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A B S T R A C T   

While the microbiome of activated sludge (AS) in wastewater treatment plants (WWTPs) plays a vital role in 
shaping the resistome, identifying the potential bacterial hosts of antibiotic resistance genes (ARGs) in WWTPs 
remains challenging. The objective of this study is to explore the feasibility of using a machine learning 
approach, random forests (RF’s), to identify the strength of associations between ARGs and bacterial taxa in 
metagenomic datasets from the activated sludge of WWTPs. Our results show that the abundance of select ARGs 
can be predicted by RF’s using abundant genera (Candidatus Accumulibacter, Dechloromonas, Pesudomonas, and 
Thauera, etc.), (opportunistic) pathogens and indicators (Bacteroides, Clostridium, and Streptococcus, etc.), and 
nitrifiers (Nitrosomonas and Nitrospira, etc.) as explanatory variables. The correlations between predicted and 
observed abundance of ARGs (erm(B), tet(O), tet(Q), etc.) ranged from medium (0.400 < R2 < 0.600) to strong 
(R2 > 0.600) when validated on testing datasets. Compared to those belonging to the other two groups, indi
vidual genera in the group of (opportunistic) pathogens and indicator bacteria had more positive functional 
relationships with select ARGs, suggesting genera in this group (e.g., Bacteroides, Clostridium, and Streptococcus) 
may be hosts of select ARGs. Furthermore, RF’s with (opportunistic) pathogens and indicators as explanatory 
variables were used to predict the abundance of select ARGs in a full-scale WWTP successfully. Machine learning 
approaches such as RF’s can potentially identify bacterial hosts of ARGs and reveal possible functional re
lationships between the ARGs and microbial community in the AS of WWTPs.   

1. Introduction 

Antibiotic resistance is a major threat to public health and the pro
liferation of antibiotic resistance genes (ARGs) in the environment is 
believed to contribute to the problem (Martinez, 2008). Wastewater 
treatment plants (WWTPs) receiving municipal wastewater have been 
regarded as a key reservoir of ARGs (Bouki et al., 2013). The discharge of 
treated wastewater and disposal of biosolids from WWTPs can introduce 
ARGs to water and soil (Jia et al., 2017), altering the magnitude and 
composition of the resistomes in receiving environments (Xue et al., 
2019). 

The composition of the resistome in an environment can be strongly 
correlated to the composition of the microbiome (Forsberg et al., 2014; 
Yin et al., 2019; Zhang et al., 2016, 2018). The resistome in WWTPs is 
correlated with the composition of the microbial community therein, 
which is ultimately determined by the characteristics of the influent to 

WWTPs and the design and operation of WWTPs (Wu et al., 2018; Yin 
et al., 2019). The composition of the microbial community can explain 
68.2% of the ARG variations among sewage sludge according to 
redundancy analyses (Zhang et al., 2016). Hence, characterizing the 
composition of the microbial community may shed light on resistome 
composition in WWTPs. 

Associating ARGs to their bacterial hosts in complex environments is 
challenging. Efforts have been reported to identify potential bacterial 
hosts for ARGs using network (Guo et al., 2017) and binning analyses 
(Liu et al., 2019) on metagenomic data. Network analysis can reveal 
taxa-ARGs associations by calculating their Spearman’s rank correlation 
coefficient. For instance, using network analyses, Guo and coworkers 
identified strong Spearman’s correlations between seven ARGs and 
Dechloromonas in wastewater (Guo et al., 2017). However, spurious 
correlations (both false-positive and false-negative correlations) be
tween variables may result when the sample size is small (Guo et al., 
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2017; Rice et al., 2020). By grouping contigs with similar abundance and 
sequence composition into the same bin, binning analysis can reveal 
taxa-ARGs association by identifying the genome bins carrying both 
ARGs and taxonomic marker genes (Liu et al., 2019; Ma et al., 2016). 
Using binning analysis, Liu et al. (2019) speculated Mycobacterium, 
Nitrospira, and Nitrosomonas as multi-drug ARGs hosts in WWTPs 
treating landfill, municipal and car washing wastewater. For binning 
analyses, annotation at the genus level may be difficult due to low 
coverage of draft genome and lack of reference sequences for taxonomy 
annotation (Liu et al., 2019). Besides, the reconstructed genomes from 
metagenomics may not capture strain variation. These genomes may 
miss low-abundance species and introduce biases for quantitative 
analysis (Ju and Zhang 2015; Rice et al., 2020). 

Machine learning provides various alternative methods to search for 
potential associations between bacterial taxa and ARGs. In particular, 
random forests (RF’s) is a machine learning algorithm that can be used 
to predict resistome composition based on microbiome data. The vari
able importance factors of RF’s can indicate taxa with higher “impor
tance scores” in predicting individual ARGs. RF’s have been developed 
to identify the association between temperature and microbial compo
sition in WWTPs (Wu et al., 2019) and the correlation of ARGs in 
wastewater with socioeconomic, health and environmental factors 
(Hendriksen et al., 2019). Consequently, it is reasonable to apply the 
machine learning framework to search for the associations between 
ARGs and taxa (i.e., potential bacterial hosts). Indeed, the increasing 
number of metagenomic datasets in public repository makes it possible 
to test the feasibility of this approach in the effort to associate micro
biome and resistome in WWTPs. 

The objective of this study is to explore the feasibility of using RF’s to 
identify the strength of associations between ARGs and bacterial taxa in 
metagenomic datasets from the activated sludge of WWTPs. Through 
systematic review, 21 peer-reviewed publications, corresponding to 248 
metagenomic datasets from WWTPs in 10 countries, were selected. 
Metagenomic datasets were trained using RF’s to predict the abundance 
of select ARGs with explanatory variables of [1] abundant genera; [2] 
(opportunistic) pathogens and indicator bacteria; and [3] nitrifying 
bacteria (i.e., nitrifiers). The computed RF’s were then validated on 
testing datasets to assess their performance. Furthermore, the RF’s were 
used to predict ARGs abundance in WWTPs using bacterial taxa data. 
The findings from this study demonstrate the potential of using a ma
chine learning approach to identify potential bacterial hosts of ARGs in 
complex environments such as the activated sludge in WWTPs. 

2. Material and methods 

2.1. Systematic review 

Five databases, namely Compendex, Biological Science Research, 
Web of Science, Pubmed, and Scopus, were searched in August 2019. 
Search strategies were developed using different keywords and syntax 
according to the search rules of each database (Table S1). Only publi
cations that met the following criteria were included: applying the 
metagenomic approach to study wastewater, focusing on full-scale 
wastewater treatment systems, and containing metagenomic se
quences that are publically accessible through GenBank or MG-RAST. 
More details on search strategy and selection criteria are described in 
SI (Figure S1). Information about the selected papers can be found in 
Table S2. 

2.2. Bioinformatics analysis 

We focused on sequences from activated sludge (AS) in this work 
because the highest amount of data was available for this sample type 
compared to other sample types (i.e., influent, effluent, and digested 
sludge). The AS samples in the original studies were collected from 33 
WWTPs in 10 countries. 

Raw shotgun metagenomic sequence reads downloaded from public 
databases were trimmed using Trim_galore (Krueger, 2012). Cutadapt 
(Martin, 2011) and FastQC (Andrews, 2010) were used to remove low 
quality reads and adapter sequences. Trimmed reads were used to carry 
out taxonomy classification with Kaiju (Menzel et al., 2016). Trimmed 
reads were also annotated for ARGs using Resistance Gene Identifier bwt 
(RGI bwt) based on reference data from the Comprehensive Antibiotic 
Resistance Database (CARD) (Alcock et al., 2020). A sequence was an
notated as an ARG sequence if it shared 100% sequence identity with a 
sequence in the database and had an alignment length over 25 amino 
acids (Kristiansson et al., 2011). 

The abundance of ARGs was reported in the unit of “ppm” (i.e., one 
ARG-like read in one million metagenomic sequencing reads) according 
to Yang et al. (2013). Abundance of a specific taxon in a sample was 
calculated using the ratio of the total number of reads matched to taxon 
by Kaijiu and the total reads within a quality filtered library (Baral et al., 
2018). The abundances of genera and ARGs were log-transformed prior 
to generating RF’s. 

2.3. Resistance prediction 

2.3.1. Variable preparation 
The abundance of bacterial genera from three groups (i.e., [1] 

abundant bacteria, [2] (opportunistic) pathogens and indicator bacteria, 
and [3] nitrifiers) and that of select ARGs were defined as explanatory 
variables and responses, respectively, for the RF’s (Fig. 1). Based on the 
metagenomic datasets of AS, the most abundant genera in activated 
sludge were narrowed down to 11 genera (Group 1), Bradyrhizobium, 
Candidatus Accumulibacter, Dechloromonas, Hyphomicrobium, Methyl
oversatilis, Mycolicibacterium, Nitrosomonas, Nitrospira, Pseudomonas, 
Streptomyces, and Thauera. Group 2 included 29 (opportunistic) patho
gens commonly detected in WWTPs (Cai and Zhang 2013; Li et al., 
2015b) and 3 indicator bacteria (i.e., Clostridium, Enterococcus, and 
Escherichia). Group 3 contained 7 commonly occurring nitrifying bac
terial genera in WWTPs, Nitrosococcus, Nitrosomonas, Nitrosospira, 
Nitrobacter, Nitrococcus, Nitrospina, and Nitrospira (Juretschko et al., 
1998). Among the one hundred most abundant ARGs conferring resis
tance to five major antibiotic families (i.e., beta lactams, glycopeptides, 
macrolides-lincosamides-streptogramines (MLS), sulfonamides, and 
tetracyclines), we selected the 22 most abundant dominant ARGs based 
on their occurrence across all AS samples. 

2.3.2. RF’s development, validation and application 
Based on the metagenomic data on AS samples, RF’s were developed 

using each of the three groups of genera and the 22 select ARGs selected 
in 2.3.1 as variables and responses, respectively (Fig. 1). The computing 
was carried out using the caret package in R, which contains techniques 
for data splitting, pre-processing, model tuning (a trial-and-error process 
to determine the best set of hyperparameters), and variable importance 
evaluation (Kuhn, 2008). RF’s average was developed in following steps. 
First, the data were randomly split into 60% (training) and 40% (testing) 
subsets using the createDataPartion function. Next, with the training 
dataset, RF’s were generated using the train function in caret. The 
importance of the variables in each RF’s was assessed using the varImp 
function on a 0 - 100 scale. To flag problems of overfitting or selection 
bias, a five-fold cross-validation step was set up using the trainControl 
function for each RF’s by randomly partitioning variables into five 
sub-datasets of roughly equal sizes followed by estimation of accuracy 
based on remaining sub-datasets. Third, the RF’s were validated on 
testing datasets. Finally, results of validation on training and testing 
datasets were gathered by the gather function in the tidyr package and 
visualized using the ggplot function in the ggplot package. Linear 
regression was then used to assess the accuracy of the RF’s. Specifically, 
the R2 and Root Mean Square Error (RMSE) values from regressing the 
predicted on the observed values were calculated to indicate the pre
diction accuracy of RF’s. In general, high values of R2 (a relative 
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measure of model fit) and low values of RMSE (an absolute measure of 
model fit) indicate good fit of the RF’s. Because the abundance of in
dividual ARGs (i.e., responses of the RF’s) varied greatly within and 
across sequence libraries, RMSE is a less useful measure than R2 in 
assessing model fitness in this study. Hence, while RMSE values are 
reported, the strength of associations between predicted and observed 
values in linear regression model context were defined as “weak”, 
“moderate” and “strong” based on R2 values of 0.3 – 0.4, 0.4 – 0.6, and 
0.6 – 1.0, respectively (Hermans et al., 2020). 

2.4. Statistical analysis and data visualization 

T-tests were used to determine if the mean difference between two 
variables (e.g., the abundance of ARG families in various sample types) 
was statistically significant. The abundances of genera and ARGs were 
visualized in heatmaps using the pheatmap package in R. Partial 
dependence plots were drawn using the partialPlot function by in the 
randomForest package. The Nadaraya-Waston (NW) regression estimator 
was used to identify functional relationships between individual taxa 
and individual ARGs using the npregfast package in R. 

3. Results and discussion 

3.1. Occurrence and abundance of ARGs in WWTPs 

Following the systematic review (Table S1 and Figure S1), 21 
publications indexed in the five citation databases met the selection 
criteria (Table S2). A total of 248 shotgun metagenomic datasets were 
downloaded from the GenBank and MG-RAST databases as FASTQ files 
in October 2019. Of the 248 datasets, 141 datasets contained DNA se
quences on activated sludge (AS), 24 datasets contained DNA sequences 
on digested sludge (AD), 39 datasets contained DNA sequences on 
influent, and 44 datasets contained DNA sequences on effluent. The 
number of DNA reads per sample ranged from 1166,697 to 499,150,364, 
averaged at 65,736,667. The number of mapped ARG reads ranged from 
82 to 168,956 per library, averaged at 19,359. The average ARG 
abundance in influent and effluent samples was 437.6 and 466.8 ppm, 
respectively (Fig. 2a). By contrast, the average abundance of ARGs in AS 
and AD were 197.2 and 205.3 ppm, respectively. The ARG abundance in 
influent was significantly higher than that in AD and AS, and was 
significantly lower than that in effluent (p<0.05). Given that there are 

Fig. 1. Steps of Random Forests generation and validation. A five-fold cross-validation step was set up by randomly partitioning explanatory variables into five sub- 
datasets (red) of roughly equal sizes followed by estimation of accuracy based on remaining sub-datasets (orange). 

Fig. 2. ARG profiles in WWTPs, (a) total abundance of ARGs in various types of samples in WWTPs; (b) the abundance of select ARG families in activated sludge; log- 
transformed abundance of select ARGs conferring resistance to (c) beta-lactams, (d) glycopeptides, (e) MLS, (f) sulfonamides, and (g) tetracyclines. IQR represents 
interquartile range. AD and AS represent samples from anaerobic digester and activated sludge, respectively. p-values are calculated from t-tests. Ave indicates 
average abundance. 
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significantly more metagenomic datasets available for AS than for the 
other sample types, we focused on the metagenomic datasets from AS in 
this study. 

The abundance of five commonly studied ARG families (i.e., those 
corresponding to beta-lactams, glycopeptides, MLS, sulfonamides, and 
tetracyclines) in AS is shown in Fig. 2b. Tetracycline and sulfonamide 
resistance genes are the most abundant ARG families, with average 
abundances of 30.6 and 57.8 ppm, respectively. Significant difference in 
abundance was observed between ARGs conferring resistance to beta- 
lactams vs. glycopeptides, beta-lactams vs. tetracyclines, and glyco
peptides vs. MLS (p<0.05), etc. According to metagenomic studies that 
were not used in this work, the ARG abundance in AS ranges between 24 
– 708 ppm (Christgen et al., 2015; Li et al., 2015a; Tang et al., 2016; 
Yang et al., 2014). The ARG abundance obtained from this study fell 
within this range. 

Among the 100 most abundant ARGs belonging to the five ARG 
families in the datasets (Figure S2), 22 ARGs were selected for further 
analyses based on their abundance across all 141 metagenomic libraries 

on AS (Fig. 2c - 2 g): 1 beta-lactam resistance gene blaOXA-368 (Fig. 2c); 1 
glycopeptide resistance gene vanRO (Fig. 2d); 2 MLS resistance genes 
erm(B) and erm(F) (Fig. 2e); 2 sulfonamide resistance genes sul1 and sul2 
(Fig. 2f); 16 tetracycline resistance genes (i.e., tet(32), tet(36), tet(39), tet 
(44), tet(A), tet(C), tet(E), tet(G), tet(M), tet(O), tet(Q), tet(W), tet(W/N/ 
W), tet(X), tet(X3), tet(X4)) (Fig. 2g). The mean abundance of the tet 
genes ranged from 0.3 for tet(W/N/W) to 4.2 ppm for tet(A). The mean 
abundance of sul1 and sul2 were 36.2 and 24.1 ppm, respectively, while 
the mean abundance was 1.7 ppm for vanRO, 6.3 ppm for blaOXA-368, 2.6 
ppm for erm(B), and 4.8 ppm for erm(F). 

3.2. Association of ARGs with abundant genera 

The relationship between ARGs and abundant genera were investi
gated by RF’s with the group of abundant genera as explanatory vari
ables and individual ARGs as responses. The top 100 genera were 
identified according to their relative abundance across all metagenomic 
libraries (Figure S3). Among them, 17 genera had a mean relative 

Fig. 3. Observed ARG abundance was plotted against the ARG abundance predicted using the Random Forests generated with abundant genera as explanatory 
variables. Only the eight ARGs with R2 higher than 0.400 in the testing datasets are shown (a - h). The values shown in the plots are log-transformed abundance. 
Dashed lines indicate the theoretical lines for perfect predictions. Data (dots) and models (line) were separately plotted for the training datasets (green) and the 
testing datasets (gray). RMSE and adjusted R2 are reported in the panels. 
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abundance higher than 0.3%. To avoid multicollinearity, 6 of the 17 
genera were excluded, as they were highly correlated to each other with 
correlation coefficients higher than 0.6. The remaining 11 genera were 
used in RF’s (Figure S4). 

Our results show that for the training dataset the group of 11 
abundant genera could explain over 88% of the variations in ARGs 
abundance with R2 ranging 0.883 – 0.938 and RMSE ranging 0.547 – 
0.874 (Table S3). When applied to the testing dataset, the RF’s exhibited 
a wider range of R2 values ranging from 0.0216 to 0.637 (Table S3). For 
8 of 22 ARGs tested, moderate to strong associations were shown be
tween predicted to observed ARGs abundance with R2 ranging 0.435 – 
0.637 and RMSE ranging 1.02 – 1.41 (Fig. 3). Particularly, for the RF’s 
developed for tet(O), tet(Q), and tet(W/N/W), the associations between 
predicted and observed ARGs abundance had R2 values higher than 
0.600 and RMSE lower than 1.41, indicating strong associations be
tween these ARGs and the abundant genera tested. 

According to the importance score, the most important genera within 
the explanatory variables were Candidatus Accumulibacter, Nitro
somonas, Nitrospira, Dechloromonas, Pseudomonas, and Thauera 
(Figure S4), which were previously reported as potential ARG hosts 
(Table 1) (Guo et al., 2017; Sui et al., 2018; Xia et al., 2019; Zhou et al., 
2019). For genus-ARG pairs with importance factors higher than 90 in 
RF’s (Figure S4), partial dependence plots were generated to show the 
functional relationship between an individual genus and the predicted 
ARG abundance (Figure S5). For the genus-ARG pairs included in the 
partial dependence analysis, most of the predicted ARG abundance 
exhibited positive dependence on the individual genera tested, except 
for Candidatus Accumulibacter vs. tet(44) and tet(M), as well as Dech
loromonas vs. tet(36) and tet(X). Similarly, for genus-ARG pairs with 
importance factors higher than 90 in RF’s (Figure S4), the abundance of 
individual genus was regressed on the observed ARG abundance using 
the Nadaraya-Waston (NW) estimator (Figure S6). The NW plots show 
nonlinear functional relationships between observed ARGs and 

individual abundant genera, e.g., observed abundance of blaOXA-368 and 
tet(A) increased with Pseudomonas, and the observed abundance of 
blaOXA-368, tet(X), sul1 and sul2 increased with Thauera. 

Nitrosomonas and Nitrospira are nitrifying bacteria, while Candidatus 
Accumulibacter (Wu et al., 2019), Dechloromonas (Wang et al., 2020), 
Pseudomonas (Scherson et al., 2013) and Thauera (Wang et al., 2020) are 
denitrifying bacteria, suggesting ARGs may be linked to bacteria 
involved in nitrogen transformation in WWTPs (Wang et al., 2020). 
Thauera can survive the pressure of tetracycline and kanamycin below 
the minimal inhibitory concentrations (Zhao et al., 2019), and correlate 
with sul2, tet(A), tet(O), tet(W) (Du et al., 2019), and tet(X) (Wang et al., 
2020). Candidatus Accumulibacter and Dechloromonas belong to the 
global core bacterial community in WWTPs and play important roles in 
organics and nitrogen transformation (Wu et al., 2019). These two 
genera could be enriched under long-term exposure to tetracycline and 
sulfamethoxazole in lab scale reactors treating wastewater, and their 
abundance were correlated with sul1, tet(A), tet(C), tet(L), tet(O), and tet 
(X) at the end of enrichment (Du et al., 2019), suggesting the ability to 
acquire ARGs under selective pressure (Wang et al., 2019). 

3.3. Association of ARGs with (opportunistic) pathogens and indicator 
bacteria 

RF’s were developed using the group of (opportunistic) pathogens (e. 
g., Acinetobacter, Bacillus, and Bordetella, etc.) and indicator bacteria (i. 
e., Clostridium, Enterococcus, and Escherichia) as explanatory variables 
and individual ARGs as responses. Our results show that for the training 
dataset the group of (opportunistic) pathogens and indicators explained 
over 91% of the variations in ARGs abundance with R2 ranging 0.910 – 
0.964 and RMSE ranging 0.455 – 0.821 (Table S3). When applied to the 
testing dataset, the RF’s exhibited a wider range of R2 values, ranging 
from 0.0123 to 0.654, between predicted and observed ARGs 
(Table S3). The predicted ARG abundance was strongly associated with 
the observed abundance of erm(B), tet(39), tet(M), and tet(Q) with R2 

higher than 0.600 (Fig. 4). Additionally, moderate associations were 
observed between predicted to observed abundance for sul2, tet(32), tet 
(36), tet(44), tet(A), tet(W), and vanRO with R2 ranging 0.400 – 0.600 
(Fig. 4). 

As shown in Figure S7, Bacteroides, Clostridium, Escherichia, Entero
coccus, Eubacterium, Klebsiella and Streptococcus were the genera with 
importance scores higher than 90 for multiple ARGs, e.g., tet(32), tet 
(44), tet(M), tet(O), tet(W) and tet(W/N/W). For the 7 genera and the 
ARGs that they had high importance scores for, partial dependence plots 
show that the predicted abundance of all the ARGs included in this 
analysis exhibited positive dependence on the genera included 
(Figure S8). These genus-ARG pairs were further analyzed using the NW 
estimator (Fig. 5). The functional relationships between observed ARG 
abundance and the genera of (opportunistic) pathogens and indicators 
were obviously non-linear. The abundance of observed ARG abundance 
exhibited generally positive relationships with the abundance of indi
vidual genera, with the exception of Enterococcus vs tet(E) (Fig. 5). The 
NW curves are very steep in some cases. Possible threshold effects may 
be further investigated by fitting a single tree model using techniques 
such as those reported in Chipman et al. (1998). 

The functional relationship between ARGs and genera identified in 
this section have also been reported in studies employing other ap
proaches. Network analyses showed strong co-occurrence between tet 
(Q) and Bacteroides as well as Escherichia in fecal environmental samples 
(Li et al., 2015c); between Clostridium and tet(32) (Li et al., 2015c); 
Streptococcus and erm(B) in AS samples (Ju et al., 2016). Using the 
Mantel test and canonical correspondence analysis, Jia and co-authors 
(2017) reported that tetracycline resistance genes were mainly carried 
by Bacteroides, Streptococcus, and Clostridium in livestock wastewater. 
Lee et al. (2020) reported that the relative abundances of fecal bacteria 
including Bacteroides and Clostridium were linearly correlated with ARG 
abundance (R2 = 0.21) in river water. 

Table 1 
Association between genera and select ARGs from published papers and this 
study.  

Taxa ARGs Methodology References 

Nitrosomonas dfrK, penA, vanHAc2, and 
vanR-F 

Network Guo et al., 
2017 

Nitrosomonas bacA, sul2 Binning Liu et al., 
2019 

Nitrosomonas blaTEM, ereA, erm(B), erm 
(F), sul2, and tet(X) 

Network Sui et al., 
2018 

Nitrosomonas sul1, tet(32), tet(36), tet(A), 
tet(O), tet(W), tet(W/N/W), 
and tet(X) 

Machine 
learning 

This study 

Nitrospira sul1, tet(G) Network Sui et al., 
2018 

Nitrospira blaOXA-368, erm(B), tet(32), 
tet(C), tet(O), tet(W), tet(W/ 
N/W), and tet(X4) 

Machine 
learning 

This study 

Pseudomonas vanR-C Network Guo et al., 
2017 

Pseudomonas sul1, tet(A), tet(C), and tet 
(O) 

Network Du et al., 
2019 

Pseudomonas blaOXA-368, erm(F), tet(E) 
and tet(A) 

Machine 
learning 

This study 

Candidatus 
Accumulibacter 

Peb-EC, SFO-1, vanR-B, and 
vanR-C, 

Network Guo et al., 
2017 

Candidatus 
Accumulibacter 

sul1, sul2, tet(A), tet(C), tet 
(L), tet(O), and tet(X) 

Network Du et al., 
2019 

Candidatus 
Accumulibacter 

blaOXA-368, tet(36), tet(44), 
tet(C), and tet(M) 

Machine 
learning 

This study 

Thauera acrA, MacA, and NPS-1 Network Zhao et al., 
2019 

Thauera sul2, tet(A), tet(O), and tet 
(W) 

Network Du et al., 
2019 

Thauera sul1, sul2, tet(G), and tet(X) Machine 
learning 

This study  
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Our findings are also supported by studies that employed pure cul
tures. Bacteroides isolates from WWTPs exhibited a high percentage of 
resistance to tetracyclines (80%) and tested positive for tet(Q) and tet(M) 
using PCR (Niestepski et al., 2019; Salyers et al., 2004). ARGs tet(M) and 
tet(Q) were carried by integrative and conjugative elements from Bac
teroides and Streptococcus, respectively (Che et al., 2019). In addition, 
Bacteroides species may acquire erm(B), tet(Q) and tet(M) from Strepto
coccus spp, Clostridium spp, and Entrococcus spp in human intestines 
(Salyers et al., 2004). Clinical Bacteroides isolates from hospital were 
confirmed to possess erm(B) (Johnsen et al., 2017). Similarly, some 
Streptococcus strains isolated from WWTPs and human fecal specimens 

were resistant to ampicillin, tetracycline, kanamycin, penicillin and 
vancomycin (Limayem et al., 2019), and the genome of Streptococcus 
strains isolated from a throat swab of a child contained erm(B) and tet(M) 
(Huang et al., 2020). Moreover, Eubaeterium isolates from patients with 
periodontal disease harbored the tet(M) gene (Olsvik et al., 1995). 

3.4. Associations of ARGs with the nitrifiers 

RF’s were developed for a group of nitrifiers as explanatory variables 
and individual ARGs as responses. These nitrifiers includes Nitro
sococcus, Nitrosomonas, Nitrosospira, Nitrobacter, Nitrococcus, Nitrospina, 

Fig. 4. Observed ARG abundance was plotted against the ARG abundance predicted using the Random Forests generated with (opportunistic) pathogens and in
dicators as explanatory variables. Only the eleven ARGs with R2 higher than 0.400 in the testing datasets are shown (a - l). The values shown in the plots are log- 
transformed abundance. Dashed lines indicate the theoretical lines for perfect predictions. Data (dots) and models (line) were separately plotted for the training 
datasets (green) and the testing datasets (gray). RMSE and adjusted R2 are reported in the panels. 
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and Nitrospira, as they have been consistently detected in the meta
genomic libraries. Nitrifying bacteria that were not consistently detected 
in metagenomic libraries were not included in this analysis. 

Within the training dataset, the RF’s explained over 88% of the 
variations in ARG abundance, with R2 ranging 0.880 – 0.949 and RMSE 
ranging 0.519 – 0.983 (Table S3). When validated using the testing 

dataset, the RF’s exhibited a wider range of R2 values from 0.0313 to 
0.718 (Table S3). For example, the RF’s exhibited strong associations 
(R2 > 0.600) between predicted and observed abundance for tet(32), tet 
(W), and tet(W/N/W), as well as moderate associations (R2 ranging 
0.400 – 0.600) for erm(B), tet(44), tet(M), tet(O) and tet(Q). 

As shown in Figure S9, Nitrosomonas and Nitrospira had importance 

Fig. 5. Abundance plots for ARGs and the most important opportunistic pathogens and ARGs abundance. Each panel of this figure has a horizontal axia representing 
the abundance of ARGs (ppm), the corresponding vertical axis shows the relative abundance of the opportunistic pathogens (%). Data are smooth by the Nadaraya- 
Waston estimator (black line) with bootstrap-based 95% confidence band (shaded area). Abundance of ARGs and taxa were log-transformed. 
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scores higher than 90 with more ARGs than did the other nitrifiers. That 
is, Nitrosomonas was important in predicting the abundance of sul1, tet 
(32), tet(36), tet(A), tet(O) and tet(X), while Nitrospira was important in 
predicting erm(B), tet(C), tet(W), tet(W/N/W) tet(X3) and tet(X4). For all 
genus-ARG pairs with importance score higher than 90, partial depen
dence plots show that most of the ARGs included in this analysis 
exhibited positive dependence on the nitrifiers (Figure S10). Our results 
also show nonlinear functional relationships between ARGs and indi
vidual nitrifier genera (Figure S11). For instance, abundance of blaOXA- 

368 and tet(A) increases with the abundance of Nitrococcus. 

Studies using network or binning analyses suggest the associations 
between nitrifying bacteria and ARGs (Table 1). Nitrosomonas and 
Nitrospira abundance was suggested to indicate the fluctuation of ARGs 
abundances in AS reactors (Zhao et al., 2019) and partial-nitritation 
biofilters (Gonzalez-Martinez et al., 2018; Zhao et al., 2019) following 
antibiotic addition. Because there is a strong Spearman correlation with 
class 1 integron-integrase intI1, Nitrosomonas spp. may be involved in the 
horizontal gene transfer of ARGs (Wu et al., 2020). Nitrosomonas and 
Nitrospira could survive antibiotic treatment in the reactors and there
fore were speculated to be ARG hosts or antibiotic degraders (Zhao et al., 

Fig. 6. Observed ARG abundance was plotted against the ARG abundance predicted using the Random Forests generated with nitrifiers as explanatory variables. 
Only the ten ARGs with R2 higher than 0.400 in the testing datasets are shown (a - k). The values shown in the plots are log-transformed abundance. Dashed lines 
indicate the theoretical lines for perfect predictions. Data (dots) and models (line) were separately plotted for the training datasets (green) and the testing datasets 
(gray). RMSE and adjusted R2 are reported in the panels. 
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2019). 

3.5. Prediction of ARGs using taxa for a WWTP 

Given their superior performance in the testing dataset (Fig. 4 vs 3 
and 6; Fig. 5 vs S6 and S11), the RF’s with (opportunistic) pathogens 
and indicator bacteria as explanatory variables were used to predict the 
concentrations of select ARGs in a WWTP in Hong Kong, China (Yin 
et al., 2019). The shotgun metagenomic data of the WWTP were not 
included in the 141 datasets used to develop the RF’s. 

RF’s were able to predict the ARGs abundance in the AS of this 
WWTP in Hong Kong reasonably well (Figure S12). The RF’s predicted 
the abundance of tet(M), tet(Q), and tet(W) with R2 ranging 0.421 - 0.472 
and RMSE ranging 0.486 - 0.564. The relatively good agreement based 
on the R2 value (i.e., 0.4 ≤ R2 ≤ 0.6) demonstrates the feasibility of the 
RF’s developed in this study to predict ARG concentrations in WWTPs 
over time. The predicted ARGs abundance of the WWTP ranged from 
0.04 - 0.7 ppm for tet(M); 0.01 - 0.17 ppm for tet(Q); 0.01 - 0.07 ppm for 
tet(W) in present study was consistent with 0.02 - 0.60 ppm observed in 
Yang et al. (2014). 

3.6. Implications and perspectives 

RF’s were previously used to predict ARG abundance in wastewater 
using socioeconomic, health, and environmental factors (Hendriksen 
et al., 2019). In this work, we linked the abundance of select ARGs in AS 
with the abundance of three bacterial populations and individual genera 
within the populations. By employing RF’s, we have demonstrated that 
certain bacterial populations exhibit strong associations with select 
ARGs. In addition, the NW estimator indicates that the abundance of 
select ARGs increases with the abundance of certain taxa. These func
tional relationships may be used to develop hypotheses about certain 
genera being the potential bacterial hosts of ARGs and to estimate ARGs 
abundance based on microbiome composition in WWTP AS. 

One major challenge in studying the environmental resistome is to 
identify the bacterial hosts of ARGs. In addition to identifying the as
sociations between explanatory variables and responses, RF’s can rank 
the relative importance of individual variables in predicting responses 
(Cai et al., 2019; Chang et al., 2017; Sun et al., 2018; Yeo et al., 2020). 
This capability of RF’s has been used in applications, including ranking 
variables (e.g. nanoparticle loading, membrane pore size and relative 
water contact angle) in regulating water permeability of reverse osmosis 
membranes (Yeo et al., 2020), identifying associations between the 
antibiotic resistance in wastewater and socioeconomic variables (Hen
driksen et al., 2019), linking feed substrate to the microbiome in mi
crobial fuel cells (Cai et al., 2019), and connecting environmental 
parameters to the nitrogen fixation related genes (Sun et al., 2020) and 
microbial diversity (Sun et al., 2018) in soil. In this work, we found that 
ARGs abundance were predicted with higher accuracy using RF’s with 
the group of (opportunistic) pathogen and indicator bacteria as 
explanatory variables than those with the groups of abundant genera 
and nitrifiers. We also tested individual genera from three groups of 
bacteria, and observed positive dependence with select ARGs. In 
particular, the functional relationship between ARGs and (opportu
nistic) pathogens and indicators warrants further investigation (Fig. 5). 
Any hypothesis about hosts derived from the RF’s will still need to be 
validated using culture-based methods. 

As date from next generation sequencing becomes more available, 
the amount of microbial taxa information is likely to expand quickly. 
RF’s like the ones developed in this study can be used to estimate the 
abundance of certain ARGs based on microbial community composition. 
Hermans et al. (2020) emphasized the association between bacterial 
taxa and soil physico-chemical variables using RF’s with R2 of 0.35 - 
0.73 (validated on the testing dataset). Wu et al. (2019) demonstrated 
the performance of RF’s to correlate taxa composition and temperature 
of wastewater treatment plant, with R2 of 0.47 (validated on the testing 

dataset). RF’s developed in this study explained over 40% of the vari
ation in the abundance of 8, 11, 10 ARGs in testing datasets for abundant 
genera, (opportunistic) pathogens and indicators, and nitrifiers, 
respectively. 

Several factors can affect the performance of RF’s, such as outliers in 
datasets, size and number of trees, and folds and times of cross valida
tion. RF’s can yield bias in regression problems when extreme obser
vations are estimated using the averages of response values. Large values 
may be underestimated and small values may be overestimated (Zhang 
and Lu, 2012). More work is needed to corroborate the accuracy of the 
RF’s and further correct any biases. RF’s can be improved by supple
menting metagenomic data with other explanatory variables, such as 
wastewater characteristics (e.g., pH, temperature, wastewater types, 
and nutrient concentrations) and operational parameters (e.g., hydrau
lic retention time, sludge retention time, dissolved oxygen, and organic 
loading rate). Any associations identified between ARG abundance and 
individual operational parameters can be used to guide the optimization 
of operation to minimize ARG spreading. 

4. Conclusions 

In this work, RF’s were used to estimate the relationships between 
the abundance of select ARGs and three groups of bacteria: abundant 
genera, (opportunistic) pathogens and indicators, and nitrifiers. For RF’s 
with abundant genera as variables, Pesudomonas and Thauera showed 
strong associations with multiple ARGs (blaOXA-368, sul1, tet(X) etc.). For 
RF’s with (opportunistic) pathogens and indicators as variables, Bac
teroides, Clostridium, and Streptococcus exhibited strong associations with 
tet and erm genes. RF’s with nitrifiers as variables suggest that nitrifiers 
associate with ARGs abundance, particularly Nitrosomonas and Nitro
spira. Among the three groups of explanatory variables, the group of 
(opportunistic) pathogens and indicators exhibited more positive func
tional relationships between individual genera and ARGs than did the 
other two groups, suggesting members of taxa within this group as po
tential hosts of these ARGs. Finally, RF’s developed based on the 
(opportunistic) pathogens and indicators could predict ARGs temporal 
profiles for a full-scale WWTP successfully. 
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