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ABSTRACT

Deep learning work on musical instrument recognition
has generally focused on instrument classes for which we
have abundant data. In this work, we exploit hierarchical
relationships between instruments in a few-shot learning
setup to enable classification of a wider set of musical in-
struments, given a few examples at inference. We apply
a hierarchical loss function to the training of prototypical
networks, combined with a method to aggregate prototypes
hierarchically, mirroring the structure of a predefined mu-
sical instrument hierarchy. These extensions require no
changes to the network architecture and new levels can be
easily added or removed. Compared to a non-hierarchical
few-shot baseline, our method leads to a significant in-
crease in classification accuracy and significant decrease in
mistake severity on instrument classes unseen in training.

1. INTRODUCTION

Musical instrument recognition is a machine learning task
that aims to label audio recordings of musical instruments,
typically at a fine temporal granularity (second by sec-
ond) [1–3]. Musical instrument recognition can be viewed
as a subtask of Sound Event Detection (SED), which con-
sists of identifying and locating any type of sound event
(e.g., car horn, dog bark) in an audio recording [4–6].

Labelling audio tracks is extremely important for or-
ganizing the dozens of tracks in a typical Digital Audio
Workstation (DAW) recording session [7,8], but manual la-
belling is a tedious process. Automated musical instrument
recognition could enable automated track labeling. Au-
tomated second-by-second labeling could go further, en-
abling navigation through recording projects by traversing
musical instrument labels, rather than waveform visualiza-
tions. This would be especially helpful for audio engineers
with low or no vision, as existing interfaces leave acces-
sibility as an afterthought [9] and navigating by visually
examining waveforms is not a viable option for them [10].

A barrier to incorporating instrument recognition into
DAWs is that most existing deep learning techniques must
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Figure 1. Overview of our method. Prototypes from a set
of embedded support examples at a fine-grained level (bot-
tom left) are aggregated to make a set of metaprototypes
at a coarser-grained level (top left). In this way, we learn
a hierarchical set prototypes that corresponds to a musical
instrument hierarchy (right).

be trained on instruments that have abundant labeled train-
ing data. The datasets that support these systems only fo-
cus on the limited set of instrument classes that have suffi-
cient data [11–17]. However, the vast diversity of musical
instrument sounds necessitates supporting a broader set of
instrument classes [18]. While expanding current datasets
with more diverse coverage can ameliorate this issue, col-
lecting human annotations for a large number of audio files
is a tedious, time consuming task [19, 20], and there will
always be unanticipated sound categories that an end-user
would like to automatically label.

Therefore, musical instrument recognition systems
should be able to dynamically expand their vocabularies
after deployment, to conform to end-user needs. This re-
quires an approach that lets a system learn a new sound
category given only a few examples that can be provided
by an end user, a la few-shot learning.

Using a hierarchical system, like the widely-used
Hornbostel-Sachs hierarchy [21], to organize and classify
musical instruments has broad precedent in many human
cultures [22]. We can take advantage of a musical in-
strument hierarchy, like the widely-used Hornbostel-Sachs
hierarchy [21], to improve few-shot learning. A system
could learn a feature space meaningful for unseen classes
that share hierarchical ancestry with the classes seen dur-
ing training. For example, the Chinese zhongruan is a
plucked string instrument that shares ancestry with other
chordophones in the Hornbostel-Sachs hierarchy (like the
guitar), which might be more common in datasets of West-
ern instruments. A model could leverage the hierarchi-
cal relationship between an instrument it has never been
trained on (e.g. the zhongruan) and more common instru-
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ments seen during training (e.g. the guitar) to produce a
meaningful representation of the new instrument with only
a few support examples.

In this work, we propose a simple extension to pro-
totypical networks [23] that imposes a hierarchical struc-
ture on the learned embedding space (Figure 1). We first
create prototypes from an initial set of embedded support
examples at the most granular level. We then aggregate
these initial prototypes into new prototypes correspond-
ing to a coarser hierarchical level, in a manner reminis-
cent of agglomerative clustering [24]. Repeating this pro-
cess lets our system represent classes at many granular-
ities of a predefined instrument hierarchy. We also pro-
pose a weighted, hierarchical extension of cross-entropy
loss to ensure the network learns the hierarchy. Compared
to a non-hierarchical few-shot baseline [25], our method
shows a significant increase in classification accuracy and
significant decrease in mistake severity on unseen instru-
ment classes.

2. RELATED WORK

Musical instrument recognition can be performed in
single-source contexts [26–29], where only a single sound
source may be active at any given time, as well as in multi-
source contexts [13–15, 30, 31], where multiple sound
sources may be active at the same time. We consider the
single-source case, as the vast majority of audio in a studio
music production workflow is single-source.

Hierarchical structures have shown to be effective for
many machine learning tasks, such as text classification
[32] and image classification [33, 34]. In fact, Bertinetto
et al. [35] propose a hierarchical image classification ap-
proach that uses a similar exponentially weighed hierarchi-
cal loss function to the one proposed here, although they do
not focus on a few-shot setting, as we do, and they favor
learning broader classes, whereas we are also interested in
finer classes. Hierarchical structure was explored for mu-
sical instrument recognition by using fixed signal process-
ing feature extraction techniques [29,36,37]. Here, we use
deep learning methods to flexibly learn a feature space that
mirrors musical instrument hierarchies.

Recent work has studied how hierarchical structures
can be incorporated into neural network models for dif-
ferent tasks. In the automatic speech recognition (ASR)
domain, CTC-based hierarchical ASR models [38–40] em-
ploy hierarchical multitask learning techniques, particu-
larly by using intermediate representations output by the
model to perform intermediate predictions in a coarse-to-
fine scheme. Manilow et al. [41] have shown that hierar-
chical priors can have significant benefits for performing
source separation of musical mixtures. None of these sys-
tems, however, were designed for few-shot learning.

Previous deep learning systems have been proposed for
multilevel audio classification [42–44]. However, none of
these systems work in a few-shot setting and they require
either specialized network architectures or complex data
pipelines to learn a hierarchy. Our approach is a simple
extension to incorporate hierarchy into an established few-
shot learning paradigm.

Recent work in audio tagging and sound event detec-
tion tasks has explored few-shot learning in the audio do-
main [19, 25, 45–47], though none of this work assumed
any hierarchical structure.

Here, we propose a method for hierarchical representa-
tion learning in a few-shot setting, leveraging the increased
flexibility of both hierarchy and few-shot methods for mu-
sical instrument recognition.

3. BACKGROUND

3.1 Few-shot Learning

In a few-shot classification setting, we consider a target
class k ∈ K for a set of target classes, K, of size |K|. Let
xs be a single support example drawn from a set of exam-
ples S , called the support set. Assume N labeled support
examples (i.e., shots) per class k, totalling N ×|K| labeled
examples. We define Sk as the subset of S containing the
examples of class k.

We are provided an unlabeled query set Q of M unla-
beled examples. The goal of the task is to label each query
example xq ∈ Q with a target class k ∈ K. A neural net-
work model fθ projects both the support and query sets into
a discriminative embedding space. The query is assigned
to the class of the support set it is closest to, according to
distance metric d.

3.2 Prototypical Networks

Prototypical networks [23] compute an embedding vector
for each instance in Sk. The prototype, ck, for class k is
the mean vector of all the support embeddings belonging
to class k:

ck =
1

|Sk|
∑
xs∈Sk

fθ(xs). (1)

Using a distance function d, we can produce a probabil-
ity distribution over the set of classes K for a given query
xq by applying a softmax over the negated distances from
the query to each class prototype:

p(ŷq = k|xq) =
exp (−d(fθ(xq), ck))∑
c′k

exp (−d(fθ(xq), c′k))
. (2)

We use the Euclidean distance as d in this work.

4. METHOD

Musicologists have long categorized musical instruments
into hierarchical taxonomies, such as the Hornbostel-Sachs
system [21], which classifies musical instruments into a
hierarchy corresponding to their sound producing mech-
anisms. We can improve upon existing few-shot models
by leveraging the hierarchical structure intrinsic to musical
instrument taxonomies. To do this, we extend prototypical
networks by training on a multitask scenario composed of
multiple classification tasks, one for each level of a class
tree, where the prototype for a parent node in the class tree
is defined as the mean of the prototypes for each of the
parent node’s children.



We impose hierarchical structure on our few-shot task
by constructing a tree, T , with height H , starting from a
set of leaf nodes. We define the leaf nodes as the same
set of classes, K, that we defined for our standard few-
shot setup in Sec. 3.1. We then define the parents of the
leaf nodes by aggregating classes, k ∈ K. For musi-
cal instrument recognition, we aggregate classes accord-
ing to a predefined instrument hierarchy (e.g., Hornbostel-
Sachs). We iteratively aggregate child classes up to the
max height of the tree H . We index the tree as Ti,h, where
i ∈ Ki indexes over the set of sibling classes at level h,
for h = 0, . . . H , with level 0 containing the most specific
classes and level H containing the broadest. In our nota-
tionH = 0 describes a tree with no hierarchy and is equiv-
alent the non-hierarchical prototypical network defined in
Sec. 3.2. H = 1 has two levels, and so on.

4.1 Hierarchical Prototypical Networks

We define our proposed hierarchical prototypical network
by extending typical prototypical networks [23] to a hierar-
chical multitask learning scenario, where we wish to label
each query example, xq ∈ Q, at multiple levels of our class
tree, T . Here, labeling at each level is a separate task.

Like a normal prototypical network, we use a network
fθ to produce embeddings for every example in the support
set. The mean of these embedded support examples creates
an initial set of prototypes (Eq. 1). We deviate from the
typical setup by considering this initial set of prototypes as
the lowest level of our tree, T , and aggregating these initial
prototypes again to make another set of prototypes repre-
senting the next level. The prototypes at this higher level
are, thus, prototypes of prototypes, or metaprototypes, and
define a hierarchy according to the structure of our tree,
T . We continue to iteratively aggregate prototypes in this
fashion for all levels of our tree. The prototype for each
parent class at level h+1 is notated cTi,h+1

and is the mean
of the members of its support set STi,h

. For levels h > 0,
each example x̂s, is itself a prototype:

cTi,h+1
=

1

|STi,h
|

∑
x̂s∈STi,h

fθ(x̂s), (3)

This process is shown in Figure 1.
Given a query example xq , we use the network to cre-

ate an embedding fθ(xq) and measure its distance to each
class prototype or metaprototype cTi,h

at a given level h.
Given these distances, we output H probability distribu-
tions, one for each level in our class tree:

p(Ti,h|xq) =
exp (−d(fθ(xq), cTi,h

))∑
c′Ti,h

exp (−d(fθ(xq), c′Ti,h
))
. (4)

We note that Eqs. 1 and 2 are special cases of the pro-
posed Eqs. 3 and 4, evaluated at h = 0. Our generalization
allows multi-task few-shot classification at multiple levels
of a hierarchical class tree.

Our proposed method does not require any specific net-
work architecture. Instead, it provides a hierarchical la-

bel structure for support examples xs to be aggregated to-
gether, forming fine-to-coarse representations (i.e., cTi,h

)
that we can leverage and optimize with. This exposes the
potential for a model to be trained with multiple concurrent
hierarchies, a direction for future work.

4.2 Multi-Task Hierarchical Loss

We now set up a learning objective, where we minimize
the cross-entropy loss between the predicted distribution
and the ground truth class for each level in the class tree.
The intuition behind our approach is that we can use a hier-
archically structured objective to encourage our model to
produce an embedding space with discriminative proper-
ties at both coarse and fine granularities, allowing some of
these coarse features to generalize beyond the training set
of fine grained leaf classes to their unseen siblings in the
class tree. We use an exponentially decaying sum of loss
terms for each level in the hierarchy [35]:

Lhierarchical =
H∑
h=0

e−α·hL(h)
CE , (5)

where L(h)
CE denotes the cross-entropy loss for the clas-

sification task at height h, and α is a hyperparameter that
determines the decay of each loss term w.r.t height. Setting
α > 0 places more more weight on finer-grained tasks,
α < 0 places more weight on coarser-grained tasks, and
α = 0 weighs all tasks equally. We note that H = 0 re-
duces to the non-hierarchical (baseline) definition of the
problem, where we only optimize for the fine-grained task.

5. EXPERIMENTAL DESIGN

We evaluated our proposed hierarchical prototypical ap-
proach using a non-hierarchical prototypical method [25]
as a baseline. We evaluated all models on a few-shot musi-
cal instrument recognition task, measuring standard classi-
fication metrics (F1) as well as mistake severity. We con-
ducted ablations for class tree height, choice of class hier-
archy, and proposed loss function.

5.1 Datasets

For all experiments, we trained and evaluated using iso-
lated tracks from the MedleyDB [48] and MedleyDB 2.0
[49] datasets. MedleyDB contains multi-track recordings
of musical instruments and vocals. We excluded record-
ings that do not have fine-grained instrument labels (e.g.,
“brass” was excluded because the audio could be of trum-
pets, trombones, etc.). Additionally, we considered sec-
tions of a single instrument to be the same class as the in-
strument itself (e.g. "violin section" and "violin" both be-
long to the class "violin"). Altogether, the dataset consists
of 63 different instruments, with 790 tracks in total.

For training and evaluation, we removed the silent re-
gions of each audio track. We then split the remainder of
the track into 1 second segments with a hop size of 0.5
seconds, where each 1 second segment is an input example
to the model. All audio was downsampled to 16kHz. For



each example, we compute a 128-bin log-Mel spectrogram
with a 32ms window and an 8ms hop. After preprocess-
ing, our training and evaluation datasets contained 539k
and 56k 1-second examples, respectively. We performed
silence removal using pysox [50].

5.2 Network Architecture

The backbone network architecture used in all experiments
was based on the prototypical network described in Wang
et al. [47]. It uses a log-Mel spectrogram as input, and con-
sists of four CNN blocks, where each convolutional filter
has a kernel size of 3 × 3, followed by a batch normaliza-
tion layer, a ReLU activation, and a 2×2 maxpooling layer.
After the last convolutional block, we applied maxpooling
over the time dimension, to obtain a 1024-dimensional em-
bedding. Finally, we added a linear projection layer that
reduces the 1024-dimensional embedding to 128 dimen-
sions.

5.3 Hornbostel-Sachs Class Tree

We used a musical instrument hierarchy inspired by the
Hornbostel-Sachs [21] taxonomy, 1 (maximum height of
4) which is organized by the sound production mechanisms
of each instrument. Since similar sound production mech-
anisms can lead to similar sounds, we believe this is a nat-
ural organization that our model can leverage to learn dis-
criminative features at different levels of a class hierarchy.

5.4 Episodic Training and Evaluation

We have a musical instrument hierarchy tree, where indi-
vidual instrument classes are leaf nodes (e.g. violin, gui-
tar). Nodes at higher levels (h > 0) are instrument fami-
lies, (e.g. bowed strings, plucked strings). Our goal is to
observe classification performance on previously-unseen
leaf classes (e.g. zhongruan, erhu). Therefore, we created
a data split of 70% train, 30% evaluation, with no over-
lap between train and evaluation classes at the leaf instru-
ment level (h = 0). We further added the constraint that
the classes in both testing and evaluation sets be distributed
evenly among the instrument families (h > 0). This avoids
a problem where, for example, the train set consists only
of percussion and the evaluation set consists only of chor-
dophones. All experiments shared a train/evaluation split.

For each experiment, we trained every model in a few-
shot learning scenario using episodic training. Each model
was presented with a unique |K|–way, N–shot learning
task (an episode) with M queries per leaf class at each
training step. We constructed an episode by sampling a
set of |K| instrument classes from the training data. For
each of these |K| classes, we sampled N +M audio ex-
amples. Here, for each class k, N = |Sk| is the number
of "shots" in the support set and M is the size of the query
set.

We trained all models using the same random initializa-
tion for a maximum of 60,000 steps with early stopping
after the evaluation loss stopped improving for 4500 steps,

1 See: https://en.wikipedia.org/wiki/Hornbostel-Sachs

using the Adam optimizer and a learning rate of 0.03. Dur-
ing training, we set |K| = 12, N = 4, and M = 12. We
evaluated each trained model on episodes constructed from
the test data. For each evaluation, we made 100 episodes,
with |K| = 12, M = 120. All hyperparameters were fixed
except those we ablated, as described below.

5.5 Evaluation Metrics

We used the F1-score as our primary classification metric,
reporting the distribution of F1 scores computed for each
episode, evaluated for predictions made at the finest level
of the hierarchy.

Similar to Bertinetto et al. [35], we used the hierar-
chical distance of a mistake as a metric indicative of a
model’s mistake severity. Given a class tree, the hierarchi-
cal distance of mistake is defined as the height of the low-
est common ancestor (LCA) between the prediction node
and ground truth node when the input is misclassified (that
is, when the model makes a mistake).We report the aver-
age hierarchical distance of a mistake over all evaluation
episodes.

For all hierarchical models, we measured mistake sever-
ity with respect to its own hierarchy. For the non-
hierarchical model, we evaluated with respect to our pro-
posed 4-level version of the Hornbostel-Sachs hierarchy,
as we believe that its organization is meaningful.

6. EXPERIMENTS

We now describe specific experiments to measure the ef-
fects of different design choices. We trained and evaluated
all models using the procedure described in Section 5. Our
experiment code is available online 2 .

6.1 Tree Height

To observe the effect of tree height on classification, we
constructed shorter trees from the Hornbostel-Sachs class
tree by removing every leaf node’s parent until the desired
max height of the tree is met. We trained and evaluated five
models using our proposed class tree, shortened to differ-
ent heights H ∈ {0, 1, 2, 3, 4}, where H = 0 is the base-
line, non-hierarchical case inspired by Wang et al. [25].
Each model was trained with α = 1 and evaluated with
N = 8 support examples per class, at inference.

Results are shown in Figure 2. All variations of the pro-
posed model achieved a better classification performance
than the baseline. The best F1 score was seen at H = 1,
with a mean value of .8111 over all evaluation episodes.
Compared to the baseline mean score of .7792, this is a
4% improvement. A Wilcoxon signed-rank test showed
that all of our proposed models achieve a statistically sig-
nificant improvement when compared to the baseline, with
p < 10−7 for all hierarchies. These results show that incor-
porating our method into a prototypical network can lead to
statistically significant improvements in classification per-
formance under few-shot learning conditions.

2 https://github.com/hugofloresgarcia/music-trees



Figure 2. F1 scores for models trained with class trees of
varying height H , evaluated over 100 episodes. Means are
shown as green triangles. Note that H = 0 is our baseline
model (Wang et al. [25]), as it is trained without a class
tree.

Surprisingly, a shallow tree with only the coarsest cat-
egories and the leaf nodes (H = 1) achieved the high-
est increase in performance. We believe this is due to the
small number of classes encountered in a training episode
(in our case, 12). At a given level of the tree, at least 2 of
the classes in the support set need to have a parent node in
common for our method to be able to compute a meaning-
ful metaprototype that can be leveraged by our loss. As a
class tree gets deeper, the number of nodes at a given level
can grow exponentially, meaning that our support set of 12
classes has a lower chance of finding meaningful group-
ings at deeper levels. This indicates that loss terms for
levels closer to the leaf nodes are more likely be identical
to the non-hierarchical loss. Though the loss term for the
coarsest level is still present in these deeper trees, it has
a smaller impact on the gradient of the primary loss func-
tion, as loss terms are weighted to decay exponentially as
the height increases. We believe training with a higher |K|
can help leverage deeper hierarchies better. However, we
leave this for future work.

6.2 Number of Support Examples

We evaluated our best proposed model (H = 1, α = 1)
as well as our baseline model by varying the number of
support examples N provided to the model, where N ∈
{1, 4, 8, 16}. Results are shown in Figure 3 (left). We no-
tice that increases in performance are greater when more
support examples are provided, with the smallest increase
(+2.17% in the mean relative to baseline) occurring when
N = 1. Our model achieved a statistically significant im-
provement on all test cases (p < 10−4 for all N ).

As shown in Figure 3 (right), our model achieved a
lower hierarchical distance of a mistake, on average. A
Wilcoxon signed-rank test indicates that all improvements
are statistically significant (p < .0005). This means that,
when making incorrect predictions, our method was more
likely to make predictions that are closer to the ground
truth in terms of the class hierarchy (i.e., lower mistake
severity). We believe it is fair to assume that mistake sever-
ity from a sound production perspective (as in our class hi-
erarchy) is related to mistake severity in predictions made
by humans. That is, a human is more likely to confuse a
viola for a violin than to confuse a viola for a drum.

Figure 3. Model comparison between the baseline model
and our best proposed model (H = 1), evaluated under
conditions with a different number of shots (support exam-
ples) provided during inference.

6.3 Arbitrary Class Trees

To understand how the choice of hierarchy affects the re-
sults of our model, we evaluated the same prototypical net-
work architecture trained using the Hornbostel-Sachs hier-
archy and also 10 randomly generated class trees. We gen-
erated each tree by performing random pairwise swaps be-
tween leaf nodes in our original class tree, doing so 1000
times for each node. For this experiment, all trees were
trained with (H = 3, α = 1), and evaluated with N = 16.

Results for our evaluation of random class hierarchies
are shown in Figure 5. Our best performing random hi-
erarchy in terms of classification performance ("random-
best") achieves an F1 score comparable to our proposed
hierarchy (p > 0.05) though with a larger spread. Addi-
tionally, "random-best" obtains much worse mistake sever-
ity relative to the hierarchy it was trained on. This indi-
cates that the model was not able to generalize the hier-
archical structure it was trained on to out-of-distribution
classes. On the other hand, our worst performing random
hierarchy, "random-worst", caused a statistically signifi-
cant deterioration in both classification performance and
mistake severity compared to the baseline (p < 0.005).
Even though the random-best model fairs comparably to
Hornbostel-Sachs model, it is impossible to know a pri-
ori whether any random tree will produce good results,
therefore for practical uses (i.e., within a DAW), we find
Hornbostel-Sachs to be a suitable choice.

6.4 Hierarchical Loss Functions

To measure the impact of our proposed multi-task hier-
archical loss, we compared it to a reasonable baseline
"flat" loss. As our baseline approach, we treated hierarchi-
cal classification as a single-task, multilabel classification
problem, where the ground truth is a multi-hot vector, with
1s for the leaf ground truth node and all of its ancestors
in the tree, and 0s otherwise. Furthermore, we minimized
the binary cross entropy between each individual predicted
node and ground truth node. Note that this required us to



Figure 4. Difference in F1-score between our best proposed model (H = 1, α = 1) and the baseline (Wang et al. [25]) on
all instruments in the test set. Both models were evaluated with N = 8.

Figure 5. Comparison between the best and worst per-
forming models trained on random hierarchies. The hier-
archical distance of a mistake is calculated using the hier-
archy the model was trained on. For the baseline (Wang
et al. [25]) , we calculated the hierarchical distance of a
mistake using the Hornbostel-Sachs hierarchy.

use a sigmoid function instead of Eq. 2, which uses a soft-
max function. Additionally, we performed a hyperparam-
eter search to find the best value of the α parameter for
our proposed loss function (Section 6.4) using the search
space α ∈ {−1,−0.5, 0, 0.5, 1}. For this experiment, all
trees were trained withH = 4 and evaluated withN = 16.

Results are shown in Figure 6. We observe that only
the models with α > 0 cause an improvement over Wang
et al. [25]. Moreover, the flat loss causes a severe degra-
dation in classification performance. This may be because
training prototypical networks using a binary, one-vs-all
formulation could yield a much less discriminative embed-
ding space. Wang et al. [25] found a similar result: training
prototypical networks with a binary formulation did not
yield performance improvements.

6.5 Examining All Instrument Classes

In Figure 4, we examine the classification performance
of every instrument in our test set. We compare our best
model (H = 1, α = 1) to the baseline model from Wang
et al. [25], evaluated with N = 8. For clarity, we re-
port the difference in F1 Score between the models. Our
model beats the baseline on 18 of the 24 classes in the test
set. In particular, our model shows a substantial improve-
ment (+16.56%) in F1 Score when classifying zhongruan,
which may be rarely seen in a dataset composed of Western

Figure 6. Evaluating the loss function. We vary α in
our proposed hierarchical loss from negative (emphasize
loss on broader categories) to positive (emphasize loss on
finer categories) and additionally compare to a "flat" binary
cross entropy (BCE) baseline.

music. Figure 4 demonstrates that, overall, our hierarchi-
cal few-shot model is better at identifying a wider range of
instrument classes than the baseline. This is important if
we desire to make systems that are more robust to biases in
the training data and, thus, can classify more a diverse set
of instrument types.

7. CONCLUSION

We presented an approach for incorporating hierarchical
structures in a few-shot learning model for the purpose of
improving classification performance on classes outside of
the training distribution. Our method builds on top of pro-
totypical networks by computing prototypical representa-
tions at fine and coarse granularities, as defined by a class
hierarchy. We showed that our proposed method yields sta-
tistically significant increases in classification performance
and significant decreases mistake severity when evaluated
on a classification task composed of unseen musical instru-
ments. Moreover, we found that the choice of hierarchical
structure is not arbitrary, and using a hierarchy based on
the sound production mechanisms of musical instruments
had the best results. We hope our work enables users with
diverse cultural backgrounds with the ability to classify di-
verse collections of musical instruments. Future directions
include examining new types of hierarchies, learning mul-
tiple hierarchies simultaneously, and the unsupervised dis-
covery of hierarchies from unlabeled data.
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