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Abstract

Serverless computing has freed developers from the burden
of managing their own platform and infrastructure, allowing
them to rapidly prototype and deploy applications. Despite
its surging popularity, however, serverless raises a number of
concerning security implications. Among them is the diffi-
culty of investigating intrusions – by decomposing traditional
applications into ephemeral re-entrant functions, serverless
has enabled attackers to conceal their activities within legit-
imate workflows, and even prevent root cause analysis by
abusing warm container reuse policies to break causal paths.
Unfortunately, neither traditional approaches to system audit-
ing nor commercial serverless security products provide the
transparency needed to accurately track these novel threats.
In this work, we propose ALASTOR, a provenance-based

auditing framework that enables precise tracing of suspicious
events in serverless applications. ALASTOR records function
activity at both system and application layers to capture a
holistic picture of each function instances’ behavior. It then
aggregates provenance from different functions at a central
repository within the serverless platform, stitching it together
to produce a global data provenance graph of complex func-
tion workflows. ALASTOR is both function and language-
agnostic, and can easily be integrated into existing serverless
platforms with minimal modification. We implement ALAS-
TOR for the OpenFaaS platform and evaluate its performance
using the well-established Nordstrom Hello,Retail! applica-
tion, discovering in the process that ALASTOR imposes man-
ageable overheads (13.74%), in exchange for significantly
improved forensic capabilities as compared to commercially-
available monitoring tools. To our knowledge, ALASTOR is
the first auditing framework specifically designed to satisfy
the operational requirements of serverless platforms.

1 Introduction

Serverless Computing, the newest offering in the cloud com-
puting ecosystem, has become an attractive solution for many

companies including Netflix, T-Mobile and Zillow [20]. Also
known as Function-as-a-Service (FaaS), serverless allows
large companies to conveniently auto-scale to massive loads
while also allowing small start-ups to “scale-to-zero” and
avoid the costs of idle servers [40]. Consequently, the server-
less market growth was estimated from $1.88 billion in 2016
to $7.72 billion by 2022, an annual growth rate of 32.7%
[64]. Serverless platforms free web-developers from all hard-
ware and software stack management tasks, allowing them
to rapidly prototype applications [99] as interdependent set
of small task-specific functions. They can even make use of
existing function logic, made available through public mar-
kets [2, 73], closed-source license agreements [46, 53], or
third-party libraries [44, 45].
At first glance, serverless computing would seem to sig-

nificantly raise the bar for would-be attackers; after-all, the
provider-managed platform is likely to be correctly config-
ured, the small footprint of each function lends itself to strin-
gent access control restrictions, and the stateless and short-
lived nature of function execution seems to eliminate the
possibility of persistent compromise. Unfortunately, industry
security researchers quickly discovered that this was not the
case [58,61]. One major oversight in the serverless security
model is the ubiquitous practice of caching recently-invoked
functions in memory to improve performance. Known as
“warm container reuse,” this optimization grants attackers the
ability to establish quasi-persistence when a vulnerability is
discovered, violating the isolation of individual function invo-
cations. The container reuse problem is exacerbated by poor
security policy and configuration [58], enabling attackers to
move laterally through function workflows. As a result of
these capabilities, vulnerabilities can be exploited just as eas-
ily in serverless applications as they can in traditional servers.
Given that a variety of attack strategies are feasible on

serverless, is the full range of traditional defensive solutions
also available? Traditional approaches (e.g., Linux Audit [95])
lack visibility into the platform and are thus oblivious to
key serverless semantics such as function instances, platform
APIs, and container reuse. The same is true of state-of-the-art
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Figure 1: Architecture of Hello,Retail!, created by Nordstrom, which here is annotated to demonstrate possible attack strategies
against serverless applications. Red arrows denote the attack path used in our case study in Section 8. This attack leverages both
container reuse and function workflows to exfiltrate data.

provenance-based auditing systems, many of which aggres-
sively filter terminated system activities (e.g., [62,63]) and are
thus in conflict with the notion of stateless ephemeral func-
tions. Worse yet, current serverless-specific industry solutions
are also lacking. Platforms offer limited support for execution
tracing, error reporting, resource utilization, and function mon-
itoring [3,6,69,70], but these services provide only a restricted
view of the application and are often limited by strict usage
limits [4]. Such limits discourage developers from logging
vital forensic evidence, contradicting the attack investigation
philosophy of “constant vigilance” [52]. Encouragingly, there
is a range of third party observability tools [13, 84, 85, 90]
that offer features like distributed tracing and cost analysis,
but these services are limited to certain language runtimes
and primarily target function-level protections. Unfortunately,
we are not aware of any service (or combination of services)
that provides holistic visibility into system-, network-, and
platform-layer interactions, all of which are necessary in order
to accurately trace serverless attacks.

In this paper, we seek to resolve these challenges through
considering the following questions. (1) Serverless prove-
nance: What are the specific agents, entities, and activities
that must be monitored to accurately reconstruct the prove-
nance of serverless applications? (2) Universal auditing for
serverless: How can forensic evidence at various levels of the
serverless stack be integrated to facilitate effective threat in-
vestigation? In answering these questions, we propose ALAS-
TOR, a serverless provenance framework that collects informa-
tion at different levels of the platform stack at finer granularity
than existing solutions. In ALASTOR, function instances (i.e.,
containers) are monitored both at the system level and the

application level (e.g., monitoring HTTP requests) and col-
lected information are reconciled to provide a holistic picture
of happenings inside the instance. The global provenance
builder service in ALASTOR collates information collected at
different function instances at a central reservoir within the
platform. This service then stitches the pieces of information
to derive a holistic provenance graph that succinctly explains
the interconnection and causation relationship between all the
components of a serverless application. ALASTOR is function
agnostic and can easily be integrated into existing server-
less platforms with minimal modification. We implement the
ALASTOR framework on top of the OpenFaaS serverless plat-
form. In this paper, we make the following contributions.

• We present ALASTOR, a function-agnostic provenance
framework for attack investigation in serverless environ-
ments. ALASTOR differs from traditional provenance tools
in that ALASTOR keeps track of both dead and live entities
in the environment.

• We implement ALASTOR 1 on top of the open source server-
less platform OpenFaaS and measure its performance over-
head compared to the vanilla OpenFaaS environment. We
discover that ALASTOR imposes only 13.74% overhead.

• We conduct a serverless intrusion case study on the well-
known Hello,Retail! application in which we compare
ALASTOR to Epsagon [13], a state-of-the-practice commer-
cial serverless tracing tool. We demonstrate ALASTOR’s
superior capabilities by reconstructing the attack path in full
detail, making it easy to diagnose the intrusion and deter-
mine its impacts.
1Our code and data are available for download at https://bitbucket.

org/sts-lab/alastor/



2 Background and Motivation

Serverless computing liberates customers from the burdens
of managing their own software stack; virtual machine provi-
sioning, patches and upgrades to the operating system, load
balancing, and auto-scaling of requests are instead the respon-
sibility of the cloud provider. Serverless adopts a pay-per-use
model where customers are billed according to their CPU,
memory, and network usage only for the duration of their func-
tion executions, significantly reducing application deployment
costs [16]. Serverless enables rapid prototyping of applica-
tions by allowing developers to implement the business logic
as a set of small reentrant functions which chain together into
workflows that perform high-level tasks. To protect the plat-
form, from malicious or compromised applications, functions
are executed in isolated containers (“function instances”) that
are intended to provide a sterile environment for each stateless
and short-lived function invocation. For example, Figure 1
depicts the Hello,Retail! serverless e-commerce application.
Attacks on Serverless: While serverless applications are
subject to traditional web application vulnerabilities [96] in-
cluding event injection [29, 56, 58, 61, 78] and vulnerabilities
in library and platform code [5, 9, 43, 47], industry practition-
ers claim that ephemeral serverless functions make exploiting
such vulnerabilities more difficult in practice [49]. However,
despite the fact that a function’s lifecycle typically spans just
milliseconds of time, attackers have found new ways to ex-
ploit serverless functions. Figure 1 includes a depiction of an
exploitation where synthetic vulnerabilities are injected into
the Hello,Retail! application for the purposes of illustration.
While we leave the details of the attack to our case study
discussion in Section 8, we mention it here to motivate two
key attack strategies often administered by attackers:

• Exploiting Container Reuse: Even though the functions are
supposed to be stateless, the cost of setting up an entire
runtime environment for each function execution has en-
couraged container reuse. That is, “warm” containers are
cached and reused for future invocations of the same func-
tion within a pre-configured timeout window [17, 72, 97].
Opaque platform policies and scheduling algorithm details
obscure this practice, making it difficult for customers to
account for such issues during application development. At-
tackers have discovered that warm container reuse can be
exploited to achieve persistence by writing malware or toolk-
its to an in-memory partition (e.g., /tmp), then forcing the
compromised function instance to remain in the cache [58].
Step 4 in Figure 1 exploits container reuse.

• Exfiltration through Function Workflows:Many attacks de-
pend on the ability to exfiltrate stolen data [58]. Unfortu-
nately, simply restricting functions’ network access is an
ineffective deterrent; attackers have developed methods of
laundering stolen data through downstream authorized func-
tions and legitimate platform APIs in order to reach the open

Internet [61, 78]. They can leverage legitimate function tran-
sitions to move laterally through the application [58, 61, 78].
Moreover, the complexity of serverless access control poli-
cies leads to increased chance of misconfigurations [41, 74],
thus creating greater opportunity for attackers. Step 5 in
Figure 1 exfiltrates data over an authorized workflow.

In addition to the above attack scenarios, the abundance of
third party functions [2, 44–46,53,73] creates an additional
attack surface, exposing serverless applications to untrusted
and potentially malicious function code.
Limitations of Existing Approaches: Data provenance tech-
niques are used in operating systems to parse system-level
audit logs (e.g., Windows ETW [68], Linux Audit [1]) into
a causal graph that describes the dependencies between sys-
tem subjects (e.g., processes) and system objects (e.g., files,
network sockets). Data provenance techniques can be used in
root cause analysis by tracing the graph backwards starting
from a suspicious event. Moreover, a forward tracing query
can help in understanding the consequences of the attack.
Thus, provenance graphs are useful for investigating cyber
attacks [60]. However, most system-level provenance tech-
niques are confined to the events happening inside a single
machine, while the nature of attacks on serverless platforms
calls for distributed tracing and auditing mechanisms.
While a specialized auditing framework for serverless

has not yet emerged, growing evidence of attacks against
serverless platforms has led to the release of various tools
to improve runtime observability into serverless applications.
Cloud providers offer execution tracing, error reporting, alerts,
and resource usage breakdowns [3, 6, 69, 70]. However, these
techniques tend to focus on individual functions in isolation
and are often impeded by strict usage limits [4]. A range of
third party observability tools [13,84,85,90], offer additional
features but are limited to certain language runtimes and plat-
forms. Security mechanisms within these products are mostly
geared towards function-level protection and do not consider
more complex multi-function attack paths. When these prod-
ucts offer distributed tracing (e.g., [13]), they provide only
an opaque view of function execution that does not explain
system-level interactions, which is likely too coarse-grained
to diagnose and investigate attacks. Moreover, these tools do
not consider intra-container interactions (i.e., container reuse),
which is necessary to prevent cross-invocation attacks.

3 Threat Model & Assumptions

This work considers attacks against a serverless application
running in a third party public compute cloud platform, e.g.,
Amazon Lambda. We assume that the cloud provider and
platform infrastructure are trusted, meaning that the provider
will correctly deploy functions and will not attempt to col-
lude with attackers. Based on the popularity of Amazon
Lambda and other similar FaaS platforms, we assume that the
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Figure 2: An overview of the ALASTOR architecture and the provenance collection workflow.

provider is offering container-based serverless environments,
not language-based environments. Container-based platforms
are popular because they do not restrict customers to certain
languages or runtime environments, but this model also raises
increased security concerns because functions are not (neces-
sarily) written in type/memory-safe languages and they can
interact with the underlying host. Just as customers may run
potentially-buggy function code, we also admit the possibility
that customer’s access control policy configurations, which
restrict the permissions of individual functions, are miscon-
figured or insufficient. This is because there is already ample
evidence that role-based access controls in clouds (e.g., Ama-
zon IAM) are often incorrectly configured [41, 74] or are
overly permissive, allowing the attacker to traverse legitimate
function workflows to advance their goals [58, 61, 78].
Within this environment, we consider a serverless cloud

application that is the target of a sophisticated remote attacker
with the primary goal of data exfiltration. To do so, the at-
tacker can leverage a variety of traditional techniques and
procedures that are known problems on traditional computers
(e.g., [7]), including binary exploitation, command injection,
downloading and executing penetration testing tools etc. In
addition, they are also able to employ the aforementioned
serverless-specific attack techniques to achieve persistence
and exfiltrate data within this environment. The attacker can
use the compromised functions to execute any permissible
system flow to exfiltrate data, including transmission to the
external network, writing to persistent storage somewhere in
the cloud, or even writing to ephemeral storage inside the
function container for later retrieval. While the attacker effec-
tively has free rein within compromised function instances,
we assume that the attacker does not have administrative ac-
cess to the victim customer’s account.2 Thus, they are unable

2While exceptions have been observed [58], granting individual functions
access to the platform API keys is an egregious misconfiguration of access
control policy that is unlikely to occur. It is important to note, however, that

to launch their own functions, modify container images, or
tamper with access control policies.
We make the following additional assumptions about this

environment. Based on the architectures used by popular
serverless platforms today, we also assume the presence of an
API gateway in the cloud platform to handle external requests
originating from the public Internet. We further make the
assumption that all serverless functions are invoked through
the use of REST API calls or other forms of Remote Pro-
cedure Calls (event triggers, asynchronous callbacks). This
assumption is appropriate because web and API serving are
the most popular use cases in the serverless paradigm [57].
Like most auditing literature (e.g., [48, 65, 71, 77, 100]), we
assume that our event tracing mechanisms and the event logs
are correct at the time of their use. Because the cloud plat-
form is trusted and the attacker does not have administrative
access to the customer account, it is reasonable to assume that
secure storage for these logs exists. Under a more aggressive
threat model, log integrity could be verified through the use
of tamper-evident cryptographic protocols (e.g., [59, 75, 76]).
Finally, we do not consider cloud side channels (e.g., cross-
tenant side channels [80]) in this paper.

4 Overview

Given the state of serverless security, it is clear that there
is a pressing need for improved auditing and transparency.
However, deploying provenance-based auditing techniques in
the serverless domain poses several notable challenges:

• Auditing ephemeral activities. Serverless functions are short-
lived. Forensic analysis is not typically designed to support
auditing system entities that no longer exist or do not ef-
fect the present state of the system. For example, in the
pioneering LogGC paper [63], Lee et al. deem such events

this means the attacker we consider is less capable than a true insider attacker.



as “garbage” and propose removing them from the log. A
variety of auditing frameworks similarly prune repeated
events [100] or causal paths [51]. State in serverless archi-
tectures is extremely limited; applying such techniques to
serverless risks destroying vital evidence of attack activities.

• Replication of vulnerable programs. A vulnerability in one
function implicates the security of many functions and con-
tainers that may be replicated across many instances on
different physical machines. Devising methods to trace a
vulnerability back to candidate sources and assess its poten-
tial impact on the broader application is not straightforward.

• Unwieldy auditing costs. Serverless customers pay only for
the resources they truly need. That said, serverless is far from
optimal in terms of its footprint in the audit log — because
function infrastructure is in a constant state of re-launch and
teardown, there are actually many more events associated
with a function invocation than would be expected from a
typical web request. In other words, we would expect the
overheads associated with serverless auditing to be even
worse than traditional server infrastructure.

Our Approach: While auditing serverless is challenging, a
key design aspect of serverless platforms can be leveraged
to ease the challenges — execution partitioning [62], an es-
sential precursor to causal analysis, is innate in serverless. In
execution partitioning, long-lived processes are subdivided
into autonomous units of work, allowing an investigator to
trace from a process output to the associated process input
without following irrelevant inputs (i.e., false provenance).
Due to the event-driven nature of serverless, low-level system
events can be reliably bound to an event-trigger. Furthermore,
high fan-out processes are scarce due to ephemeral functions.
Therefore, it is not necessary to perform additional execution
partitioning because process activities are already short-lived
and will be associated with little false provenance, if any.
Based on these observations, we propose ALASTOR, a

serverless provenance framework that transparently collects
information at every function instance (i.e., container) both
at the system level and the application level, then reconciles
them to provide a holistic picture of happenings inside the
instance. ALASTOR aggregates information from different
functions at a central reservoir within the platform and en-
codes the discovered causal dependencies into a global data
provenance graph to enable serverless attack investigation.
ALASTOR: Figure 2 describes two main components of
ALASTOR: the provenance collector and the global prove-
nance builder service. The provenance collector resides inside
each function instance and collects both system-level and
application-level activities initiated by the executing func-
tion. The global provenance builder service communicates
to the containers through the underlying container runtime
and fetches local provenance data stored in the function in-
stances. This service then stitches the pieces of information
to derive a holistic provenance graph that succinctly explains

the interconnection and causation relationship between all the
components of a serverless application.
Provenance Collection Workflow: The request handler in-
side a function container starts listening for incoming requests
when the container is deployed on the platform. The prove-
nance collection workflow is set in motion when the function
executor inside the request handler receives an invocation re-
quest ( 1 ). The executor then forks a process ( 2 ) that executes
the function logic. The Provenance Collector collects a trace
of the process, file and network system calls ( 3.1 ) invoked by
the forked process and its descendants. The Provenance Col-
lector also intercepts the function’s network traffic through the
use of a transparent network proxy ( 3.2 ), and reconciles this
higher level information with the lower level system events
through inspecting the port bindings ( 3.3 ). This combined
information is parsed into a local provenance graph by the
Provenance Collector ( 4 ) and is stored in a local database
within the container ( 5 ). The local provenance graph is ap-
pended with application level metadata (e.g., request ID, func-
tion execution duration, request and response headers and
body) emitted from the request handler logger ( 6 ).
The global provenance builder service runs on the control

plane of the serverless platform, using a cronjob that pulls the
local provenance graphs from all function instances ( 7 ). The
global graph creation routine runs within the global prove-
nance builder service and collates the local graphs and some
metadata collected from the logs of the platform services
(e.g., container ID, container state) ( 8 ) into a global graph
that defines the behavior of a serverless application ( 9 ).

5 ALASTOR Design

5.1 Provenance collector

Provenance Collector, the primary component in ALASTOR
architecture, performs four tasks described below.
System Call Tracing: The Provenance Collector’s system
call tracing mechanism keeps track of the process, file and
network related system calls using the strace utility. The trac-
ing mechanism generates system-level event trace as shown
at step 3.1 in Figure 2. System call tracing is critical to prove-
nance collection because an attacker’s malicious activities
are recorded in the set of system calls invoked by them. For
example, cross-invocation interference achieved through con-
tainer reuse [58] involves calling file-related system calls
open, read and write with same set of files as input param-
eters, across invocations. This creates an explicit data flow
from one function execution to another and this data flow can
be captured by inspecting the system call trace.
Network Profiling: While system call tracing provides visi-
bility into low-level network activity, IP-level information is
not sufficiently descriptive because application components
are regularly replicated and migrated. To address this, we



additionally profile the REST API calls and http network re-
quests that form the basis of serverless communications [57].
To observe API usage and http requests, ALASTOR deploys
a transparent network proxy in each container. This network
proxy monitors all incoming and outgoing network requests
(step 3.2 in Figure 2) originating from the container. To ad-
dress the matter of encrypted traffic, ALASTOR’s provenance
collector contains an HTTPS proxy (mitmproxy [32]), which
is a common technique in enterprise environments for mon-
itoring security-sensitive network flows [36]. The network
profiling component not only allows ALASTOR to reconstruct
function workflows, but is also useful in identifying malware
downloads or sensitive data exfiltration to remote servers.

Process to Network Request Association: While the net-
work proxy provides insight into the higher level network
activities of the function, it is unable to associate a network
request to the specific system process that initiated the request.
To address this limitation, ALASTOR uses the ss utility to map
processes to port numbers (pid ! port) of TCP sockets they
use (step 3.3 in Figure 2) and computes the source port of orig-
inating network requests (port ! request) using mitmproxy.
This information is combined to compute the set of requests
sent by each process (pid ! request) in the container.

Local Provenance Graph Creation: In this phase, the prove-
nance collector encodes the collected provenance into a prove-
nance graph. The vertices in this graph are the system subjects
(processes) and objects (files, network connections) observed
in the function instance while the edges represent the causal
dependency events. A causal dependency event can be a sys-
tem call invocation or a REST API call or network request.
The edges are annotated with a timestamp of the event and
the type of event (e.g., read, open, GET etc.).
Algorithm 1 outlines the local provenance graph creation

routine used by the Provenance Collector. The algorithm
takes as input the request handler logs, system call traces
of processes and process to network requests mappings as
computed above. The algorithm initializes the graph with a
single container vertex representing the function instance
and an empty set of edges (lines 1-4). The container ID
can be read from the proc directory within the container
(e.g.,/proc/self/cgroup file in Docker container runtime).
Next, the request handler logs are parsed to identify processes
associated with individual incoming function invocation re-
quests and these process nodes are added in the graph (lines 5-
9). The network profiling provenance is encoded as IP address
vertices connected to respective process nodes (lines 10-14).
Then the GETSYSTEMCALLS(P) routine is called on each of
the process vertices currently present in the graph (lines 18-
20). This routine (lines 21-44) parses the strace output for
the process p. The system calls invoked by process p are
examined to eliminate failed system calls (failed system calls
may have negative return values) (line 22). This routine also
(lines 23-28) computes the progeny of p by tracking the fork,

Algorithm 1 Local Provenance Graph Creation

Inputs: Request handler log r.log; process.trace files; network proxy output net.log
Output: Local provenance graph G

1: G := (V,E)
2: containerId := Read container ID from /proc/self/cgroup
3: V := {containerId}
4: E := /0
5: MAP(hinvreqId; pidi) := Compute InvocationRequestID to PID mappings from

r.log
6: for each hinvreqId; pidi 2 MAP(hinvreqId; pidi) do

7: V :=V [{pid}
8: E := E [{(containerId ! pid, invreqId)}
9: end for

10: for each hpid;htt pReqi computed from net.log do

11: V :=V [{pid} .httpReq is a two-tuple (hipaddr : porti,restOp) where
restOp2{get, post, put, delete}

12: V :=V [{hipaddr : porti}
13: E := E [{(pid ! hipaddr : porti,restOp)}
14: end for

15: procSyscalls := {execve,fork,clone}
16: netSyscalls := {bind,listen,connect,accept,sendto,rcvfrom}
17: writeParams := {O_WRONLY,O_RDWR,O_APPEND,O_CREAT,O_TRUNC}
18: for each (v 2V | v.type== process) do
19: GETSYSTEMCALLS(v.pid)
20: end for

21: function GETSYSTEMCALLS(pid)
22: for each (sysCall 2 pid.trace | sysCall.retVal > 0) do
23: if sysCall 2 procSyscalls then
24: child.pid := Compute child process ID from

sysCall.params and sysCall.retVal
25: V :=V [{child.pid}
26: E := E [{(pid ! child.pid,sysCall)}
27: GETSYSTEMCALLS(child.pid)
28: end if

29: if sysCall 2 netSyscalls then
30: hipaddr : porti := Compute from sysCall.params
31: V :=V [hipaddr : porti
32: E := E [{(pid ! hipaddr : porti,sysCall)}
33: end if

34: if sysCall == open then

35: f ile := Compute file name from sysCall.params
36: V :=V [{ f ile}
37: if sysCall.params\writeParams 6= /0 then
38: E := E [{(pid ! f ile,write)}
39: else if O_RDONLY 2 sysCall.params then
40: E := E [{( f ile! pid,read)}
41: end if

42: end if

43: end for

44: end function

execve and clone system calls and recursively calls GETSYS-
TEMCALLS on the child processes. The process nodes (p and
its descendants) are included in the graph and are connected
with edges directed from the parent to the children nodes.
Next, the system call parameters are processed (lines 29-42)
to compute the system objects (e.g., files, sockets) affected
by the successful system calls. These objects are added as
nodes in the graph and the edges connecting process nodes
to system objects it accessed are labeled with corresponding
system calls. The direction of the edge depends on the direc-
tion of the data flow. For example, an edge labeled read will
be directed to the process from the file object (line 40), and
a write edge will be in the opposite direction (i.e., from the
process to the file being written) (line 38). In each function
instance, a local provenance graph is created and stored until
it is fetched from the Global Provenance Builder Service.



5.2 Global Provenance Builder Service

The global provenance builder service works alongside other
system services within the serverless platform. This ser-
vice implements one of the unique features of serverless
provenance collection technique: dead-provenance. Dead-
provenance deals with keeping track of the objects not exist-
ing in the environment anymore (i.e., dead containers) and
computing how the events induced in the past by dead objects
causally influence live objects. Dead-provenance is essen-
tial in serverless environments to detect attacks described in
Section 2, in contrast to traditional monolithic system prove-
nance [63]. The global provenance builder service performs
its operations in the following two phases.
Information collection from the platform and the in-

stances: The global provenance builder service queries the
platform services to learn about the deployed functions, run-
ning containers and their descriptions (e.g., whether the con-
tainers are in initialized, running or terminated states). Plat-
forms generally assign identifiers to every object in the ecosys-
tem. The unique identifiers for every function and every
container enables this service to trace flows across function-
instances that may or may not be active within the same times-
pan, or might have been terminated before. Unique identifiers
(normally assigned by the image registries) for container im-
ages are useful for tracing vulnerabilities discovered in one
forensics investigation in other uses of the same image.

Most serverless platforms’ designs allow every function in-
stance to be uniquely addressable within the overlay network
that connects them. Using these network addresses of the in-
stances, the global provenance builder service runs a periodic
routine that fetches local provenance graphs from each of the
function containers with the help of the underlying container
runtime apis. By design, when a container’s health starts to
deteriorate (e.g., the root process in the container receives
a SIGTERM or SIGKILL signal), the container runs a pre-
termination routine that sends the remaining local provenance
information to the global provenance builder service that has
not been yet fetched by the service, ensuring the completeness
of the global provenance graph created in the next step.
Global provenance graph creation: The global provenance
graph algorithm (Algorithm 2) takes as input the set of lo-
cal provenance graphs generated from Algorithm 1, and the
serverless platform logs (gateway logs, DNS server logs etc.).
The algorithm initializes the global graph with vertices cor-
responding to various platform services (lines 1-4). Then all
the edges and vertices from the local graphs are added to
the global graph (lines 6-9). The platform logs record the IP
addresses assigned to the different containers. A container ID
to IP address map is created from these logs (line 10). The
platform gateway routes and logs every request to a function
whether the request is intra-platform or externally originated.
Finally, from the gateway logs and the map constructed in line
10, the flow of requests among containers is computed, and the

Algorithm 2 Global Provenance Graph Creation

Inputs: Set of local provenance graphs {lgcontainerId}; plat f orm.log files
Output: Global provenance graph G

1: G := (V,E)
2: gateway := Read gateway IP from plat f orm.log
3: plat f orm_dns := Read DNS server IP from plat f orm.log
4: V := {gateway, plat f orm_dns}
5: E := /0
6: for each lgcontainerId do

7: V :=V [{lgcontainerId .V}
8: E := E [{lgcontainerId .E}
9: end for

10: MAP(hIP;containerIdi) := Compute IP assigned to containerId from
plat f orm.log for each container

11: for each reqId logged by the gateway in plat f orm.log do
12: E := E [ {(gateway ! containerId,reqId)} | MAP[destIPreqID] ==

containerId
13: E := E [ {(containerId ! gateway,reqId)} | MAP[srcIPreqID] ==

containerId
14: end for

corresponding edges labelled with request ID and timestamp
are added to the global provenance graph(lines 11-14).

When pre-termination provenance arrives from a terminat-
ing container, the subgraph corresponding to that container
is appended with the new information and the corresponding
container vertex is labeled terminated. In this way ALASTOR
preserves dead provenance in the global provenance graph.
As described in Figure 2, a complete multi-function attack
path is visible in the global provenance graph which is not
discoverable when the local graphs are inspected in isolation.

6 Implementation

We implemented ALASTOR in Go within OpenFaaS,3 an
open-source serverless platform. OpenFaaS is compatible
with several container orchestration platform backends, in-
cluding Kubernetes and Docker Swarm. We deployed ALAS-
TOR with OpenFaaS over Kubernetes. We primarily modified
two components of OpenFaaS, the watchdog and of-watchdog,
representing an addition of approximately 75 lines of Go code
(excluding build scripts, comments and blank lines). These
components act as request handlers in the function container
that receive and process incoming requests to the function.
Our changes are transparent to the function and do not inter-
fere with the functionalities of these components.
Our modifications are aimed towards instrumenting the

request handler in each container to proxy network requests
and track system calls as part of ALASTOR’s Provenance
Collector. We used the Mitmproxy [32] python library to
proxy HTTP and HTTPS requests generated by the functions
destined towards addresses external to the Kubernetes clus-
ter. The intra-cluster traffic is monitored using system logs
emitted from Kubernetes apiserver, OpenFaaS gateway, and
the instrumented function-container. The system call trac-
ing mechanism is implemented using the strace utility. The

3https://www.openfaas.com/



Global Provenance Builder Service is implemented as an in-
dependent cron job that runs at the Kubernetes control plane,
without requiring any change in the underlying platform.

7 Performance Evaluation

In this section, we evaluate the performance overhead of
ALASTOR. We deployed ALASTOR on a server-class machine
with 64-core Intel(R) Xeon(R) CPU E5-2683v4 @2.10GHz
and 132 GB memory running CentOS Linux 7 (Core) 64
bit OS. Our experiments used the Docker version 20.10.3
as the container runtime, Kubernetes version 1.18.8 for or-
chestration, and OpenFaaS with of-watchdog version 0.8.1.
We configured the Kubernetes cluster as a single node clus-
ter with both the control plane services and user deployed
workloads running on the same node (i.e., the server-class
machine). All Docker images required for the following ex-
periments were pre-pulled in order to minimize the effects
of external networking variations. We compared ALASTOR’s
performance against the standard OpenFaaS (Vanilla). Since
Epsagon does not support the OpenFaaS platform, we were
unable to include it in our performance experiments.
Application workloads: Our primary test application is
Hello,Retail!, 4 which has been extensively used in re-
cent serverless literature [19, 33, 81]. Shown in Figure 1,
Hello,Retail! consists of 13 functions, 5 of which are pub-
licly accessible and 8 are internal (can only be accessed by
other functions). There are also 4 data stores used by dif-
ferent functions. We make use of Alpernas et al.’s fork of
Hello,Retail! [19], which replaces calls to the AWS-specific
components (e.g., S3) with calls to open-source alternatives
(e.g., sql-datastore), and make minimal further modifications
so that the application could run on the OpenFaaS framework
deployed on a Kubernetes cluster.
We also make use of two additional applications, a threat

response engine (falco [14]) and a sentiment analysis app
(sent-analysis) [15]. The Falco app [38] consists of 3 func-
tions: dispatch ingests alerts from a threat detection engine,
then invokes either notifier for publishing alerts to an admin-
istrator channel (NOTICE level alerts) or a delete-pod func-
tion that deletes the offending Kubernetes pod (WARNING
level alerts). The sentiment analysis application consists of a
single function that takes text as input, computes a sentiment
of the text, and returns the result. This corpus of applications
will allow us to characterize ALASTOR’s performance for
different workload profiles.
Build and Orchestration Performance: The pre-
deployment costs of building and storing container images
are shown in Figures 3.5 The build sizes and times are
averaged across 30 iterations for each function. The small
increase in image size over Vanilla OpenFaaS is due to

4https://github.com/Nordstrom/hello-retail
5Function names are shortened in the figures for brevity.
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Figure 3: Container image build performance comparison.

the additional ALASTOR code that is compiled into the
OpenFaaS of-watchdog binary and the installation of
the tracing mechanism and proxy certificates. Build time
overhead can be attributed to installing system call tracing
and proxy libraries during image building. These are one-time
costs incurred when building an image for the first time.

Overheads for orchestration performance are shown in Fig-
ure 4. Figure 4a reports the function deployment time, which
is the time required for the docker runtime to transition a
function instance from the “Container Creating” state to the
“Ready” state. Figure 4b reports the function teardown time,
which is the time required to transition the container from the
“Running” state to the “Terminated” state. Both figures show
the average overhead across 50 iterations of each function.
Averaging across all functions, ALASTOR deployment and
teardown overheads are 3.2% and 3.6%, respectively.

Runtime Performance: Of particular importance is the im-
pact of ALASTOR on function response latency, which we
measure as the time taken to receive a function response after
sending an invocation request from a client (curl) on the
local host machine. Figure 5 shows the response latencies
for each function, averaged over 500 repetitions. To improve
readability, the figure splits the y-scale such that the photos-
receive and sent-analysis functions with larger latencies can
be shown in the top half. Across the Hello,Retail! application,
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Figure 4: Orchestration performance for functions with ALAS-
TOR as compared to vanilla OpenFaaS.
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Figure 5: Response latencies of functions with ALASTOR as
compared to vanilla OpenFaaS.

ALASTOR incurs modest overheads averaging 13.74%, and
across the falco application, 6.22%. In the worst case, for
the sent-analysis function ALASTOR imposed 99.8% (1.2
sec) overhead; we attribute this to the I/O heavy nature of
this function, which performs many system calls on a large
text blob. These results may indicate that ALASTOR is better-
suited to event-driven applications (e.g., Hello,Retail!, Falco)
that do not perform extensive file I/O.
CPU and Memory utilization: Next, we measure the re-
source utilization overheads of ALASTOR under varying loads.
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Figure 6: Node CPU and memory utilization executing
Hello,Retail! Product Purchase workflow with ALASTOR as
compared to vanilla OpenFaaS, with and without function
scaling enabled.

To do so, we make use of Hello,Retail!’s product-purchase
workflow and use an HTTP load generator (hey) to issue in-
creasingly high request loads ranging from 10 to 500 requests
per second (rps). Results for each load are reported over 120
second trials. We also repeat this experiment in two cluster
configurations: where only a single container per function is
used (noscale) and where containers can scale up to 50 per
function (scaled). We measure utilization with Kubernetes
Metrics Server,6 in which 1 nanoCPU is defined as 1 billionth
of a cpu-core.
Figure 6 shows our results, with per-function CPU and

memory utilization reported in Figure 7. In Figure 6a, the
CPU utilization overhead for ALASTOR grows at a gradual
constant rate in the scaled configuration, with peaks denot-
ing the creation of new containers to cater to the increased
request load. In noscale, the total CPU utilization is lower be-
cause the server’s additional cores are not in use. In this case,
ALASTOR cannot handle beyond 200 rps and starts queueing
and dropping requests. The vanilla setup also struggles and
starts dropping requests at this time, although managing to
make progress at a much slower rate. In Figure 6b we observe

6https://github.com/kubernetes-sigs/metrics-server
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Figure 7: Per function CPU and memory utilization executing
Hello,Retail! Product Purchase workflow with ALASTOR as
compared to vanilla OpenFaaS, with and without function
scaling enabled.

that ALASTOR imposes almost constant memory overhead
throughout. For ALASTOR in the noscale configuration, the
memory footprint surpasses the scaled footprint at 300 rps due
to increasing queue of unprocessed in-flight requests. While
the CPU and memory overheads of ALASTOR are significant,
we observe that ALASTOR is able to support at least up to 500
rps on our test server; in fact, we were unable to fully saturate
the ALASTOR-enabled set-up using our test apparatus.

In Figure 7 we report the average CPU and memory utiliza-
tion across all running containers for a function in the scaled
configuration. This diagram shows a similar trend to Figure
6. With function scaling enabled (red and blue lines), both
the CPU and memory utilization growth for ALASTOR are
modest and stable with increasing request load.

Disk and Network Utilization: Storing and managing mas-
sive logs is a key problem in system auditing. In ALAS-
TOR’s case, logs impose overheads related to both network
transmission (to the global provenance builder service) and
long-term disk storage. Figure 8 reports on the log growth
in Hello,Retail! for an increasing number of requests to the
product-purchase workflow under four configurations: the
raw log, the log after filtering using Hossain et al.’s Source

0

50000

100000

150000

200000

250000

300000

350000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Lo
g
Si
ze

[K
B]

Total number of requests

raw
DPR
tar

DPR+tar

Figure 8: Total size of logs generated while executing
Hello,Retail! Product Purchase workflow with ALASTOR.

Workflows #Node #Edge Local graphs

purchase get-price authorize-cc publish

Benign 69 80 N18 E28 N13 E13 N21 E14 N13 E13
Attack1 76 117 N19 E36 N13 E13 N26 E34 N13 E13
Attack2 49 65 N18 E29 N13 E13 - N13 E13

Table 1: Complexity of ALASTOR request graphs in 3 dif-
ferent Hello,Retail! scenarios. The second and third column
denotes the size of the global provenance graph for a single
request and the local graph sizes of the constituent functions
are shown in the next columns.

Dependency Preserving Reduction (DPR) system [51], a tar
compressed version of the log, and finally a log that was first
filtered with DPR and then compressed (DPR+tar). DPR
is a state-of-the-art log reduction technique that selectively
deleted log events that are not necessary to correctly identify-
ing an object’s ancestors in the graph. It can be observed that
all configurations grow linearly with the number of requests;
this is because the small and well-formed nature of function
behaviors lead to highly deterministic provenance graphs. As
a result, the log compression and reduction techniques are
highly effective at eliminating the redundancies of typical
system execution. Ultimately, we conclude that ALASTOR be-
haves similarly to other system auditing frameworks – while
it produces a huge amount of data in raw form, these costs can
be effectively mitigated through a combination of log filtering
and data compression techniques. In fact, if we considered a
request load of 30 million per month on Amazon AWS, the
DPR+tar would impose just ~6.57 GB of storage per month.
Following the standard tier pricing ($0.023/GB per month) of
AWS S3 storage [10], this would lead to a cost of just $0.45
over a 3 month period and $5.44 over a 3 year period.
Closely related to disk utilization is the complexity of

ALASTOR’s provenance graphs; if the graphs for individ-
ual function or workflows are too large, they will be difficult
to interpret. Table 1 reports on graph complexity for three
end-to-end workflow invocations in Hello,Retail!: a benign



invocation of product-purchase, and the two attack scenarios
described in Section 8. It can be observed that the Attack1
scenario, which abuses warm container reuse to link multi-
ple workflow invocations together, results in a large graph.
Regardless, all scenarios produce succinct graph representa-
tions that are orders of magnitude smaller than typical whole-
system provenance graphs (e.g., [25]). We attribute this to the
ephemeral and event-driven nature of serverless computing;
because execution is short-lived and well-defined, the typical
problems of graph complexity and dependency explosion [62]
do not arise for ALASTOR.
Total Cost of Operation: Based on these results, we can
calculate the total cost of operating ALASTOR on an Amazon
Lambda application based on published cost models [11]. To
demonstrate, we consider "product-purchase-get-price" and
"sentiment-analysis," the functions that incurred the high-
est response overheads. To mirror a request load similar
to an example quoted by Amazon, we choose a constant
load of 10 rps, which translates to 25.92 million requests
per month. Amazon costs are based on monthly request
charges and monthly compute charges. Billable requests
are charged $0.2 per million and computed as (25920000�
1000000), resulting in a fee of $4.98 for either function re-
gardless of whether ALASTOR is active. Compute charges,
measured in GigaByte-Seconds (GB-S), are calculated us-
ing the formula (num_requests ⇤ exec_time_per_request ⇤
memory_tier/1024� 400000), where Amazon exampts the
first 400k GB-S from fees and then charges $0.00001667 per
GB-S. The execution time for get-price is 0.0081s / 0.0115s
with/without ALASTOR, while the time for sentiment-analysis
is 1.228s / 2.454s. Both functions fit in the lowest memory tier
(mem_tier) of 128 MB. Because the get-price function does
not exceed 400k GB-S, the total compute charges are $0 with
or without ALASTOR. For sentiment-analysis, the compute
charges exceed 400k and roughly double when ALASTOR
is deployed, jumping from $66.21 to $130.85.7 From these
results, we can conclude that in the typical case the hosting
cost of ALASTOR will be proportional to the overhead ALAS-
TOR imposes on execution time. Costs double for sentiment-
analysis where observed overheads were 99.8%, whereas for
Hello,Retail! costs will increase roughly by 13.74%.

8 Security Analysis

We now demonstrate the security benefits of ALASTOR as
compared to commercially-available serverless tools.

8.1 Defending Hello,Retail!

We begin by considering attacks against Hello,Retail! us-
ing the setup described in Section 7. We also configure
Hello,Retail! to make use of Epsagon [13], a commercial

7We confirmed these results with the Lambda Pricing Calculator [12].
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Figure 9: Epsagon provides the above visualization of the ma-
licious workflow trace in Hello,Retail!. Rectangles represent
function invocations and edges mark invocation requests with
response latencies. The visualization is identical regardless
of whether the attack behavior is present.

serverless monitoring tool. Epsagon monitors a serverless
application and generates traces in the form of a graph that
encodes function invocations in each end-to-end workflow
execution within the application. Unfortunately, we were un-
able to run Epsagon on OpenFaaS, so we ported our modi-
fied version of Hello,Retail! back to AWS Lambda and repli-
cated the attack scenarios on both setups. We compare the
insights provided by Epsagon traces as compared to ALAS-
TOR’s provenance graph in order to answer the following
research questions: does the output of each system indicate
that the application has deviated from its normal behavior?
(RQ1); does the output of each system provide an explana-
tion of the attacker’s actions within the application? (RQ2),
and can the output of each system be used to diagnose the
serverless-specific attack techniques? (RQ3).

8.1.1 Data Exfiltration Attack

We first consider the the attack scenario depicted in Figure 1.
Here, an attacker seeks to abuse the commonplace miscon-
figuration of cloud databases [94] to retrieve customer credit
card data, which is stored in the Credit Card Registry (D4).
In this case study, functions f9 and f12 were modified with
a backdoor that simulates a remote code execution vulner-
ability enabling the attacker to download attack tools from
an attacker controlled server. The backdoor in f9 is triggered
by supplying a “malicious” key in the request body. This
key is passed to f12 to trigger the phases of the attack. If the
key-value pair is not present in the request body, handling
of the request proceeds as normal. While this attack trigger
is synthetic, it is identical to an actual command injection
vulnerability from the perspective of the tracing mechanisms.

In the first phase of the attack, the attacker accesses the
publicly accessible Purchase Product function f9 (Fig. 1, 1 )
and then pivots to the Authorize Credit Card function f12 ( 2 ),
where they download the attack scripts from an attacker con-
trolled server ( 3 ). Once the download completes, the attacker
initiates phase two in a follow-up request, once again pivot-
ing to f12 through f9, but in this phase the attacker exploits
container reuse to execute the attack scripts downloaded in
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Figure 10: Global provenance graph for product-purchase attack workflow generated by ALASTOR. Some metadata is suppressed
from the graph for simplicity.

the previous phase ( 4 ). Through executing the previously
downloaded attack scripts, the attacker retrieves a data dump
of D4 and then sends the sensitive information back to f9 in
an HTTP response. Finally, following the normal workflow,
f9 forwards the response to f13 which in turn sends it back to
the attacker or may publish the sensitive information to public
domain ( 5 ). Note that this attack scenario leverages the two
key serverless-specific attack strategies, exploiting container
reuse and exfiltration through function workflows.

Attack Investigation with Epsason: Epsagon creates one
graph for each request made to the publicly accessible func-
tion product-purchase ( f9) as shown in Figure 9. Unfortu-
nately, the structure is identical regardless of whether a mali-
cious or legitimate request is issued. However, Epsagon also
records additional metadata for each function request and
execution that are not present in the trace visualization. In
order to provide a fairer comparison between the two tools,
we attempt to provide an integrated visualization of all of the
relevant trace information captured by Epsagon. Figure 11
demonstrates Epsagon’s view of a serverless application fol-

lowing 3 requests: one benign and two malicious requests that
constitute the attack. We omit additional irrelevant metadata
(headers and body) in order to reduce clutter.

Inspecting Figure 11, it can be seen that Epsagon provides
relevant metadata about function usage including environ-
ment runtime details, whether the container started executing
in cold or warm state, memory utilization, and the duration
of the function execution. Using this information, we can
observe an unusually large execution time (about two orders
of magnitude higher than the benign scenario) at step 14 in
Figure 11 due to the ongoing retrieval of the entire contents
of D4. This marks a deviation from normal behavior, thereby
satisfying RQ1, but it is a weak threat indicator because the
reason for this anomaly is not clear. Without additional sup-
porting evidence, the attack appears to be a performance bug
as opposed to a sophisticated intrusion attempt. With regards
to RQ2, although Epsagon records a variety of function meta-
data, it does not record connections to additional application
components including the credit-card database (D4), nor does
it log the connection to the attacker controlled remote server.
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Figure 11: We consolidate all attack traces and additional metadata captured by Epsagon in this diagram. For the purpose of clear
understanding of the flow, we used green color for normal flow path components and red for the attack path components.

Thus, Epsagon is unable to reconstruct the complete attack
path. Finally, in consideration of RQ3, Epsagon does track
one relevant attribute, cold_start, which indicates container
reuse in steps 2 , 4 , 6 , 8 , 10 , 12 , 14 and 16 . However, con-
tainer reuse alone is not an indicator of compromise; it is
in fact a common occurrence in any application. Epsagon is
unable to detect data sharing between repeated uses of the
same function instance, which is more suspicious. Therefore,
Epsagon traces do not enable serverless attack detection.
Attack Investigation with ALASTOR: The global prove-
nance graph generated by ALASTOR is shown in Figure 10.
To simplify the provenance graph, we omit some metadata
(e.g., timestamps, duration of operations, request and response
headers and body) from the graph and use event sequence
numbers to show the events chronologically. Furthermore, we
only show the events related to the attack requests ( 1 and
10 ). Red dotted lines and red colored components are used
where attack path deviates from normal execution ( RQ1).

The attacker makes their first request ( 1 ) to product-
purchase through the OpenFaaS gateway and this request
is accepted within the function instance ( 2 ). After pro-
cessing the incoming request, product-purchase invokes
product-purchase-get-price through the gateway ( 3 - 4 ). This
function’s responsibility is to retrieve the price of a prod-
uct from the Product Database (i.e., 10.107.30.82 : 3306).
Next, product-purchase makes another request to product-
purchase-authorize-cc ( 5 ) to authorize the credit card trans-
action. However, this function has a backdoor embedded
(i.e.,/home/app/malicious.js) which is triggered by the
“malicious” key in the request body ( 6 ). Alongside the normal
operations of the function, this backdoor vulnerability also
opens a connection to the attacker controlled server ( 7 ) and
downloads a malicious script sqldump.sh ( 8 ). In the next

step, product-purchase invokes product-purchase-publish to
publish the status of the transaction in public domain ( 9 ) and
also returns this in a response message to the attacker.
Now the attacker begins the next phase of the attack by

making another request to product-purchase ( 10 - 11 ) and af-
ter retracing the steps in first phase ( 12 - 14 ), we arrive to the
same product-purchase-authorize-cc instance. Since the at-
tacker makes the two attack requests in quick succession, the
warm container reuse policy in serverless platforms ensures
that the second request is scheduled to the same container
and the downloaded attack tools (i.e.,sqldump.sh) are avail-
able for use to the backdoor process. Next, the permissions of
the attack script is modified ( 15 ) and the script is run ( 16 ) to
fork a new mysqldump process ( 17 ). This process connects to
the Creditcard Database ( 18 ) and retrieves a database dump.
The attacker may continue sending multiple spurious requests
to the gateway to keep the container warm and to allow the
mysqldump process finish the data retrieval. The attacker can
exfiltrate the data either by sending it back through a response
message or by publishing it to a public domain using product-
purchase-publish ( 19 ). As demonstrated in Figure 10, ALAS-
TOR sheds light onto the specific actions of the attacker in
this intrusion (RQ2). It also diagnoses the serverless-specific
techniques (RQ3) of cross-invocation dependencies (sqldump
written in 5 , executed in 14 ) and exfiltration over legitimate
flows (data theft at 18 is routed to the public domain via
request to product-purchase-publish at 19 ).

8.1.2 Business Logic Manipulation Detection

We briefly discuss an additional attack scenario for
Hello,Retail! entailing business logic manipulation. When
applications are developed in serverless architectures, an ap-
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Figure 12: Global provenance graph for a business logic manipulation attack workflow.

plication’s business logic is broken across many single pur-
pose functions that interact with each other to accomplish
a task. As a result, the order in which these functions exe-
cute is paramount to the correct execution of a workflow, and
changes in the flow-order can lead to severe consequences,
such as broken authentication. We implemented this sce-
nario in Hello,Retail! where the workflow-path is redirected
based on a malicious field embedded in the incoming request.
This synthetic vulnerability bypasses the product-purchase-
authorize-cc function in the product-purchase workflow to
successfully make an unauthorized purchase. The resulting
provenance graph captured by ALASTOR can be found in Fig-
ure 12. In this graph, it can be seen clearly that the attacker
was able to manipulate the function workflow to bypass the
product-purchase-authorize-cc function, underscoring ALAS-
TOR’s general usefulness in threat investigation. Because the
comparative benefits between ALASTOR and Epsagon do not
change, we omit the results for Epsagon.

8.2 Generality of ALASTOR Auditing

We consider two additional applications, falco and
sent-analysis, discussed in detail in Section 7. falco’s
pod-deletion workflow consists of two functions –
dispatch ingest alerts from a threat detection engine,
and delete-pod-fn deletes a malicious pod for critical
alerts. One possible scenario entails an attacker employing
logic manipulation to bypass dispatch and launch a DoS
attack with delete-pod-fn. However, as we show for
Hello,Retail!, ALASTOR could effectively trace this attack.
For sent-analysis, one possible scenario is for an attacker
to attempt to exfiltrate sensitive training data from the func-
tion, which would require system calls and network requests
that are also visible to ALASTOR. As a final measure of the
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Figure 13: System call distributions (by category) of functions
traced with ALASTOR.

generality of our approach, Figure 13 reports on the observed
system call distribution of the benign behaviors of our
workload applications from our experiments. The ubiquity
of syscall-based data processing and API-based network
communication assures that ALASTOR is well-positioned to
explain any suspicious activity.

8.3 Intrusion Detection with ALASTOR

Like most log data, ALASTOR can also facilitate security
analytics. To demonstrate, we trained an implementation8
of Du et al.’s DeepLog system [35], a deep learning based
anomaly detection system, on ALASTOR traces. We chose
DeepLog because it operates on unstructured, free-text log
entries, providing an easy way to measure the discriminatory
capabilities of ALASTOR’s telemetry data. We use an HTTP

8https://github.com/nailo2c/deeplog
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workload generator ‘hey’9 to generate benign and attack traces
of Hello,Retail! activity from the product purchase workflow
on OpenFaaS. The training dataset consisted of benign re-
quests issued at 10 requests per second for 180 seconds. Test
data was generated by issuing benign or malicious requests at
10 requests per second for 30 seconds. The malicious requests
represent the Data Exfiltration attack scenario discussed in
Section 8.1.1 (Figure 10). We use the Spell [34] log parser to
preprocess the collected logs following the steps described
in [35]. We then split the preprocessed logs into sequences
of 200 millisecond duration. Our test data contained 150 at-
tack sequences and 117 benign sequences. Default parameters
were used for the model, e.g., we trained for 35 epochs.

Our results are summarized in Figure 14. False negative
sequences may result from few events in the complete at-
tack timeline that is in common with benign traffic. Similarly,
false positives may be a result of infrequent benign activity
related to log transmission or container health monitoring and
maintenance by the orchestration platform. Encouragingly,
we observe an F1 score of 0.949, providing promising pre-
liminary evidence that ALASTOR telemetry would also prove
useful as a general purpose information source for serverless
intrusion detection. While we were not able to extract suf-
ficient log output from Epsagon to compare these results, it
is very likely that Epsagon would struggle to detect the at-
tack due to miniscule amount of attack evidence (i.e., longer
execution time) contained in the coarse-grained trace. In con-
trast, ALASTOR traces contain fine-grained event sequences
and document significant structural changes in application
behavior during the attack.

9 Related work

Serverless Auditing and Tracing: Limited visibility into
a serverless application is a recurring problem in modern
cloud computing, leading to various tools ranging from per-
formance monitoring and analysis solutions [3, 6, 31,69,70]
to tracing and observability tools [13, 84, 85, 90]. However,
these solutions collect metrics and perform tracing only at
a macro level, and are insufficient to provide a fine-grained
complete picture of the lower level system events within a
serverless application, essential for attack investigation. Ex-

9https://github.com/rakyll/hey

isting distributed system tracing tools, such as Dtrace [27],
Dapper [93], X-trace [39], MagPie [24], Fay [37], and Pivot-
Tracing [66] are not designed to account for aspects of the
serverless architecture and require instrumentation of the ap-
plication. Conversely, lprof [103] and Stitch [102] are able to
profile distributed applications without instrumentation; how-
ever, lprof requires static binary analysis, and Stitch requires
structured application log messages with object identifiers for
tracing. Moreover, these tools only capture correlations rather
than causality and thus are not appropriate for serverless foren-
sics. Hong et al. [50] proposed a conceptual design of a threat
intelligence system for serverless frameworks. However, it is
based on only application level logs and is unsuitable for root
cause analysis in forensics investigation. To our knowledge,
ALASTOR is the first causality analysis framework to satisfy
the operational requirements of serverless platforms.

Serverless Security: Prior work has demonstrated unique
attack opportunities in serverless platforms, including event
injection attacks [29, 56, 78] and data exfiltration [58, 61].
Further, serverless access control misconfigurations enable
attackers to steal sensitive information [41, 74] and launch
denial-of-service (or denial-of-wallet) attacks by exhausting
allocated resource limits and increasing bills [8, 101]. Baldini
et al. [23] concluded that the lack of function isolation is a
major problem in popular cloud platforms. Wang et al. [98]
performed a range of studies on metrics like scalability, cold-
start latency, and instance lifetime and they reported arbitrary
code execution bugs in Azure Functions making the platform
vulnerable to side-channel attacks.

In face of these attacks, various tools have been proposed
to improve function security before deployment and dur-
ing runtime [21, 82, 83, 86–89, 91]. Prior work has also pro-
posed improved isolation using Intel SGX to build secure
containers [22] and secure cloud functions [18, 26, 79]. Be-
yond isolation, prior work has considered flow control (e.g.,
Trapeze [19], Valve [33], SecLambda [55]) and other access
control models (e.g., Will.IAM [81]) to thwart serverless at-
tacks by denying suspicious access requests according to strict
flow and access control policies. Orchestration frameworks
have also been enhanced [28] with security policy support
for serverless applications. These security tools are proactive
precautions, while ALASTOR strengthens security posture
through improved threat response. Formal modeling of server-
less platforms [42,54], and semi-automated troubleshooting
based on log data [67] may also improve serverless security.

System Auditing in Cloud Environments: It is especially
interesting to compare our system to Chen et al.’s CLAR-
ION [30], a technique for precise auditing of container clus-
ters. While both systems can be used to audit serverless func-
tions running in containerized environments, the challenges
addressed by these systems are quite different. CLARION is
a host-based agent that provides a solution for correctly au-
diting multiple namespaced environments without ambiguity,



while ALASTOR is a container-based agent and thus does not
need to disambiguate namespaces. Although is could be used
to audit serverless applications, CLARION does not produce
separate graphs for multiple requests to the same function
instance and also would struggle to trace workflows across
multiple container servers in the cloud. In effect, ALASTOR
leverages the unique constraints of the FaaS environment –
ephemeral computation, remote procedure calls, and (mostly)
isolated container environments – to produce an optimized
solution to serverless auditing.

10 Discussion & Conclusion

In this work, we have demonstrated methods of layered
provenance-based auditing of serverless infrastructure that
enable precision tracing of attacks on serverless applications.
We now conclude by considering potential limitations of
ALASTOR as well as opportunities for future work.
Time Synchronization of Global Graph: Time synchro-
nization among different functions is resolved by preserving
the ordering of rest API calls. While miniscule time drift
may be possible between two system calls recorded in dif-
ferent function instances, preserving the happens-before rela-
tionships between API requests ensures that the causal links
between functions’ system graphs are correct.
Expensive I/O bound applications: Serverless functions
normally work on small pieces of data with execution times
on the order of milliseconds. If an application included long-
running I/O-intensive functions, it may be necessary to modify
ALASTOR to reduce the granularity of I/O logging.
Applicability of ALASTOR to other Serverless Platforms:

Systems like Cloudflare, Fastly, and Faasm that provide per-
request isolation can benefit from ALASTOR as a general
purpose auditing tool. Faasm [92] enables memory isolation
of executed functions using WebAssembly, while permitting
memory sharing among functions to enable efficient data
processing. In Faasm, ALASTOR could be used to investigate
possible disclosures of sensitive data (e.g., medical data). It
may also be possible to extend ALASTOR to audit access to
memory regions through introspection of memory system
calls. Moreover, ALASTOR logs can be ingested by other
monitoring tools for threat detection and other analyses.
Threat Model: ALASTOR’s design assumes that an attacker
can compromise a function instance but has limited adminis-
trative access to the victim’s account. This assumption is rea-
sonable if application RBAC policies are properly configured.
However, an attacker that fully compromises the container
may be able to prevent future logs from reaching the global
provenance builder service, or could erase log entries. One
possible response to such attacks would be to extend ALAS-
TOR to generate cryptographic log commitments to detect
log integrity violations (e.g., [75]) and increase the frequency
of log transmission to bound the amount of unprotected log

accessible to the attacker.

Acknowledgements

This work was supported in part by NSF CNS 17-50024, NSF
CNS 19-55228 and NSF CNS 20-55127. The views expressed
are those of the authors only.

References

[1] Linux audit daemon. https://linux.die.net/man/8/auditd.

[2] AWS Serverless Application Repository. https://aws.amazon.
com/serverless/serverlessrepo/, 2019.

[3] AWS X-Ray: Analyze and debug production, distributed applications.
https://aws.amazon.com/xray/, 2019.

[4] CloudWatch Logs Limits. https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.
html, 2019.

[5] CVE-2019-5736: runc container breakout. https://www.openwall.
com/lists/oss-security/2019/02/11/2, 2019.

[6] Google Cloud: Viewing Monitored Metrics. https://cloud.
google.com/functions/docs/monitoring/metrics, 2019.

[7] MITRE ATT&CK. https://attack.mitre.org, 2019.

[8] New Attack Vector - Serverless Crypto Mining. https:
//www.puresec.io/blog/new-attack-vector-serverless-
crypto-mining, 2019.

[9] ReDoS Vulnerability in "AWS-Lambda-Multipart-Parser" Node Pack-
age. https://www.puresec.io/blog/redos-vulnerability-
in-aws-lambda-multipart-parser-node-package, 2019.

[10] AWS s3 pricing. https://aws.amazon.com/s3/pricing/, 2021.

[11] Aws lambda pricing. https://aws.amazon.com/lambda/
pricing/, 2021.

[12] Aws lambda pricing calculator. https://s3.amazonaws.com/
lambda-tools/pricing-calculator.html, 2021.

[13] Epsagon: Monitoring and troubleshooting for serverless applications.
https://epsagon.com/, 2021.

[14] Kubernetes response engine powered by openfaas. https:
//github.com/developer-guy/falco-the-kubernetes-
response-engine-using-openfaas-functions, 2021.

[15] Sentiment analysis. https://github.com/openfaas/faas/tree/
master/sample-functions/SentimentAnalysis, 2021.

[16] G. Adzic and R. Chatley. Serverless computing: Economic and archi-
tectural impact. In the 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2017.

[17] I. E. Akkus, R. Chen, I. Rimac,M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt. SAND: Towards high-performance serverless computing.
In USENIX Annual Technical Conference (ATC), 2018.

[18] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner. S-faas:
Trustworthy and accountable function-as-a-service using intel sgx. In
ACM SIGSAC Conference on Cloud Computing Security Workshop
(CCSW), 2019.

[19] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk,M. Sagiv, T. Schmitz,
and K. Winstein. Secure serverless computing using dynamic infor-
mation flow control. In 2018 ACM SIGPLAN Conference on Prog.
Lang. (OOPSLA), 2018.

[20] Amazon AWS Lambda. AWS Lambda Customer Case Stud-
ies. https://aws.amazon.com/lambda/resources/customer-
case-studies/, 2020.



[21] Aqua. Aqua Cloud Native Security Platform. https:
//www.aquasec.com/products/aqua-container-security-
platform/, 2019.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure
linux containers with intel SGX. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[23] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter.
Serverless Computing: Current Trends and Open Problems. Springer
Singapore. 2017.

[24] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2004.

[25] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy Whole-
System Provenance for the Linux Kernel. In USENIX Security Sym-
posium, 2015.

[26] S. Brenner and R. Kapitza. Trust more, serverless. In ACM Interna-
tional Conference on Systems and Storage (SYSTOR), 2019.

[27] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumen-
tation of production systems. In USENIX Annual Technical Confer-
ence (ATC), 2004.
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