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Very few questions have cast such an enduring effect in cognitive science as the question
of “symbol-grounding”: Do human-invented symbol systems have to be grounded to
physical objects to gain meanings? This question has strongly influenced research and
practice in education involving the use of physical models and manipulatives. However, the
evidence on the effectiveness of physical models is mixed. We suggest that rethinking
physical models in terms of analogies, rather than groundings, offers useful insights. Three
experiments with 4- to 6-year-old children showed that they can learn about how written
multi-digit numbers are named and how they are used to represent relative magnitudes
based on exposure to either a few pairs of written multi-digit numbers and their
corresponding names, or exposure to multi-digit number names and their
corresponding physical models made up by simple shapes (e.g., big-medium-small
discs); but they failed to learn with traditional mathematical manipulatives (i.e., base-10
blocks, abacus) that provide a more complete grounding of the base-10 principles. These
findings have implications for place value instruction in schools and for the determination of
principles to guide the use of physical models.

Keywords: symbol-grounding, relational mapping, place value, number, analogy, symbol systems

INTRODUCTION

Do symbols need to be grounded to their physical referents to have meanings? Thirty years ago,
Harnad (1990) posed this question motivating empirical studies and theoretical debates across many
subfields of cognitive science (Taddeo and Floridi, 2005; Steels, 2008; De Vega et al., 2008; Dove,
2016). The issues are still theoretically (Socher et al., 2013; Wang et al., 2019) and practically relevant,
especially within the field of education (Alibali and Nathan, 2012; Pouw et al., 2014; Stolz, 2015).
How do symbols—the letters of the alphabet, the digits of Arabic numbers—become able to convey
meaning? A grounded symbol is one that gains meaning directly through the perception of that
meaning, as the symbol “7” may gain meaning through the direct perception of seven discrete
entities. In mathematics education, theoretical ideas about symbol grounding influenced and
encouraged the use of physical models and manipulatives as a way to make abstract concepts
directly perceivable (Sowell, 1989; Sarama and Clements, 2009; Carbonneau et al., 2013). Efficacy
studies, however, yielded mixed results (Son et al., 2008; McNeil et al., 2009; Carbonneau et al., 2013;
Mix et al., 2014; Mix et al., 2017) and no clear principles as to when physical models are helpful. Here,
we propose a rethinking of physical models in education—not as a path to grounding, but as
analogies that help learners discover inherently abstract relations. We consider these ideas with
respect to children’s early learning about multi-digit notation.
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Multi-digit Arabic numbers represent magnitudes through a
base-10 system: 232 is named as “two hundred thirty-two”, and is
composed of 2 sets of 100 s, 3 sets of 10 s, and 2 sets of 1 5. 232 is
less than 322, because the former indicates 2 rather than 3 sets of
hundreds—even though these two numbers are composed of the
exact same set of individual digits. Understanding this
hierarchical structure and the algebraic relations within multi-
digit numbers is the goal of formal place value instruction and the
foundation for developing advanced calculation skills. Both
research and educational practice (Montessori, 1917; Bruner,
1966; Fuson, 1986; Fuson and Briars, 1990; Geary, 2007; Bussi,
2011) have focused on how to ground base-10 relations (e.g., 100
is 10 sets of 10, and 10 is 10 sets of 1) in physical models,
sometimes also known as mathematical manipulatives. For
example, base-10 blocks ground the meanings of the counts of
each place, the multiplicative relations among the places, and the
exact represented discrete quantities using blocks composed of
small cubes such that each cube represents one, bars (called
“longs” in math education) contain 10 ones, and large blocks
(called “flats” in math education) contain 100 ones. These blocks
are then used to physically instantiate specific amounts such that
“232” is represented as 2 big blocks, 3 bars, and 2 cubes. Despite
widespread use, early learners can have difficulties in
understanding just what this is all about: some when shown a
display such as that for “232” count the total number of blocks
(seven blocks), some try to count all the cubes (Chan et al., 2014),
and some studies show little benefit of the addition of these
physical models (Ball, 1992). We believe that the problem may be
that these blocks try to provide a full grounding of the unit size of
places, their counts, and the exact quantity, and in doing so, base-
10 blocks—just like the base-10 system itself—are too much for a
naive learner to grasp all at once. A complete grounding of the
base-10 hierarchy may benefit later learning, but it may not be the
best way to introduce the multi-digit number system.

Recent studies suggest that children’s learning about place
value starts early and proceeds incrementally (Byrge et al., 2014;
Mix et al.,, 2014; Mix et al., Under review; Yuan et al., 2019).
Children first learn about the place relations that structure multi-
digit numbers before formal school instruction on place value.
This early understanding does not include precise knowledge of
the different quantities represented by the places nor their
multiplicative relations to each other (Byrge et al, 2014; Mix
et al., 2014; Yuan et al., 2019; Yuan et al., 2020). Instead, it is an
“approximate” understanding that multi-digit numbers are made
up of places that represent different relative magnitudes ordered
from left to right. Critically, this early approximate knowledge
strongly predicts later success in learning and using base-10
principles (Mix et al, Under review), suggesting that
approximate understanding is a useful step to more explicit
correct understanding. Current evidence suggests further that
young children acquire this approximate understanding through
experience with the correspondences between spoken and written
number names, e.g., learning that the “hundred” and the “-ty” in
“two hundred thirty two” mark the places in the string “232” as
signifying different amounts (Mix et al., Under review; Yuan
et al.,, 2020). Multiple experiments (Byrge et al., 2014; Mix et al.,
2014; Mix et al., 2017; Yuan et al., 2019) have shown that this
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partial knowledge enables preschool and kindergarten children to
map unfamiliar number names to written forms for 3- and 4-digit
numbers, to judge the relative magnitudes of 3- and 4-digit
numbers, and to write multi-digit numbers given the spoken
name (albeit sometimes with meaningful and interesting errors)
(Mix et al., 2014). The three experiments reported here focus on
this first step in learning about place value: that there are different
places that signify different amounts. We ask whether and how
physical models might benefit this learning.

In science, physical models are often used not to ground
meaning but as analogies to distill the skeleton of an idea: for
example, an atom is like the Solar System in that each has smaller
elements rotating around a larger one (Gentner, 1983). These
simple analogies are helpful to initialize learning and can support
higher conceptual inferences, but they are not fully correct
(Gentner and Stevens, 1983; Mix, 2010; Mix et al., 2019;
Richland et al., 2017; Richland and Simms, 2015). Gentner’s
Structure Mapping theory (Gentner, 1983; Gentner, 2010)
proposes that analogies work because they support the
alignment of two relational systems that enable the
relations—independent of the elements in those relations—to
be extracted. The key to extracting the common relational
structure is the alignment and mapping of corresponding
elements—e.g., the nucleus to the Sun, the planets to electrons.
Experiments with many kinds of materials and different aged
participants show that relational structures can be discovered and
broadly generalized in very few trials if the learner properly aligns
the elements across examples (Loewenstein and Gentner, 2001;
Namy and Gentner, 2002; Rattermann and Gentner, 1998; Yuan
et al., 2017). Figure 1 provides an illustration of the relevant
findings. Given an array such as that in Figure 1A, 4-year-olds do
not immediately see the big-medium-small structure and have
considerable difficulty at picking out another configuration that
exemplifies the same relational structure (Kotovsky and Gentner,
1996). But adding another configuration as shown in Figure 1B
and inviting children to compare the two significantly increases
the likelihood that they can find the relational pattern and apply it
to a new configuration. The dotted lines in Figure 1B denote the
one-to-one alignment between elements in the two examples;
through these alignments, children may start to “see”, for
example, that although the biggest square of the left
configuration is perceptually different from the biggest circle
in the right configuration, they both stand in the same relation
to the other members of the array. Perceptual properties or added
components that disrupt the alignment of elements disrupt the
discovery and generalization of the relational pattern (Kaminski
and Sloutsky, 2013; McNeil et al., 2009; Paik and Mix, 2008; Uttal
et al., 2008; Rattermann and Gentner, 1998; Son et al., 2012a;
Yuan et al, 2017). For example, as shown in Figure 1C, the
medium square of the left configuration can be mapped either to
the largest square of the right configuration (because they are
perceptually identical: Object match) or to the medium square of
the right configuration (because they are both the medium one
within each triplet: Relational match). Likewise, finding the
common relational structure is also more difficult when the
component elements are heavily detailed and perceptually rich.
As shown in Figure 1D, the perceptual richness of the Mickey
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FIGURE 1 | The challenges and ways to extract relational structures: (A) Extracting relational patterns from a single exemplar is difficult for young children. (B)
Aligning and comparing two analogs that share the same relational pattern can help. (C) Alignment based on relational match is difficult to establish with the presence of
object match. (D) Richly detailed components often draw learners’ attention to object identities rather than relational patterns.

mouses and the keys with all of their vivid color and interesting
shapes can make the individual categories so salient that children
represent the left configuration as “They are Mickeys!” rather
than “These Mickeys are ordered from largest to smallest”.
Consistent with this view, past research (McNeil et al., 2009)
showed that teaching children calculation with mathematical
manipulatives that resembled real money with many details
was significantly less effective than using white paper money
with only written numbers on them without other extraneous
perceptual features.

From the perspective of the Structure Mapping Theory and as
illustrated in Figure 2, base-10 blocks present a web of mappings
at multiple levels all at once, an approach that is contrary to the
existing evidence that too many mappings may obscure the
discovery of relational structure. The demand of multiple
levels of mappings in visual illustrations—meant to clarify
text—has been shown to be unhelpful even for college
students’ learning (Wills et al., 2008; Okeefe et al., 2014; Rau,
2017). This problem of “coordinating multiple representations” is

well recognized in the learning science literature on teaching and
learning in higher education (Rau, 2017), but it is rarely discussed
for children’s early learning. This problem is also
compounded—for example, in the case of base-10
blocks—when there are features that draw learners’ attention
to the properties of individual elements at the expense of
highlighting the relations among the elements. For example,
marking the individual 100 small cube units in a large block
(or the “flats”) focuses too much on faithfully grounding the
“hundred” unit to 100 discrete entities rather than highlighting
the relation that the “hundred” place is larger than the “decade”
place (which is further larger than the “unit” place). Past research
has shown that perceptual properties that contain too many
details about individuals often result in learners’ failures in
recognizing and learning about the relations among
individuals and that subtle changes in the direction of
presenting the “skeleton” of the relational structure can benefit
learning (Rattermann and Gentner, 1998; Paik and Mix, 2008;
Kaminski and Sloutsky, 2013; Yuan et al., 2017).
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FIGURE 2 | Systems of relational mappings among a written multi-digit number, its corresponding number name, and the base-10 blocks representation of its
numerical quantity. The solid lines highlight the structure within each representation, while the dotted lines denote the myriad relational mappings between corresponding

From the perspective of the Structure Mapping Theory,
relations are found through aligning arrays with the same
relational structure and do not necessarily require that the
aligned arrays include physical models. Thus, the alignment of
number names (one symbolic form) to written forms (another
symbolic form)—with no physical model—could be sufficient for
an early learner (Mix et al., 2019; Yuan et al., 2020). Multi-digit
number names and the written forms have distinct surface forms,
but the same underlying relational structure as shown in Figure 2.
Thus, mapping multi-digit number names to their written forms
could yield the discovery of the relational structure—that there
are places ordered by relative magnitudes from left to right. This
could work because multi-digit number names likely have
intuitive meanings that young children partially know—e.g,,
that “hundred” means “a whole lot” and “-ty” signals a pretty
big number as well. These intuitive meanings do not have to be

exact to help children find the relational structures. For example,
given the big-medium-small relational pattern in Figure 1A,
children are helped in finding and generalizing that pattern
when the elements are aligned with the words “daddy-
mommy-baby” (Kotovsky and Gentner, 1996), which only
roughly imply size. These arguments, however, do not mean
that physical analogies cannot help, they should if they help
children align the elements in spoken and written number names.

RATIONALE FOR THE THREE
EXPERIMENTS

The three experiments examine the role of relational mapping
and physical models in children’s discovery of place value
through the alignment of multi-digit number names, written
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notation, or physical models. Across all three experiments, there
are pretests and posttests, as well as mapping experiences in
between those tests. The mapping experiences merely coach the
alignment of elements across examples (spoken number names,
written numbers, and physical models) with the same relational
structures. Because alignment has been shown to support the
extraction of the relational structure in a few trials (Son et al,,
2012a; Son et al., 2012b), there were not many mapping trials. In
addition, explanations are minimal—typical in relational learning
experiences—since aligning elements is the hypothesized key
factor to discovering relations. The participants were 4- to 6-
year-olds, who were in preschool or kindergarten classes and who
had not been formally introduced to the place value system in
school.

Experiment 1

Experiment 1 was designed to test whether the discovery of the
common relational structure of multi-digit number names, their
written forms, and their magnitudes is better achieved—through
the use of physical models (base-10 blocks and abacus) which
provide groundings of the base-10 hierarchies (e.g., 100 is 10 sets
0f 10), or merely by mapping the two symbolic forms (written and
spoken) of multi-digit numbers. In the experiment, the Symbols-
to-Symbols condition involves only number names and their
corresponding digits with the mapping goal consisting of a
direct alignment between corresponding elements of the two
symbol systems. Next in complexity is the Symbols-to-Abacus
condition; in addition to number names and written forms, the
columns of the abacus align spatially with the places and the
numbers of discs at each column align with the digit in each place,
providing the common meaning that links the written symbols
and their spoken names. The Symbols-to-Blocks condition is the
most complex; the symbols align with the number of whole
blocks, the cells within the blocks align with the actual
amount represented, and the spatial arrangement of the blocks
aligns with different places. If the number of correlated
features supports finding the aligned relation, one might
expect the Symbols-to-Blocks condition to best support the
relational structure underlying number names, their written
forms, and their relative magnitudes. If simplicity and
alignment of common elements is the key, then the Symbols-
to-Symbols condition may lead to better discovery of places and
their relative magnitudes.

In all conditions, we used a coached imitation task to foster
alignment of heard number names, written digits, and physical
models (in the physical model conditions). The experimenter said
the number name, created the written number with digit cards, and
then in the model conditions, made a model of the number with the
manipulatives, repeating the number name, and aligning the model
and the written number in space. The child was then asked to copy
these constructions with the experimenter’s model and digit cards
in view, and if the child made a mistake, he or she was coached to
make the correct constructions by the experimenter. We measured
and used the number of errors in the mapping task as an indicator
of the perceptual transparency of the alignments to the children.
We also measured children’s pre- and post-test performance using
numbers that were not trained during mapping. There were two
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pre- and posttest tasks: mapping number names to written digits
and magnitude comparison of written numbers.

Participants

Seventy-five children (37 females and 38 males, age range:
4.03-6.88 years) participated in the study. As noted above, the
participating children in this and all following studies were
enrolled in preschool or kindergarten; none had entered first
grade. The age of the sample was sensibly and positively skewed
(median: 5.33 years, mean: 5.44 years), reflecting a range of 4 to early
6 years, with very few older 6-year-olds who had not yet started first
grade at the time of the study due to various reasons (e.g., their
birthday fell after the school district’s fall cut-off for 6-year-olds to
enter first grade). This age range was appropriate, given that we were
broadly interested in children’s early learning of multi-digit numbers
before formal education. Participants were recruited through
community organizations (e.g., farmers’ markets, child outreach
events, boys’ and girls’ clubs) and local preschool and daycare
centers. The sample of children was broadly representative of the
local population (84% European American, 5% African American,
5% Asian American, 2% Latino, 4% Others) and consisted of
predominantly working- and middle-class families. The study was
approved by the Human Subjects and Institutional Review Boards at
Indiana University. In this and all following studies, informed
consents were obtained from the legal guardian and assents were
obtained from the children prior to the experiment. Children were
randomly assigned to one of three conditions: Symbols-to-Symbols
mapping (n = 27), Symbols-to-Abacus mapping (n = 23), and
Symbols-to-Blocks mapping (n = 25).

Materials and Procedure
This experiment had three phases: pretest, relational mapping
trials, and posttest.

Pre- and Posttest

The pre- and posttests consisted of two established tasks: the
which-N and which-More tasks (Mix et al., 2014; Yuan et al,
2019). On each trial, children were presented with a pair of written
multi-digit numbers. In the Which-N task, children were told a
spoken number name and then asked to select the written form
that matched the name; in the which-More task, they were asked to
select the one that was more. There were 16 trials for each of the
tasks with a total of 32 trials (Table 1). Accordingly, 32 cards were
made with two multi-digit numbers (roughly 17.78 cm wide and
12.7 cm tall) printed at the center of the card. The particular
numbers used in the tasks were randomly sampled from 1- to 4-
digit numbers. The pair of target and foil numbers were chosen
from a variety of different types to avoid the possibility that
knowing any single strategy or heuristic would allow the
participant to solve all (or majority) of the trials. For example,
simply knowing that numbers with more digits signify larger values
is not enough to successfully choose the larger value between 223 v
220. Similarly, knowing that “three hundred and five” should start
with “3” alone is not enough to choose the correct written form of
“three hundred and five” given 350 v 305. These different types
have been used in previous research (Yuan et al., 2019) and include
single digits numbers (e.g., 2 v 8), numbers with different numbers
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TABLE 1 | All tasks and items used in the three experiments.

Pre- and Post-tests Items

Exp 1 The Which-N task (16 trials) 2v8,11v24,12v22,15v 5, 36 v 306, 64 v 604, 85v 850, 105 v 125, 201 v 21, 206 v 260, 350 v 305, 402 v 42, 670 v 67,

807 v 78, 1000 v 100, 1002 v 1020

3v7,6v8,11v19,14v41,16v62,26Vv73,30Vv60, 72v27,82v 0812 100v 10, 101 v 99,123 v 321, 223 v 220, 585 v
525, 670 v 270, 4620 v 4520

Easy items (10 trials): 2 v 8, 12 v 22, 14 v 41, 15 v 5, 24 v 11, 64 v 604, 67 v 670, 125 v 105, 350 v 305, 900 v 99
Hard items (10 trials): 189 v 198, 362 v 326, 485 v 4085, 677 v 766, 1900 v 1009, 2060 v 2006, 3070 v 307, 5109 v 5910,
7014 v 7804, 8503 v 8350

The Which-More task (16 trials)

Exp 2  The Which-N task (20 trials)

The Which-More task (20 trials) Easy items (10 trials): 3v 7, 16 v 62, 26 v 73, 30 v 60, 72 v 27, 100 v 10, 123 v 321, 223 v 220, 585 v 525, 670 v 270
Hard items (10 trials): 536 v 5362, 690 v 609, 751 v 571, 899 v 988, 1010 v 101, 2395 v 2315, 4208 v 4820, 6040 v 6400,

5035 v 5605, 7300 v 7003

Exp 3  The Which-N task (16 trials) 2v8,11v24,12v22,15v 5,36 v 306, 64 v604, 85v 850, 101 v 100, 102 v 120, 105v 125,201 v 21, 206 v 260, 350 v 305,

402 v 42, 670 v 67, 807 v 78

The Make-a-model task (6 trials) 5, 8, 50, 73, 429, 601

The Choose-a-model task (16 trials)
585 v 525, 670 v 270

3v7,6v8,11v19,14v41,16v62,26Vv73,30v60, 72v27,82v81,100v 10,101 v99, 123v 321,223V 220, 462 v 452,

This item was originally added as a catch on for the strategy of just counting the number of digits. Many children indeed utilized this strategy. Since this trial contained a non-existing
number, it was not included in the reported analysis. Additional analysis including this trial did not change the pattern of results.

of places (e.g., 36 v 306), transpositions (e.g., 350 v 305), numbers
that differed in only one digit (e.g., 105 v 125), and numbers with
no digit overlapping (e.g., 11 v 24). Items in the which-More task
were sampled using the same method as those used in the which-N
task, but the two tasks involved different numbers to avoid the
possibility that exposure to items in one task would influence
participants’ responses to the same items in the other task. Because
during the which-More task children were expected to always
choose the numerically larger number, consistent with established
procedures and to counterbalance the response demand across the
two tasks, the experimenter always asked the numerically smaller
number of the two in the which-N task.

For each of the test tasks, the same items were used at both
pretest and posttest, which allowed us to measure the effectiveness
of relational mapping on children’s discovery of the relational
structure. Two versions were created that counterbalanced the
order of the individual items. If a child received version A at pretest,
she/he would receive version B at posttest; we did this to minimize
the test-retest effect. No feedback was given at pretest or posttest.

Mapping

As shown in Figure 3 top, during the mapping trials, participants
imitated the experimenter to make multi-digit numbers using three
different sets of materials (ie., number cards only, number cards
with abacus, number cards with base-10 blocks). The base-10 blocks
included three types that each represents one place value unit. The
small squares were 1.016 cm wide and 1.016 cm tall and were used to
represent the unit of one. The bars were composed of ten small
squares attached together to form a bar shape (1.016 cm wide and
10.16 cm long), and they represented the unit of ten. The big squares
were composed of ten bars attached together to form a big square
(10.16 cm by 10.16 cm), and they represented the unit of hundred.
The abacus was 28 cm wide and 25cm tall, composed of two
horizontal bars at the top and bottom and three vertical bars for
holding the discs at each place value unit (e.g,, left bar: the hundred
place, middle bar: the decade place, right bar: the unit place). Nine

discs were attached to each of the vertical bars and different colors
were used to help participants differentiate the places: discs in the
hundred place were blue, those in the decade place were yellow, and
those in the unit place were red. All of the discs were of the same size
(with a diameter of 3 cm). The number cards (4 cm wide and 7 % cm
tall) were composed of individual cards with single digits (i.e., 0-9)
printed at the center of each card in Times font. There were 15
mapping trials during which children from all three conditions were
first presented with a target card (12 cm wide and 7 % cm tall) with
the target multi-digit number printed at the center in Times font.
The 15 target numbers were: 14, 163, 187, 65, 4, 23, 451, 52, 6, 673,
72, 8, 901, 838, 94. The multi-digit numbers that participants
received during mapping and those used for pre- and post-tests
were different. In other words, if participants’ performances in the
testing tasks have improved from pre- to post-test, then it would
suggest that they have learned from the mapping experience and
generalized that learning to different items used in the testing tasks.

For all three conditions, 10 piles of individual digits cards from
“0” to “9” were laid out in sequence on the left side of a table.
During the mapping trials, both the experimenter and the child
took individual cards from these piles to make multi-digit
numbers. In each condition, there were 15 mapping trials; this
small number is consistent with prior work which has shown that
a relatively few such mapping experiences can yield generalizable
discovery of relations in preschoolers (Rattermann and Gentner,
1998; Son et al., 2012a; Yuan et al., 2017).

Symbols-to-Symbols mapping. The experimenter first
introduced the individual number cards to the participant, “We
have some number cards here.” She then pointed to each pile from
“0” to “9” and named the digit for the child from “zero” to “nine”. She
told the child that they were going to make some numbers using these
cards. She gave one example by picking up a card with “1” and a card
with “3”, laying them down on the table side-by-side while saying, “I
have made thirteen. Can you make thirteen using these cards?” There
were 15 such mapping trials. Children only had to copy the same
actions as the experimenter, so potentially performance could be
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FIGURE 3| (A): lllustrations for the three mapping conditions in Experiment 1. (B): Density graphs of participants’ accuracy in Experiment 1 by condition, test time
(pre- and post-test), and pre-test familiarity with multi-digit number symbols. In (B) top row: children who scored less than or equal to 75% at pre-test. In (B) bottom
row: children who scored above 75% at pre-test. Pink indicates pre-test performance and turquoise indicates post-test performance.

errorless. The ability to make correct copies—trial by trial—provides
a measure of the obviousness of the alignment between different
components (e.g., number names to written forms). In all conditions,
initial copy attempts by the child were scored as correct or incorrect
(e.g., if the to be copied item was “13” and the child took a 7 instead of
a 1, or made 31 instead of 13, it would be scored as incorrect). On all
incorrect trials, the experimenter coached the child into making a
final correct copy and repeated the name (e.g., “See you made 13”) to
the correct version of the written form.

Symbols-to-Abacus mapping. The experimenter introduced and
named the digits cards from “0” to “9” similar to the Symbols-to-
Symbols condition. She then familiarized the participant to the
abacus, telling the children the name of the abacus and showing
them how the discs could be moved and allowing them to do so. The
experimenter then gave an example by laying down the cards “1” and
“3” while saying “Here is thirteen. Now watch, I am going to make
thirteen using the abacus.” She then put the correct abacus

configuration down underneath the cards while saying, “I'm
making thirteen,” or “Here is thirteen.” She then asked the child,
“Can you make thirteen using your cards and then with the abacus?”
The participant then made the corresponding number first with their
own cards and then with the abacus and the experimenter repeated
the spoken name when the written number was correctly formed and
when the abacus model was correctly formed. On all incorrect trials,
the experimenter coached the child into making the final correct copy
and repeated the correct number name.

Symbols-to-Blocks mapping. The experimenter first
introduced and named the digits cards from “0” to “9” in the
same way as the Symbols-to-Symbols condition and introduced
the different sized blocks. During the mapping trials, the
experimenter first picked out individual cards and laid them
down on the table to make a target number. For example, she
might pick out cards “1” and “3”, laying them down side-by-side
on the table while telling the participant that “I have made
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thirteen using our cards. Next, I am going to make thirteen using
our blocks.” She then put the correct number of blocks down
underneath the cards (a tens block under the card “1” and three
ones blocks under the card “3”) while saying, “I'm making
thirteen,” or “Here is thirteen.” She then asked the child, “Can
you make thirteen using your cards and blocks?” The participant
then made the corresponding number first with their own cards
and then with their own blocks. The experimenter repeated the
number name when the written form was correctly formed and
also when the block model was correctly formed. On all incorrect
trials, the experimenter coached the child into making the final
correct copy and repeated the correct number name.

Results

To determine the possibility of pre-existing group differences, we
compared children’s performance at pre-test across the three
conditions. In this and all following analyses, logistic mixed effect
models were used to evaluate children’s performance under different
training conditions. Such models allowed us to utilize item-level data
from each participant (rather than computing a summary score—e.g.,
mean, median—for each participant) and to take into consideration
the multi-level hierarchical structure of experimental studies, in
which multiple trials are nested within corresponding participants
and multiple participants are nested within corresponding
experimental conditions (Singmann and Kellen, 2019). A logistic
mixed effect model was conducted in the R environment (R Core
Team, 2020) using the Afex package (Singmann et al, 2015).
Condition was entered as a fixed variable, participant and test
item were entered as random variables; the dependent variable
was the accuracy of the individual trials (ie, O or 1) in the
which-N and which-More tasks at pre-test. There was no
significant main effect of condition, x> (2) = 0.71, p = 0.70,
suggesting that children assigned to the three mapping conditions
started out at comparable levels of competencies. As evident in
Figure 3, there were, however, considerable individual differences
with some children performing at levels above 75% at pretest but
other children performing much more poorly. These individual
differences in early informal knowledge have been reported
previously (Byrge et al, 2014; Yuan et al, 2019). Although
continuous age (in month) was correlated with individual children’s
performance at pretest (r* = 0.42, p < 0.001) and post-test (r* = 0.38, p <
0.001), there was no evidence that age was related to how much
children had improved after the training (overall: r* = 0.0005, p = 0.85;
Symbols-to-Symbols condition: 1* = 0.04, p = 0.29; Symbols-to-Blocks
condition: r* = 0.02, p = 0.54; Symbols-to-Abacus condition: r* = 0.007,
p = 0.69). As stated above, none of the participants had yet attended
first grade at the time of the study. Given that we were broadly
interested in how children can learn from symbolic and physical
representations of multi-digit numbers before receiving formal place
value instructions at schools and the large individual differences in early
knowledge beyond the factor of age, we collapsed children across the
different age groups in all following analyses.

Children’s ability to copy the experimenter’s models (and the
need of direct coaching) during the mapping trials provides a
measure of the obviousness of the alignment of elements across
arrays. Children were reasonably successful in the copying task
across the three conditions but were better able to correctly copy

Physical Models and Place Value

the arrays in the Symbols-to-Symbols conditions than in the two
physical models conditions. A logistic mixed effect model, in
which condition was entered as the fixed variable, participant and
test item were entered as random variables, revealed a significant
main effect of condition, x> (2) = 33.46, p < 0.001. Children were
significantly more accurate during mapping trials in the Symbols-
to-Symbols condition (Mean = 0.98, SE = 0.008) than in the
Symbols-to-Blocks condition (Mean = 0.78, SE = 0.039), t (26) =
4.77, p < 0.001, and the Symbols-to-Abacus condition (Mean =
0.87, SE =0.036), t (24) = 3.16, p = 0.004. There was no significant
difference between the Symbols-to-Blocks and Symbols-to-
Abacus conditions, t (46) = 1.38, p = 0.17.

The key test of the discovery of the relational pattern is whether
children can apply the pattern to arrays that were not experienced
during training (measured in the Which-N task) and whether they
can make inferences from the relational patterns as to the indicated
magnitude (measured in the Which-More task). Children’s
performances relative to pretest increased in the Symbols-to-
Symbols condition but not in the Symbols-to-Blocks or the
Symbols-to-Abacus conditions. Logistic mixed effect models on
the pre- and post-test performances were conducted for each
condition with test time (pre-test vs. post-test) and test task
(which-N vs. which-More) entered as fixed variables and
participant and test item entered as random variables, and
accuracy on individual items as the dependent variable. For the
Symbols-to-Symbols condition, there was a significant main effect
of test time, x* (1) = 4.24, p = 0.039, with performance improving
from pre-test (Mean = 0.80, SE = 0.04) to post-test (Mean = 0.84,
SE = 0.03). There was no reliable main effect of test task, x> (1) =
1.72, p = 0.19, nor interaction between the two fixed effects, Xz (1) =
0.13, p = 0.72. For both the Symbols-to-Blocks condition and the
Symbols-to-Abacus condition, the models failed to detect any
significant main effect of test time (ps > 0.43), task (ps > 0.14),
nor an interaction between them (ps > 0.71).

Figure 3 bottom shows density plots of children’s
performance at pre-test and post-test for the three conditions
and separated by children with high and low prior knowledge
(defined by 75%" accuracy in the composite score of the which-N
and which-More task at pre-test). In the Symbols-to-Symbols
condition, the performance distributions for both children with
high and low prior knowledge have shifted to the right from pre-
to post-test. Interestingly, for both the Symbols-to-Abacus
condition and the Symbols-to-Blocks condition, the
distribution of children with low prior knowledge widened
after the mapping experience, suggesting that the use of
physical models helped some children but hurt others. Past
work has shown that relational structures become easier to
perceive with expertise and exposure to the content domain
(Chi, 1978; Chi et al, 1981). Thus, one possible explanation
for the ineffectiveness of traditional manipulatives in the current
experiment is that most children were not ready for and could not
yet utilize the information in these more complex (albeit more
accurate) models of the notational system. We return to these
issues in Experiment 3 and in the General Discussion.

'Using median-split as a grouping method does not change the pattern of results
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Discussion

Experiment 1 shows that 1) the alignment of number names and
written forms is sufficient for children to discover the relational
patterns that map number names to written forms and to judge
the relative magnitudes of multidigit numbers, and 2) it illustrates
how adding additional information—even though relevant and
even though redundant—can make the initial discovery of the
relational patterns through structure mapping less likely.

Experiment 2

The finding that a few Symbols-to-Symbols mapping experiences
supported the discovery and generalization of the relational pattern
underlying number names and their written forms is surprising in
the context of a body of literature that has generally concluded that
the mapping between number names and written forms is hard to
learn (Baroody, 1990; Fuson, 1990). Accordingly, the explicit goal of
Experiment 2 was to replicate with a larger sample the finding that
relatively few mapping trials enabled learners to find and generalize
the pattern. To this end, we realized the mapping trials in two
different ways: using the approach of Experiment 1 and also a slightly
different approach that has been commonly used in Montessori
schools. In the Digits mapping condition as in Experiment 1,
children created multi-digit numbers by using individual digit
cards (e.g, “27, “37, “2”) mapped to their spoken name “two
hundred”, “thirty”, “two”). In the Expanded mapping condition,
they mapped expanded cards (e.g., “200”, “30”, “2”—“two hundred”,
“thirty”, “two”) to the name by stacking them on top of each other to
form a visual array showing the place value notation (“232”).

Participants

Ninety-three children (50 females) recruited from the same general
population as Experiment 1 participated in this study (age range
4.03-6.82 years, median: 5.26, mean: 5.39). Children were randomly
assigned to the Digits mapping condition (n = 42) or the Expanded
mapping condition (n = 51). The study was approved by the Human
Subjects and Institutional Review Boards at Indiana University.
Informed consents were obtained from the guardian and assents
were obtained from the children prior to the study.

Materials and Procedures

The which-N and which-More tasks were used as Pre- and Post-
tests like Experiment 1. There were 20 trials for each of the tasks
(shown in Table 1) with 10 easier trials that involved mostly 2- and
3-digits numbers and 10 harder trials that involved 3- and 4-digit
numbers. Children were first given the 10 easy trials; if they got 7
out of 10 of those trials correct, we proceeded onto the next set of
10 trials. We used this approach to maintain the participation of
children who found the tasks (particularly at pre-test) too difficult
to continue through all 20 trials. Two orders were created that
counterbalanced the order of the individual items across pre- and
post-tests. No feedback was given at pre- and post-tests.

Mapping

There were 20 mapping trials and correspondingly 20 cards with
the numbers 163, 51, 846, 47, 271, 94, 18, 36, 328, 451, 62, 65, 719,
653, 594, 587, 23, 89, 72, 972. The mapping experiences
immediately followed the pre-test for all participants. In both

Physical Models and Place Value

conditions, the procedures were structured similarly as in
Experiment 1 except for two differences. First, we followed a
“progressive alignment” approach (Thompson and Opfer, 2010;
Gentner et al,, 2011) often used in relational mapping studies that
began with 10 mapping trials involving two-digit numbers and
followed by 10 mapping trials with three-digit numbers. Second,
because the Expanded mapping condition involved all possible
numbers from single to three-digit numbers (i.e., 1-900), laying
out all of these components (as in Experiment 1) in front of the
child was not feasible. Instead, on each mapping trial, the
experimenter had a set of individual cards needed for
assembling the target number. She also gave the child an
identical set of cards. For example, as shown in Figure 4, if
the target mapping number was 135 and the child was in the
Expanded mapping condition, both the experimenter and child
would have cards 135, 100, 30, and 5. The 3-digit number cards
were 12 cm wide and 7 % cm tall; the 2-digit number cards were
8 cm wide and 7 % cm tall; the 1-digt number cards were 4 cm
wide and 7 % cm tall. If the child was in the Digits mapping
condition, they would both have the cards 135, 1, 3, and 5. Since
all of the cards were single digit in this condition, they all have the
dimension of 4 cm wide and 7 % cm tall. The experimenter always
handed the child his or her set of cards at the beginning of each
trial. She then demonstrated how to make the number, had the
child copy her action after each step, and scaffolded if needed.

Results

Pre-test performance in the Digits and Expanded mapping
conditions did not differ as indicated by a logistic mixed effect
model—in which condition was entered as a fixed variable,
participant and test item were entered as random variables, and
the dependent variable was the accuracy of the individual trials (i.e., 0
or 1),x* (1) = 0.12, p = 0.73. Again, as shown in Figure 4, there were
considerable individual differences in pre-test performance as some
children performed very well and others quite poorly at pre-test.
During the mapping task when children were asked to imitate the
experimenter in making the written forms in response to hearing the
name, children readily imitated the experimenter with very few
errors (overall 99% correct in both conditions), thus readily
discovering the relations between number names and written
digits. Children in both conditions also performed better at post-
test than pre-test on untrained digits indicating generalization of the
learning. To ask whether the advantage of one mapping condition
was higher than the other, we entered both conditions in one logistic
mixed effect model. Condition and test time were entered as fixed
variables, participant and test item were entered as random variables.
The model detected a significant main effect of test time,
performance improved from pre-test to post-test, x> (1) = 11.27,
p < 0.001, while there was no significant main effect of condition,
X2 (1) = 0.06, p = 0.81, nor condition and test time interaction, X2 (1)
= 0.08, p = 0.77. Both of the Expanded mapping condition (pre-test
Mean = 0.76, SE = 0.02, post-test Mean = 0.79, SE = 0.02) and the
Digits mapping condition (pre-test Mean = 0.75, SE = 0.02, post-test
Mean = 0.78, SE = 0.03) improved from pre- to post-test. As shown
in Figure 4, children improved from pre- (Mean = 0.75, SE = 0.005)
to post-test (Mean = 0.78, SE = 0.004) after the mapping experience,
regardless of their conditions.
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FIGURE 4 | (A): lllustrations for the two mapping conditions in Experiment 2. (B): Density graphs of participants’ accuracy in Experiment 2 by condition and test
time (Pre- and Post-test). Pink indicates pre-test performance and turquoise indicates post-test performance.

Because of the large individual differences and strong
performance of some children at pre-test, we also repeated the
analyses using only the data from children (N = 50) who were
correct less than or equal to 75% of the trials on the combined
which-N and which-More tasks at pre-test. Condition and test
time were entered as fixed variables, participant and test item
were entered as random variables. The model detected a
significant main effect of test time, performance improved
from pre-test to post-test, X* (1) = 5.69, p = 0.017, while there
was no significant main effect of condition, x* (1) = 0.39, p = 0.53,
nor condition and test time interaction, x2 (1) =0.01, p = 0.92.

Discussion

The post-test required children both to generalize the relational
structure to new number names and written forms and generalize
their learning about the relational mappings to judgements of
magnitude—a task on which they were given no experience
during the relational mapping experiences and so children had to
use the discovered relational structure in a new way. The effects of the
brief mapping experience were small and were not proposed as a
sufficient training procedure in and of themselves. However, they
indicated the potential value of reconceptualizing the initial learning
problem as one of discovering relational patterns, and the results
showed that relational mapping from Symbols (heard names)-to-
Symbols (written forms) is useful in this domain just as in other
cognitive domains (McNeil et al., 2009; Kaminski and Sloutsky, 2013).

Experiment 3

Although the results from Experiment 1 did not seem to support
the idea that early knowledge about multi-digit number symbols
can be learned via grounding to physical objects, it is important to
further determine why and how before making a sweeping

generalization. If analogical mapping is the core mechanism
that drives the positive results of the Symbols-to-Symbols
mapping in Experiment 1 and 2, then mapping symbols to
physical models should be helpful if they direct the learners’
attention to the relevant relations (Gentner and Toupin, 1986;
Goldstone, 1998; Jee et al., 2010; Jee et al., 2013). The two physical
model conditions in Experiment 1 may have failed to do so. For
instance, as shown in Figure 2, the number of mappings between
base-10 blocks and number symbols may be too much, too
distracting, and not focused on the critical early
knowledge—e.g., there are different places representing
different relative magnitudes—that children need to know
when first learning the multi-digit system.

To test the above hypothesis, in Experiment 3, we chose to
focus on the abacus as a physical model. We chose the abacus
because the relational structure of the abacus is analogy-like in
that it does not represent the exact magnitudes (as in Base-10
Blocks) but instead represents the system as the counts of units
(the discs) in the different places. To directly test the role of
physical models and to reduce the complexity of the alignments (a
potential problem for the physical models conditions in
Experiment 1), the mapping experiences were from the spoken
names to the physical models. The written forms were not used in
the mapping experiences but were included in the pre- and post-
tests. Success at post-test thus required generalization of
experienced mapping (heard name to physical model) to a
new mapping between spoken number names to the written
forms (the which-N task used in Experiments 1 and 2).

We constructed three “abacus” conditions as shown in
Figure 5: 1) Standard abacus: the original abacus as in
Experiment 1, 2) Sized abacus: the original abacus to which
we added a redundant place cue in which the discs varied in
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FIGURE 5 | (A): lllustrations for the three mapping conditions in Experiment 3. (B): Density graphs of participants’ accuracy in Experiment 3 by condition, test time
(pre- and post-test), and pre-test familiarity with multi-digit number symbols. In (B) top row: children who scored less than or equal 75% at pre-test. In (B) bottom row:
children who scored above 75% at pre-test. Pink indicates pre-test performance and turquoise indicates post-test performance.

size so that the relative magnitude (not exact) was modeled by the
relative sizes of the counters; and 3) Discs only: a deconstructed
“abacus” that used only discs varying in size and set on the table in
separate groups.

The Sized abacus condition is just as complex as the Standard
abacus condition, but the different sizes may make the relative
magnitudes of the places more mappable by highlighting that
property. The Discs only condition takes this potentially greater
mappability—bigger discs indicate places that stand for bigger
quantity—and simplifies the context of the presentation. The
Discs only condition is like the Symbols-to-Symbols conditions of
Experiments 1 and 2 in that heard number named were mapped
to visual patterns; only here the visual patterns are not written
multi-digit numbers but discs that vary in size—representing the
relative magnitudes of the quantities represented in each place.

The Discs only condition was also motivated by prior findings
on children’s proportional reasoning Boyer et al. (2008) As shown
in Figure 6, one study presented 4- to 6- year-old children with an
exemplar (showing a particular proportion) together with two
choices and asked the children to find the one that showed the
same proportion as the exemplar. Children were more successful

with continuous length than with discrete length (Figure 6A) in
which each individual unit was clearly and perceptually defined.
Given discrete representations, the children attended to the
individual units, prompting strategies such as counting units,
rather than attending to the part-and-whole relation that defines
the concept of proportion. Likewise, early “approximate” learning
about base-10 concept may benefit more from seeing different
sized discs that mark only the main idea—relative magnitudes of
different places—compared to base-10 blocks that convey not
only the relative magnitudes but also the precise place value
principles (e.g., 100 is 100 sets of 1s). As illustrated in Figure 6B),
the presence of the individual units on a base-10 block may
prompt children to count, rather than attending to the relative
magnitude of the places (hundred > decade > unit) and the
mapping between places to their number names. In contrast, as
shown in Figure 6C), the use of three simple discs allows for more
efficient mapping because the only difference among the discs is
their relative size—there is no other feature that would allow an
alternative mapping.

In sum, the mapping experiences in Experiment 3 were between
multi-digit number names (with place value terms) to a physical
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representation of the numerical magnitude: the Discs only
condition used relative size (big, medium, small) and the
number of discs to represent quantity; the Standard abacus uses
spatial arrangement (left, middle, right) and the number of discs;
the Sized abacus uses both size and spatial arrangement of discs to
represent quantity. The abacus—both standard and sized—also
have other details that could be distracting (the top and bottom, the
metal poles, etc.). Given the result from Experiment 1, we expect
that the Standard abacus condition will not lead to significant
learning. The interesting question here is whether the Discs only
condition and/or the Sized abacus condition would be more
helpful. On the one hand, the redundant cues (size and spatial
arrangement) presented in the Sized abacus condition might be
beneficial, because it allows for multiple strategies (if one way fails,
there is a backup). In contrast, a “less is more” principle to
relational discovery suggests that only having one cue—one way
to establish the mapping—might be better because it will draw the
learner’s attention directly to the to-be-discovered relation.

Participants

Fifty-nine children (29 females and 30 males, age range:
4.00-7.04 years, median: 5.39, mean: 5.50) from the same
general population as Experiments 1 and 2 participated

in this study. They were randomly assigned to three
conditions: Standard abacus (n = 19), Sized abacus (n = 19),
and Discs only (n =21). The study was approved by the Human
Subjects and Institutional Review Boards at Indiana
University. Informed consents were obtained from the legal
guardian and assents were obtained from the children prior to
the experiment.

Materials and Procedure

The experiment has 4 phases: 1) A pre-test that consisted solely of
the which-N task with the choices being written digits (as in
Experiments 1 and 2), 2) mapping trials in which children
imitated the experimenters in making of the number in one of
the three “abacus” conditions, 3) a post-test using physical models
as described below, and 4) a which-N post-test using the written
symbols.

Which-N Pre- and Post-test

These tests are similar to those used in Experiments 1 and 2.
There were 16 trials (Table 1) that sampled from one to three
digit numbers to form a variety of different comparisons (e.g.,
transpositions, 2- vs. 3-digit numbers). All other aspects were
identical to experiments 1 and 2.
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Models Post-tests

The Models post-tests consisted of two tasks. The Make-a-model task
presented children with a spoken number name and asked them to
make that number using the corresponding models that they were
trained with during the mapping task. In other words, this was the
same task as the mapping task; only the experimenter did not make a
representation of the number using the model for children to copy.
There were 6 trials using numbers not used in the mapping task
(Table 1). The second task, Choose-a-model, was structured just like
the Which-N task—in which children were given a spoken number
name and asked to choose the named number between two written
numbers—only in the Choose-a-model task, they chose between two
already constructed models of the number. That is, children chose
between two photographs (28 cm by 30 cm) of already constructed
abacus or loose discs (corresponding to the model that they used
during the mapping experience) on the table—one correct and one
incorrect. This task included 16 trials using numbers not used in the
mapping task (Table 1).

Mapping Tasks
The Standard abacus condition (same-sized discs) was the same
as the one used in Experiment 1; the diameter of the discs was
3 cm. The Sized Abacus condition with different-sized discs had
the same overall dimension as the typical abacus, except that the
discs were of different sizes: the hundred place discs had a
diameter of 4 cm, the decade place discs had a diameter of
3 cm, and the unit place discs had a diameter of 2 cm. For the
Discs only condition, discs were the same as the Sized Abacus
condition but were presented loose. The set of mapping numbers
for the 15 mapping trials were: 15, 186, 2, 24, 309, 38, 4, 7, 74, 851,
9, 6, 662, 50, 941. There were two orders of the mapping number
sequence to which the different conditions were counterbalanced.
The procedure with the Standard abacus was the same as in
Experiment 1 with two exceptions: First, there were no written
numbers displayed during the mapping trials. Instead, the child was
presented with the heard name, the experimenter made a model and
repeated the name, and the child was encouraged to make the model.
Second, in the traditional use of the abacus, discs are pushed from
the bottom to the top to represent a number. Some children in
Experiment 1 wanted to push the discs down not up. So, in this
experiment, the represented counts were made by pushing the discs
down. The discs for each count were counted by the experimenter
and named as they were moved. The procedure for the Sized abacus
condition was identical to the Standard abacus condition. The Discs
only condition was also the same except that the number of different
discs were counted and laid on the table from left to right for the
hundreds, tens, and ones. As shown in Figure 5, within each count
unit, individual discs were laid out separately (as opposed to being
piled on top of each other) but spatially organized within its unit
group. This spatial layout was—by design—different from how discs
are organized on an abacus and was hypothesized to be more
intuitive for children (e.g., without the remaining, potentially
distracting discs on the vertical frame of an abacus).

Results
Children in all three conditions were successful in copying the
experimenter’s physical model of a spoken number, performing
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at 94% overall (SE = 0.9%) with no significant difference among
conditions. A logistic mixed effect model, in which condition was
entered as a fixed effect, participants and test items were entered
as random effects, failed to detect a significant main effect of
condition, x> (2) = 0.64, p = 0.73. Children in the three mapping
conditions also did not differ in pre-test performance on the
which-N task as revealed by a logistic mixed effect model in which
condition was entered as a fixed variable, participant and test item
were entered as random variables, XZ (2) = 045, p = 0.80
(Standard abacus: Mean = 79%, SE = 5%, Sized abacus: Mean
= 83%, SE = 5%, Discs only: Mean = 86%, SE = 4%). Again, as
shown in Figure 5, there were considerable individual differences
in children’s performances at pre-test with some children
performing quite poorly but others near perfectly. We will
return to this fact, evident, in all three experiments in the
General Discussion.

Model Post-tests

Did the mapping experience, making model representations of
the spoken numbers, enable children to make those
representations on their own with new numbers? In the Make-
a-model post-test, children were most successful in the Discs only
condition which involved choosing the right number of different
sized discs and laying them on the table. A logistic mixed effect
model, in which condition was entered as a fixed effect,
participants and items were entered as random effects,
detected a significant main effect of condition, x> (2) = 5.97,
p = 0.05. The mean proportion correct in the Standard abacus
condition was 0.42 (SE = 0.08) and was significantly worse than
those in the Discs only condition (Mean = 0.67, SE = 0.07), t (36)
= 2.37, p = 0.02, or the Sized abacus condition (Mean = 0.65,
SE = 0.08) with a trending significant difference, t (36) = 2.05,
p = 0.047. This result suggests that one source of challenge in the
use of traditional abacus is that using places on the abacus to
indicate relative magnitudes (e.g., hundred, decade, unit) is not
intuitive for young children. Notice, according to the Structure
Mapping theory (Gentner, 1983; Gentner, 2010), there is little to
help children align the components of the heard number name to
the places on the traditional abacus. Using discs of different sizes
at the different positions may help children align the components
and thus discover the relational pattern.

The Choose-a-model post-test only required children to
recognize the correct model representation of named numbers
from the corresponding abacus or loose discs that children
received during mapping. A logistic mixed effect model was
performed in which condition was entered as a fixed effect,
participants and items were entered as random effects. The
model failed to detect any significant main effect of condition,
X2 (2) =0.79, p = 0.67 (Standard abacus: Mean = 0.68, SE = 0.05,
Sized abacus: Mean = 0.71, SE = 0.04, Discs only: Mean = 0.74,
SE = 0.04). In brief, children in each condition apparently learned
enough to recognize (above chance) the correct model
representation.

Which-N Task: Mapping Names to Written Symbols
In this study, children were never exposed to written multi-digit
numbers but instead mapped number names to physical models
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of those quantities. Does this experience bolster children’s
understanding of how spoken number names map to the
places of written notation? In all three logistic models, one for
each condition, test time (pre, post) was entered as the fixed
variable, participant and test item were entered as random
variables, while the dependent variable was the accuracy of the
individual test trials (i.e., 0 or 1). The Discs only condition, but
not the other two conditions, led to improved performance in
mapping heard number names to their written form. For the
Discs only condition, there was a significant main effect of test
time, x> (1) = 5.02, p = 0.025; children performed significantly
better at post-test (Mean = 0.89, SE = 0.03) compared to how they
performed at pre-test (Mean = 0.84, SE = 0.04), indicating that
mapping names to counts of different sized discs generalized to
mapping novel multidigit numbers names to their written forms.
For both the Standard abacus and Sized abacus, the models failed
to detect any significant main effect of time (ps > 0.21). Figure 5
shows the density plots of children’s performance from pre- to
post-test in the three conditions, separated by those with high and
low prior knowledge. As can be seen, only the Discs only
condition showed systematic improvement.

Discussion

These findings make two contributions: First, physical models for
discovering how number names map to the places of written
multi-digit notation do not work if the relations to be discovered
are not sufficiently obvious in the model. If the models are too
complex and intricate, their value as a revealing analogy—that
simplifies and brings to front a main idea—is lost. The complexity
of the Abacus models, and the non-obviousness of the relational
structure, was clearly evident in children’s difficulties in correctly
creating model representations in the Models Post-test measures.
Second, experiences in directly mapping number names to
written notation (symbols-to-symbols mapping) are not the
sole route to helping children find the relational structure;
mappings to a physical model can lead to generalization and
better insights about written notation if—as the Discs only
condition—the analogy foregrounds the single concept to be
discovered. All in all, the results of the three experiments
suggest an incremental approach that does not try to do too
much all at once. Within such an approach, physical models
might better be used as analogies that distill a complex idea into
an immediately understandable concept rather than a physical
grounding of the meaning. Physical models that are not readily
understandable in and of themselves cannot do that.

GENERAL DISCUSSION

Like many other domains of knowledge, place value principles of
multi-digit numbers are acquired incrementally. Studies of
children’s informal learning about multi-digit numbers before
school indicate a potentially key starting point: On their own,
many children start by learning that there are different places in
written multi-digit numbers and that these places signify different
relative magnitudes (Byrge et al., 2014; Mix et al., 2014; Mix et al.,
2017; Yuan et al,, 2019). Although this entry learning does not
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include the multiplicative hierarchy of base-10 system, it contains
the core idea of places that represent different magnitudes and
strongly predicts later learning of the precise algebraic relations of
multi-digit numbers (Mix et al., Under review). These previous
findings—as well as the large individual differences observed in
pre-test performance in the present study—indicate that children
differ substantially in whether they formed this entry knowledge
prior to formal schooling about place value. Given this predictive
relation between this early knowledge and later learning, the
implicated developmental pathway, and the individual
differences, we believe that the introduction to multi-digit
numbers and place value should be focused on building this
early knowledge. The present findings provide useable
information as to how this might be accomplished.

Our central hypothesis was that mathematical manipulatives
work by serving as analogical bases—much like metaphors and
analogies—to highlight the relational structure within a symbol
system (Mix, 2010; Mix et al., 2019). If this is correct, then the
effectiveness of symbolic or physical representations in teaching
symbols does not lie on whether it accurately grounds the
symbols to their complete perceivable meaning, but it is
determined by whether the perceptual features of the teaching
materials highlight the relational structure of the symbol system
that the learner needs to learn at that point in the developmental
pathway. Previous work on analogical mapping has repeatedly
shown that learning is often better achieved when the component
elements in the analogical base and to-be-learned system are
alignable and highlight the underlying relational structures, and
that aligning corresponding elements is disrupted by complicated
and overly-rich stimuli that distract learners’ attention away from
relational patterns and to object-level details (Kotovsky and
Gentner, 1996; Loewenstein and Gentner, 2001; Rattermann
and Gentner, 1998; Uttal et al, 2008; Yuan et al., 2017).
Under this “symbol-grounding as analogy” framework, the use
of base-10 blocks in the context of first-grade place value teaching
presents many challenges that may significantly limit how much
students can learn. These challenges—visualized
Figure 2—include the large number of mappings among the
different representations of written numbers, spoken number
names, and base-10 blocks; the not-so-obvious perceptual
structure among units of base-10 blocks (e.g., big squares,
bars, small cues); and the inclusion of individual units (e.g.,
the 100 small squares within one big square) that may draw
learners’ attention to the counts of units rather than the initial
understanding of the relative magnitudes of different places (e.g.,
hundred > decade > unit). Consistent with these considerations,
neither of the two traditional mathematical manipulatives—base-
10 blocks or abacus—was very effective in initially introducing
students to the multi-digit number symbol system. In contrast,
and as predicted by the Structure Mapping theory (Gentner, 1983;
Gentner, 2010), shapes with simple but easily understood
structure—big, medium, small discs—may be a more effective
analogical basis for students to acquire the initial learning about
places and their relative magnitudes. Base-10 blocks or abacuses
may be useful tools for later learning of the precise multiplicative
hierarchy of base-10 symbols—learning that goes beyond the
early multi-digit number knowledge examined and measured
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(with the which-N and which-More tasks) in the current
study—and may require substantial initial learning about the
physical representations in and of themselves (e.g., their physical
attributes, correspondences to symbols, and their meanings).

In contrast to the differential learning outcomes following
physical models in the current studies, experience based on
mapping the two symbolic forms—multi-digit number names
and their corresponding written forms—have consistently
produced significant improvement in children’s early familiarity
with multi-digit number names and their relative magnitudes.
Under the “symbol-grounding as analogy” framework, there is no
fundamental difference between physical models or symbolic
representations in teaching symbol systems: The format of
teaching materials may be different, but the key is still in
aligning the elements that are in the same relation to other
elements in the pattern. From a straight-up information
processing perspective, heard number names and written
symbols might even be better than physical representations,
because the former is often more perceptually sparse and
devoid of the many rich details that often characterize physical
representations—and thus more “relational-orientated”. It is also
likely that most children already learned names for digits from 1 to
9. Their knowledge of the relative magnitudes indicated by these
written symbols, their names and perhaps some knowledge of the
relative magnitudes of “thousand”, “hundred”, and names with
“-ty” (Lyons et al., 2018; Litkowski et al., 2020) enable them to align
the corresponding elements in number names and written forms.
This familiarity with number names may be a critical pre-requisite
to generalizable learning from mappings of number names to
written forms and another indicator of the importance of early
parents’ talks about numbers during the preschool years (Levine
et al.,, 2010).

In the present study, both forms of symbolic representations
used here—expanded cards (e.g., making 325 with 300, 20, and 5)
and digits cards (e.g., making 325 with 3, 2, 5)—turned out to be
effective. At first glance, mapping “three hundred” to “300” rather
than to “3” seems to be a more transparent mapping. But two
factors may explain the lack of difference between the two
presentation formats. First, in the case of the digits card
condition, one does not just map “three hundred” to “3”, but
to “3XX”; in other words, the spatial information—the location of
each place value unit—is already baked into the mapping, and the
ambiguity with respect to “where does the word hundred go with”
is greatly reduced. Second, even if a learner is initially unsure
about the mapping between “hundred” and “3”, such mappings
may become clear with repeated exposures via cross-situational
statistical learning (Yu and Smith, 2007; Lany and Saffran, 2013;
Rebuschat et al., 2021). For example, by encountering a series of
pairs, such as “325”—"“three hundred twenty five”, “35”—“thirty
five”, “105”—“one hundred and five”, the learner may accumulate
enough co-occurrence information—e.g., “hundred” is often co-
occur with three-digit numbers, and in such cases often occur
right after the name of the leftmost digit—to arrive at the correct
mapping. Examining how relational mappings are established in
the midst of the ambiguity, that often characterize real-world
learning data, constitutes an open and exciting future direction
for building entry-level knowledge and skills about place value.
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IMPLICATIONS FOR EDUCATION AND
TEACHING

The current finding has several implications for introducing
children to the symbolic number system and its place value
principles. Foremost, children’s later success in mastering
place value may benefit from exposure to multi-digit numbers
during the preschool and kindergarten years. Accumulating
evidence with large and nationally representative samples
(Byrge et al, 2014; Mix et al, 2014; Yuan et al, 2019; Yuan
et al,, 2020) indicates that many young children, before formal
schooling, are building partial (not perfect but often correct)
knowledge about how relative magnitudes are represented by
place and the naming conventions for 3- and 4-digit numbers,
and that this early knowledge is a strong predictor to later school
learning of mathematics (Mix et al., Under review). The present
result further suggests that early familiarity with these structures
is learnable by preschool children with just a few trials—through
mapping number names to their written forms, and/or to simple
physical analogies about relative magnitudes—embedded in a
game-like context without explicit teaching of the precise base-10
principles (Yuan et al., 2020).

This result may seem surprising to many researchers and
educators given the well-documented difficulties that school-age
children have (Baroody, 1990; Fuson et al., 1997). But these
findings also make sense given what is known about young
children’s prodigious ability to extract, learn, and use
syntactical structures by engaging in mechanisms of relational
and statistical learning (Smith and Yu, 2008; Gentner, 2010).
There are existing curricula (e.g., Montessori, 1917; Parrish, 2014;
Mix et al., 2019) focused on teaching the relational structure of
the symbolic number system, but these usually focus on older
children (e.g., 5-year-old and beyond). As a result, children’s early
approximate knowledge about multi-digit numbers often remains
a hidden competency to parents and teachers. Those children
whose early experiences did not include exposure to multi-digit
numbers have a hidden deficit relative to what might be critical
entry knowledge. This fact—that early familiarity with written
and spoken multi-digit number symbols is not only learnable, but
individual differences in that understanding is highly correlated
with later math learning—strongly suggests the benefit of early
exposure for all children. The tasks used here—brief and easy
(coached imitation)—appear suitable for early exposure.

Many researchers and educators have suggested that multi-
digit number words are initial barriers to understanding because
of inconsistencies (e.g., the teens numbers in English or the not
initially obvious mappings of “twenty” to “two”) (Miura and
Okamoto, 1989; Fuson and Kwon, 1991). The present findings
suggest that multi-digit number words are useful tools for entry to
the symbolic number system despite the inconsistencies. The
relation between language and thought is a complex one with a
long history of back-and-forth debates among different theorists
(Gentner and Goldin-Meadow, 2003). In the context of multi-
digit number words and number learning, one often cited and
emphasized result is that different language systems have
different structures with some more consistent than others.
One notable example is the claim that Chinese children’s
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accelerated number learning ability—compared to English
speaking children—results from the transparency of the Chinese
multi-digit number words (e.g., twenty is named as two tens); in
comparison, the English number words filled with inconsistencies,
such as numbers in the teens range, can lead to many difficulties
and represent a barrier to English speaking children’s numerical
development (Fuson and Kwon, 1991; Miller et al., 2000).
Perhaps, because of this perception, multi-digit number
words are often not the focus of formal teaching. The current
study, together with a large literature from cognitive psychology
(Chang et al., 2006; Lupyan, 2012), suggests that the syntactic
structures of natural languages play a vital role in organizing
perceptual input—including written number symbols—yielding
deep latent knowledge about more abstract ideas despite the
exceptions and idiosyncrasies (Yuan et al,, 2020). Without
experiences with number words and their inherent
regularities, a child may represent a written number such as
“123” as a compilation of three digits— “1”, “2”, and “3”. But by
mapping the corresponding number name “one hundred
twenty-three” to the written form “123”, the child may start
to learn about important structural regularities, such as number
words name written digits from left to right, that 3-digit
numbers all have the word “hundred” in them and often
appear early in the number word—regularities that are part
of the place value system. This symbols-to-symbols mapping
merits renewed interest by researchers as a potential critical
early pathway into place value notation.

The present findings also indicate that the use of traditional
manipulatives may sometimes be more of a problem than a benefit,
and this may be especially the case for entry-level learning. The
ultimate goal of education is for students to successfully interpret
and manipulate symbols (e.g., numbers, words, equations) on the
basis of their relations. In this sense, mathematical manipulatives
are training wheels for learning mathematical symbols and
concepts, and—like training wheels—need at some point to be
abandoned. While most current educational practices in
introducing students to the multi-digit number system and
place value focus on “grounding” symbols into mathematical
manipulatives such as base-10 blocks, studies have questioned
the effectiveness of math manipulatives due to extraneous
features—features that are not critical to the to-be-learned
relational structure—that may be distracting to learning
(McNeil et al., 2009; Kaminski and Sloutsky, 2013). But the 100
small cubes within a big base-10 block are not extraneous features;
they represent the critical multiplicative relation that 100 is 100 sets
of 1. Instead, manipulatives such as base-10 blocks may be
ineffective in first introducing children to the multi-digit
number system but might be useful later. Perhaps base-10
blocks should be simplified at first—that is, presented as
different sized but same shaped blocks with no markings to
indicate internal units—and then add the details relevant to the
multiplicative relations between places. Traditional manipulatives
have been shown useful for teaching of the precise base-10 relations
in older children (Carbonneau et al., 2013). Another approach
might be to incorporate both number symbol mappings and
manipulatives and introduce the mappings in a balanced way
(Mix et al., 2017). If learning the place value system is incremental,
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then the use of physical analogies to highlight its learning may need
to be incrementally organized as well.

IMPLICATIONS FOR THE
“SYMBOL-GROUNDING” PROBLEM

The idea of “symbol-grounding” has many different and nuanced
interpretations (see De Vega et al. (2008) for a comprehensive
review). Nonetheless, much of the theoretical discussion divides
into two broad camps: symbols alone are sufficient (Pylyshyn,
1980; Fodor, 1983; Landauer and Dumais, 1997), or that
perceptual and sensorimotor experiences support symbol
acquisition (Barsalou, 1999, Barsalou, 2008). This dichotomy is
likely to be too simple to be useful in education. At some points in
learning, physical models and manipulatives—if they fit the needs
of the specific task—can support learning. Physical
symbols—letters and numbers—can also be used as models
and with active engagement. The key question in education is
when, in what way, and for what specific incremental bit of
learning. Here we believe that the broad contributions of research
on analogy and Structure Mapping Theory (Gentner, 2010) may
help the field find useable principles.
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