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Modular flavor symmetries provide us with a new, promising approach to the flavor problem. However, 
in their original formulation the kinetic terms of the standard model fields do not have a preferred form, 
thus introducing additional parameters, which limit the predictive power of this scheme. In this work, we 
introduce the scheme of quasi–eclectic flavor symmetries as a simple fix. These symmetries are the direct 
product of a modular and a traditional flavor symmetry, which are spontaneously broken to a diagonal 
modular flavor subgroup. This allows us to construct a version of Feruglio’s model with the Kähler terms 
under control. At the same time, the starting point is reminiscent of what one obtains from explicit string 
models.

 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Modular flavor symmetries [1–8] are an exciting new approach 
to the flavor problem. Very simple settings can, in principle, pro-
vide us with a surprisingly good fit to data while making a 
comparatively large number of nontrivial, testable predictions. We 
would like to refer the reader to [9] and references therein for 
more details and models.

What is the new ingredient of Feruglio’s models [1] which ap-
pears to make the traditional A4 models [10,11] even more com-
pelling? The challenges in traditional models (see e.g. [12] for 
an extended list of examples and references) lie mainly in the 
flavon sector. More specifically, one has to align the flavons at 
some appropriate values, see e.g. [13] for a discussion and further 
references. However, often flavons naturally settle at symmetry–
enhanced points (see e.g. [14]), which are typically not entirely 
realistic. As a consequence, the traditional flavor models often re-
quire an extended flavon sector, which introduces a number of 
free parameters, thus limiting the number of nontrivial predictions. 
Models with modular flavor symmetries evade these arguments 
because the flavons get replaced by multiplets of modular forms. 
One then faces the lesser challenge to find, and eventually justify, 
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appropriate values of the half–period ratio τ which the modular 
forms depend on. The resulting models are very elegant and de-
scribe data surprisingly well [9].

However, there is a price one has to pay. The modular flavor 
symmetries, which we will review in some more detail in Sec-
tion 2.1, are nonlinearly realized. As a consequence, the Kähler 
potential is not under control [15], i.e. there is no preferred field 
basis. This introduces additional parameters, thus limiting the pre-
dictive power of the construction. On the other hand, in the frame-
work of traditional flavor symmetries the Kähler potential is under 
control. It is still subject to possibly important corrections [16,17], 
but one has at least a perturbative expansion in ε = 〈ξ〉/$, where 
〈ξ〉 denotes the vacuum expectation value (VEV) of a so–called 
flavon and $ is the cut–off scale.

The purpose of this study is to show that a hybrid scheme 
allows us to combine the advantages of both approaches while 
largely avoiding their limitations. The simplest models of this hy-
brid approach have a flavor symmetry of the form

Gflavor = Gtraditional × Gmodular , (1)

and a flavon χ , which is charged under both Gtraditional and 
Gmodular. Once χ acquires a VEV, the flavor symmetry will be bro-
ken to its diagonal subgroup,

Gflavor = Gtraditional × Gmodular
〈χ 〉−−→ Gdiagonal . (2)

Matter fields are assumed to transform under Gtraditional, which is 
why their Kähler potential is under control [16–18]. However, af-
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ter the breaking (2), their couplings will be effectively given by 
modular forms.

Our setup is heavily inspired by the scheme of “eclectic flavor 
groups” [19], which arise naturally in string models [18,20,21] and 
magnetized toroidal compactifications [22]. Generally in top–down 
models (cf. e.g. [23–26]) one can, at least in principle, compute 
the Kähler potential, but at this point it is probably also fair to 
say that this approach has not yet provided us with completely 
realistic predictive models. These groups are the result of combin-
ing nontrivially a traditional and a modular flavor group, such that 
Gmodular is a subgroup of the outer automorphisms of Gtraditional . 
Hence, eclectic groups represent a more complex hybrid scheme 
than Equation (1), sharing the feature of a controlled Kähler poten-
tial due to Gtraditional. The purpose of the present work is to show 
how one can, in a bottom–up effective field theory (EFT) approach, 
combine modular flavor symmetries with perturbative control over 
the Kähler potential. We leave the question of an explicit stringy 
completion for future work.

2. Modular and eclectic flavor symmetries

2.1. Modular flavor symmetries

The half–period ratio or modulus τ of a torus does not uniquely 
characterize a given torus. Rather, different τ related by transfor-
mations in the so–called modular group PSL(2, Z) describe the 
same torus. Under an arbitrary element γ ∈ PSL(2, Z), the mod-
ulus and matter superfields ' j transform as

τ
γ(−→ γ τ := a τ + b

c τ + d
, (3a)

' j
γ(−→ (c τ + d)k j ρr j (γ )' j , where γ :=

(
a b
c d

)
(3b)

with detγ = 1 and a, b, c, d ∈ Z. Further, k j denotes the so–called 
modular weight of the matter superfield ' j , which can build an 
r j –dimensional representation of some finite modular group2 )N , 
N = 2, 3, . . .. ρr j (γ ) corresponds to the r j × r j matrix represen-
tation of γ in the finite modular group. This transformation of 
the matter fields indicates that )N can be regarded as a modu-
lar flavor symmetry [1,3], which is however nonlinearly realized, 
as is evident from Equation (3a). Finally, note that the action of 
the modular flavor symmetry is accompanied by (cτ + d)k j , which 
is known as automorphy factor.

Note that, as a consequence of Equation (3a),

(−iτ + iτ̄ )k γ(−→
(
(c τ + d)(c τ̄ + d)

)−k
(−iτ + iτ̄ )k , (4)

for an arbitrary k. This implies that an invariant under the finite 
modular group is given by

(−iτ + iτ̄ )k j
(
'̄ j' j

)
1 , (5)

where the subindex 1 refers to the trivial )N singlet(s) resulting 
from tensoring the superfield ' j with its conjugate.

To complete a supersymmetric model based on modular flavor 
symmetries, we must specify its superpotential and Kähler poten-
tial. In terms of the matter fields ' j , the superpotential can be 
expressed as a polynomial of the form

W (') =
∑

i, j,k

Ŷ (kY )
s (τ )'i' j'k + higher order terms , (6)

2 We restrict here to )N finite modular groups, but our discussion can be readily 
extended to their double cover )′

N and metaplectic extensions (cf. [5,7,27–30,26]).

where Ŷ (kY )
s (τ ) are modular forms of level N and modular weights 

kY transforming as an s–dimensional representation of )N . In gen-
eral, the superpotential is constrained to transform according to

W (')
γ(−→ W ('′) := (cτ + d)kW W (') . (7)

In our case, given our bottom-up approach, we choose the super-
potential to be modular invariant, i.e., kW = 0. This amounts to 
demanding s ⊗ ri ⊗ r j ⊗ rk

!⊃ 1 and kY
!= −ki − k j − kk .

The Kähler potential of matter fields in models endowed with a 
modular flavor symmetry is typically assumed to take the canoni-
cal form

K (', '̄) ⊃
∑

j

(−iτ + iτ̄ )k j |' j|2 , (8)

as in [1]. However, the nonlinear realization of this symmetry im-
plies that there are additional terms with free coefficients, which 
are at the same footing as the canonical terms, thus limiting the 
predictive power of the model [15].

2.2. Eclectic flavor symmetries

The so–called eclectic flavor symmetries [19] arise naturally 
in string models [18,20,21] and magnetized toroidal compactifi-
cations [22]. They are given by group–theoretic unions of a tra-
ditional (flavor) symmetry, Gtraditional, and a modular symmetry, 
Gmodular,

Geclectic = Gtraditional ∪ Gmodular , (9)

such that the modular symmetry is built out of outer automor-
phisms of Gtraditional, Gmodular ⊂ Out(Gtraditional). The union “∪” in 
Equation (9) is to be understood as the multiplicative closure of 
the groups.

Crucially, Geclectic has representations which transform nontriv-
ially under both Gtraditional and Gmodular. This means that, by giving 
a VEV to a representation of that kind, we can break Geclectic to 
a diagonal subgroup which inherits properties from Gtraditional as 
well as Gmodular.

Even though eclectic groups can also be built from a bottom–
up perspective [19], in this work we refrain from working out 
an explicit eclectic model. Rather, in what follows we will ana-
lyze the somewhat simpler situation in which the union “∪” in 
Equation (9) gets replaced by a direct product, i.e. Gquasi-eclectic =
Gtraditional × Gmodular. As we shall see, the emerging scheme is still 
simple enough to be analyzed and at the same time illustrates how 
the desirable properties of Gtraditional and Gmodular get inherited by 
the diagonal group.

3. A simple quasi–eclectic example

3.1. Symmetries and representations

To illustrate the main points of our quasi–eclectic scheme, let 
us consider a model by Feruglio [1], but with a slight twist. We 
will take the original flavor symmetry to be

Gflavor = Atraditional
4 × )3 , (10)

where )3 can be thought of as a modular version of A4. The 
quantum numbers of the states are listed in Table 1. We take the 
superpotential to have modular weight kW = 0.

2
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Table 1
Variation of model 1 of [1]. EC

i , L, Hu and Hd are the superfields of the charged 
leptons, left–handed doublets, up–type Higgs and down–type Higgs, respectively. 
Sχ and Sϕ are part of the VEV alignment, see Appendix A. In our notation, A4 ∼= )3
has the representations 3, 10, 11 and 12, whose tensor products are given e.g. in [1, 
Appendix C].

(EC
1 , EC

2 , EC
3 ) L Hd Hu χ ϕ Sχ Sϕ Y

SU(2)L × U(1)Y 11 2−1/2 2−1/2 21/2 10 10 10 10 10

Atraditional
4 (10,12,11) 3 10 10 3 3 10 10 10

Z
χ
3 0 0 0 1 1 0 1 0 0

Z
ϕ
3 1 0 1 0 0 1 0 1 0

)3 10 10 10 10 3 10 10 10 3

k (kE1 ,kE2 ,kE3 ) kL kHd kHu kχ kϕ kS kS kY
modular weights (1,1,1) −1 0 0 0 0 0 0 2

3.2. Diagonal breaking

Let us now assume that the flavon χ attains a “diagonal” VEV, 
i.e. in the real basis

〈
χa

i

〉
= v1 13 . (11)

In the complex basis, this diagonal VEV has the shape3

〈
χa

i

〉
= v1




1 0 0
0 0 1
0 1 0



 . (12)

We discuss the alignment of the flavon in Appendix A. Similarly to 
Feruglio, we introduce a flavon ϕ (as in [1]). Here, a is a )3 index 
and i an Atraditional

4 index. The VEV (12) breaks Atraditional
4 × )3 to 

)
diagonal
3 . Both )3 and )diagonal

3 are nonlinearly realized.

3.3. Charged lepton Yukawa couplings

The charged fermion masses are obtained just like in [1]. Since 
we assigned them the 10, 11 and 12 under Atraditional

4 , respectively, 
we can write down superpotential terms4

We = ỹe

$
Hd(LϕEC

1 )10 + ỹτ

$
Hd(LϕEC

2 )10 + ỹµ

$
Hd(LϕEC

3 )10 , (13)

which involve the three free parameters ỹe , ỹµ and ỹτ , and the 
cut–off scale $ of the model. Here, a 10 subscript indicates a con-
traction to a Gflavor singlet. In order to get a diagonal charged 
lepton Yukawa coupling matrix, we will take the VEV of ϕ to be

〈ϕi〉 = v2




1
0
0



 (14)

in the complex basis and

〈ϕi〉 = v2√
3




1
1
1



 (15)

in the real basis, similarly to Feruglio’s model [1]. This choice will 
be justified in Appendix A. Equation (13) along with Equation (14)
gives the charged lepton mass matrix

me = vd
v2

$
diag

(
ỹe, ỹτ , ỹµ

)
, (16)

3 The relation between these bases is explained in Appendix B.
4 Following Feruglio’s model (cf. [1, discussion between Equations (39) and (40)]), 

we exchange here ̃yµ and ̃yτ to best fit data.

where vd is the VEV of Hd , as usual. Like in [1], we introduced 
three parameters, ỹe , ỹµ and ỹτ . These parameters can be used 
to reproduce the observed charged lepton masses. In order to re-
produce the observed τ lepton mass, ε2 := v2/$ cannot become 
too small. This sector does not really contain any novel ingredi-
ents, nor does it by itself make nontrivial predictions. Some ideas 
to address the question of fermion mass hierarchies can be found 
in e.g. [31–33].

3.4. Weinberg operator

Like in Feruglio’s model [1] the new ingredients are in the 
Weinberg operator, which emerges from the superpotential cou-
plings

Wν = 1
$2 [(Hu · L) χ (Hu · L) Y ]10

. (17)

To construct the couplings at the component level, we first con-
tract Yχ to )3 singlets. Since χ consists of three )3 3–plets, we 
obtain an Atraditional

4 triplet

[(Yχ)(3,10)]i = Y1χ
1
i + Y2χ

3
i + Y3χ

2
i , (18)

where i is an Atraditional
4 index. Here, (r, r′) means that the con-

traction transforms as (r, r′) under Atraditional
4 × )3. This Atraditional

4
triplet can be contracted with the unique Atraditional

4 triplet that 
emerges from combining the Atraditional

4 triplet L with itself,

(LL)(3,10) = 2√
3




L2

1 − L2L3
L2

3 − L1L2
L2

2 − L1L3



 . (19)

After inserting the “diagonal” VEV (12), the effective superpotential 
coincides, up to an irrelevant prefactor, with the one proposed in 
[1],

Wν = v1

$2 [(Hu · L) Y (Hu · L)]10
. (20)

In particular, the matrix structure of the Weinberg operator is 
identical to the one in [1]. That is, the neutrino mass matrix is 
given by

mν = v2
uε1√
3$




2Y1(τ ) −Y3(τ ) −Y2(τ )
−Y3(τ ) 2Y2(τ ) −Y1(τ )
−Y2(τ ) −Y1(τ ) 2Y3(τ )



 , (21)

where ε1 = v1/$ and vu is the VEV of Hu . Then this matrix has 
only three free real parameters: $, Reτ and Imτ .

3.5. Kinetic terms

Before χ and ϕ attain VEVs, the Kähler potential of the charged 
leptons is diagonal because of the presence of Atraditional

4 . Therefore, 
the Kähler potential is under control. After the breaking to the di-
agonal flavor symmetry,

K L = L† L + O(ε2
1) + O(ε2

2) . (22)

This is because the corrections to the Kähler potential come from 
terms involving5 χ and ϕ . A priori these terms are not known. 
In this work we ask how much we can limit the effects of these 
terms in a bottom–up approach.

5 Terms including the fields L and the modular forms Y (see e.g. [15, Equation 
(12)]) are restricted by Atraditional

4 to be just the product of the L† L and Y †Y trivial 
singlets of Atraditional

4 , and are hence diagonal too.

3
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Let us first turn our attention to χ . χ enters the leptonic su-
perpotential only through the Weinberg operator, yielding Equa-
tion (21). Therefore, we cannot place a stringent lower bound on 
the size of v1.

On the other hand, the magnitude of the VEV of ϕ , v2, is 
bounded from below by the requirement to reproduce a realistic 
τ Yukawa coupling, yτ . The value yτ depends on the Higgs VEV 
ratio tan β , yτ =

√
1 + tan2 β mτ /vEW ∼ 10−2

√
1 + tan2 β (at tree 

level), where vEW denotes the electroweak VEV. In [3], the best 
fits to data are obtained for small tan β , in which case yτ is sup-
pressed, and the lower bound on v2 is less stringent.

At first glance, one may suspect to find linear contributions to 
the Kähler metric,

K ⊃ (ϕLL†)10 and/or
(
ϕ EC

i (EC
i )†)

10
. (23)

However, the terms (23) are forbidden due to the symmetry Zϕ
3

(cf. Table 1). Thus, the first nontrivial flavon–dependent contribu-
tions to the Kähler metric are given by (Lϕ)†(Lϕ) and (ϕϕ†)(E E†), 
which we will call -K L and -K R , respectively. Let us first focus 
on the L contribution. Considering the discrete charges of L and 
ϕ , we identify seven Atraditional

4 invariant terms from the product 
(3 ⊗ 3 ⊗ 3 ⊗ 3). After inserting on the VEV of ϕ (14), these are re-
duced to only three nonvanishing invariant contributions to -K L , 
which are associated with three independent coefficients Ci . The 
resulting contribution to the Kähler metric, in the complex basis, 
is

-K L = v2
2

3$2

(
3C1 + 4C2 0 0

0 3C1 − 2C2 + 2
√

3C3 0
0 0 3C1 − 2C2 − 2

√
3C3

)

,

(24)

which can be decomposed as

-K L = ε2
2

(
C1 13 + 2C2

3
diag (2,−1,−1) + 2C3√

3
diag (0,1,−1)

)
.

(25)

In the case of the R contribution, after evaluating in Equation (14), 
we get nine invariant terms from which only three are nonvan-
ishing. The resulting contribution, in both complex and real basis, 
is

-K R = ε2
2 diag(D1, D2, D3) , (26)

where Di is defined similarly as in Equation (24).
The impact of these corrections can be estimated using the dis-

cussion in [16,17]. We see that the corrections of the mixing angles 
come from -K L only. Generically, the solar angle θ12 is the most 
sensitive angle in a scheme with inverted mass ordering, its cor-
rection gets enhanced by a factor m2

1/-m2
sol, which is about 34

in the Feruglio model. The corrections are also proportional to 
ε2

2 = v2
2/$

2 ! y2
τ . Furthermore since the unperturbed theory has 

diagonal kinetic terms, the coefficients of the Kähler corrections 
are also not arbitrarily large. For corrections associated with the 
coefficient Ci of the Kähler metric -K L in Equation (25), we find

-θ12 0 Ci

( ε2

0.03

)2
·






0 , if i = 1 ,

−0.05 , if i = 2 ,

0.01 , if i = 3 .

(27)

While an exact computation of the coefficient Ci would require a 
UV completion of the model (cf. e.g. [34,35]), we make the EFT 
assumption that the coefficients are at most of the order unity. 
Equation (27) shows that, if the correction is proportional to the 

Fig. 1. Diagonal breaking of traditional and modular flavor symmetries.

unit matrix, θ12 does not change, as expected. For small tan β , ε2 ∼
0.03 is possible, and the Kähler corrections are comparable to the 
experimental uncertainties. However, for large tanβ , the model we 
discuss here requires additional ingredients to allow us to make 
precise predictions.

Altogether we see that the Kähler corrections are controlled by 
ε2, which also governs the charged lepton Yukawa couplings. In 
this regard this bottom–up analysis is somewhat reminiscent of 
minimal avor violation (MFV) [36–38]. We can hence conclude that 
the quasi–eclectic scheme presented here allows us to construct 
predictive bottom–up models with modular flavor symmetries.

4. Summary and outlook

4.1. Summary

Motivated by the great success of Feruglio’s models, we have 
proposed a simple way to fix the kinetic terms in this and re-
lated bottom–up scenarios. To this end, we started with a larger 
flavor symmetry, Gflavor = Atraditional

4 × )3, and broke it to its di-
agonal subgroup, which is given by the finite modular group )3
in our main example (cf. Fig. 1). In the limit of an exact Gflavor, 
the Kähler metric is proportional to the unit matrix because of 
Atraditional

4 . Therefore, the deviations from canonical kinetic terms 
are parametrized by a flavon VEV, which also induces the charged 
lepton masses, somewhat similarly to the MFV scheme. In partic-
ular, we can perform an EFT analysis to assess the impact of the 
corrections to the Kähler potential. We refer to Gflavor as a quasi–
eclectic modular flavor symmetry, since this bottom–up hybrid 
scheme shares some of the features of top–down eclectic flavor 
groups.

We have commented on how to align the VEV in such a way 
that it yields the desired breaking. Since the corresponding con-
figuration has enhanced symmetries, it is rather straightforward to 
achieve this without affecting the lepton parameters, thus leaving 
the number of nontrivial predictions unchanged.

The corrections to the Kähler potential can still be relevant, but 
are under control. Apart from that, they correspond to error bars 
in our predictions, yet crucially we are able to specify these er-
ror bars, which is, to the best of our knowledge, not possible if 
one starts from the nonlinearly realized modular flavor symme-
tries alone.

4.2. Outlook

We have shown that, by adding ingredients reminiscent to 
what one finds in top–down constructions, one can coin predic-
tive bottom–up models with modular flavor symmetries. Yet it is 
clear that the toy model presented in this work leaves some ques-
tions unanswered. For instance, we are able to assign the modular 

4
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Table 2
Flavon sector.

field χ ϕ Sχ Sϕ

Atraditional
4 3 3 10 10

)3 3 10 10 10

Z
χ
3 1 0 1 0

Z
ϕ
3 0 1 0 1

weights and representations at will whereas in top–down models 
they derive from the underlying geometry. Also, while the flavon 
alignment works, it does not appear to be the final word on this 
story. One may also envisage flavon potentials in which the coef-
ficients are modular forms, such that the VEVs inherit the pattern 
from the modular forms. In this case, the kinetic terms may be 
under control similarly to what we found in our toy model. It 
therefore appears worthwhile to explore similar top–down moti-
vated ingredients to address the flavor puzzle.
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Appendix A. Flavon VEV alignment6

We use the flavon VEVs (12) and (14) (cf. Section 3.3), which in 
the so–called real basis (cf. [1, Appendix C]) are given by

〈
χa

i

〉
= v1




1 0 0
0 1 0
0 0 1



 and 〈ϕi〉 = v2√
3




1
1
1



 . (28)

We assume that the Atraditional
4 representation matrices act from 

the left, and the )3 matrices act from the right. Then the VEV 〈
χa

i

〉
is the unique VEV which is invariant simultaneous S and T

transformations from both groups,

S 〈χ〉 S T = T 〈χ〉 T T = 〈χ〉 . (29)

So it is a symmetry–enhanced point, which suggests that it should 
not be too difficult to obtain such VEVs [14].

One can make this more explicit. Let us consider the most gen-
eral renormalizable superpotentials involving the flavons χ , ϕ , Sχ

and Sϕ (see Table 2 for their charges),

W = Wχ + Wϕ , (30)

where

6 The computations of this Appendix can be checked in the attached 
supplementary Mathematica notebook which makes use of the Discrete package.

Wχ = κχ

2
Sχ (χχ)10 − λ1

3
(χχχ)

(1)
10

− λ2

3
(χχχ)

(2)
10

+ κ1 S3
χ ,

(31a)

Wϕ = κϕ

2
Sϕ(ϕϕ)10 − λ3

3
(ϕϕϕ)10 + κ2 S3

ϕ . (31b)

Here, the subscript “10” indicates the contraction to a singlet. 
There are two independent such contractions of three χ fields,

(χχχ)
(1)
10

= χ1
1 χ2

3 χ3
2 + χ1

2 χ2
1 χ3

3 + χ1
3 χ2

2 χ3
1 , (32a)

(χχχ)
(2)
10

= χ1
1 χ2

2 χ3
3 + χ1

2 χ2
3 χ3

1 + χ1
3 χ2

1 χ3
2 . (32b)

We assume that Sχ and Sϕ acquire VEVs 
〈
Sχ

〉
1 $ and 

〈
Sϕ

〉
1 $. 

This is plausible since in string–derived models often the VEVs get 
fixed by D–terms [39,40]. In fact, in the heterotic orbifold mod-
els, which underlie the eclectic scheme, the Fayet–Iliopoulos (FI) 
D–terms drive the flavons to nonzero VEVs [41], which has been 
verified in many explicitly constructed models (cf. e.g. [42]). One 
can verify that there is a nontrivial solution to the F –term equa-
tions,7 where the VEVs are given by Equation (28) with

v1 = κχ
〈
Sχ

〉

λ2
and v2 = κϕ

〈
Sϕ

〉

λ3
. (33)

Of course, there is another solution at which all VEVs vanish, and 
there are solutions in which only one of the VEVs vanish. Techni-
cally, in supergravity the above solution is the deepest minimum 
of the scalar potential, but addressing the vacuum energy is be-
yond the scope of this study. Furthermore, Equation (31) exhibits 
two accidental R symmetries which get spontaneously broken by 
the flavons. As a consequence, there are, at this level, two flat 
directions. However, these flat directions parametrize the overall 
magnitudes of the VEVs but do not alter their shapes given by 
Equations (28) and (33). The stabilization of the flat directions is 
beyond the scope of this study as the magnitudes of the VEVs 
are input parameters and only the shapes of the VEVs are impor-
tant for our scenario. We also note that at higher orders there are 
additional terms that can alter the above solution slightly. Espe-
cially cross terms between χ and ϕ can shift the VEVs. However, 
these terms appear at much higher order, and are thus suppressed 
against the Kähler corrections which we discuss and tame in the 
main text. Altogether we find that, in a bottom–up EFT theory ap-
proach we can successfully align the VEVs to provide us with a 
scenario of diagonal breaking Atraditional

4 × )3 → )
diagonal
3 .

Appendix B. Basis change

Considering the three-dimensional representation of A4, the 
group generators can be expressed in the complex basis,

SC
3 = 1

3




−1 2 2
2 −1 2
2 2 −1



 , T C
3 =




1 0 0
0 ω 0
0 0 ω2



 , (34)

where ω = exp (2π i/3). However, one might find it useful to express 
these generators in the real basis, as we do in Appendix A, where 
they adopt the form

S R
3 =




1 0 0
0 −1 0
0 0 −1



 , T R
3 =




0 1 0
0 0 1
1 0 0



 . (35)

These bases are related by the unitary transformation

7 Note that, since we have assumed that Sχ and Sϕ acquire VEVs by a different 
mechanism, their dynamics is not relevant in the F –term equations.
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S R
3 = U SC

3 U † and T R
3 = U T C

3 U † , (36)

where U is a unitary matrix, given by

U = 1√
3




1 1 1
1 ω ω2

1 ω2 ω



 . (37)
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