theorem 3 implies the following strong converse
bounds.

Corollary 4: Let E be an arbitrary input channel and let
T be some target reference channel for which id ⊗ T (ψ)
is pure for every pure state ψ . Suppose that the following
conditions are satisfied:

(i) The resource theory is closed under tensor prod-
ucts; that is, M1,M2 ∈ O ⇒ M1 ⊗ M2 ∈ O.

(ii) The target channel satisfies Dmin,O(T ) = Dmax,O(T )
and Dmin,O(T ⊗n) = nDmin,O(T ) for every n.

Then the following inequalities hold:

d∞
S
(E ,T ) ≤ c̃∞

S
(E ,T ), d̃∞

S
(E ,T ) ≤ c∞

S
(E ,T ). (23)

We remark here that the definitions of strong converse
quantities and Corollary 4 imply the following fundamen-
tal inequality:

d∞
S
(E ,T ) ≤ c∞

S
(E ,T ). (24)

Here, condition (i) is generally satisfied in physical the-
ories, but condition (ii) imposes nontrivial requirements
on the choice of a suitable target channel T . In partic-
ular, in addition to the collapse of the max- and min-
relative entropy measures to the same value, it requires
that the min-relative entropy measure is additive, i.e.,
Dmin,O(T ⊗n) = nDmin,O(T ). Although this constitutes a
seemingly restrictive condition, the existence of channels

or states satisfying this requirement is actually a common
property of important resource theories, obeyed, e.g., by
quantum entanglement, quantum thermodynamics, magic,
and quantum communication (cf. Ref. [58, Table 1]). Intu-
itively, the condition can be thought of as characterizing
how well the given reference T serves as an intermediary
channel in distillation and dilution protocols.

We stress that all the results in this section automatically
provide bounds for state theories as special cases; when
one is interested in a resource theory of quantum states
with free states F and free operations O, the same results
hold by replacing free superchannels S with free operations
O and free channels O with free states F. Furthermore, in
the case of state transformations, the generalized quantum
Stein’s lemma [15,90] implies that the asymptotic distill-
able resource coincides with its strong converse rate when
the set of free states and the reference state satisfy some
mild assumptions—for details, see Appendix D. When the
generalized quantum Stein’s lemma holds, for the asymp-
totic distillation and dilution for an arbitrary state ρ with
respect to a reference state 	 under free operations O, we
can improve the bound in Corollary 4 to

d̃∞
O
(ρ,	) ≤ c̃∞

O
(ρ,	). (25)

This applies in particular to the resource theory of quan-
tum entanglement, which solves an open problem posed
in Ref. [23]. The implication of Eq. (25) is that the yield-
cost relation still holds even when neither of the errors is
required to vanish in the asymptotic limit, which gives a
significant strengthening of the inequalities in Eq. (23).

We remark that another approach to asymptotic transfor-
mation rates of states and the consequent relations between
asymptotic resource yield and cost in general resource
theories has been considered in Ref. [19].

V. OPERATIONAL ACCOUNT FOR REFERENCE
STATES

We saw that the relation between Dmin,O and Dmax,O
plays a major role in establishing the yield-cost relation
in general resource theories. Here, we give operational
insights into the properties of these quantifiers and in par-
ticular the condition Dmin,O(T ) = Dmax,O(T ) that we have
encountered previously. By studying the interplay between
these and other related measures, we are able to quantify
a number of smoothed resource monotones for target ref-
erence states in general resource theories. In this section,
we restrict our attention to theories of quantum states and
we use F and O to specify the set of free states and free
operations, respectively. In what follows, we also assume
that F is a convex and closed set.

In addition to Dmin,F and Dmax,F, we also consider
another type of robustness measure known as the standard
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robustness [80], defined as

Ds,F(ρ) := inf
{

log(1 + s)
∣∣ ρ + sτ

1 + s
∈ F, τ ∈ F

}
, (26)

We also define two smooth robustness quantities as [82,90]

Dε
s,F(ρ) := inf

{
Ds,F(ρ

′)
∣∣ F(ρ ′, ρ) ≥ 1 − ε

}
, (27)

Dε
max,F(ρ) := inf

{
Dmax,F(ρ

′)
∣∣ F(ρ ′, ρ) ≥ 1 − ε

}
(28)

and two types of hypothesis-testing relative entropy mea-
sures [10,41,90]:

Dε
H ,F(ρ) := inf

σ∈F

Dε
H (ρ‖σ),

Dε
H ,aff(F)(ρ) := inf

σ∈aff(F)
Dε

H (ρ‖σ), (29)

where

Dε
H (ρ‖σ) := sup

0≤P≤1
Tr(Pρ)≥1−ε

log Tr(Pσ)−1 (30)

is the hypothesis-testing relative entropy [7,91,92]. We use
aff(F) to denote the affine hull of F, which is the smallest
affine subspace that contains F. The min-relative entropy
is obtained as a special case of the hypothesis-testing rela-
tive entropy measure as Dmin,F(ρ) = Dε=0

H ,F (ρ). We use this
correspondence to define the affine min-relative entropy
measure [41,63] as

Dmin,aff(F)(ρ) := Dε=0
H ,aff(F)(ρ)

= inf
σ∈aff(F)

Dε=0
H (ρ‖σ). (31)

Then, the following ordering holds for an arbitrary state ρ:

Dmin,aff(F)(ρ) ≤ Dmin,F(ρ) ≤ Dmax,F(ρ) ≤ Ds,F(ρ), (32)

where the first inequality follows because F ⊆ aff(F), the
second inequality because Dmin(ρ‖σ) ≤ Dmax(ρ‖σ) for all
states ρ and σ , and the third inequality from the defini-
tions of the generalized and standard robustness measures.
Depending on the structure of F, some of these measures
may exhibit drastic behavior. Dmin,F and Dmax,F take finite
values for every state ρ as long as F contains at least
one full-rank state, which is satisfied by most of the rel-
evant theories. However, Ds,F may diverge if F is reduced
dimensional [41], meaning that F has zero volume in the
set of all states and span(F) is not the whole space of
self-adjoint operators. Examples of reduced-dimensional
theories include the theories of coherence and thermal
nonequilibrium. On the other hand, for full-dimensional
theories, which are not reduced dimensional and include
the theories of entanglement and magic as examples, Ds,F

remains finite but Dmin,aff(F) takes the value zero for every
state ρ. Therefore, Ds,F is usually a relevant resource
quantifier in full-dimensional theories, while Dmin,aff(F) is
relevant in reduced-dimensional theories [41,63].

Although these measures are introduced in a rather
abstract manner, they play crucial roles in the quantitative
characterization of distillation and dilution—under certain
assumptions on the target state	, the value of the one-shot
resource yield dε

O
(ρ) under the maximal set of free opera-

tions is directly related to Dε
H ,F(ρ) or Dε

H ,aff(F)(ρ), while
the value of the resource cost cε

O
(ρ) corresponds to the

value of Dε
s,F(ρ) or Dε

max,F(ρ) [12,41]. A necessary require-
ment for a precise description of distillation or dilution to
be possible is that, when evaluated on the reference state
	, the resource measures all collapse to the same value;
specifically, in full-dimensional theories one needs that

Dmin,F(	) = Ds,F(	), (33)

while in reduced-dimensional theories one instead requires

Dmin,aff(F)(	) = Dmax,F(	). (34)

In some theories, such as entanglement or coherence, the
existence of such states is natural: the maximally entan-
gled or coherent states always satisfy the requirement. It
is rather remarkable that maximally resourceful states sat-
isfy Dmin,F(	) = Dmax,F(	) in any convex resource theory
[41] but this is still not sufficient to guarantee that Eqs. (33)
and (34) hold in general—we expect this to be a resource-
dependent property that needs to be verified explicitly in
each specific setting.

Here, we find that Eqs. (33) and (34) can have oper-
ational implications, which then help to evaluate other
resource measures introduced in this section. In particu-
lar, we provide an understanding of the conditions given in
Eqs. (33) and (34) in terms of a free operation that parallels
twirling.

Lemma 5: If a state 	 satisfies Dmin,F(	) = Ds,F(	)

or Dmin,aff(F)(	) = Dmax,F(	), there exists a free opera-
tion � ∈ Omax defined by an operator 0 ≤ P� ≤ 1 with
Tr[P�	] = 1 of the form

�(·) = Tr[P�·]	+ Tr[(1 − P�)·]σ �, (35)

such that σ � is a state orthogonal to 	, satisfying
Tr[Pσ �] = Tr[	σ�] = 0. When Dmin,F(	) = Ds,F(	), one
can further take σ � to be a free state.

This free operation possesses a property similar to well-
known group twirling operations such as the isotropic
twirling

∫
U ⊗ U∗(·)U† ⊗ U∗† dU in entanglement theory

[75], in that it maps states to the given reference state
or its complement, while stabilizing a specific state 	.
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Such twirling operations have been found to be useful to
evaluate several entanglement measures for states invari-
ant under them [93]. In particular, the existence of such
an operation allows us to obtain exact expressions for
smoothed resource measures, which a priori require a
nontrivial optimization over all states within an error ε.

Proposition 6: If a state 	 satisfies Dmin,F(	) =
Ds,F(	) =: r, then for every ε ∈ [0, 1), it holds that

Dε
H ,F(	) = r + log

1
1 − ε

(36)

and

Dε
max,F(	) = Dε

s,F(	) = max
{

r − log
1

1 − ε
, 0
}

. (37)

Similarly, if a state 	 satisfies Dmin,aff(F)(	) = Dmax,F(	)

=: r, then

Dε
H ,aff(F)(	) = Dε

H ,F(	) = r + log
1

1 − ε
(38)

and

Dε
max,F(	) = max

{
r − log

1
1 − ε

, 0
}

. (39)

A crucial property that makes this result possible is that
optimal states in the optimization of the smoothed resource
measures can always be taken of the form 	κ = κ	+
(1 − κ)σ �, as obtained through the operation in Lemma 5.
Such states share many useful properties with isotropic
states of entanglement theory and, indeed, several quantita-
tive insights into the description of isotropic states in works
such as Ref. [93] can be extended to general resource the-
ories. In particular, the entropic resource quantifiers can be
computed exactly for such states.

Proposition 7: Suppose a state 	 satisfies Dmin,F(	) =
Ds,F(	) =: r, and let σ � be the state in Eq. (35). Then,

Dmin,F(	κ) =
{

0, 0 ≤ κ < 1,
r, κ = 1,

(40)

and

Dmax,F(	κ) = Ds,F(	κ)

= max
{

r − log
1
κ

, 0
}

(41)

for every	κ = κ	+ (1 − κ)σ � with κ ∈ [0, 1]. Similarly,
if a state 	 satisfies Dmin,aff(F)(	) = Dmax,F(	) =: r, then

Dmin,aff(F)(	κ) = Dmin,F(	κ)

=

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < κ < 1,

log
1

1 − 2−r , κ = 0,

r, κ = 1,

(42)

and

Dmax,F(	κ) = max
{

r − log
1
κ

, log
1 − κ

1 − 2−r

}
(43)

for every 	κ = κ	+ (1 − κ)σ � with κ ∈ [0, 1].

We present a more complete discussion of the quantita-
tive properties of the isotropiclike states	κ in Appendix E,
where we also show how the smoothed entropic measures
can be computed for this class of states.

These exact evaluations of the resource measures allow
us to employ the argument in Ref. [23] to obtain an
alternative bound to that given in Theorem 1.

Theorem 8: If the chosen reference set obeys Dmin,F(	) =
Ds,F(	) ∀	 ∈ T or Dmin,aff(F)(	) = Dmax,F(	) ∀	 ∈ T,
then for every set O ⊆ Omax of free operations and all
ε1, ε2 ≥ 0 satisfying ε1 + ε2 < 1, the following inequality
holds:

dε1
O
(ρ) ≤ cε2

O
(ρ)+ log

1
1 − ε′ , (44)

where ε′ := [√ε1(1 − ε2)+ √
ε2(1 − ε1)

]2.

This improves the bound in Theorem 1, as it gives a
tighter upper bound for all regions of (ε1, ε2) with ε1 +
ε2 < 1, as we prove in Appendix G. We also remark
that this bound becomes essentially tight when O = Omax,
ρ ∈ T and either ε1 or ε2 is 0. This can be shown
by using dε1

Omax
(ρ) = Dε1

H ,F(ρ) and cε2
Omax

(ρ) = Dε2
s,F(ρ)

when Dmin,F(ρ) = Ds,F(ρ) and dε1
Omax

(ρ) = Dε1
H ,aff(F)(ρ) and

cε2
Omax

(ρ) = Dε2
max,F(ρ) when Dmin,aff(F)(ρ) = Dmax,F(ρ) (up

to some floor or ceiling due to a discrete structure of T)
[63], as well as explicitly evaluating these measures by
Proposition 6.

So far, we have employed the property of several
resource measures evaluated for a reference state to show
the existence of a twirlinglike operation as given in
Eq. (35) and presented its applications. We now also
investigate the opposite direction, asking whether the exis-
tence of a certain type of free operation provides insights
into the relation between different resource measures. The
following result addresses this question.
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Lemma 9: Let S(	) be a set of channels stabilizing 	,
defined as

S(	) :=
{

Tr[P·]	+ �̃(·)
∣∣∣ 0 ≤ P ≤ 1,

Tr[	P] = 1, �̃ ∈ CP
}

,

(45)

where CP is the set of completely positive maps. Then,
if there exists a free operation � ∈ Omax ∩ S(	), the
equality

Dmin,F(	) = Dmax,F(	) (46)

holds. In addition, if � is completely free, i.e., id ⊗� ∈
Omax, where id is the identity map on an arbitrary ancillary
system, then

Dmin,F(	
⊗n) = Dmax,F(	

⊗n), ∀n. (47)

Moreover, if �̃ can be taken as a free subchannel in
Eq. (45), i.e., �̃(σ ) ∝ cone(F), ∀σ ∈ F, then

Dmin,F(	) = Ds,F(	), (48)

where cone(X ) := {λx
∣∣ λ ≥ 0, x ∈ X

}
.

Together with Lemma 5, we conclude a general oper-
ational correspondence between the collapse of resource
measures and the existence of twirlinglike free operations:
we have that Dmin,F(	) = Ds,F(	) if and only if there
exists a map of the form given in Eq. (35) with a free
state σ �.

However, it is not always easy to find a channel � ∈
Omax ∩ S(	) to apply Lemma 9. The following result
helps to find such a channel by formally relating the
group-theoretic twirling operations inspired by the original
LOCC twirlings [74,75] to the form of Eq. (45) necessary
to apply Lemma 9.

Proposition 10: Let 	 be a pure state. Suppose that there
exists a convex set O ⊆ Omax of free operations and a finite
or a compact Lie group G with a unitary representation
{U(g)}g∈G that satisfies U(g) · U(g)† ∈ O and U(g) |	〉 =
eiφg |	〉 ∀g ∈ G for some set of eigenvalues {eiφg }g. If |	〉
is the unique simultaneous eigenvector of all U(g)’s with
eigenvalues {eiφg }g, then Dmin,F(	) = Dmax,F(	) holds.
Moreover, if O is completely free, then Dmin,F(	

⊗n) =
Dmax,F(	

⊗n) holds for every positive integer n.

This result allows us to find an appropriate free opera-
tion to ensure the condition required in Theorems 1 and 8.
We indeed find that Lemma 9 and Proposition 10 are help-
ful to obtain new insights into specific resource theories,
which we now demonstrate.

VI. APPLICATION: THEORY OF MAGIC

As we have emphasized earlier, our results immediately
hold in general types of quantum resources of both states
and channels and we direct the interested reader to, e.g., the
recent Refs. [12,58,59,63,67], as well as to Appendix B,
for a discussion of how such general methods can be
applied in specific theories such as quantum communica-
tion. Here, we discuss a nontrivial example in which the
quantification of resource measures for many important
states is still not understood—the theory of magic (non-
stabilizerness) [76,77]. Applying the results of our work,
we show how they can be used to provide new quantita-
tive insights and reveal broad and useful relations for this
resource.

To realize scalable fault-tolerant quantum computation,
it is essential to encode the whole computation in a higher-
dimensional space using an error-correcting code. Clifford
gates in particular stand out as a subset of quantum gates
that admits efficient fault-tolerant encoding on many error-
correcting codes. However, to form a universal gate set, we
also need to implement a non-Clifford gate. This is usually
accomplished by the gate-teleportation technique [94,95],
which simulates the action of a non-Clifford gate by com-
bining a Clifford operation and a magic state, which cannot
be created solely by Clifford operations. Since magic states
are hard to produce in a fault-tolerant manner, they are
precious resources under this setting, motivating us to con-
sider the quantification and manipulation of them using a
resource-theoretic formalism [76,77].

In particular, the optimal performance of magic state
distillation and dilution has been a central question in the
field, as it is the most resource-demanding part to realize
fault-tolerant universal quantum computation. Our results
establish a relation between the optimal performance of
these two, under the assumption that the reference resource
states satisfy the aforementioned conditions on resource
measures. Here, we investigate these conditions for some
well-known states that can be good candidates for refer-
ence states in distillation and dilution protocols. We find
that our approach, particularly Lemma 9 and Proposition
10, provides new operational insights into the evaluation of
resource measures, which may be of independent interest.

Stabilizer states are those that can be represented by
a probabilistic mixture of eigenstates of Pauli operators.
In the resource theory of magic, stabilizer states form the
set Fstab of free states. Although it is often assumed that
quantum computation is carried out in multiqubit systems,
higher-dimensional qudit systems also stand as potential
candidates for a large-scale quantum computing architec-
ture [96,97]. Resource theories have been developed for
both settings [76,77,98] and we consider several standard
magic states defined in these scenarios.

Let us start with multiqubit systems. For single-qubit
states, the farthest states from the set of stabilizer states are
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positioned at 1√
3
(±1, ±1, ±1) in Bloch coordinates, which

are connected to each other by Clifford unitaries. We call
one of them the face state, which is written as

|F〉〈F| = 1 + (X + Y + Z)/
√

3
2

, (49)

where X , Y, Z are qubit Pauli operators. Then, Lemma 9
and Proposition 10 allow us to obtain the following rela-
tion:

Proposition 11: The qubit face state satisfies

Dmin,Fstab(F
⊗n) = Dmax,Fstab(F

⊗n). (50)

for every integer n ≥ 1.

Since the face state is a maximizer of Dmin,Fstab , called a
golden state [12,41], the case of n = 1 recovers the result
in Ref. [12]. Also, noting that the stabilizer extent intro-
duced in Ref. [99] is identical to Dmax,Fstab [36], Eq. (50)
can be shown by using the additivity of Dmin,Fstab(F

⊗n) and
Dmax,Fstab(F

⊗n), as well as the equivalence of Dmin,Fstab(F)
and Dmax,Fstab(F) shown in Ref. [99]. Our result provides
a different operational approach to this relation based on a
strategy with a broad potential applicability.

We also obtain an analogous result for a special class of
magic states that includes the T state and the Toffoli state,
which are usually used for gate-teleportation protocols.

Proposition 12: Let V be a unitary in the third level of the
Clifford hierarchy and let |φ〉 be a stabilizer state defined
on a multiqudit system with local dimension d, where d =
2 or d is an odd prime. Then, the state |ψ〉 = V |φ〉 satisfies
Dmin,Fstab(ψ

⊗n) = Dmax,Fstab(ψ
⊗n) for every integer n ≥ 1.

This provides an alternative proof of the result in
Ref. [99] and extends it to qudit systems, including
the qudit generalization of the T state [97]. Note that
Dmax,Fstab(ψ

⊗n) = nDmax,Fstab(ψ) holds for everyψ of up to
three qubits [99] and, indeed, also for single-qubit mixed
states [100].

Although Dmin,Fstab and Dmax,Fstab coincide for the above
cases, one can actually show that for every single-qubit
state, Dmax,Fstab is strictly less than Ds,Fstab . The natural
question is whether there exists a state for which the three
quantities collapse to the same value, allowing us to use
both Theorems 1 and 8. No such state has previously
been known in the theory of multiqubit magic, which has
prevented previously known bounds for one-shot distilla-
tion and dilution from being tight [12,41]. To show that
a suitable choice does indeed exist, let us consider the

three-qubit fiducial Hoggar state [77,101–104], defined as

|Hog〉 = 1√
6
(1 + i, 0, −1, 1, −i, −1, 0, 0)T. (51)

The Hoggar state serves as one of the fiducial states from
which group-covariant symmetric informationally com-
plete POVMs (SIC POVMs) can be generated [104]. We
show that the three measures collapse for the Hoggar state.

Proposition 13: The three-qubit Hoggar state satisfies

Dmin,Fstab(Hog) = Dmax,Fstab(Hog) = Ds,Fstab(Hog)

= log
12
5

, (52)

and
Dmin,Fstab(Hog⊗n) = Dmax,Fstab(Hog⊗n) (53)

for every integer n ≥ 1.

We note that the value of Ds,Fstab(Hog) has been reported
in Ref. [77].

Let us now turn our attention to qutrit states. In the qutrit
magic theory, two classes of states are identified to have the
maximum sum negativity of the discrete Wigner function
[76]. The first class is represented by the Strange state [76,
98,105,106], defined as

|S〉 := 1√
2
(|1〉 − |2〉). (54)

We can use Lemma 9 to show the collapse of the three
measures for this state.

Proposition 14: The qutrit Strange state satisfies

Dmin,Fstab(S) = Dmax,Fstab(S) = Ds,Fstab(S) = 1 (55)

and
Dmin,Fstab(S

⊗n) = Dmax,Fstab(S
⊗n) (56)

for every integer n ≥ 1.

Our results complement the findings in Ref. [98], which
has considered Dmin,F′ and Dmax,F′ with respect to a larger
set of free operators (not necessarily normalized quan-
tum states) based on the negativity of the discrete Wigner
function and has found that Dmin,F′(S) = Dmax,F′(S) =
log(5/3).

Another maximizer of the sum negativity is the Norrell
state [76], defined as

|N 〉 := 1√
6
(− |0〉 + 2 |1〉 − |2〉). (57)

We can obtain a similar collapse for the measures but to a
different value.
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Proposition 15: The qutrit Norrell state satisfies

Dmin,Fstab(N ) = Dmax,Fstab(N ) = Ds,Fstab(N )

= log
3
2

. (58)

We note that Dmin,Fstab(N ) = Dmax,Fstab(N ) = log 3
2 has

originally been reported in Ref. [98].
These results may make one wonder whether there is

a general characterization for when the three measures
take the same value. Although we still do not have a
definitive answer for this question, we can make the
following observation. For a given state ψ , Lemma 5
implies that if Dmin,Fstab(ψ) = Dmax,Fstab(ψ), we must have
Dmax,Fstab(ψ) < Ds,Fstab(ψ) unless there exists a free state
acting on supp [(1 − ψ)/d − 1]. This is equivalent to
the condition that the weight resource measure [58,107],
defined for the set F of free states as

WF(ρ) := sup
{

w
∣∣ ρ = wσ + (1 − w)τ , σ ∈ F

}
, (59)

satisfies

WFstab

(
1 − ψ

d − 1

)
> 0. (60)

This condition can be explicitly verified to hold for the
Strange state and Norrell state, for which we have seen
that the three measures coincide. On the other hand, for
the qutrit T state [97], defined as

|T〉 := 1√
3
(e2π i/9 |0〉 + |1〉 + e−2π i/9 |2〉), (61)

one can check that WFstab ((1 − T)/2) = 0. Combining it
with Proposition 12, we recover the fact that

Dmin,Fstab(T) = Dmax,Fstab(T) < Ds,Fstab(T). (62)

Interestingly, numerical investigations suggest that, for
most qutrit states, the weight measure for the complement
is equal to zero, indicating that the nonzero gap between
Dmax,Fstab and Ds,Fstab is a generic feature shared by the
majority of qutrit states. We leave a thorough investigation
on the relationship between the weight resource measure
and the robustness measures for future work.

VII. CONCLUSIONS

We establish a quantitative relation between the one-
shot distillable resource and the resource cost for gen-
eral quantum resource theories, including both state-based
resources as well as dynamical resources of quantum
channels. We also show the corresponding bounds in
the asymptotic regime and recover the familiar relation

between the distillable resource and the resource cost in the
form of strong converse bounds. We investigate the con-
ditions that appear in the yield-cost relation and relate it
to a class of free operations that have properties similar
to those of twirling operations. We employ such opera-
tions to obtain analytical expressions for several smoothed
resource measures for general resource theories of states
and tighten the yield-cost relation. We then apply our oper-
ational technique to evaluate resource measures for several
standard resource states in the resource theory of magic,
recovering previous results with different techniques and
presenting new evaluations of measures for some magic
states.

Outstanding questions include the extension of the
results that are only shown for state theories in this work
to channel theories, such as the two-sided strong converse
bound given in Eq. (25) and the relation to the twirlinglike
operation. The difficulty in characterizing the manipulation
of quantum channels, and in particular their asymptotic
properties [60], makes such questions nontrivial to answer.
Another interesting direction is to use the operational tech-
niques introduced here to shed light on settings other than
magic theory. On the other hand, it will also be beneficial
to gain a deeper understanding of the structure of magic
theory, for which additional operational insights might be
helpful.
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APPENDIX A: PROOFS OF THEOREM 1, LEMMA
2, AND THEOREM 3

Let us first define the smoothed channel divergences
[46,109]:
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Dε
H (E‖M) := sup

ψ

Dε
H (id ⊗ E(ψ)‖id ⊗ M(ψ)),

Dε
max(E‖M) := inf

F(E ′,E)≥1−ε
Dmax(E ′‖M),

(A1)

which construct the following resource monotones
[46,56,57]:

Dε
H ,O(E) := inf

M∈O

Dε
H (E‖M),

Dε
max,O(E) := inf

M∈O

Dε
max(E‖M).

(A2)

We begin by showing some useful lemmas. The first two
are channel extensions of the relations shown in Refs. [110,
111] between the hypothesis-testing relative entropy and
the max-relative entropy of quantum states. They have an

interpretation in the resource theory of asymmetric distin-
guishability as a one-shot yield-cost relation for bits of
asymmetric distinguishability [55].

Lemma 16: For all ε1, ε2 ≥ 0 with ε1 + √
ε2 < 1, two

arbitrary channels E ,M satisfy

Dε1
H (E‖M) ≤ Dε2

max(E‖M)+ log
1

1 − ε1 − √
ε2

. (A3)

Proof. Reference [110] has shown that

Dε1
H (ρ‖σ) ≤ Dε2

max(ρ‖σ)+ log
1

1 − ε1 − √
ε2

(A4)

for all ε1, ε2 ≥ 0, ε1 + √
ε2 < 1 and all states ρ, σ . Then,

we obtain

Dε1
H (E‖M) = sup

ψ

Dε1
H (id ⊗ E(ψ)‖id ⊗ M(ψ))

(1)≤ sup
ψ

Dε2
max(id ⊗ E(ψ)‖id ⊗ M(ψ))+ log

1
1 − ε1 − √

ε2

= sup
ψ

inf
F(φ,id⊗E(ψ))≥1−ε2

Dmax(φ‖id ⊗ M(ψ))+ log
1

1 − ε1 − √
ε2

(2)≤ sup
ψ

inf
F(E ′,E)≥1−ε2

Dmax(id ⊗ E ′(ψ)‖id ⊗ M(ψ))+ log
1

1 − ε1 − √
ε2

(3)≤ inf
F(E ′,E)≥1−ε2

sup
ψ

Dmax(id ⊗ E ′(ψ)‖id ⊗ M(ψ))+ log
1

1 − ε1 − √
ε2

= Dε2
max(E‖M)+ log

1
1 − ε1 − √

ε2
, (A5)

where we use (1) Eq. (A4), (2) the restriction of
the optimization over φ to the form φ = id ⊗ E ′(ψ)
with F(E ′, E) ≥ 1 − ε2, which is justified by F(id ⊗
E ′(ψ), id ⊗ E(ψ)) ≥ F(E ′, E) ≥ 1 − ε2 for every ψ , and
(3) the max-min inequality. �

We note that alternative bounds with trace-distance
and diamond-distance smoothing have been shown in
Refs. [55,112].

We also have the following alternative bound.

Lemma 17: For all ε1, ε2 ≥ 0 with ε1 + ε2 < 1, two arbi-
trary channels E ,M satisfy

Dε1
H (E‖M) ≤ Dε2

max(E‖M)+ log
1(√

1 − ε2 − √
ε1
)2 .

(A6)

Proof. The proof of Theorem 4 of Ref. [111] establishes
that

Dε1
H (ρ‖σ) ≤ Dε2

max(ρ‖σ)+ log
1(√

1 − ε2 − √
ε1
)2 (A7)

for all ε1, ε2 ≥ 0, ε1 + ε2 < 1 and all states ρ, σ . The state-
ment for the channels follows by employing the same
argument in the proof of Lemma 16. �

We also recall monotonicity properties under one-shot
channel transformations involving smooth measures.

Lemma 18 (Theorems 1 and 3 in Ref. [63]): If
there exists a free superchannel � ∈ Smax such that
F(�(E),N ) ≥ 1 − ε, then for every resource
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monotone RO,

RO(E) ≥ Rε
O
(N ), (A8)

where

Rε
O
(E) := inf

F(E ′,E)≥1−ε
RO(E ′). (A9)

In particular,

Dmax,O(E) ≥ Dε
max,O(N ). (A10)

Now let N be a channel such that id ⊗ N (ψ) is pure for
every pure state ψ . If there exists a free superchannel �
such that F(�(E),N ) ≥ 1 − δ, then

Dδ
H ,O(E) ≥ Dmin,O(N ). (A11)

We are now in a position to prove Theorem 1 and
Lemma 2.

Proof of Theorem 1 and Lemma 2. Theorem 1 is obtained
from Lemma 2 by maximizing the left-hand side over
T1 ∈ T and minimizing the right-hand side over T2 ∈ T

for fixed errors ε1, ε2. Thus, it suffices to show Lemma
2. Let T1 be an arbitrary channel for which there exists
�1 ∈ S such that F(�1(E),T1) ≥ 1 − ε1 and let T2 be an
arbitrary channel for which there exists �2 ∈ S such that
F(�2(T2), E) ≥ 1 − ε2. Then,

Dmin,O(T1) ≤ Dε1
H ,O(E)

≤ Dε2
max,O(E)+ log f (ε1, ε2)

≤ Dmax,O(T2)+ log f (ε1, ε2), (A12)

where in the first and the third inequalities we use Lemma
18 and in the second inequality we use Lemmas 16
and 17. �

Theorem 3 can be shown similarly.

Proof of Theorem 3. Let us first observe that the regular-
ized quantities D∞

min,O and D∞
max,O are both well defined.

This follows since Dmax,O and Dmin,O are subadditive under
assumption (ii)—as can be seen from their definitions
using the additivity of Dmax and Dmin on tensor-product
arguments—and hence the limit in the definition of the
regularized quantities exists by Fekete’s lemma. Now, by
assumption (i), there exists a subsequence {nk}k of indices
such that limk→∞ εnk + δnk < 1. Then,

d D∞
min,O(T )

(1)= lim
k→∞

�dnk�
nk

1
�dnk�Dmin,O(T ⊗�dnk�)

(2)≤ lim
k→∞

1
nk

D
δnk
H ,O(E⊗nk )

(3)≤ lim
k→∞

1
nk

[
D
εnk
max,O(E⊗nk )+ log f (εnk , δnk )

]

(4)≤ lim
k→∞

1
nk

[
Dmax,O(T ⊗�cnk�)+ log f (εnk , δnk )

]

(5)= lim
k→∞

�cnk�
nk

1
�cnk�Dmax,O(T ⊗�cnk�)

(6)= c D∞
max,O(T ), (A13)

where we use: (1) the fact that limk→∞ �dnk�/nk = d and
that

lim
k→∞

1
�dnk�Dmin,O(T ⊗�dnk�) = D∞

min,O(T ) (A14)

by definition; (2) Lemma 18; (3) Lemmas 16 and
17 and that limk→∞ εnk + δnk < 1; (4) Lemma 18; (5)
limk→∞(1/nk)f (εnk , δnk ) = 0; and (6) the same argument
as in (1). �

We remark that the subadditivity of Dmax,O under
assumption (ii) implies that D∞

max,O(T ) ≤ Dmax,O(T ), also
giving the general bound

d D∞
min,O(T ) ≤ c Dmax,O(T ). (A15)

APPENDIX B: APPLICABILITY TO SPECIFIC
SETTINGS

We briefly review several examples of physical set-
tings, as well as a reference channel T , that satisfy the
conditions of Theorem 1. The examples discussed here
are either state-preparation channels with one-dimensional
input or unitaries with input and output of the same dimen-
sion, ensuring that id ⊗ T (ψ) is pure for every pure state
ψ . They further satisfy Dmin,O(T ) = Dmax,O(T ) and thus
serve as appropriate references for distillation and dilution
protocols that meet the conditions in Theorem 1.

Let us first consider state theories, where O is a set of
channels preparing free states (denoted by F in Sec. II).
The theory of bipartite entanglement [79], in which separa-
ble states serve as free states, takes a maximally entangled
state |	+

m〉 =∑m
i=1 m−1/2 |ii〉 as a reference state and obeys

Dmin,O(	
+
m) = Dmax,O(	

+
m) = log m. In the case of the the-

ory of coherence [25], where the free states are the diagonal
states with respect to a given preferred basis, a maxi-
mally coherent state, i.e., a uniform superposition of the
basis states |φ+

m 〉 =∑m
i=1 m−1/2 |i〉, meets the condition

Dmin,O(φ
+
m ) = Dmax,O(φ

+
m ) = log m. The theory of thermal

nonequilibrium [3] is defined by fixed temperature and the
Hamiltonian. The “work bit” represented by the eigenstate
of the Hamiltonian with the highest energy is considered
as a standard unit resource and it also satisfies the con-
ditions of Theorem 1. In fact, the above observation can
be generalized to an arbitrary state theory; every theory
with an arbitrary convex set F of free states is equipped
with a golden state 	gold [12] such that Dmin,F(	gold) =
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Dmax,F(	gold) [41]. See also Sec. VI in the main text for
further discussion on the theory of magic states.

Many important dynamical resource theories are rele-
vant to the setting of quantum communication. A cen-
tral purpose of quantum communication is to transmit
a quantum state from one party to another. In such a
scenario, the identity channel connecting the two par-
ties is considered as the most useful channel. It is then
natural to take the m-dimensional identity channel idm
as a reference in distillation and dilution protocols and,
indeed, the identity channel satisfies the conditions in
Theorem 1 under several coding schemes that are spec-
ified by different choices of O [58,63]. For instance,
in the theory of no-signaling–assisted communication,
we obtain Dmin,O(idm) = Dmax,O(idm) = 2 log m, while in
quantum communication assisted by LOCC, separable, or
positive partial transpose codes we obtain Dmin,O(idm) =
Dmax,O(idm) = log m. A related setting is a framework
that quantifies how much quantum memory a given
channel can preserve [47]. This theory takes the set
of entanglement-breaking channels as free channels and
the identity channel again serves as an appropriate ref-
erence channel [53]. In relation to Sec. VI, dynamical
resource theories of magic [54,113] admit several unitary
gates as reference channels satisfying the conditions in
Theorem 1 [58].

APPENDIX C: ALTERNATIVE ASYMPTOTIC
BOUNDS

Besides Theorem 3, we can also show alternative
asymptotic bounds, which are tighter but have additional
conditions on the achievable errors. Another advantage of
our alternative bounds is that they do not require the refer-
ence channel T to be pure, i.e., id ⊗ T (ψ) does not need
to be pure for every pure state ψ .

Let us begin by presenting some useful lemmas. We first
introduce the smoothed hypothesis-testing relative entropy
measure as

Dε,δ
H ,O(E) := inf

F(E ′,E)≥1−δ
Dε

H ,O(E ′). (C1)

Then, we can relate this smoothed measure and the stan-
dard hypothesis-testing measure as follows.

Lemma 19: For an arbitrary channel E and all ε, δ ≥ 0
satisfying ε + √

δ ≤ 1,

Dε
H ,O(E) ≤ Dε+√

δ,δ
H ,O (E). (C2)

Proof. The hypothesis-testing measure can be written
explicitly by

Dε
H ,O(E) = − log max

M∈O

min
ψ

min
0≤P≤1

Tr[P id⊗E(ψ)]≥1−ε

Tr[P id ⊗ M(ψ)], (C3)

where we define log 0 := −∞ here and throughout the
paper.

Note that for an arbitrary channel E ′ satisfying
F(E ′, E) ≥ 1 − δ, an arbitrary positive semidefinite oper-
ator P satisfying 0 ≤ P ≤ 1, and an arbitrary state ψ ,

∣∣Tr[P id ⊗ E(ψ)] − Tr[P id ⊗ E ′(ψ)]
∣∣

≤ 1
2
‖id ⊗ E(ψ)− id ⊗ E ′(ψ)‖1

≤
√

1 − F(E ′, E), (C4)

where the first inequality is because of the opti-
mization form of the trace distance 1

2‖ρ − σ‖1 =
max0≤P≤1 Tr[P(ρ − σ)] satisfied for an arbitrary two
states ρ and σ [114] and the second inequality is because

1
2
‖id ⊗ E(ψ)− id ⊗ E ′(ψ)‖1

≤
√

1 − F(id ⊗ E(ψ), id ⊗ E ′(ψ))

≤
√

1 − F(E , E ′), (C5)

where we use the relation between trace distance and
fidelity [115] in the first inequality and the definition of
channel fidelity (10) in the second inequality. This implies
that as long as F(E ′, E) ≥ 1 − δ, every P with 0 ≤ P ≤
1 and state ψ satisfying Tr[P id ⊗ E(ψ)] ≥ 1 − ε also
satisfy Tr[P id ⊗ E ′(ψ)] ≥ 1 − ε − √

δ. This gives

max
M∈O

min
ψ

min
0≤P≤1

Tr[P id⊗E(ψ)]≥1−ε
Tr[P id ⊗ M(ψ)]

≥ max
M∈O

min
ψ

max
F(E ′,E)≥1−δ

min
0≤P≤1

Tr[P id⊗E ′(ψ)]≥1−ε−√
δ

Tr[P id ⊗ M(ψ)]

≥ max
F(E ′,E)≥1−δ

max
M∈O

min
ψ

min
0≤P≤1

Tr[P id⊗E ′(ψ)]≥1−ε−√
δ

Tr[P id ⊗ M(ψ)], (C6)

where in the last line, we use the max-min inequality.
Taking − log on both sides concludes the proof. �

The following result, which is a variant of Theorem 1 in
Ref. [63], is also useful.
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Lemma 20: If there exists a free superchannel � ∈
Smax such that F(�(E),N ) ≥ 1 − ε, then for an arbitrary
resource monotone RO,

Rδ
O
(E) ≥ R

(
√
δ+√

ε)2

O
(N ) (C7)

for every 0 ≤ δ ≤ 1, where

Rδ
O
(E) := inf

F(E ′,E)≥1−δ
RO(E ′). (C8)

Proof. Let P(E ,N ) := √
1 − F(E ,N ) be the sine dis-

tance of quantum channels (also known as the purified
distance), which satisfies the triangle inequality

P(E ,T ) ≤ P(E ,N )+ P(N ,T ) (C9)

for all channels E , N , T [88]. Noting that Rδ
O

is a resource
monotone for all δ, we can use Lemma 18 to obtain

Rδ
O
(E) ≥ inf

P(N ′,N )≤√
ε
Rδ

O
(N ′)

= inf
P(N ′,N )≤√

ε
inf

P(N ′′,N ′)≤√
δ

RO(N ′′). (C10)

Using the triangle inequality of the purified distance, we
obtain P(N ′′,N ) ≤ √

ε + √
δ for all channels N , N ′,

N ′′ that satisfy P(N ′,N ) ≤ √
ε and P(N ′′,N ′) ≤ √

δ.
Noting also that P(N ′′,N ) ≤ √

ε + √
δ is equivalent to

F(N ′′,N ) ≥ 1 − (
√
ε + √

δ)2, we obtain

Rδ
O
(E) ≥ inf

F(N ′′,N )≥1−(√ε+√
δ)2

RO(N ′′)

= R
(
√
δ+√

ε)2

O
(N ). (C11)

�

Remark: We can improve the triangle inequality given in
Eq. (C9). Define the following “best-case” fidelity:

Fmax(E ,N ) := sup
ρRA

F(idR ⊗ E(ρRA), idR ⊗ N (ρRA))

= max
ρ

F(E(ρ),N (ρ)), (C12)

where the supremum in the first line is taken over every
possible ancillary system R and the second equality is due
to the data-processing inequality, ensuring that tracing out
the ancillary system does not decrease the fidelity. The
last form in particular allows for an efficient computa-
tion via the following semidefinite program, which follows
from Eq. (C12) and the known semidefinite program for

fidelity [116]:

√
Fmax(E ,N )

= max
ρ≥0,

X ∈L(H)

{
Re[Tr[X ]]

∣∣∣∣
[
E(ρ) X †

X N (ρ)

]
≥ 0,

Tr[ρ] = 1
}

, (C13)

where L(H) denotes the set of linear operators acting on
the output Hilbert space H for the channels E and N .
Then, we have the following inequality.

Lemma 21: Every set of channels E , N , and T with
P(E ,N )2 + P(N ,T )2 ≤ 1 satisfies

P(E ,T ) ≤ P(E ,N )
√

Fmax(N ,T )

+ P(N ,T )
√

Fmax(E ,N ). (C14)

Proof. Recall that the purified distance P(ρ, σ) :=√
1 − F(ρ, σ) defined for an arbitrary two states ρ and σ

satisfies the following triangle inequality [108]:

P(ρ, τ) ≤ P(ρ, σ)
√

F(σ , τ)+ P(σ , τ)
√

F(ρ, σ) (C15)

for every set of three states ρ, σ , τ such that P(ρ, σ)2 +
P(σ , τ)2 ≤ 1. We can employ this to obtain

P(E ,T ) = max
ψ

P(id ⊗ E(ψ), id ⊗ T (ψ))

≤ max
ψ

P(id ⊗ E(ψ), id ⊗ N (ψ))
√

Fmax(N ,T )

+ max
ψ

P(id ⊗ N (ψ), id ⊗ T (ψ))
√

Fmax(E ,N )

= P(E ,N )
√

Fmax(N ,T )

+ P(N ,T )
√

Fmax(E ,N ). (C16)

�
Equation (C14) is tighter than (C9) in general because

Fmax(E ,N ) ≤ 1 for every E and N . Although (C9) and
Lemma 20 suffice to establish the forthcoming results,
Lemma 21 may find use in other different settings.

We are ready to show the first alternative asymptotic
bound, which is tighter than Theorem 3 and does not
assume anything on T , while having less flexibility in the
achievable errors.

Proposition 22: Let E be an arbitrary input channel and
let T be some target reference channel. Let d be any rate
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of distillation such that there exists a sequence {�n}n of
free superchannels with

1 − F
(
�n(E⊗n),T ⊗�dn�) =: δn. (C17)

Also, let c be any rate of dilution such that there exists a
sequence {�n}n of free superchannels with

1 − F
(
�n(T ⊗�cn�), E⊗n) =: εn. (C18)

Suppose that

lim
n→∞ δn = 0, lim inf

n→∞ εn < 1. (C19)

Then, the following inequality holds:

d · D̃∞
H ,O(T ) ≤ c · D̃∞

max,O(T ), (C20)

where

D̃∞
H ,O(T ) := lim

ε→0
lim inf

n→∞
1
n

Dε
H ,O(T ⊗n),

D̃∞
max,O(E) := lim

ε→0
lim sup

n→∞
1
n

Dε
max,O(E⊗n).

(C21)

Proof. Let {nk}k be a subsequence of indices such that
ε∞ := limk→∞ εnk < 1. Then, for every ξ with 0 < ξ <

1 − ε∞, we obtain

cD̃∞
max,O(T ) ≥ lim

η→0
lim inf

k→∞
�cnk�

nk

1
�cnk�Dη

max,O(T ⊗�cnk�)

≥ lim
η→0

lim inf
k→∞

1
nk

D
(
√
η+√

εnk )
2

max,O (E⊗nk )

≥ lim
η→0

lim inf
k→∞

1
nk

{
Dξ

H ,O(E⊗nk )− log f
(
ξ , (

√
η + √

εnk )
2)}

≥ lim
η→0

lim inf
k→∞

1
nk

{
D
ξ ,δnk
H ,O (T ⊗�dnk�)− log f

(
ξ , (

√
η + √

εnk )
2)}

≥ lim
η→0

lim inf
k→∞

1
nk

{
D
ξ−√

δnk
H ,O (T ⊗�dnk�)− log f

(
ξ , (

√
η + √

εnk )
2)} . (C22)

The second inequality follows from Lemma 20, the third
inequality from Lemmas 16 and 17 and the fact that ξ +
(
√
η + √

εnk )
2 < 1 holds for η sufficiently close to 0 and

for sufficiently large k, the fourth inequality from Lemma
18, noting that Dξ

H ,O is a resource monotone for a fixed ξ ,
and the fifth inequality from Lemma 19 together with that
ξ −√δnk ∈ [0, 1] for sufficiently large k.

The second term of the last line, log f
(
ξ , (

√
η

+ √
εnk )

2
)
/nk, vanishes at the limit of k → ∞, which also

removes the η dependence. Also, for every δ′ > 0, we
have

√
δk < δ′ for sufficiently large k. Noting that Dε

H ,O
is nondecreasing with respect to ε, we can bound the last
line as

≥ lim
δ′→0

lim inf
k→∞

1
nk

Dξ−δ′
H ,O (T ⊗�dnk�)

= lim
δ′→0

lim inf
k→∞

�dnk�
nk

1
�dnk�Dξ−δ′

H ,O (T ⊗�dnk�).
(C23)

Since this holds for every ξ with 0 < ξ < 1 − ε∞, we can
further take limξ→0 and use

lim
ξ→0

lim
δ′→0

lim inf
k→∞

1
�dnk�Dξ−δ′

H ,O (T ⊗�dnk�) ≥ D̃∞
H ,O(T ) (C24)

to obtain

cD̃∞
max,O(T ) ≥ dD̃∞

H ,O(T ). (C25)

�
In particular, this gives a strong converse inequality

c̃∞
S
(E ,T )D̃∞

max,O(T ) ≥ d∞
S
(E ,T )D̃∞

H ,O(T ). (C26)

In the case of state transformations with mild assumptions
(cf. Appendix D), the asymptotic equipartition property
D̃∞

max,F(	) = D̃∞
H ,F(	) holds [90] and consequently we

obtain

d∞
O
(E ,	) ≤ c̃∞

O
(E ,	). (C27)

In addition, if 	 satisfies Dmin,F(	
⊗m) = Ds,F(	

⊗m) =
mDmin,F(	) ∀m, this leads to the double-sided strong
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converse inequality

d̃∞
O
(ρ,	) ≤ c̃∞

O
(ρ,	), (C28)

as we discuss in Appendix D.
Finally, if we further impose a stronger condition to the

achievable errors, we can obtain an even tighter bound.

Proposition 23: Let us consider the setting in which we
instead have the condition limk→∞ δnk = limk→∞ εnk = 0
for some subsequence {nk}k. For every resource monotone
RO, define

R
∞
O
(E) := lim

ε→0
lim sup

n→∞
1
n
Rε

O
(E⊗n),

R∞
O
(E) := lim

ε→0
lim inf

n→∞
1
n
Rε

O
(E⊗n).

(C29)

Then,

d · R∞
O
(T ) ≤ c · R∞

O
(T ). (C30)

Proof.

cR
∞
O
(T ) ≥ lim

η→0
lim inf

k→∞
�cnk�

nk

1
�cnk�R

η
O
(T ⊗�cnk�)

≥ lim
η→0

lim inf
k→∞

1
nk

R
(
√
η+√

εnk )
2

O
(E⊗nk )

≥ lim
η→0

lim inf
k→∞

1
nk

R
(
√
η+√

εnk +√
δnk )

2

O
(T ⊗�dnk�),

(C31)

where the second and third lines follow from Lemma 20.
Since limk→∞ εnk = limk→∞ δnk = 0, for arbitrary con-

stant ξ > 0, it is ensured that εnk < ξ and δnk < ξ for
sufficiently large k. Since Rε

O
is nonincreasing with respect

to ε, we can bound the last expression as

≥ lim
η→0

lim inf
k→∞

1
nk

R
(
√
η+2

√
ξ)2

O
(T ⊗�dnk�). (C32)

Since this holds for every ξ > 0, we can bound the expres-
sion in Eq. (C31) by taking the limit ξ → 0 as

lim
η→0

lim
ξ→0

lim inf
k→∞

1
nk

R
(
√
η+√

εnk +√
δnk )

2

O
(T ⊗�dnk�)

≥ lim
η→0

lim
ξ→0

lim inf
n→∞

1
n
R
(
√
η+2

√
ξ)2

O
(T ⊗�dn�)

= lim
η→0

lim
ξ→0

lim inf
n→∞

�dn�
n

1
�dn�R

(
√
η+2

√
ξ)2

O
(T ⊗�dn�)

≥ dR∞
O
(T ), (C33)

resulting in the desired inequality in Eq. (C30). �

This extends and complements similar relations known
for state transformations in settings such as entanglement
[14,18] and a general class of resources [16,19]. In par-
ticular, this reduces to the intuitive bound c ≥ d when
R

∞
O
(T ) = R∞

O
(T ) > 0. Note, however, that the regular-

ized resource measure may take 0 for all channels in some
cases [117].

APPENDIX D: STRONG CONVERSE PROPERTY
OF DISTILLABLE RESOURCE

Reference [90] has discussed a generalization of quan-
tum Stein’s lemma for resource theories satisfying mild
assumptions. Using this, Ref. [15] has characterized the
asymptotic distillable entanglement under the set of nonen-
tangling operations with the regularized relative entropy
of entanglement. In fact, their argument shows more than
that—the regularized relative entropy of entanglement also
serves as a strong converse distillation rate.

Here, we extend this strong converse property to general
resource theories by combining the results in Refs. [15]
and [41] in the case when the generalized quantum Stein’s
lemma holds. This can then turn the one-sided strong con-
verse inequality in Corollary 4 to a double-sided inequality,
making both quantities—yield and cost—strong converse
rates for each other.

Before stating the result, we recall the following charac-
terization of the fidelity of distillation.

Lemma 24 ([41]): For an arbitrary convex and closed set
F, if Dmin,F(	) = Ds,F(	) = r, then

sup
E∈O

F(E(ρ),	) = GF(ρ; 2r), (D1)

where

GF(ρ; K) := sup
{

Tr[Wρ]
∣∣∣∣ 0 ≤ W ≤ 1,

Tr[Wσ ] ≤ 1
K

∀σ ∈ F

}
.

(D2)

Then, we obtain the following relations.

Proposition 25: Let F be a set of free states that:

(1) is convex and closed
(2) contains a full-rank state
(3) is closed under partial trace and composition of free

states

Also, let 	 be a state that satisfies Dmin,F(	
⊗m) =

Ds,F(	
⊗m) = mDmin,F(	) ∀m. Then,

d̃∞
Omax

(ρ,	) = d∞
Omax

(ρ,	). (D3)
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In particular, for every O ⊆ Omax, we have that

d̃∞
O
(ρ,	) ≤ c̃∞

O
(ρ,	). (D4)

Proof. Let FO(ρ → φ) be the fidelity of distillation from
ρ to φ under free operations O, defined as

FO(ρ → φ) := sup
E∈O

F(E(ρ),φ). (D5)

Lemma 24 and the assumed additivity of Dmin,F give

FOmax(ρ
⊗n → 	⊗ny) = GF(ρ

⊗n; 2rny), (D6)

where r = Dmin,F(	) = Ds,F(	).
Note that GF(ρ; K) is a convex-optimization program

and one can obtain its dual program by following stan-
dard techniques in convex-optimization theory [118] (cf.
[90]). For operators W ≥ 0, Y ≥ 0, Z ∈ cone(F), consider
the Lagrangian

L(ρ, W; Y, Z)

:= Tr[Wρ] + Tr [(1 − W)Y] + Tr [(1 − KW)Z]

= Tr[Y] + Tr[Z] + Tr[W(ρ − Y − KZ)]. (D7)

This form leads to a dual program:

inf
{

Tr[Y] + Tr[Z]
∣∣ Y ≥ 0, Y ≥ ρ − KZ, Z ∈ cone(F)

}
= inf
{

Tr[ρ − KZ]++ Tr[Z]
∣∣ Z ∈ cone(F)

}
, (D8)

where we define Tr[A]+ to be the trace over the positive
part of the operator A. Since Slater’s condition [118, Sec.
5.2.3] is satisfied, which can be confirmed by taking W =
1/(K + 1) in Eq. (D2), we obtain

GF(ρ; K) = inf
σ̃∈cone(F)

{
Tr[ρ − σ̃ ]++ 1

K
Tr[σ̃ ]
}

. (D9)

Taking σ̃ = 2rnbσ for some b ∈ R and σ ∈ F allows us to
write

GF(ρ
⊗n; 2rny) = inf

σ∈F,b∈R

{
Tr[ρ − 2rnbσ ]++2−r(y−b)n}

(D10)

for all n and y. Let R∞
rel,F(ρ) be the regularized relative

entropy resource measure [15,16], defined as

R∞
rel,F(ρ) := lim

n→∞
1
n

inf
σ∈F

D(ρ⊗n‖σ), (D11)

where D(ρ‖σ) is the relative entropy defined for an arbi-
trary two states ρ and σ taking Tr[ρ log ρ] − Tr[ρ log σ ]
if supp(ρ) ⊆ supp(σ ) and +∞ otherwise. Let us take y =

(1/r)R∞
rel,F(ρ)+ ε for some ε > 0. Then, for each n, we

can take b = (1/r)R∞
rel,F(ρ)+ (ε/2) to obtain

GF(ρ
⊗n; 2rn(R∞

rel,F(ρ)+ε))

≤ inf
σ∈F

{
Tr[ρ⊗n − 2rn[(1/r)R∞

rel,F(ρ)+(ε/2)]σ ]+
}

+ 2−(rnε/2)

= inf
σ∈F

{
Tr[ρ⊗n − 2n[R∞

rel,F(ρ)+(rε/2)]σ ]+
}

+ 2−(rnε/2).

(D12)

Reference [90, Prop. III.1] has shown that the first term
approaches 0 in the limit of n → ∞ for every ε > 0.
Therefore, combining it with Eq. (D6), we obtain that for
all ε > 0,

lim
n→∞ FOmax

(
ρ⊗n → 	

⊗n(R∞
rel,F(ρ)/r+ε)

)
= 0. (D13)

On the other hand, if we take y = (1/r)R∞
rel,F(ρ)− ε, the

optimum b for each n needs to satisfy b < y because oth-
erwise GF(ρ

⊗n, rny) would diverge as n → ∞. Therefore,

GF(ρ
⊗n; rny) ≥ inf

σ∈F

Tr[ρ − 2n(R∞
rel,F(ρ)−εr)

σ ]+. (D14)

The right-hand side approaches 1 for every ε > 0 [90] and
thus leads to

lim
n→∞ FOmax

(
ρ⊗n → 	

⊗n(R∞
rel,F(ρ)/r−ε)

)
= 1 (D15)

for every ε > 0. Equations (D13) and (D15) imply

d∞
Omax

(ρ,	) = d̃∞
Omax

(ρ,	) = R∞
rel,F(ρ)

r
= R∞

rel,F(ρ)

Dmin,F(	)
.

(D16)

Finally, combining this with Corollary 4, we obtain

d̃Omax(ρ,	) ≤ c̃Omax(ρ,	). (D17)

Noting that

d̃O(ρ,	) ≤ d̃Omax(ρ,	), c̃Omax(ρ,	) ≤ c̃O(ρ,	)
(D18)

for every O ⊆ Omax immediately leads to

d̃O(ρ,	) ≤ c̃O(ρ,	), (D19)

which concludes the proof. �
We note that the fact that (1/r)D̃∞

max,O(E) is a strong
converse rate for distillation in general resource theo-
ries of channels has previously been shown in Ref. [58].
However, the relation

D̃∞
max,F(ρ) = D̃∞

H ,F(ρ) = R∞
rel,F(ρ) (D20)

and, in particular, the fact that (1/r)R∞
rel,F(ρ) constitutes

an achievable rate of distillation under Omax is a very
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nontrivial result established in Ref. [90], applicable only
to resources of quantum states. It is an open question
whether an extension of this result to channel theories can
be obtained (cf. Ref. [60]). It would also be interesting
to understand whether the double-sided strong converse
bound described in this section can be shown without
relying on the generalized quantum Stein’s lemma of
Ref. [90].

APPENDIX E: PROOF OF LEMMA 5,
PROPOSITION 6, AND PROPOSITION 7

We first show Lemma 5.

Proof of Lemma 5. Suppose that Dmin,F(	) = Ds,F(	). By
definition of the standard robustness and the closedness of
the set F, there exist states τ , σ � ∈ F such that

τ = 	+ [2Ds,F(	) − 1]σ �

2Ds,F(	)
. (E1)

Also, by definition of Dmin,F(	) and noting that
Dmin,F(	) = Dε=0

H ,F (	), one can confirm that an oper-
ator P� = �	 satisfies 0 ≤ P� ≤ 1, Tr[P�	] = 1 and

Tr[P�η] ≤ 2−Dmin,F(	), ∀η ∈ F. Using this operator, define
the following channel:

�(·) := Tr[P�·]	+ Tr[(1 − P�)·]σ �. (E2)

One can check that� ∈ Omax as follows. For every η ∈ F,
we obtain

�(η) = Tr[P�η]	+ Tr[(1 − P�)η]σ �, (E3)

with

Tr[P�η] ≤ 2−Dmin,F(	) = 2−Ds,F(	). (E4)

The convexity of F and the form of Eq. (E1) imply that all
states of the form

α	+ (1 − α)σ �, 0 ≤ α ≤ 2−Ds,F(	) (E5)

are free states. Therefore, Eq. (E4) ensures �(η) ∈
F, ∀η ∈ F, implying � ∈ Omax.

Next, we show that Tr[P�σ �] = Tr[	σ�] = 0. If we
apply � to τ in Eq. (E1), we obtain

�(τ) = �(	)+ [2Ds,F(	) − 1]�(σ�)
2Ds,F(	)

= 	+ [2Ds,F(	) − 1] {Tr[P�σ �]	+ Tr[(1 − P�)σ �]σ �}
2Ds,F(	)

= {2−Ds,F(	) + Tr[P�σ �]
[
1 − 2−Ds,F(	)

]}
	+ [1 − 2−Ds,F(	)

] (
1 − Tr[P�σ �]

)
σ �. (E6)

Since τ ∈ F and� ∈ Omax, we have�(τ) ∈ F. Therefore,
the definition of Ds,F(	) [or, in other words, Eq. (E5)]
forces Tr[P�σ �]

[
1 − 2−Ds,F(	)

] ≤ 0. Since 2−Ds,F(	) ≤ 1,
we must have that Tr[P�σ �] = 0. Combining the fact
that P� ≥ 	 because of Tr[P�	] = 1, we also have 0 =
Tr[P�σ �] ≥ Tr[	σ�] ≥ 0, leading to Tr[	σ�] = 0.

The proof for the case of Dmin,aff(F)(	) = Dmax,F(	)

goes analogously. The only difference is that the inequality
in Eq. (E4) becomes an equality and P� does not neces-
sarily coincide with �	. By definition of the generalized
robustness, there exist a free state τ ∈ F and some state
σ � ∈ D such that

τ = 	+ [2Dmax,F(	) − 1]σ �

2Dmax,F(	)
. (E7)

Also, by definition of Dmin,aff(F)(	) := Dε=0
H ,aff(F), there

exists an operator P� that satisfies 0 ≤ P� ≤ 1, Tr[P�	] =
1, and Tr[P�η] ≤ 2−Dmin,aff(F)(	), ∀η ∈ aff(F). In fact, these
conditions impose a strong constraint

Tr[P�η] = 2−Dmin,aff(F)(	), ∀η ∈ F. (E8)

To see this, observe first that Dmin,aff(F)(	) ≥ 0 because in
Eq. (30), the choice of P = 1 ensures Dε

H (ρ‖σ) ≥ 0 for
all σ ∈ aff(F) and all ε, resulting in Dε

H ,aff(F)(ρ) ≥ 0 for an
arbitrary state ρ. This particularly ensures that

Tr[P�η] ≤ 1, ∀η ∈ aff(F). (E9)

Then, suppose that there exist two free states η1, η2 ∈
F such that Tr[P�η1] �= Tr[P�η2], where we assume
Tr[P�η1] − Tr[P�η2] =: � > 0 without loss of general-
ity. Define an affine combination η(c) := cη1 − (1 −
c)η2 ∈ aff(F) for an arbitrary real number c. This opera-
tor realizes Tr[P�η(c)] = c�− Tr[P�η2]. However, since
� > 0, one could violate Eq. (E9) by taking suffi-
ciently large c, which is a contradiction. Thus, we must
have Tr[P�η] = const, ∀η ∈ F. Combining this with the
definition of Dmin,aff(F) leads to the condition given in
Eq. (E8).
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Using this operator, define the following channel:

�(·) := Tr[P�·]	+ Tr[(1 − P�)·]σ �. (E10)

It is now easy to check that � ∈ Omax using Eqs. (E8) and (E7).
Next, we show that Tr[P�σ �] = Tr[	σ�] = 0. If we apply � to τ in Eq. (E1), we obtain

�(τ) = �(	)+ [2Dmax,F(	) − 1]�(σ�)
2Dmax,F(	)

= 	+ [2Dmax,F(	) − 1] (Tr[P�σ �]	+ Tr[(1 − P�)σ �]σ �)
2Dmax,F(	)

= {2−Dmax,F(	) + Tr[P�σ �]
[
1 − 2−Dmax,F(	)

]}
	+ [1 − 2−Dmax,F(	)

] (
1 − Tr[P�σ �]

)
σ �. (E11)

Since τ ∈ F and � ∈ Omax, we have �(τ) ∈ F. The
definition of Dmax,F(	) states that 2−Dmax,F(	) is the max-
imum coefficient in front of 	 such that a mixture
with another state becomes a free state. This forces
Tr[P�σ �]

[
1 − 2−Dmax,F(	)

] ≤ 0. Since 2−Dmax,F(	) ≤ 1, we
must have that Tr[P�σ �] = 0. Combining the fact that
P� ≥ 	 because of Tr[P�	] = 1, we also have 0 =
Tr[P�σ �] ≥ Tr[	σ�] ≥ 0, leading to Tr[	σ�] = 0. �

Using Lemma 5, we obtain the following simplification
of the evaluation of resource measures:

Lemma 26: Let R be a resource measure defined by

R(ρ) = inf
σ∈F

D(ρ, σ), (E12)

where D is a contractive measure under free opera-
tions, i.e., D(ρ, σ) ≥ D(�(ρ),�(σ)), ∀ρ, σ for an arbi-
trary free channel � ∈ Omax. Suppose that Ds,F(	) =
Dmin,F(	) =: r for some state 	 and let σ � be the state
that appears in Eq. (35). Also, let D̃ and F̃ be the sets of
states defined as

D̃ := {κ	+ (1 − κ)σ �
∣∣ 0 ≤ κ ≤ 1

}
,

F̃ := {α	+ (1 − α)σ �
∣∣ 0 ≤ α ≤ 2−r} . (E13)

Then, for every ρ ∈ D̃, we can restrict the optimization in
Eq. (E12) as

R(ρ) = inf
σ∈F̃

D(ρ, σ). (E14)

On the other hand, if Dmax,F(	) = Dmin,aff(F)(	) =: r, then
every ρ ∈ D̃ satisfies

R(ρ) = D(ρ, σ̃ ), σ̃ := 2−r	+ (1 − 2−r)σ �. (E15)

Proof. When Ds,F(	) = Dmin,F(	) = r, Lemma 5 ensures
the existence of a channel � ∈ Omax of the form given in
Eq. (35). Crucially, all states in D̃ are invariant under �.
Thus, every ρ ∈ D̃ satisfies

R(ρ) = inf
σ∈F

D(ρ, σ)

≥ inf
σ∈F

D(�(ρ),�(σ))

= inf
σ∈F

D(ρ,�(σ))

≥ inf
σ∈F̃

D(ρ, σ)

≥ inf
σ∈F

D(ρ, σ)

= R(ρ), (E16)

where we use the contractivity of D in the second line, the
fact that�(ρ) = ρ in the third line,�(σ) ∈ F̃ ∀σ ∈ F due
to Lemma 5 and the definition of the robustness measures
in the fourth line, and F̃ ⊆ F in the fifth line, leading to
Eq. (E14).

When Dmax,F(ρ) = Dmin,aff(F)(ρ) = r, the operator P� in
Eq. (35) satisfies Tr[P�σ ] = 2−r, ∀σ ∈ F as in Eq. (E8).
Thus, Eq. (E15) is obtained by replacing F̃ in Eq. (E16)
with {σ̃ }. �

We are now ready to prove Propositions 6 and 7. In fact,
we show a more general result, which immediately implies
both of the propositions and allows for the computation
of the smoothed entropic measures for all isotropiclike
states 	κ .

Proposition 27: Suppose that a state 	 satisfies
Dmin,F(	) = Ds,F(	) =: r and let σ � be the state in
Eq. (35). Then, every state 	κ = κ	+ (1 − κ)σ � with
0 ≤ κ ≤ 1 satisfies
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Dε
H ,F(	κ) =

⎧⎨
⎩

0, ε = 0, 0 ≤ κ < 1,

r + log
1

1 − ε
, 0 ≤ ε < 1, κ = 1.

(E17)

Also, let ηεmin and ηεmax be the minimum and maximum
η that satisfy Fcl((η, 1 − η), (κ , 1 − κ)) ≥ 1 − ε, where
Fcl(p , q) := (∑i

√
piqi
)2 is the fidelity for two classical

distributions. Then,

Dε
max,F(	κ) = Dε

s,F(	κ) = max
{

r − log
1
ηεmin

, 0
}

(E18)

for all ε ∈ [0, 1).
Similarly, if a state 	 satisfies Dmin,aff(F)(	) =

Dmax,F(	) =: r, then

Dε
H ,aff(F)(	κ) = Dε

H ,F(	κ)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ε = 0, 0 < κ < 1,
1

1 − 2−r , ε = 0, κ = 0,

r + log
1

1 − ε
, 0 ≤ ε < 1, κ = 1,

(E19)

and

Dε
max,F(	κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r − log
1
ηεmin

, ηεmin ≥ 2−r,

log
1 − ηεmax

1 − 2−r , ηεmax ≤ 2−r,

0, ηεmin ≤ 2−r ≤ ηεmax,
(E20)

for all ε ∈ [0, 1).

We remark that one can obtain an analogous result for
smoothing with different distance measures. In particular,
the trace-distance smoothing leads to simple expressions
with ηεmin = κ − ε and ηεmax = κ + ε.

Proof. Let us first consider the case when Dmin,F(	) =
Ds,F(	) = r. Since Dε

H (·‖·) satisfies the data-processing
inequality, we can use Lemma 26 to obtain

Dε
H ,F(	κ) = log min

τ∈F

max
0≤Q≤1

Tr[Q	κ ]≥1−ε
Tr[Qτ ]−1

= log min
τ∈F̃

max
0≤Q≤1

Tr[Q	κ ]≥1−ε
Tr[Qτ ]−1, (E21)

where F̃ is the set of free states defined in Eq. (E13).
Let � and P� be the channel and operator in Eq. (35).
Then, since �(	κ) = 	κ and �(τ) = τ , ∀τ ∈ F̃, if Q

is a feasible solution in Eq. (E21), �†(Q) = Tr[Q	]P� +
Tr[Qσ ](1 − P�) is also a feasible solution giving the same
objective function, i.e., Tr[�†(Q)τ ]−1 = Tr[Qτ ]−1. Thus,
it suffices to take the optimization over operators of the
form Q = ηP� + λ(1 − P�). The conditions 0 ≤ Q ≤ 1,
Tr[Q	κ ] ≥ 1 − ε are equivalent to

0 ≤ λ ≤ 1, 0 ≤ η ≤ 1, ηκ + λ(1 − κ) ≥ 1 − ε.
(E22)

Let A be the set of (λ, η) that satisfies Eq. (E22). Then, we
can compute Dε

H ,F(	κ) as

log min
0≤α≤2−r

max
(λ,η)∈A

Tr[{ηP� + λ(1 − P�)}

× {α	+ (1 − α)σ �}]−1

= − log max
0≤α≤2−r

min
(λ,η)∈A

[ηα + λ(1 − α)], (E23)

where we use Tr[P�	] = 1 and Tr[P�σ �] = 0.
Let us first consider the case κ = 1. The condition for A

in this case turns to

0 ≤ λ ≤ 1, 1 − ε ≤ η ≤ 1. (E24)

Then, Eq. (E23) can be further computed as

− log max
0≤α≤2−r

(1 − ε)α = r + log
1

1 − ε
. (E25)

On the other hand, suppose that ε = 0 and 0 ≤ κ ≤ 1.
Then, the condition for A takes the form

0 ≤ λ ≤ 1, 0 ≤ η ≤ 1, ηκ + λ(1 − κ) = 1. (E26)

From this, it is clear that for the case 0 < κ < 1, we must
have λ = η = 1, which makes the quantity in Eq. (E23)
equal to 0. In the case of κ = 0, which forces λ = 1, 0 ≤
η ≤ 1, the optimum in Eq. (E23) is achieved at α = η = 0,
λ = 1, also resulting in 0. The case of κ = 1 is included in
Eq. (E25); we obtain r by setting ε = 0.

To summarize, we show that

Dε
H ,F(	κ) =

⎧⎨
⎩

0, ε = 0, 0 ≤ κ < 1,

r + log
1

1 − ε
, 0 ≤ ε < 1, κ = 1.

(E27)

To show the expression for Dε
max,F, note that

Dε
max,F(	κ)

= inf
σ∈F

Dε
max(	κ‖σ)

= inf
{

log s
∣∣ ρ ≤ sσ , σ ∈ F̃, F(ρ,	κ) ≥ 1 − ε

}
,

(E28)

where in the second line we use Lemma 26 because
Dε

max(·‖·) satisfies the data-processing inequality for all
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quantum channels. Consider again the map � in Eq. (35),
which maps an arbitrary state to a state in D̃ [cf.
Eq. (E13)], while stabilizing every state	κ ∈ D̃ and σ ∈ F̃

as�(	κ) = 	κ and�(σ) = σ . Then, ρ ≤ sσ implies that
�(ρ) ≤ s�(σ) = sσ , ∀σ ∈ F̃. We also have

F(�(ρ),	κ) = F (�(ρ),�(	κ)) ≥ F(ρ,	κ) ≥ 1 − ε.
(E29)

Thus, the optimization in Eq. (E28) is achieved
by the states of the form ρ = η	+ (1 − η)σ �,

σ = α	+ (1 − α)σ � with constraints 0≤η ≤ 1, F(ρ,	κ)

≥ 1 − ε and 0 ≤ α ≤ 2−r. Noting that Tr[	σ�] = 0 and
thus ρ = η	⊕ (1 − η)σ �, the condition on η can equiva-
lently be written as a condition for two classical distribu-
tions (η, 1 − η) and (κ , 1 − κ):

Fcl((η, 1 − η), (κ , 1 − κ)) ≥ 1 − ε. (E30)

Let ηεmin and ηεmax be the minimum and maximum η that
satisfy Eq. (E30). Then, we can compute Dε

max,F(	κ) as

inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

{
log s
∣∣ η	+ (1 − η)σ � ≤ s[α	+ (1 − α)σ �]

}

= inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

{
log s
∣∣ sα − η ≥ 0, s(1 − α)− (1 − η) ≥ 0

}

= log inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

max
{
η

α
,

1 − η

1 − α

}
. (E31)

Note that max {η/α, (1 − η)/(1 − α)} is clearly lower bounded by 1 and it is achieved when η = α. Thus,
when ηεmin ≤ 2−r, we immediately obtain Dε

max,F(	κ) = 0. On the other hand, when ηεmin ≥ 2−r, we always have
max {η/α, (1 − η)/(1 − α)} = η/α, and the minimization over α and η gives Dε

max,F(	κ) = r − log(1/ηεmin). These can
concisely be written as

Dε
max,F(	κ) = max

{
r − log

1
ηεmin

, 0
}

, (E32)

which concludes the proof for the expression of Dε
max,F.

The smooth standard robustness can be computed similarly. Note that Dε
s,F(	) = infσ∈F Dε

s,F(	‖σ), where

Dε
s,F(ρ1‖ρ2) := inf

{
log(1 + s)

∣∣ ρ ′
1 + sτ
1 + s

= ρ2, τ ∈ F, F(ρ ′
1, ρ1) ≥ 1 − ε

}
, (E33)

and Dε
s,F is contractive under every free operation E ∈ Omax, as for all states ρ and σ ,

Dε
s,F(ρ‖σ) = Ds,F(ρ̃‖σ)

≥ Ds,F(E(ρ̃)‖E(σ ))
≥ Dε

s,F(E(ρ)‖E(σ )), (E34)

where we set ρ̃ as the optimal state realizing the standard robustness and in the third line we use that F(E(ρ̃), E(ρ)) ≥
F(ρ̃, ρ) ≥ 1 − ε. Thus, we can use Lemma 26 to compute Dε

s,F(	κ) as
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inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

{
log s
∣∣ η	+ (1 − η)σ � ≤F s[α	+ (1 − α)σ �]

}

= inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

{
log s
∣∣ sα − η ≥ 0, s(1 − α)− (1 − η) ≥ 0,

s(1 − α)− (1 − η)

sα − η
≥ 2r − 1

}

= log inf
α∈[0,2−r]

η∈[ηεmin,ηεmax]

max
{
η

α
,

1 − η

1 − α
,

1 − 2rη

1 − 2rα

}
, (E35)

where in the first line, we use the notation A ≤F

B ⇐⇒ B − A ∈ cone(F). When ηεmin ≤ 2−r, we imme-
diately obtain Dε

s,F(	κ) = 0, which is achieved at α = η.
On the other hand, when ηεmin ≥ 2−r, we have η/α >

(1 − η)/(1 − α) and η/α > (1 − 2rη)(1 − 2rα), in which
the minimization over α and η results in Dε

s,F(	κ) = r −
log(1/ηmin). These two can be combined as

Dε
s,F(	κ) = max

{
r − log

1
ηεmin

, 0
}

. (E36)

The proof for the case when Dmin,aff(F)(	) = Dmax,F(	)

goes analogously, where we basically change the region
of optimization over free states from F̃ to {σ̃ } defined in
Eq. (E15). Since Dε

H (ρ‖σ) satisfies the data-processing
inequality even if σ is not a positive operator [63], we can
employ the same argument as that in Lemma 26 to obtain

Dε
H ,aff(F)(	κ) = log sup

0≤Q≤1
Tr[Q	κ ]≥1−ε

Tr[Qσ̃ ]−1, (E37)

where we use that the map� in Eq. (35) transforms all σ ∈
aff(F) to σ̃ . We can then restrict the optimization to Q =
ηP� + λ(1 − P�) with the condition given in Eq. (E22).
Recall that A is the set of (λ, η) that satisfies Eq. (E22).
Then, we can compute Dε

H ,aff(F)(	κ) as

log sup
(λ,η)∈A

Tr[{ηP� + λ(1 − P�)}{2−r	+ (1 − 2−r)σ �}]−1

= − log inf
(λ,η)∈A

[η2−r + λ(1 − 2−r)]. (E38)

When κ = 1, the condition on A becomes Eq. (E24). Then,
we evaluate this as

− log
[
(1 − ε)2−r] = r + log

1
1 − ε

. (E39)

On the other hand, when ε = 0 and 0 < κ < 1, we are con-
strained to λ = η = 1, leading to value 0. When κ = 0, we
have λ = 1, 0 ≤ η ≤ 1, giving log[(1/(1 − 2−r)]. When
κ = 1, we have 0 ≤ λ ≤ 1, η = 1, giving r.

Noting that the above argument gives the same conclu-
sion for Dε

H ,F as well, we reorganize the above form to
reach

Dε
H ,aff(F)(	κ) = Dε

H ,F(	κ)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ε = 0, 0 < κ < 1,

log
1

1 − 2−r , ε = 0, κ = 0,

r + log
1

1 − ε
, 0 ≤ ε < 1, κ = 1.

(E40)

As for Dε
max,F, we follow the same argument up to

Eq. (E31) to obtain

Dε
max,F(	κ) = log inf

η∈[ηεmin,ηεmax]
max
{
η

2−r ,
1 − η

1 − 2−r

}
.

(E41)

If ηεmin ≥ 2−r, we always have η/2−r ≥ (1 − η)/(1 − 2−r)

and thus Dε
max,F(	κ) = log(ηεmin/2

−r). If ηεmax ≤ 2−r,
we always have η/2−r ≤ (1 − η)/(1 − 2−r) and thus
Dε

max,F(	κ) = log[(1 − ηεmax)/(1 − 2−r)]. If ηεmin ≤ 2−r ≤
ηεmax, then Dε

max,F(	κ) = 0, which is achieved at η = 2−r.
Summarizing, we obtain

Dε
max,F(	κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r − log
1
ηεmin

, ηεmin ≥ 2−r,

log
1 − ηεmax

1 − 2−r , ηεmax ≤ 2−r,

0, ηεmin ≤ 2−r ≤ ηεmax,
(E42)

concluding the proof. �
The generality of Lemma 26 has wide applicability

beyond the above measures. As an example, it allows us
to provide an exact evaluation for a measure based on the
trace distance.

Proposition 28: Define the trace-distance measure
Rtr,F(ρ) := minσ∈F

1
2‖ρ − σ‖1. If Dmin,F(	) = Ds,F(	) =:
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r or Dmin,aff(F)(	) = Dmax,F(	) =: r, then

Rtr,F(	) = 1 − 2−r. (E43)

Proof. For the case when Dmin,F(	) = Ds,F(	) =: r,

Rtr,F(	) = min
σ∈F̃

1
2
‖	− σ‖1

= min
0≤α≤2−r

1
2
‖	− [α	+ (1 − α)σ �

] ‖1

= min
0≤α≤2−r

(1 − α)

= 1 − 2−r, (E44)

where in the first line we use Lemma 26 and in the third
line we use that Tr[	σ ] = 0. The case for Dmin,aff(F)(	) =
Dmax,F(	) can be shown analogously. �

APPENDIX F: PROOF OF THEOREM 8

Proof. The proof combines Proposition 6 and the argu-
ment in Ref. [23]. For two states 	1,	2 ∈ T, consider the
following sequence of transformations:

	2
ε2−→
O

ρ
ε1−→
O

	1. (F1)

Let �2 and �1 be free transformations corresponding to
the first and the second transformations above. Define the
purified distance P(ρ, σ) := √

1 − F(ρ, σ), which satis-
fies the following triangle inequality [108]:

P(ρ, τ) ≤ P(ρ, σ)
√

F(σ , τ)+ P(σ , τ)
√

F(ρ, σ) (F2)

for every set of three states ρ, σ , τ such that P(ρ, σ)2 +
P(σ , τ)2 ≤ 1. Applying this to our setting, we obtain that

�1 ◦�2 ∈ O achieves the transformation 	2
ε′−→
O

	1 with

ε′ :=
[√
ε2(1 − ε1)+

√
ε1(1 − ε2)

]2
, (F3)

whenever ε1 + ε2 ≤ 1 is satisfied. Moreover, ε1 + ε2 < 1
ensures ε′ < 1. This can be shown as follows. Direct
calculation gives

ε′ = ε1 + ε2 + 2
√
ε1ε2

[√
(1 − ε1)(1 − ε2)− √

ε1ε2

]
.

(F4)

Let us change parameters as � := 1 − (ε1 + ε2) and p :=
ε1ε2, which behave as independent variables under the con-
dition that (1 −�)2 − 4p ≥ 0, 0 < � ≤ 1, p ≥ 0, noting
that ε1, ε2 are solutions of the quadratic equation x2 − (1 −

�)x + p = 0 while satisfying ε1, ε2 ≥ 0 and ε1 + ε2 < 1.
Then, we obtain

1 − ε′ = �− 2
√

p
(√
�+ p − √

p
)

. (F5)

This gives

∂

∂�
(1 − ε′) = 1 −

√
p√

�+ p
> 0, (F6)

implying that 1 − ε′ is a strictly increasing function of �
for an arbitrary fixed p . Since (1 − ε′)|�=0 = 0 for every
p , we obtain that 1 − ε′ > 0 for all ε1 and ε2 satisfying
ε1 + ε2 < 1.

Therefore, for every dilution operation �2 with error ε2
and distillation operation �1 with error ε1, we obtain

Dmin,F(	1) ≤ Dε′
H ,F(	2)

= Dmin,F(	2)+ log
1

1 − ε′ , (F7)

where the first line follows from Lemma 18 and the second
line from Proposition 6. Optimizing over all feasible �1
and �2 and using the definition of distillable resource and
resource cost gives the desired relation:

dε1
O
(ρ) ≤ cε2

O
(ρ)+ log

1
1 − ε′ . (F8)

�

APPENDIX G: COMPARING THE BOUNDS IN
THEOREMS 1 AND 8

Here, we show that the bound in Theorem 8 is always
tighter than the bound in Theorem 1.

Let us first compare the expression in Theorem 1 valid
for ε1 + ε2 < 1 and the bound in Theorem 8. Comparing
the denominators of the expressions inside the logarithm,
we obtain

(
1 − ε′)− (√1 − ε2 − √

ε1

)2

= −2ε1 + 2ε1ε2 − 2
√
ε1ε2(1 − ε2)(1 − ε1)

+ 2
√
ε1(1 − ε2)

= 2
√
ε1(1 − ε2)

[
1 −
√
ε2(1 − ε1)

]
− 2ε1(1 − ε2)

= 2
√
ε1(1 − ε2)

[
1 −
√
ε2(1 − ε1)−

√
ε1(1 − ε2)

]

= 2
√
ε1(1 − ε2)

(
1 −

√
ε′
)

, (G1)

where ε′ is the one introduced in Eq. (F3). As shown
in Appendix F, we have ε′ < 1 (and thus 1 − √

ε′ > 0)
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for all ε1 and ε2 satisfying ε1 + ε2 < 1. This implies that(
1 − ε′)− (√1 − ε2 − √

ε1
)2
> 0 and, in particular,

log
1

1 − ε′ < log
(√

1 − ε2 − √
ε1

)−2
, (G2)

for ε1 + ε2 < 1.
We next compare the expression in Theorem 1 to the

bound in Theorem 8 for ε1 + √
ε2 < 1. Direct calculation

gives

(
1 − ε′)− (1 − ε1 − √

ε2
)

= ε1 + √
ε2 −
[√
ε1(1 − ε2)+

√
ε2(1 − ε1)

]2

= √
ε2 − ε2 + 2ε1ε2 − 2

√
ε1ε2(1 − ε1)(1 − ε2).

(G3)

Let us define g(ε1, ε2) := (1 − ε′)− (1 − ε1 − √
ε2
)

and
consider varying ε1 for a fixed ε2. Although we are inter-
ested in the region 0 ≤ ε1 < 1 − √

ε2, let us consider an
extended region 0 ≤ ε1 < 1 − ε2 as a domain of g(ε1, ε2).
Since 1 − √

ε2 ≤ 1 − ε2, if we can show that g(ε1, ε2) ≥ 0
for 0 ≤ ε1 ≤ 1 − ε2, then g(ε1, ε2) ≥ 0 for 0 ≤ ε1 ≤ 1 −√
ε2 automatically follows.
Since g(0, ε2) = g(1 − ε2, ε2) = √

ε2 − ε2 ≥ 0, it suf-
fices to show that g(·, ε2) ≥ 0 at local minima. Since

∂

∂ε1
g(ε1, ε2)

= 2ε2 − ε2(1 − ε2)(1 − 2ε1)√
ε1ε2(1 − ε1)(1 − ε2)

∝ 2
√
ε1ε2(1 − ε1)(1 − ε2)− (1 − ε2)(1 − 2ε1),

(G4)

the local minima occur at ε�1 such that

2
√
ε�1ε2(1 − ε�1)(1 − ε2)− (1 − ε2)(1 − 2ε�1) = 0, (G5)

for which we obtain a simplified form of g(ε�1, ε2) as

g(ε�1, ε2) = √
ε2 − ε2 + 2ε�1ε2 − (1 − ε2)(1 − 2ε�1)

= √
ε2 − 1 + 2ε�1. (G6)

Equation (G5) can alternatively be written as

−1 + ε�1 +
[√
ε�1(1 − ε2)+

√
ε2(1 − ε�1)

]2
= 0, (G7)

leading to

√
ε�1(1 − ε2) = (1 − √

ε2)

√
1 − ε�1, (G8)

for the region ε�1 ≤ 1. This gives the expression of the local
minimum as

ε�1 = 1 − √
ε2

2
. (G9)

Plugging this into Eq. (G6) gives

g(ε�1, ε2) = 0. (G10)

This concludes the proof that
(
1 − ε′)− (1 − ε1 − √

ε2
)

≥ 0 for all ε1 and ε2 satisfying ε1 + √
ε2 < 1 and, in

particular,

log
1

1 − ε′ ≤ log
1

1 − ε1 − √
ε2

. (G11)

APPENDIX H: PROOF OF LEMMA 9

Proof. Let us write � ∈ Omax ∩ S(	) as

�(·) = Tr[P·]	+ �̃(·), (H1)

where Tr[P	] = 1 and �̃ ∈ CP. Let σ ∈ F be an arbitrary
free state. Since � ∈ Omax, we obtain

Tr[Pσ ]	+ (1 − Tr[Pσ ]) τ ∈ F, (H2)

where we define a state τ := �̃(σ )/Tr[�̃(σ )] and use that
Tr[�̃(σ )] = 1 − Tr[Pσ ] because � is trace preserving.
Since this holds for every free state σ , the first expression
of Dmax,F in Eq. (1) implies that

Tr[Pσ ]−1 ≥ 2Dmax,F(	), ∀σ ∈ F. (H3)

Note that

2Dmin,F(	) = min
σ∈F

max
0≤Q≤1

Tr[Q	]=1

Tr[Qσ ]−1

≥ max
0≤Q≤1

Tr[Q	]=1

min
σ∈F

Tr[Qσ ]−1, (H4)

where the inequality is due to the max-min inequality.
(This can be made into an equality by further using the con-
vexity of F, the linearity of the trace, and Sion’s minimax
theorem—which, however, we do not need here.) These
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give

2Dmin,F(	) ≥ max
0≤Q≤1

Tr[Q	]=1

min
σ∈F

Tr[Qσ ]−1

≥ min
σ∈F

Tr[Pσ ]−1

≥ 2Dmax,F(	), (H5)

implying that Dmin,F(	) ≥ Dmax,F(	). On the other hand,
note that Dmin,F(	) ≤ Dmax,F(	) for every 	 because

Dmin,F(	) = inf
σ∈F

Dmin(	‖σ),
Dmax,F(	) = inf

σ∈F

Dmax(	‖σ),
Dmin(	‖σ) ≤ Dmax(	‖σ) ∀	, σ .

(H6)

These result in Dmin,F(	) = Dmax,F(	). The proof for Ds,F
goes analogously.

Furthermore, �⊗n takes the form

�⊗n = Tr[P⊗n·]	⊗n +�′(·), (H7)

where �′ is another completely positive map. Noting that
0 ≤ P⊗n ≤ 1, Tr[P⊗n	⊗n] = 1, and

�⊗n = (�⊗ id ⊗ · · · ⊗ id) ◦ (id ⊗�⊗ · · · ⊗ id)

◦ · · · ◦ (id · · · ⊗ id ⊗�), (H8)

is in Omax because � is completely free, we obtain �⊗n ∈
Omax ∩ S(	⊗n). Thus, by using the same argument, we
obtain Dmin,F(	

⊗n) = Dmax,F(	
⊗n) for every positive inte-

ger n. �

APPENDIX I: PROOF OF PROPOSITION 10

Proof. Let us define the group twirling operation


(·) :=
∫

G
dg U(g) · U(g)†, (I1)

where the integral is taken over the Haar measure of
the group G. We first show a general form of how the
twirling operation acts on an arbitrary state ρ [in particular,
Eq. (I11)]. Although Eq. (I11) has already been presented
in Ref. [119, Sec. 2.6], here we provide a self-contained
explanation for completeness.

An arbitrary unitary representation {U(g)}g∈G of a finite
or a compact Lie group G can be decomposed into a
direct sum of irreducible representations [120]. Accord-
ingly, the Hilbert space on which each U(g) acts admits

the following decomposition:

H =
⊕
μ

H(r)
μ ⊗ H(m)

μ , (I2)

where μ labels the irreducible representations, H(r)
μ

denotes the subspace on which each irreducible represen-
tation acts nontrivially, and H(m)

μ denotes the multiplicity
subspace. We write the dimensions of H(r)

μ and H(m)
μ as

d(r)μ and d(m)μ , respectively.
Each U(g) can be written as

U(g) =
⊕
μ

U(r)
μ (g)⊗ 1(m)μ . (I3)

Also, Schur’s lemma [120] imposes a structure to every
symmetric state σ satisfying U(g)σU(g)† = σ ∀g as

σ =
⊕
μ

qμ
1(r)μ

d(r)μ
⊗ η(m)μ , (I4)

where {qμ}μ is a probability distribution, η(m)μ is a quantum
state, and 1(r)μ is the projector onto H(r)

μ .
It is easy to see that every output of the group twirling

operation is a symmetric state because, for every g ∈ G,

Ug
(ρ)U†
g =
∫

dg′U(g)U(g′)ρU(g′)†U(g)†

=
∫

G
dg′U(gg′)ρU(gg′)†

=
∫

G
dg′U(g′)ρU(g′)†

= 
(ρ), (I5)

where in the third line we use the left and right invariances
of the Haar measure.

Let us also define the projection onto invariant sub-
spaces as

P(·) :=
∑
μ

1(r)μ ⊗ 1(m)μ ·
∑
μ

1(r)μ ⊗ 1(m)μ . (I6)

The projection turns every state ρ into the form

P(ρ) =
⊕
μ

pμσ (r,m)
μ , (I7)

where {pμ}μ is probability distribution and σ (r,m)
μ is

a quantum state acting on H(r)
μ ⊗ H(m)

μ . Also, the
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forms of Eqs. (I3) and (I6) imply that UgP(ρ)U†
g =

P(UgρU†
g) ∀ρ, ∀g ∈ G and hence


 ◦ P(ρ) = P ◦
(ρ)
= 
(ρ) (I8)

for every state ρ, where in the second line, we use the fact
that
maps every state to a symmetric state, which has the
form given in Eq. (I4). Then,


(ρ) = 
(P(ρ))

=
⊕
μ

∫
G

dg pμ
[
U(r)
μ (g)⊗ 1(m)μ

]
σ (r,m)
μ

× [U(r)
μ (g)

† ⊗ 1(m)μ

]
. (I9)

Since 
(ρ) is a symmetric state having a structure of
Eq. (I4) and U(r)

μ in Eq. (I9) acts only on H(r)
μ nontrivially,

we must have
∫

G
dg pμ
[
U(r)
μ (g)⊗ 1(m)μ

]
σ (r,m)
μ

[
U(r)
μ (g)

† ⊗ 1(m)μ

]

= pμ
1(r)μ

d(r)μ
⊗ σ (m)μ , ∀μ, (I10)

where σ (m)μ := Trr[σ (r,m)
μ ] and Trr denotes the partial trace

over the system with H(r)
μ . Therefore, we obtain


(ρ) =
∑
μ

pμ
1(r)μ

d(r)μ
⊗ σ (m)μ

=
∑
μ

1(r)μ

d(r)μ
⊗ Trr
[
P(ρ)1(r)μ ⊗ 1(m)μ

]

=
∑
μ

1(r)μ

d(r)μ
⊗ Trr
[
ρ1(r)μ ⊗ 1(m)μ

]
. (I11)

We now show that this group twirling operation satisfies
the condition for the operation that appears in Lemma
9. By assumption, |	〉 is an eigenvector of Ug with
eigenvalue eiφg for every g ∈ G. This implies that |	〉 is
in the invariant subspace of U(g) corresponding to the
one-dimensional irreducible representation {eiφg }g∈G. We
assign the label μ� for this representation. Then, every
U(g) has the form

U(g) =
(

eiφg1
(m)
μ� ⊕

μ�=μ� U(r)
μ (g)⊗ 1(m)μ

)
, (I12)

implying that there exist d(m)μ� simultaneous eigenvectors of
all U(g)’s with eigenvalues {eiφg }g . Using the assumption

that |	〉 is the unique simultaneous eigenvector with eigen-
values {eiφg }g , we identify d(m)μ� = 1. Noting d(r)μ� = 1 and
1
(r)
μ� = 	, we obtain from Eq. (I11) that


(ρ) = Tr[ρ	]	+
∑
μ�=μ�

1(r)μ

d(r)μ
⊗ Trr
[
ρ1(r)μ ⊗ 1(m)μ

]
.

(I13)

The second term is a completely positive map. Also, the
convexity of O and the assumption that Ug · U†

g ∈ O imply
that 
 ∈ O ⊆ Omax. Thus, we can apply Lemma 9 to
conclude the proof. �

APPENDIX J: PROOFS OF PROPOSITIONS 11–15

We first show Proposition 11.

Proof of Proposition 11. The face state is the +1 eigen-
state of the Clifford unitary K := SH , which cycles Pauli
operators as X → Z → Y. This implies that one can con-
struct the dephasing map � with respect to |F〉 and the −1
eigenstate |F〉 of K of the form

�(ρ) = 1
2
ρ + 1

2
KρK† = Tr[Fρ]F + Tr[(1 − F)ρ]F .

(J1)

Since this is realized by a probabilistic application of the
Clifford gate K , it is a stabilizer operation and thus � ∈
Oall. We obtain the statement by applying Lemma 9 or,
alternatively, Proposition 10. �

This idea can be employed to prove Proposition 12.

Proof of Proposition 12. Consider a t-qudit system with
local dimension d. Since φ is a stabilizer state, there exists
a Clifford unitary U such that |φ〉 = U |0〉⊗t, where |0〉 is
the +1 eigenstate of {Zj }d−1

j =0 with Z :=∑d−1
j =0 ei2π j /d |j 〉〈j |.

Since U is Clifford, φ is the +1 eigenvalue of the t(d − 1)
generalized Pauli operators

{
U†Zj

k U
}

k,j
, where Zk is the Z

operator that only acts on the kth qudit and acts trivially on
the other qudits. Since V is in the third level of the Clif-
ford hierarchy, ψ is the unique +1 eigenstate of t(d − 1)
Clifford unitaries

{
V†U†Zj

k UV
}

k,j
. Let Wjk := V†U†Zj

k UV

and |ψ�z〉 := VU |�z〉 with �z ∈ {0, . . . , d − 1}t be another
eigenstate of Wjk parametrized by �z, satisfying Wjk |ψ�z〉 =
ei2π jzk/d |ψ�z〉. The uniformly random application of Clifford
unitaries

{∏t
k=1 Wjkk

}
j1...jt

works as a dephasing among
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{ψ�z}�z because

1
dt

d−1∑
j1=0

· · ·
d−1∑
jt=0

(
t∏

k=1

Wjkk

)
|ψ�z〉〈ψ�z′ |

(
t∏

k=1

W†
jkk

)

= |ψ�z〉〈ψ�z′ | 1
dt

∑
j1,...,jt

t∏
k=1

ei2π jk(zk−z′
k)/d

= |ψ�z〉〈ψ�z′ |
t∏

k=1

⎛
⎝1

d

d−1∑
j =0

ei2π j (zk−z′
k)/d

⎞
⎠

= |ψ�z〉〈ψ�z′ | δ�z �z′ . (J2)

Thus, it acts as a projector onto {ψ�z}�z as

1
dt

d−1∑
j1...jt

(
t∏

k=1

Wjkk

)
·
(

t∏
k=1

W†
jkk

)
=
∑

�z
|ψ�z〉〈ψ�z| · |ψ�z〉〈ψ�z| .

(J3)

Importantly, this is a free operation because any
∏t

k=1 Wjkk
is a Clifford unitary. On the other hand, this is clearly in
S(ψ) and thus we can apply Lemma 9 or, alternatively,
Proposition 10. �

Next, we prove Proposition 13.

Proof of Proposition 13. The crucial property of the Hog-
gar state is that it has a completely flat representation in the
Pauli basis, in the sense that

|〈Hog|P|Hog〉| = 1
3

, (J4)

for every nontrivial Pauli operator P �= 1.
On the one hand, we know that Hog is a maximizer of

Ds,Fstab with Ds,Fstab(Hog) = log 12
5 [77]. On the other hand,

we consider the stabilizer norm [121], defined for every
n-qubit operator A as

‖A‖st := 1
2n

∑
P∈P

|Tr(A P)| , (J5)

where P denotes all n-qubit Pauli operators. Crucially,
since any stabilizer state satisfies ‖σ‖st ≤ 1, we can define
the set

FP := {σ ∣∣ σ ≥ 0, Tr σ = 1, ‖σ‖st ≤ 1
} ⊇ Fstab. (J6)

Then Dmin,Fstab(ρ) ≥ Dmin,FP (ρ) for every state ρ.

Then take the Hoggar state, which can be written as

|Hog〉〈Hog| = 1
23

⎡
⎣1 +

∑
P∈P\{1}

1
3

eiφP P

⎤
⎦ , (J7)

and consider any state σ ∈ FP , which can always be
written as

σ = 1
23

⎡
⎣1 +

∑
P∈P\{1}

zPP

⎤
⎦ , (J8)

with
∑

P |zP| ≤ 23 − 1 since ‖σ‖st ≤ 1. Then,

2−Dmin,FP (Hog) ≤ 〈Hog|σ |Hog〉

≤ 1
23

⎡
⎣1 +

∑
P∈P\{1}

1
3

eiφP zP

⎤
⎦

≤ 1
23

[
1 + 1

3
(
23 − 1
)]

= 1
8

+ 7
24

= 5
12

. (J9)

Using the fact that Ds,Fstab(Hog) ≥ Dmax,Fstab(Hog) ≥
Dmin,Fstab(Hog) ≥ Dmin,FP (Hog) concludes the proof of the
first part of the result.

To show the second part of the result, note that the Hog-
gar state |Hog〉 is the +1 eigenvector of all unitaries in the
group generated by two unitaries with order 7 and order 12
[104], defined as

Ũ7 := ω5

√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 −i 0 0 0
0 0 i 0 −1 0 0 0
0 0 0 −i 0 −1 0 0
0 0 0 −1 0 −i 0 0
1 0 0 0 0 0 −i 0
−i 0 0 0 0 0 1 0
0 −i 0 0 0 0 0 −1
0 1 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(J10)

Ũ12 := ω3

√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 i 0 0
0 0 0 0 −1 i 0 0
1 −i 0 0 0 0 0 0

−1 −i 0 0 0 0 0 0
0 0 1 i 0 0 0 0
0 0 −1 i 0 0 0 0
0 0 0 0 0 0 1 −i
0 0 0 0 0 0 −1 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(J11)
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where ω = e2π i/8. Let us call this group G and consider
the representation {Ug}g∈G that has the identical form to
the element of the unitary group G. As one can explic-
itly check, Ũ12 has a one-dimensional +1-eigenspace with
the unique +1-eigenvector |Hog〉, meaning that the Hog-
gar state is the unique simultaneous +1-eigenvector of all
unitaries {Ug}g∈G.

Since Ũ7 and Ũ12 are Clifford unitaries, G is a sub-
group of the three-qubit Clifford group and hence Ug ∈
Ostab ∀g ∈ G. Noting also that Ostab is completely free
[113], we can apply Proposition 10 to conclude the
proof. �

We now focus on qutrit states. First, we show Proposi-
tion 14.

Proof of Proposition 14. The Strange state is a fidu-
cial state for a SIC POVM for dimension 3. Recall
that a set {|ψj 〉〈ψj |}d2−1

j =0 of projectors is called a
SIC POVM if (1/d)

∑
j |ψj 〉〈ψj | = 1 and | 〈ψi|ψj 〉 |2 =

(dδij + 1)/d + 1. Moreover, a SIC POVM is called covari-
ant with group G if any state |ψi〉 in the SIC POVM can
be constructed by applying some unitary representation
Ugi , gi ∈ G to a fiducial state |ψ0〉 as Ugi |ψ0〉 = |ψi〉. The
SIC POVM generated from the Strange state is covariant
with respect to the Heisenberg-Weyl group and the Strange
state is stabilized by a subset of the Clifford group that is
isomorphic to the special linear group SL(2, Z3), which
is the set of matrices with unit determinant the entries of
which are over Z3 [105]. It has been shown that there is
a one-to-one correspondence between any F ∈ SL(2, Z3)

and a Clifford unitary UF (up to global phase) acting as

UFDkU†
F = DFk, (J12)

where Dk = Dk1,k2 = −eiπ/dX k1Zk2 [105,106]. Noting that
the projectors in the SIC POVM generated from the
Strange state can be parametrized by k as |ψk〉〈ψk| =
Dk |S〉〈S| D†

k and

UF |ψk〉〈ψk| UF = UFDkU†
F |S〉〈S| UFD†

kU†
F

= |ψFk〉〈ψFk| , (J13)

where we use that UF |S〉 = |S〉, we obtain that, for k �= 0,

�(ψk) := 1
|SL(2, Z3)|

∑
F∈SL(2,Z3)

UFψkU†
F

= 1
8

∑
k′ �=0

ψk′

= 31 − |S〉〈S|
8

. (J14)

In the third equality, we use the fact that { 1
3ψk}k consti-

tutes a POVM and thus
∑

k ψk = 31. The second equality

follows from the following observation. The set of Clif-
ford unitaries of the form (J12) is the collection of all
possible mappings from a Pauli operator to another Pauli
operator. This means that a certain given nonidentity Pauli
operator Dk can be mapped to an arbitrary nonidentity
Pauli operator Dk′ by some UF . Let {U(j )

k→k′ }Nk′
j =1 be the set

of Clifford unitaries that map Dk to Dk′ as in Eq. (J12),
where Nk′ is the number of such Clifford unitaries, and
set that U(j1)

k→k′ �= U(j2)
k→k′ for j1 �= j2. The second equality of

Eq. (J14) is equivalent to showing that Nk′ takes the same
value for all k′ �= 0. Suppose, to the contrary, that there
exists k′ such that Nk′ > Nk′′ for all k′′ �= k′. Pick an arbi-
trary k′′ with k′′ �= k′ and let {Uk′→k′′ }k′′ �=0 be a fixed set of
unitaries that satisfies

Uk′→k′′Dk′U†
k′→k′′ = Dk′′ . (J15)

This implies that for every j , Uk′→k′′U(j )
k→k′ maps Dk to Dk′′

and thus is a member of the set {U(l)
k→k′′ }Nk′′

l=1 . Moreover, we
have

Uk′→k′′U(j1)
k→k′ �= Uk′→k′′U(j2)

k→k′ , ∀j1 �= j2, (J16)

because otherwise it would result in U(j1)
k→k′ = U(j2)

k→k′ , vio-
lating the assumption. This implies that for every U(j )

k→k′ ,
we can construct a corresponding element in {U(l)

k→k′′ }Nk′′
l=1 ,

which are distinct from each other for different values of j .
This shows that we must at least have Nk′′ ≥ Nk′ but this
violates the assumption that Nk′ > Nk′′ . This concludes the
proof that Nk′ takes the same value for all k′ �= 0, leading
to the second equality in Eq. (J14).

On the other hand, for k = 0, we obtain �(ψ0) =
�(S) = S. Since { 1

3ψk}k is informationally complete, any
state ρ can be expanded as

ρ =
∑

k

ckψk. (J17)

This gives an action of � for an arbitrary state ρ as

�(ρ) = c0S + (1 − c0)
31 − S

8

= (1 − ερ)S + ερ
1 − S

2
, (J18)

where we set ερ := [3(1 − c0)]/4. In order for � to be lin-
ear in ρ, ερ must have the form ερ = Tr[Hρ] for some
Hermitian operator H . Combining this with the conditions
�(S) = S and �((1 − S)/2) = (1 − S)/2, we obtain

�(ρ) = Tr[Sρ]S + Tr[(1 − S)ρ]
1 − S

2
, (J19)

showing that � ∈ S(S).
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Moreover, (1 − S)/2 is a stabilizer state because
�(|0〉〈0|) = (1 − S)/2, while |0〉 is a stabilizer state and
� is a stabilizer operation. Indeed, we explicitly find

1 − S
2

= 1
4
(|0〉〈0| + |x〉〈x| + |xz〉〈xz| + |xz2〉〈xz2|),

(J20)

where |x〉 , |xz〉 , |xz2〉 are the eigenstates of X with eigen-
value +1, XZ with eigenvalue ei2π/3, and XZ2 with eigen-
value e−i2π/3, respectively, defined as

|x〉 := 1√
3
(|0〉 + |1〉 + |2〉)

|xz〉 := 1√
3
(|0〉 + e−i2π/3 |1〉 + e−i2π/3 |2〉)

|xz2〉 := 1√
3
(|0〉 + ei2π/3 |1〉 + ei2π/3 |2〉).

(J21)

These allow us to apply Lemma 9 to obtain the statement.
The value for Dmin,Fstab(S) can be explicitly calculated by
computing the overlaps between the Strange state and all
the pure stabilizer states and taking the logarithm of the
inverse of the maximum overlap. �

Finally, we show Proposition 15.

Proof of Proposition 15. Ds,Fstab(N ) ≤ log 3
2 is obtained by

noting that

|N 〉〈N | + 1
2

|+〉〈+| = 1
2
(|1〉〈1| + |xz′〉〈xz′| + |xzz′〉〈xzz′|),

(J22)

where

|+〉 := 1√
3
(|0〉 + |1〉 + |2〉)

|xz′〉 := 1√
3
(|0〉 + ei2π/3 |1〉 + |2〉)

|xzz′〉 := 1√
3
(|0〉 + e−i2π/3 |1〉 + |2〉)

(J23)

are stabilizer states. On the other hand, the optimization in
Dmin,Fstab is achieved by

Dmin,Fstab(N ) = log 〈N |xzz′〉−2 = log
3
2

. (J24)

Use of the inequalities Dmin,Fstab(N ) ≤ Dmax,Fstab(N ) ≤
Ds,Fstab(N ) concludes the proof. �
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