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Infants begin learning the visual referents of nouns before their first birthday. Despite
considerable empirical and theoretical effort, little is known about the statistics of the
experiences that enable infants to break into object–name learning. We used wearable
sensors to collect infant experiences of visual objects and their heard names for 40
early-learned categories. The analyzed data were from one context that occurs multiple
times a day and includes objects with early-learned names: mealtime. The statistics
reveal two distinct timescales of experience. At the timescale of many mealtime epi-
sodes (n = 87), the visual categories were pervasively present, but naming of the
objects in each of those categories was very rare. At the timescale of single mealtime
episodes, names and referents did cooccur, but each name–referent pair appeared in
very few of the mealtime episodes. The statistics are consistent with incremental learn-
ing of visual categories across many episodes and the rapid learning of name–object
mappings within individual episodes. The two timescales are also consistent with a
known cortical learning mechanism for one-episode learning of associations: new
information, the heard name, is incorporated into well-established memories, the seen
object category, when the new information cooccurs with the reactivation of that
slowly established memory.

language acquisition j object names j input statistics j infancy

Traditional theories of language learning assumed a “poverty of the stimulus”: the input is
noisy, imperfect, and insufficient for learning without domain-specific constraints and
powerful inferential mechanisms (1–3). Despite many empirical studies, elegant models,
and specific advances, the poverty of the stimulus is still a major theoretical barrier, and
the field has no clear understanding of how infants break into language or solve even the
earliest components of language learning, including how they learn their first object names.
Here we provide evidence on the statistics of infants’ everyday encounters with object
names and their referents. The findings confirm the limited nature of the input but also
reveal statistical properties that align with a known learning mechanism, albeit one that has
not been explicitly considered as an explanation of infant word learning.
Infants begin learning object names well before their first birthday and before they

produce spoken language. This learning is evident in laboratory findings in which
infants as young as 6 mo of age preferentially look to pictures of an object upon hear-
ing the object’s name (4–7; but see ref. 8). However, there is little evidence document-
ing the everyday experiences through which infants could form these initial
object–name mappings. This evidence has been difficult for researchers to obtain
because day-in and day-out language experience is massive, but individual words occur
sparsely in any given sample of that massive input (9). By some estimates, the average
child hears 20,000 word tokens a day or over 7 million word tokens in a year (10, 11),
which may seem like rich rather than poor input. However, the frequency distribution
of individual words in any sample is characterized by a power law (9, 12, 13); a very
few words (function words, some light verbs) are very frequent, but most content
words are individually rare. Object names, even common and early-learned ones, fall in
the long tail of the frequency distribution of words in large corpora of parent speech to
children that aggregate parents’ speech across many different contexts (9, 13–15). The
absolute frequency of early-learned object names even in these large corpora of child-
directed speech is quite low. Moreover, the temporal distribution of individual words is
neither evenly nor randomly distributed in time. Rather, it is bursty and tied to context
(9, 16–18). For example, speech about bowls is more likely at breakfast than when
playing in the park. Thus, the measured frequency of any individual word in a sample
of infant-directed speech can vary markedly from context to context and differ consid-
erably from the base rate for that word when calculated from large collections of speech
or text (9, 19, 20).
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Amid these difficulties, researchers have attempted to charac-
terize the learning environment by sampling speech within the
home (for an hour up to whole days) and measuring the object
names heard, their contexts, and the probability that the refer-
ent was present given the spoken name (e.g., refs. 4 and 21).
Because of the sparsity of any specific object name in a sample
of language, researchers typically report aggregate statistics com-
puted across all object names in the sample: that is, reporting
the rate of heard name–referent cooccurrences combined over
all the different object names uttered in the vicinity of the child
during the sampled input (4, 21–23). These studies consistently
show that the aggregate cooccurrence statistics of visual refer-
ents and their names when computed across many different
words predict individual infants’ current (4) and later vocabu-
lary sizes (23). These studies do not, however, specify the avail-
able experiences for learning any individual object name. The
specific goal of the present study was to quantify the statistics
of individual object names and referents for a set of early-
learned names in a corpus representing the everyday environ-
ments of infants. Given the context-dependent distributional
properties of object names in speech, we focused on one con-
text, mealtime, that occurs multiple times a day for infants and
that commonly involves objects with names that are among the
earliest learned in American English (24).
Our approach to quantifying the name–object statistics in

the infant learning environment was motivated by a specific
candidate learning mechanism. In experimentally controlled
studies, infants under a year of age show their early learning of
name–referent mappings by looking to a pictured referent over
a foil upon hearing the name (4–7). To do this, infants must
have formed and retained an association between the name and
the visual properties of the referent. According to the Comple-
mentary Learning Systems model of memory (25, 26), there
are two paths through which durable and expressible associative
memories may be formed. The first path operates with hippo-
campal involvement and can lead to lasting learning from a sin-
gle episode of experience. Recent evidence (27) indicates that
the hippocampus is active during learning tasks in infancy, but
the extant evidence also suggests immaturities that may make
this path insufficient for forming durable memories from a sin-
gle experience in infant brains (28–30). The second path oper-
ates within the neocortex but was originally thought to form
durable memories only gradually, after many repeated experien-
ces (26). However, contemporary research shows that this path
can lead to one-episode memory formation under special condi-
tions: A new association can be rapidly formed from one or a
few experiences of the cooccurring components if there is an
already well-established memory of one component and if this
well-established memory is reactivated in the context of the
new information (i.e., refs. 31–36).
This form of rapid memory formation is a plausible candi-

date mechanism for early object–name learning that could
work despite the sparsity of any specific to-be-learned object
names. This path (Fig. 1) to learning would require the poten-
tial referents of early-learned nouns (i.e., objects) to be perva-
sively present in everyday experiences (37) so that durable visual
memories of the to-be-referents could be incrementally formed.
This path would also require the reactivation of established
object memories on the rarer occasions when the name is heard
so that the new information (i.e., the name) could be integrated
into the established memory of the object category. With this
candidate mechanism in mind, we analyzed a corpus of egocen-
tric audiovisual recordings collected by sensors worn by infants
during mealtimes. We estimated the frequency of heard names

for a set of normatively early-learned object categories, the fre-
quency of visual referents in the infants’ field of view (FOV),
and the frequency of name–object cooccurrences at two time-
scales. We first measured these properties across all the meal-
times episodes, providing an estimate of the quality of the input
with respect to the incremental formation of visual referent
memories from repeated mealtime experiences. We then mea-
sured these properties within individual mealtimes, providing
evidence on the expected rarer name–object cooccurrences
within an episode that could lead to the rapid formation of a
name–referent memory given past pervasive visual experience
with the referent category.

Results

The mealtime corpus consists of 87 mealtime events (mean
duration = 11.22 min, SD = 11.87), which were contributed
by 14 infants (mean age = 9 mo, SD = 1.33) who wore head
cameras with audio recording capability at home for multiple
portions of the day across several days. The infants collected a
combined total of 67.1 h of home video from which the meal-
time segments were extracted (see SI Appendix, Table S1 for
recording information per participant). Mealtimes were defined
as any time when food or eating (by anyone) was present in the
head-camera video. An interest in mealtimes was not expressed
to the parents at the time of recording, nor was an interest in
object names.

Forty Categories. Through a two-step process, we identified
object categories with sufficient visual and heard-word experi-
ences to be potentially learnable at mealtimes. First, we created
a larger candidate set of categories that had normative receptive
ages of acquisition before 18 mo (24, 38) and that were visually
present at least once and occurred as a heard name at least once
in the mealtime corpus. There was no requirement that the ref-
erent and name occur in the same mealtime. There were 89
categories that met these criteria (SI Appendix, Table S2). Sec-
ond, from this candidate set, we selected the 25 categories for
which the visual referents were most frequent (total minutes in
view in the corpus) (Fig. 2A) and the 25 categories for which
the heard names were most frequent (total name occurrences in
the corpus) (Fig. 2B). These two lists were generated indepen-
dently of each other, and 10 categories appeared on both lists
because they met the criterion both for visual and for speech

Fig. 1. An illustration of the hypothesized two-timescale statistical pattern
and its potential role in rapid associative memory formation. Pervasive
visual experiences build robust memory for visual object categories. Rarer
episodes, including both the name and a referent, are integrated into the
established memory.
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frequency (Fig. 2C). This selection approach thus yielded the
40 total categories (Fig. 2C) with the most frequent occurrences
for each side of the learning problem: the seen thing and the
heard name. Measures were computed at the category level
(aggregating across subjects). Statistical analyses, unless other-
wise noted, were computed with the categories (and not sub-
jects) as the unit of analysis.
The frequencies of the visual referents and the frequencies of

their names for the 40 categories (Fig. 2) were not significantly
correlated (rs = �0.25, df = 38, P = 0.14).* Consistent with
the scale-invariant distributions of objects in environments (37)
and words in spoken language (12, 39), the frequency distribu-
tions of the visual referents and their names (Fig. 2 A and B)
were nonnormally distributed with skewness of 1.76 and 0.74,
respectively (SEs = 0.37). Thus, within the corpus, some
objects and some names were frequent and others were infre-
quent, making central tendency measures across the 40 catego-
ries potentially misleading. Accordingly, we present evidence
on object frequency, name frequency, and cooccurrence for all
40 categories and also present the same statistics separately for
subgroupings of the 10 most visually frequent and the 10 most
frequently named categories.†

By definition, the selected categories have early-learned
names: that is, names that are normatively in the receptive
vocabularies of 50% of infants at or before 18 mo of age
(range: 8 to 18 mo), as reported in the Wordbank database
(38). A Kruskal–Wallis H test did not find a significant differ-
ence between the age of receptive acquisition of the names for
visually frequent, lexically frequent, nor both visually and

lexically frequent categories [H(2) = 1.87, P = 0.39]. The visu-
ally frequent categories included background fixtures (e.g., win-
dows, tables, doors), small manipulable object (e.g., plates,
cups, spoons), and other items generally common in the lives
of infants. Many of the frequently named items are foods. The
10 categories that were on both the visually frequent list and
the lexically frequent list were a mix of kinds of categories.

Statistics for Incremental Learning. Incremental memory for-
mation is believed to require repeated experiences distributed
across hours and days (26). To quantify the input relevant to
this learning path, we considered mealtimes as discrete events
and measured the frequency of the relevant components for
learning—referent, name, and name-plus-referent—as the pro-
portion of mealtimes in the corpus in which the measured com-
ponent occurred at least once. We used this low threshold
(occurring once in a mealtime) for two reasons. First, the goal
was to estimate the repetition of components over discrete
time-separated events. Second, the proportion of mealtimes in
which a component occurred at least once is a comparable met-
ric for visual and lexical presence, which are otherwise difficult
to compare given the vastly different timescales at which they
occur. Visual objects can be present in an infant’s FOV for a
range of durations (from a few seconds to fractions of hours),
whereas an object name spoken aloud is always very brief (a
fraction of a second).

By this count-of-episodes metric (Fig. 3 A and B), visual
referents for the 40 categories were present in substantially
more individual mealtimes than were the spoken names (Wil-
coxon signed-ranks test, z = �5.09, P < 0.0001). The mean
proportion of mealtimes in which referents were present for the
40 categories was 0.45 (SD = 0.31, median [Mdn] = 0.46,
interquartile range [IQR] = 0.58), whereas the mean across the
corresponding category names was 0.07 (SD = 0.04, Mdn =

Categories Selected for 
Analysis

25 most 
frequent 

object names

25 most 
frequent 

visual objects

blanket, 
bottle, 

box, cup,
couch, door, 

drawer, glass, 
glasses, jacket,

pants, pillow,
sink, towel,

window

apple, 
banana, bib, 
bread, button, 
carrots, cheese, 
cracker,
dog, egg,
house, juice,
milk, pizza,
water

book,
bowl,
chair, 
paper,

telephone,
plate, shirt,

spoon, 
table,

toy

A

B

C

Fig. 2. Corpus frequency as referents and names and the selection of categories for further analysis. (A) The visual frequency in minutes in view per hour
for each of the initial 89 categories rank-ordered by frequency. Vertical line indicates the cutoff point between the 25 most visually frequent objects and
those not chosen for further analysis. (B) The lexical frequency in naming instances per hour for each of the initial 89 categories, rank-ordered by frequency.
Vertical line indicates the cutoff point between the 25 most lexically frequent objects and those not chosen for further analysis. A list of the 89 categories
and the frequency of their names and referents is available in SI Appendix, Table S2. (C) A Venn diagram showing the 40 categories selected for further analy-
sis and whether they were one of the 25 most visually frequent, 25 most lexically frequent, or both. Visual frequency was determined from 11,549 images
and yielded 49,578 instances of the 89 objects. Naming frequency was determined from 12,050 analyzed 5-s speech segments and yielded a total of 873
naming instances.

*All P values have been adjusted for multiple comparisons using the Benjamini–Hochberg
correction.

†Two categories were among both the top 10 most frequent objects and the top 10 most
frequent names. This overlap is due to selecting for visual and name frequency
independently.

PNAS 2022 Vol. 119 No. 18 e2123239119 https://doi.org/10.1073/pnas.2123239119 3 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

73
.1

02
.5

8.
27

 o
n 

A
ug

us
t 3

, 2
02

2 
fr

om
 IP

 a
dd

re
ss

 7
3.

10
2.

58
.2

7.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123239119/-/DCSupplemental


0.07, IQR = 0.08). There is thus a greater than 6:1 ratio of
mealtimes with the referent present to mealtimes with the
name present. This imbalance in frequency also holds as signifi-
cant for the top 10 categories in visual frequency (z = �2.75,
P < 0.05); for this group, the mean proportion of mealtimes
with the visual referent present was 0.83 (SD = 0.14, Mdn =
0.86, IQR = 0.15), and the mean proportion of mealtimes
with the name present was 0.08 (SD = 0.04, Mdn = 0.09,
IQR = 0.04). The difference was marginally significant for the
top 10 categories in name frequency (z = �2.04, P = 0.07);
for this group, the mean visual presence was 0.4 (SD = 0.32,
Mdn = 0.34, IQR = 0.56) and the mean proportion of meal-
times with the name present was 0.11 (SD = 0.04, Mdn = 0.1,
IQR = 0.05), In brief, the structure of the mealtime environ-
ment is one in which the visual referents for early-learned cate-
gories are persistently present, but the heard names are not.
Because names occurred in very few mealtimes, cooccur-

rences of individual names and a visual referent also occurred
only in a very few mealtimes for each category (Fig. 3C); the
proportion of mealtimes in which both the name and the corre-
sponding visual referent occurred was low across categories
(mean = 0.05, SD = 0.04, Mdn = 0.03, IQR = 0.06) and for
the individual categories. If incremental learning of visual
object categories requires repeated visual experiences over mul-
tiple time-separated episodes, then there appear to be sufficient

experiences for learning the visual referent categories. In contrast,
if infant learning of object names requires repetitions of name–
referent cooccurrences distributed over multiple time-separated
events, then even the most frequent object names present in this
mealtime corpus would appear difficult to learn. Yet all the object
names in the analyzed corpus are normatively early-learned and
refer to objects common at mealtimes. Current understanding
(40) suggests that a durable memory of a name–object association
could be formed within a single mealtime if a well-established
memory of the visual referent was reactivated in the context of the
heard name.

Statistics for Rapid Name–Referent Learning. If infants have a
robust representation of the visual referent built up across time-
separated mealtime events, then reactivation of the memory
close in time to when an object name is heard may be enough
to form a durable memory that binds the name to the proper-
ties of the referent (40). If these statistics hold, then early object
names may be readily learned by young infants despite the rar-
ity of the individual object names. Accordingly, this set of anal-
yses focused on mealtimes in which the name of one of the
40 categories was present and in which the visual referent was
also present. Although the overall proportion of mealtimes in
which a referent and its name cooccurred was low, the average
proportion of the mealtimes in which the name was uttered

Fig. 3. Frequency of the 40 categories as spoken names and visual objects across mealtime events. (A) The proportion of mealtime videos for each cate-
gory in which the visual object occurred in at least one frame and the mean proportion of mealtimes in which the visual object occurred for all 40 catego-
ries, the top 10 objects, and the top 10 names. (B) The proportion of mealtime videos for each category in which the object name was said at least once and
the mean proportion of mealtimes in which the object name occurred for all 40 categories, the top 10 objects, and the top 10 names. (C) The proportion of
mealtime videos for each category in which the visual object and the object name both occurred at least once and the mean proportion of mealtimes in
which both the visual object and the object name occurred for all 40 categories, the top 10 objects, and the top 10 names. Error bars represent SEM. For
the 40 categories, there were 46,309 instances of the objects in view and 678 naming instances.
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that the referent was also present was high at 0.74 (SD = 0.29,
Mdn = 0.84, IQR = 0.5). Within the mealtime corpus, com-
mon objects were persistently present, whether names were pre-
sent or not, and thus when the names did occur, a referent
object was typically also present.
When both the referent and name were present in a meal-

time, the referent was in the infant’s FOV (Fig. 4A) for 15.6%
of the head camera images, or on average for 2.99 min (SD =
3.46 min, Mdn = 1.63, IQR = 3.78). For the top 10 most
visually frequent categories, the mean duration of the visual
presence of the referent in the infant’s FOV in mealtimes in
which the referent was named was 6.02 min (SD = 5.18, Mdn
= 4.83, IQR = 6.35) and for the top 10 most frequently
named categories, the mean duration of visual presence in
mealtimes in which the referent was named was 3.59 min (SD
= 3.97, Mdn = 2.56, IQR = 3.83). Experimental studies with
infants indicate that these durations of the visual referents
should be sufficient to reactivate well-established visual memo-
ries (e.g., ref. 41).
For the 40 categories, object names (Fig. 4B) were

repeated on average 3.4 times within single mealtimes during
which their referent was present (SD = 3.46, Mdn = 2, IQR
= 2.49); however, there was considerable within- and across-
category variability. When named and visually present, the
top 10 most visually frequent categories were named an aver-
age of 2.03 times within a single mealtime (SD = 0.78, Mdn
= 1.9, IQR = 0.7); the top 10 most lexically frequent

categories were named on average 5.99 times within meal-
times during which their referent was present (SD = 4.21,
Mdn = 3.9, IQR = 4.48). Critically, for 23 of the 40 catego-
ries, there was at least one mealtime episode in which the
referent was present, and the name was said at least four
times, and for 33 of the 40 categories there was at least one
mealtime in which the referent was present and named
twice. If pervasive experiences with the visual referents form
memories that when reactivated allow infants to integrate
new information into those durable memories, then the sta-
tistical and temporal structure of seen objects and heard
names across and within individual infant mealtimes may
signal the learnability of name–category associations from
few name–object cooccurrences.

Individual Categories. Overall, the 40 categories show similar
patterns (Fig. 5A and SI Appendix, Fig. S1): visual referents of
common early-learned categories are in the infant’s FOV across
many individual mealtimes, whereas the names for those categories
occur only in a few mealtimes. However, there are also exceptions
in the observed data. The categories of “table,” “cup,” “plate,”
and “spoon” (Fig. 5B) illustrate the modal pattern evident across
the 40 categories: repeated mealtimes without naming and only a
few mealtimes in which both the heard name and a visual referent
were present. The data for the category “banana” (Fig. 5B)
showed a different pattern: both visual instances of the category

Fig. 4. Frequencies of objects and names when both were present within the same mealtime. (A) The minutes in which the visual object was in the infants’
field of view in each mealtime in which the name also occurred for each of the 40 categories and mean minutes the visual object was in view per hour for
all 40 categories, the top 10 visual objects, and the top 10 object names. (B) The number of naming instances in each mealtime in which the referent also
occurred for each of the 40 categories and the mean naming instances all 40 categories, the top 10 visual objects, and the top 10 object names. Error bars
represent SEM. These data were determined from the 9,485 instances of the objects in view and 504 naming events that occurred within mealtimes in which
both the visual referent and the name occurred.
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and the heard name were rare, and their joint occurrence within a
mealtime was even rarer.
To highlight the different statistics for these five categories,

we simulated the expected patterns of occurrence across 200
mealtimes for visual referents, heard names, and cooccurrences
using the observed proportions of events in which they
occurred in the mealtime corpus (Fig. 5C). This simulation
represents roughly 40 d in the life of an infant. The categories
“table,” “cup,” “plate,” and “spoon” present repeated opportu-
nities for visual learning about referents intermixed with rarer
mealtimes that also include the object name. For the category
“banana,” however, there are many mealtimes at which neither
the referent nor the name is present, and compared to the other
example categories, there is a larger proportion of mealtimes in
which the name occurs, but a visual referent does not appear in
the infant FOV. The absolute infrequency of both the visual
referent and the heard name would seem to suggest limited
opportunity for learning.
However, laboratory experiments show that infants youn-

ger than 1 y of age, the same age as those contributing to
this corpus, look to pictures of bananas upon hearing the
name (5). Moreover, bananas are among the earliest (and
favorite) solid foods given to infants in the United States.
There are three possible explanations. 1) The repeated refer-
ent information needed to form a well-established memory
of a banana is much less than indicated for the categories
of “table,” “cup,” “plate,” or “spoon.” 2) Learning the
name–referent correspondence for banana occurs outside of
mealtimes. This second alternative may be plausible in that
laboratory tests that show early receptive knowledge of the
word “banana” used pictures of whole and partially whole
peeled bananas. The images of bananas in the infants' views
at the observed mealtimes, in contrast, overwhelmingly con-
tain mashed or cut up pieces of banana rather than whole
bananas. 3) Visual referents are not the sole possible memory

anchor for rapid learning of object names. This third possi-
bility is the one we believe deserves attention.

Animal research on rapid cortical memory formation indi-
cates that multimodal memories—especially ones involving
action and emotion—are particularly powerful for the rapid
integration of novel information into an established memory
(42–45). Learning the visual properties of whole bananas as
well as learning the name “banana” could both emerge from
rapid integration of a seen whole banana and the heard name
into a well-established memory of the taste, smell, feel, and
enjoyment associated with mashed and cut-up bananas. In
sum, rapid learning of name–referent mappings through visual
memories built up over time-separated events may be impor-
tant, but the anchor memories for the rapid integration of
heard names may be fundamentally multimodal.

Discussion

Learning in any domain depends on the internal learning
mechanisms and on the statistics of the experiences on which
those mechanisms operate. For species-important achievements
and for rapid learning more generally, it is to be expected that
the learning mechanisms and the real-world statistics align.
Here we quantified the statistics for heard names and seen
referents for 40 early-learned words at two timescales: across
the many time-separated repetitions of mealtimes and within
the individual time-continuous events. The main findings are
these: Visual referents were persistently present at both time-
scales. The heard names for those referents were sparse at both
timescales. However, in the events in which an object name
was heard, the referent was very likely also present during that
mealtime. These statistics align with a learning mechanism that
operates on two timescales: incrementally forming robust mem-
ories over multiple time-separated experiences and rapidly inte-
grating new information into the incrementally established

Fig. 5. Measured and simulated experience. (A) The average proportion of mealtimes in which only the visual object, only the object name, and both the
visual object and the object name occurred. Dots represent individual categories. (B) The proportion of mealtimes in which the visual object alone, the object
name alone, and both the object and its name occurred for the categories “table,” “cup,” “plate,” “spoon,” and “banana.” (C) Simulation of experience with
the five example categories that a child would be expected to have across 200 mealtimes based on random sampling with replacement from our corpus of
87 mealtimes. Black triangles highlight mealtimes in which both the referent and the name occurred in the simulated series of 200 mealtimes. The simula-
tions were based on observed data in B. Across the five example categories in the observed data, there were 11,172 instances of presence of the object and
106 naming events.
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memory when that memory is reactivated in the context of new
information (33).
The observed statistics pose the need for a new conceptuali-

zation of infants’ learning task. Although many current explan-
ations appear plausible with respect to the more advanced
learning of older children, they appear unable to fully explain
infants’ initial steps in object–name learning. The two domi-
nant theories, hypothesis testing (46, 47) and cross-situational
learning (48–50), are challenged by the sparsity of individual
object names in the input and by infant immature memory sys-
tems (32). The observed statistics indicate plausible paths to
extend both classes of theories to align with the statistics of the
input. To do so, theories will need to consider not just
name–object cooccurrences as the discrete events on which
learning is based, but also how separate incremental learning
about multimodal referents may be a critical ingredient for
rapid learning of a name–referent pairing from just a few dis-
crete cooccurrences. There are clear pathways to revising cur-
rent theory in this way: hypothesis testing models (51) could
represent incremental learning about referents—independent of
heard names—as priors, and cross-situational statistical learning
models (52) could operate over the strength of reactivated refer-
ent memories rather than the referents perceptually available
when an object name is heard.
The proposed two-timescale account of how first object

names are acquired requires that visual memories of object cate-
gories are acquired without labeling. Considerable research
shows that infants between the ages of 3 and 13 mo are robust
learners of visual object categories from mere exposure without
labeling (53–55). Studies of infants as young as 4 to 6 mo also
show that infants daily-life experiences with individual objects
(e.g., with the family dog) lead to durable visual memories that
are reactivated by novel visual instances (e.g., other dogs, other
animals) as indicated by the better categorization and discrimi-
nation of those novel test items by infants with a family dog
than those without (56–59; see also refs. 4 and 5). These find-
ings indicate that infants acquire sufficiently strong and express-
ible memories of visual categories that those memories could
serve the hypothesized critical base for the rapid integration of
a heard name into that memory. Other studies with older
infants, beyond the first birthday, show that prior visual famil-
iarization with unnamed referents leads to more rapidly formed
and longer-lasting memories for subsequently taught
name–referent associations (60–62).
If the present reasoning is correct, the consistency of early

perceptual experiences of common categories may be a contrib-
uting factor to individual differences in vocabulary develop-
ment, which in turn predicts many later cognitive achievements
(63–65). Researchers working to quantify the quality of
language-learning environments and to enhance those environ-
ments may benefit from moving beyond measuring the number
of words and their diversity in the input to considering the
consistency and repetition of common contexts and the refer-
ents in those contexts (17, 18). There is large literature showing
the benefits of consistent household activities (66–68) in infants
and children’s social, cognitive, and language development. By
hypothesis, the consistency of nonlinguistic regularities across
time-separated but oft-repeated routines plays a central role in
the initial learning of object names.
Memory formation and integration is an essential component

of all aspects of language learning, and thus the two-timescale
learning process implicated by the observed word–referent statis-
tics for infants before their first birthday, may also be relevant for
understanding later word learning. However, there are good

reasons to suspect the statistics observed in the present study and
the learning mechanisms they implicate may be more relevant to
infants first learning about object names than to later lexical learn-
ing. Memory formation, including rapid hippocampal learning,
changes considerably from birth to 2 y of age (32, 69). The input
statistics change: Parent talk changes markedly with the advancing
language production of the infant (70, 71) and with the infant’s
increasing autonomy (72, 73). Infants also play a stronger role in
selecting and generating the visual statistics of potential referents
via their increasing motor skills (74, 75). Development is a process
of continuing change, with each advance building on (or being
limited by) past experience.

Conclusion

If theorists focus on heard words as the key input for learning
object names, there is a clear poverty of the stimulus. However,
the sparsity and context dependency of individual content
words is a pervasive fact of human language (e.g., refs. 9, 19,
and 76). Thus, the evolutionary-selected mechanism must work
well enough given these statistics. The statistics observed in the
present study point to a known and conserved mammalian
learning mechanism (33), not specific to learning language and
likely insufficient to all aspects of language learning, such as
syntax and abstract meanings, but that is perhaps sufficient and
essential to getting word learning started. The critical next steps
are computational models that can make detailed predictions of
learning from the proposed two-timescale mechanism and
experimental tests of those specific predictions.

Methods

Participants. The goal was to collect a large sample of infant mealtimes for
analysis (77). Given the sparsity of names and objects in samples collected from
infants during individual contexts, we formed the mealtime dataset by sampling
from a relatively small number of infants repeatedly. That is, we gathered data
across multiple mealtime events for each of the 14 infants (8 female, 6 male) in
our sample.

We were primarily interested in the everyday learning environments of
infants who were not yet talking and were at the stage of acquiring their very
first object names (as indicated by looking-time experiments: refs. 4 and 5; and
so forth). Therefore, we included data collected from infants aged 7 to 11 mo in
our sample (mean = 9 mo, SD = 1.33 mo).

The procedures for recruiting, consenting, and data collection were reviewed
and approved by the Institutional Review Board at Indiana University, Protocol
no. 1505862312.

Wearable Sensors. We sought to capture the infant learning environment
from the first-person perspective because the only relevant experiences in the
environment are those that make contact with the infant’s sensory systems. We
therefore used lightweight cameras (Looxcie 2) mounted in hats and centered
between the infant’s eyes to collect these data. The camera weighed 22 g, had a
diagonal FOV of 75°, had a vertical FOV of 41°, and had a horizontal FOV of 69°
with a 200 to infinity depth of focus. Head-mounted eye-tracking data were not
collected because it would be unsafe to do so for infants in their everyday home
environment with no experimenters present. Research indicates that freely mov-
ing infants (as well as children and adults) predominantly look to the midline of
the head-centered FOV with eyes and head aligned (78).

Instruction to Parents. Parents brought their infants to the laboratory where
the parents provided consent for the study and were instructed on how to use
the recording equipment. The infant’s hat size was also determined. Researchers
then delivered two hat–camera systems to the family’s home, and the parents
were asked to record ∼6 h of video and to collect the footage within 2 wk. The
average number of recording days per subject was 10.21 (SD = 4.89). The only
stipulation for recording was that the child be awake; parents were otherwise
free to record in any context or location and at any time of day that suited them.
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Parents were not told that word learning was of interest, and mealtimes were
never specifically mentioned so as to not alter behavior.

A Corpus of Mealtimes. To construct the mealtime corpus, all recorded clips
featuring eating by infants or others as well as food preparation and cleanup
were included from the recordings from the 14 infants. The final sample
included only video segments in which both video and audio were available,
and all video segments containing mealtime activities that took place during the
same recording session were combined into a single mealtime event. The final
corpus contained 87 mealtime events with 6.21 mealtime events per subject on
average (SD = 1.93). On average, the mealtime events were 11.22-min long
(SD = 11.87).

Data Analysis. Still images were sampled from the recordings at 0.2 Hz (one
image every 5 s), which resulted in 11,549 images for coding. Naïve adult coders
labeled the five most obvious objects in each image using basic level nouns (see
ref. 37). Four coders labeled each image; therefore, up to 20 objects could have
been labeled in each frame. The object labels recorded by the coders were mini-
mally cleaned in the following ways: adjectives were removed (e.g., “baby spoon”
was reduced to “spoon”) unless it was part of a compound noun listed in the dic-
tionary (e.g., “highchair”), in which case it remained as a unique object; different
forms of the same object label were collapsed (e.g., “cup” and “cups” were both
counted as instances of “cup”); finally, words that did not clearly refer to a con-
crete object (e.g., “color”) were removed and not considered for analysis.

Speech was sampled continuously but was then divided into 5-s intervals for
coding of which there were 12,050. The intervals started between 0 and 5 s
before the mealtime and ended between 0 and 5 s after it; therefore, we cap-
tured some additional video not coded for visual information (∼27 min) and
any speech it contained. Trained coders transcribed all speech in the target
infant’s immediate vicinity, including speech to the infant, speech to siblings or

other children, and speech to adults, but not background speech, such as televi-
sion. Each transcription was checked manually for errors by a second coder and
was subsequently cleaned as described above for the visual data. A naming
moment was defined as any time an object name was said, and all naming
moments were extracted from the speech transcripts for the names of all the
objects that coders identified as present in the visual scenes.

For the event-level measure, an object was considered present in a mealtime
if it occurred in at least one frame, and an object name was considered present
in a mealtime if it was said at least once. An object–name pair was considered to
have cooccurred in a mealtime if the visual object occurred in at least one frame
of the mealtime’s images and the object name was said at least once at any
point during the mealtime. That is, the object and the name did not need to
appear in the same moment. This is a liberal measure of cooccurrence, which we
believe is justified given that an infant might hold an image of an object in
mind even if it is not in view at the precise moment the name is said and vice
versa.

Data Availability. Raw video data are not publicly available because it con-
tains information that could compromise the privacy of research participants
(e.g., young children and their families). The coded data analyzed for this paper
are available at Open Science Framework (OSF), https://osf.io/bk6xp/ (79). Ques-
tions may be directed to the corresponding author or to E.M.C.
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