
1

Efficient Privacy Preserving Edge Intelligent
Computing Framework for Image Classification in

IoT
Omobayode Fagbohungbe, Student Member, IEEE, Sheikh Rufsan Reza, Student Member, IEEE,

Xishuang Dong, Member, IEEE, and Lijun Qian, Senior Member, IEEE

Abstract—To extract knowledge from the large data collected
by edge devices, a traditional cloud-based approach that requires
data upload may not be feasible due to communication bandwidth
limitations as well as privacy and security concerns of end-users.
A novel privacy-preserving edge intelligent computing framework
for image classification in IoT is proposed to address these
challenges. Specifically, the autoencoder will be trained unsu-
pervised at each edge device individually, and then the obtained
latent vectors transmitted to the edge server for the training of
a classifier. This framework would reduce the communication
overhead and protect end-users’ data. Compared to federated
learning, the training of the classifier in the proposed framework
is not subject to the constraints of the edge devices, and the
autoencoder can be trained independently at each edge device
without any server involvement. Compared to collaborative
intelligence such as SplitNN, the proposed method does not
suffer from high communication cost as noticed in SplitNN.
Furthermore, the privacy of the end-users’ data is protected by
transmitting latent vectors and without the additional cost of
encryption. Experimental results provide insights on the image
classification performance vs. various design parameters such as
the data compression ratio of the autoencoder and the model
complexity.

Index Terms—Deep Learning, Edge Computing, Autoencoder,
Convolutional Neural Network, Internet of Things, Privacy Pre-
serving Deep Learning

I. INTRODUCTION AND MOTIVATION

Emerging Technologies such as the Internet of Things (IoT)
and 5G networks will add a huge number of devices and
new services. As a result, a huge amount of data will be
generated in real-time. One of the important data types is
image data since many applications such as video surveillance,
autonomous driving, etc., involve images and videos. To take
advantage of the "big image data”, data analytics must be
performed to extract knowledge from the data. One way to
handle the data would be by uploading all the data from edge
devices to the cloud or remote data centers for processing
and knowledge extraction [1]. However, as highlighted in
Figure 1, several factors may render this practice infeasible:
1) The sheer volume of the images may overwhelm an uplink
with limited bandwidth; 2) The uplink may not always be
available, e.g., when wireless communication is used, there
might be downtime due to weather(in the case of mmWave),

The authors are with the CREDIT Center and the Department of Electrical
and Computer Engineering, Prairie View A&M University, Texas A&M
University System, Prairie View, TX 77446, USA. Corresponding author:
Omobayode Fagbohungbe e-mail: ofagbohungbe@pvamu.edu

distance, or jamming; 3) Proprietary images may need en-
cryption which introduces additional delay; 4) The end users
may have concerns about the security and privacy of their
images; thus they may not agree to upload raw images that
may contain private information. Furthermore, uploading is
subject to eavesdropping, interceptions, or other unauthorized
access.

Figure 1: Challenges incurred when uploading all data from
edge devices to the cloud.

A novel efficient privacy-preserving framework for image
classification in edge intelligent computing systems is pro-
posed in this paper to address these challenges. Specifically,
the large raw data will be processed locally (at the edge) by
a pre-trained autoencoder. And instead of uploading the raw
image, only the compressed latent vectors that contain critical
features learned from the raw image will be uploaded through
the access point or hub to the edge server for further process-
ing. The proposed framework is highlighted in Figure 2. The
experiments demonstrate that the learning performance of ex-
tracting knowledge at the server has minimal degradation when
the compression ratio is not significant (e.g., below 16 in our
test cases). Furthermore, the raw images can be reconstructed
with minimal error at the server using the pre-trained decoder
if available and needed. The proposed framework encourages
the design and implementation of emerging edge intelligent
computing that are both efficient and privacy preserving for
5G, IoT, and other advanced technologies.

Compared to traditional source coding (e.g., zip), using an
autoencoder has the following advantages: 1) Instead of only
reducing the redundancy in the raw data as in source coding
or traditional data compression, an autoencoder will extract
critical features in the raw data and encode the features in a

2

Figure 2: The proposed efficient privacy preserving framework
for image classification in edge computing systems. Here xi
is the raw image, zi is the compressed latent vector, and x̂i is
the reconstructed image.

compact form (the latent vector), in other words, the encoder
performs initial learning at the edge devices; 2) In addition
to compressing the data, the autoencoder also "encrypts" the
data by transforming the raw data into latent vectors, thereby
enhancing the security of data. For example, a zipped file can
easily be unzipped by an adversary if not encrypted; on the
contrary, an adversary can not reconstruct the raw data from
the latent vector without knowing the structure (e.g., number
of layers, number of nodes in each layer) and all the weights of
the pre-trained autoencoder (specifically the decoder part). It
is shown in [2] that the autoencoder provides a similar level of
security to standard encryption - assuming that the decoder is
not shared; (3) Even if an adversary captures the edge device,
it is very challenging for the adversary to deduce the decoder
part from the encoder part on the edge device.

The proposed framework has some similar characteristics
such as taking advantage of large and diverse data from
many edge devices and data locality at each device as in
federated learning [3]–[6] and collaborative intelligence such
as SplitNN [7]. However, compared to federated learning and
collaborative intelligence, the proposed framework has the
following advantages:

1) In federated learning, the server and the end-users (edge
devices) train the same model. As a result, the model’s
complexity is constrained by the edge device’s comput-
ing capability and storage capacity. On the contrary, in
the proposed framework, the training of the classifier is
done at the edge server only. Thus, it can be deep and
complex if needed, and it is not subject to the constraints
of the edge devices.

2) In federated learning, the edge device must rely on the
server to update the gradients and train the model. In the
proposed framework, the training of the autoencoder can
be done independently at each edge device without any
server involvement.

3) In federated learning, the privacy of the end-users’ data
is protected by applying differential privacy schemes [8]
or through secure aggregation [9], thus introduce addi-

tional cost due to encryption or secret sharing. In the
proposed framework, the privacy of the end-users’ data
is protected by transmitting latent vectors without the
additional cost of encryption.

4) In collaborative intelligence, the volume of the inter-
mediate feature tensor at the early layers or optimal
layer might be larger than that of the original input,
and so uploading large amount of intermediate features
to the server can lead to higher transmission latency and
energy consumption [10], [11]. However, the proposed
framework will always compress the original data to
latent vectors with the compression ratio controlled to
provide additional flexibility. Although it is possible
to compress the intermediate features before sending
them to the server in collaborative intelligence, this
implies an additional compression step is introduced.
On the contrary, the proposed autoencoder will extract
salient features as latent vectors and perform controlled
compression at the same time without the need for an
additional step for compression.

5) In SplitNN, the training of the model is done sequen-
tially. As a result, the training may be very time con-
suming when the number of edge devices is significant.
On the contrary, the autoencoders at the edge devices
can be trained in parallel in the proposed framework.
Also, constant communication between the edge device
and server is required to exchange intermediate features
and gradients in SplitNN, which incurs much overhead.
In the proposed framework, the edge device will send
the latent vectors only once for the server to train the
CNN classifier. This mode of communication leads to
low communication cost and overhead reductions.

The proposed framework is explained in Section II. Sec-
tion III gives the design and implementation details. Experi-
mental results and analysis are given in Section IV. Further
discussions and related works are reviewed in Section V.
Section VI concludes the paper.

II. PROPOSED FRAMEWORK

The proposed efficient privacy-preserving framework for
image classification in edge intelligent computing systems is
shown in Figure 2. It has two levels: the edge devices and the
edge server. It is assumed that the nodes of the edge devices
contain sensors such as cameras and embedded computing
devices such as Google edge TPU [12] or NVIDIA Jetson
Nano [13]. The edge server is assumed to have large storage
and strong computational capacity. The edge segment of the
framework mainly contains the various edge devices of interest
and the pre-trained encoder. The server mainly contains the
hub, the pre-trained classifier, and the pre-trained decoder.
We only consider supervised learning in this paper, and it is
assumed that the training dataset is labeled. One of the motiva-
tions for this proposed framework stems from the guaranteed
reduction in feature size of the original input when observed at
the encoder output. With a feature (latent vector) size smaller
than the size of the original input being sent to the server, the
latency and the energy overhead and communication cost can

3

be reduced. Furthermore, this provides improved data privacy
and security, compared to sending the raw data to the server.

The data from each edge device is passed to the correspond-
ing encoder attached to it. A unique pre-trained encoder is used
at each edge device to take advantage of data locality at each
device. The function of the pre-trained encoder in the inference
mode is to extract the most important and critical features in
the data. The encoder also ensures dimension reduction of the
input data by a pre-determined factor. The extracted critical
features (latent vectors, intermediate features, or feature maps
when the data are images) are then transmitted to the hub at the
server. The two primary tasks at the server are the classification
task and the data reconstruction task (recover a copy of the
original image from the latent vectors). In other words, at the
server, the latent vectors are input to the pre-trained classifier
for prediction and are also input to the corresponding decoder
for the reconstruction of the images.

The design of the proposed framework has two (2) stages:
the training stage and the testing stage.

Figure 3: The training for the proposed autoencoder at edge
device.

Figure 4: The training for the proposed CNN classifier at the
server.

A. Training Stage

The dataset collected at each edge device is used to train
an autoencoder for the corresponding device as a way to take
advantage of the data locality at each device. Autoencoders
are generative models where an artificial neural network is

trained to reconstruct its input in an unsupervised way. Figure
3 illustrates all the components of an autoencoder and the
training process. It is made up of two main blocks, which
are the encoder and the decoder [14], [15]. The encoder
compresses the input X into a low dimensional representation
of pre-determined size, called the latent vector denoted by
Z that contains the most important features in the data.
When the input data are images, Z will be the corresponding
feature maps. The mapping function of an encoder is stated
in equation 1 where Z is the encoder output, W is the model
weight and be is the bias of the encoder, X is the model input
and f(.) is the non-linear activation function.

Z = fθ(X) = f(WX + be) (1)

The decoder then tries to reconstruct the original input
data/image from the latent vector Z. The reconstructed input
data obtained at the decoder output is denoted by X̂ . It should
be noted that an autoencoder is a lossy network as the original
image will not be fully recovered. However, it is expected that
the critical features will remain in the recovered image. The
decoder is represented mathematically in equation 2 where X̂
is the decoder output or estimated input, V is the decoder
weight, Z is the encoder output, bd is the decoder bias and
g(.) is the activation function of the decoder.

X̂ = gθ′(Z) = g(V Z + bd) (2)

The autoencoder achieves the proper training of the encoder
and decoder by minimizing the differences between the orig-
inal input (X) and the reconstructed input (X̂). The training
is achieved using the mean square error (MSE) loss function
or any other appropriate loss function. The formulae for the
MSE loss function is stated in equation 3. After the training
of the autoencoder, the encoder part of the autoencoder is
then extracted, deployed in the inference mode on the edge
device, and then used to generate the latent vector Z. Hence,
the dataset is transformed from [X,Y] to [Z, Y] where Y are
the labels.

Lθ,θ′ =

∑N
i=1 ||Xi − X̂i||22

N
(3)

The latent vectors and the corresponding labels are ag-
gregated at the hub, and then used to train a classifier on
the cloud in a supervised manner, as shown in Figure 4.
The type of classifier at the cloud is determined by the type
of supervised task to be done. The most common type of
classifier used for image dataset is the convolutional neural
network (CNN) and it is used as the classifier in this work.
CNN is a type of multilayer neural network that preserves
spatial relationships by performing convolution operation in
order to learn features at different layers. The mathematical
equation for a convolution operation is given in equation 4
where S(i, j) is called the feature map, K(i, j) is the filter,
and X(m,n) is the input.The convolution operation, which is
equivalent to an integral that expresses the amount of overlap

4

of K as it is shifted over X , is achieved by taking the dot
product of two inputs over a finite number of samples. [15],
[16].

S(i, j) = (K ∗X)(i, j) =
∑
m

∑
n

X(i−m, j − n)K(m,n)

(4)
The mathematical representation of forward propagation for a

feature map at a particular layer is given by equation 5 where
Slj is the j-th feature map in l-th layer, Sl−1j (m = 1, ...,M)

are the outputs of the l-1th layer, wljm is the weight connected
to the m-th feature map in the previous layer, blj is the j-th
bias of the l-th layer, and F is the activation function [17].
The cross entropy loss function which results in normalized
probabilities is used for training the classifier at the edge
server. The mathematical representation of the cross entropy
loss is shown in 6 where Yi is the label/ground true and
Ŷi(0 ≥ Yi ≥ 1) is the prediction probabilities.

Slj = F

(
M∑
m=1

wljm ∗ Sl−1m + blj

)
(5)

L(Yi, Ŷi) = −
M∑
i=1

Yi log(Ŷi) (6)

The algorithm for the training phase is stated in Algorithm 1
and Algorithm 2.

Algorithm 1: Autoencoder model development for image
dataset at each edge device
Input: Training Image data at each edge device X . The

corresponding labels is also X
Split dataset into training image dataset(70%) and
testing image dataset (30%)
Normalize the data X = x−min(x)

max(x)−min(x)
Train the autoencoder model:

1: initialize θθθ
Training Process

2: for numberofepochs do
3: Autoencoder forward pass −→ X̂i

4: calculate loss function L −→ |X − X̂i|
5: perform back propagation −→ ∂L

∂θi

6: update autoencoder weights, θi+1 −→ θi - η ∂L∂θi
7: end for
8: return θθθ

Test the autoencoder model: Testing Process
9: for XinTestingImagedataset do

10: autoencoder forward pass −→ X̂i

11: encoder forward pass −→ Zi

12: Loss −→
∑N

i=1 ||Xi−X̂i||
N

13: end for
14: return Loss, Z

Algorithm 2: CNN Model development for latent vari-
ables at the edge server
Input: The compressed/machine intelligible imaga dataset Z

and corresponding labels Y at the cloud
Split dataset into training (70%) and testing (30%)
Normalize the data z = z−min(z)

max(z)−min(z)
Train the CNN model:

1: initialize θθθ
Training Process

2: for numberofepochs do
3: CNN forward pass −→ Ŷi
4: calculate loss function L −→ −

∑M
i=1 Yi log(Ŷi)

5: perform back propagation −→ ∂L
∂θi

6: update CNN weights, θi+1 −→ θi - η ∂L∂θi
7: end for
8: return θθθ

Test the CNN model: Testing Process
9: for Z in TestingImagedataset do

10: CNN forward pass −→ Ŷi

11: Accuracy −→
∑N

i=1 1(Yi==Ŷi)∑N
i=1 Yi

12: end for
13: return Accuracy

B. Inference Stage

In this stage, the pre-trained encoder, pre-trained decoder,
and pre-trained classifier are deployed in the inference mode.
The data X from a edge device is fed to the corresponding
pre-trained encoder attached to that device. The encoder then
transforms the data X to a latent vector Z, representing the
most critical feature in X . The latent vector Z, which is
smaller than X by a pre-determined ratio, is then transmitted to
the edge server. The latent vector Z is fed into the pre-trained
classifier at the edge server, and the classifier then predicts a
label Ŷ . The original data is sometimes needed at the edge
server in applications such as anomaly detection and security
surveillance. When a copy of the original image is needed
at the server, the latent vector Z is fed into the input of the
corresponding decoder, and the estimate of the original data is
obtained. In applications where privacy is very important, the
original image might not be requested due to privacy concerns.

C. Proposed Framework and Data Streaming

The design of the deep learning framework above is done
using an offline learning approach. In offline training, his-
torical data is available at the edge to train the autoencoder
during the training phase. In IoT data streaming, the proposed
framework still applies, particularly in a situation where the
streamed data needs to be stored for labeling to take place. In
situations where this is not possible, the proposed framework
can still be used with some slight modification depending on
the velocity of the data. Firstly, the online learning approach
is used as the datasets are not available at once. This means
that the traditional backpropagation method used above might
change to a backpropagation method that is suitable for online

5

Table I: Information on the CIFAR10 and ImageNet (IMGNETA and IMGNETB) Datasets

Dataset Image size # of images Training Testing ratio # of classes Comments
CIFAR10 32*32*3 60 000 5:1 10

IMGNET-A 224*224*3 13,000 7:3 10 very different images
IMGNET-B 224*224*3 13,000 7:3 10 very similar images

Table II: The deep learning models and the dataset used in training the models

CIFAR10 IMGNET-A IMGNET-B

Vanilla Model Model-A x - -
Model-B - x x

Transfer Model Model-C - x x

learning, such as hedge backpropagation [18] or use the
traditional backpropagation with a batch size of one which
is inefficient [19]. Furthermore, there will be a need for a dis-
tributed streaming processing platform such as Apache Flink,
Apache Spark, Kafka streams to handle issues peculiar to data
streaming such as out-of-order datasets and data buffering in
order to balance event-processing with low latency and high
throughput [20].

D. Security Analysis

The security of the proposed framework, which is judged
by how difficult the original image can be recovered from
the transmitted compressed image, is analyzed in this section.
Assuming the compressed image is intercepted during trans-
mission, it is possible to recover the original image if the pre-
trained weights and other parameters of the decoder associated
with the intermediate features are known. This method is
impossible as the parameters of the decoder are not known
as they are not transmitted. The original image can still be
recovered by building a model using a dataset of the input
image and the corresponding intermediate features as stated in
[21], [22]. However, for our proposed framework, this method
is impossible as the input image is not available or transmitted.
Furthermore, another possible method to recover the original
image is by training a decoder using the pre-trained weights
of the encoder and other parameters of the autoencoder
used in generating the intermediate features. However, the
pre-trained weights of the encoder and other parameters of
the autoencoder are not transmitted to the server (only the
intermediate feature is transmitted) or known, making this
method impossible or very challenging. This method also
requires the input original input which is not available. This
recovery is a very non-trivial problem as there are infinitely
large possible model configurations to train and to check if
they can reconstruct the original image. The mathematical
proof to show that it is challenging to reconstruct the input
image from the compressed image is carried out in [7].

III. EXPERIMENTS

A. Dataset Description

The result in this work is generated using three different
datasets summarized in Table I. These datasets are from
the Canadian Institute For Advanced Research dataset (CI-
FAR10) [23] and the ILSVRC (ImageNet) 2012 datasets [24].

1) Canadian Institute For Advanced Research (CI-
FAR10): This dataset containing 60,000 color images is a

subset of about 80 million labeled but tiny images. The dataset
is further divided into 50,000 training samples and 10,000
testing samples, each of dimension 32×32×3. It has ten (10)
mutually exclusive classes with no semantic overlaps between
images from different classes.

2) ILSVRC (ImageNet) 2012: The original ILSVRC 2012
dataset contains about 1.2 million color images of different
sizes across about 1,000 classes. The 1,000 classes are either
internal or leaf nodes but they do not overlap. Two subsets of
the ILSVRC 2012 dataset termed IMGNET-A and IMGNET-
B are used in this work. Each subset contains about 13,000
images each resized to a dimension 224× 224× 3, spanning
10 classes. Each subset dataset is further divided into training
samples and testing samples with a ratio of 7:3. The difference
between the two subsets lies in the type of nodes they contain.
The IMGNET-A subset contains images from 10 different leaf
nodes (diverse images), while IMGNET-B contains ten (10)
child nodes from a single leaf node (similar images).

B. Deep Learning Model Design and Training Strategy

The autoencoder for the edge devices and the classifier at the
edge server are chosen because the autoencoder is optimized
for feature extraction and the classifier is optimized for image
classification.

Figure 5: Details of an encoder model for compression size
of 4 using CIFAR10 dataset

1) Autoencoder Design and Training Strategy: The au-
toencoder architecture is affected by the type of images and
the compression ratio. For instance, the model architecture
for the CIFAR10 dataset for compression ratios 4 and 8 are
different. This condition also applies to compression ratio 4 for
IMGNET-A and CIFAR10 datasets. Hence, different models

6

are developed across several edge devices, compression ratio,
and datasets.

Figure 5 shows the model architecture for an encoder
designed for the CIFAR10 dataset for a compression ratio
of 4. In general, the autoencoder model contains a mix of
convolutional (same padding), max pooling, and upsampling
layers. The ReLu function is used as the activation function
for all layers except the last layer, where the sigmoid function
is used.

In this work, the autoencoder models are trained from
scratch using the glorot-uniform method as the initializer,
mean square error as the cost function, and rmsprop optimiza-
tion algorithm as the optimizer. After the convergence of the
autoencoder model during the training process, the encoder
part of the autoencoder is then extracted, and deployed in the
inference mode to compress all the images to obtain the latent
variables needed to train the classifier. The mean square error
(MSE), which also doubles as the cost function is used as the
metrics of the autoencoder.

C. Training Stage

1) Classifier Design: The convolutional neural network
(CNN) model is used as the classifier in this work. CNNs are
well suited for image processing applications and other grid-
like data [15]. They are more computationally efficient than
the dense deep neural network (DNN), thus reducing memory
usage. Using the filters, CNNs find and extract meaningful
features from the images and preserve spatial relations. Three
different CNN classifiers, denoted Model-A, Model-B, and
Model-C, as listed in Table II, are used in this work.

a) Model-A and Model-B: Model-A and Model-B are
considered to be vanilla models because they are trained from
scratch. Model-A and Model-B are specifically designed for
the original input image and feature maps of the CIFAR10
dataset and ImageNet dataset, respectively. The detailed CNN
architecture of Model-A and Model-B are shown in Tables
IV and III, respectively. The models contain a mix of convo-
lutional, max pooling, and fully connected layers. The ReLu
and softmax activation functions are also used for the model
design.

Table III: The architecture of the vanilla model for CIFAR10
dataset (Model-A)

Vanilla Model For CIFAR10 Dataset
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1,Padding

Activation Layer (Relu)
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1, Padding

Activation Layer (Relu)
Max Pooling, Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Max Pooling,Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Flatten

Dense(512)
Activation(Relu)

Dropout(0.5)
Dense(10)

Activation(Softmax)

Table IV: The architecture of the vanilla model for ImageNet
dataset (Model-B)

Vanilla Model For ImageNet Dataset
Conv2D, Filter Size = 3*3, No of Filters = 32, Stride = 1*1,No Padding

Activation Layer (Relu)
Max Pooling, Pool Size = 2*2, Stride = 1,1,No Padding

Conv2D, Filter Size = 3*3, No of Filters = 32, No Padding
Activation Layer (Relu)

Max Pooling, Pool Size = 2*2,Stride = 1*1,No Padding
Conv2D, Filter Size = 3*3, No of Filters = 32,Stride = 1*1, No Padding

Activation Layer (Relu)
Max Pooling,Pool Size = 2*2,Stride = 1*1,No Padding

Flatten
Dense(64)

Activation(Relu)
Dropout(0.5)

Dense(10)
Activation(Softmax)

Furthermore, the models also contain some dropout layer in
order to prevent over-fitting. The differences between Model-
A and Model-B lie in the number of the various layers used
and padding of the convolutional layers of Model-A.

Figure 6: The Transfer Learning Model Block (Model-C)

The models are trained from scratch to minimize the differ-
ence between the labels (ground truth) and the predicted labels.
This training is achieved by the use of the glorot-uniform
method as the initializer, categorical cross-entropy as the loss
function, and Adams optimization algorithm as the optimizer.
Data augmentation is also used during the training process to
mitigate overfitting due to the small quantity of the datasets.
It should be stated that each classifier is trained with their
respective original image and the feature maps (compressed
images).

b) Model-C: Model-C is a transfer learning based model
explicitly designed for the ImageNet dataset in this work. The
CIFAR10 version of the result is not presented in this work as
the compressed data gives a poor performance with the transfer
learning models. This poor performance can be attributed to
the small dimensions of the CIFAR10 dataset and large depth
of the various transfer learning models used.

The block diagram of the model is shown in Figure 6.
Model-C can be divided into two parts: The base layer and
the top layer. The base layer is a pre-trained layer of another
standard deep learning model (without the fully connected
layer) trained with data similar to the ImageNet data and
achieved better performance. Using this pre-trained model, the
excellent feature extracting property of the standard model
is being leveraged to achieve better performance. Further-
more, it also complements data augmentation in training a
decent model in situations where datasets are limited. VGG16,
VGG19, InceptionV3, InceptionResnetV2 and Resnet50 pre-
trained models [25] are used as base models for Model-C.

The details of the top layer used for this work are shown in
Table V. It should be noted that the first dense layer of the top

7

Table V: The architecture of the transfer learning model for ImageNet datasets (Model-C)

Model_1 Model_2 Model_3 Model_4 Model_5
Base layer VGG16 VGG19 InceptionV3 InceptionResnetV2 Resnet50

Top layer

Dense(256) Dense(256) Dense(256) Dense(256) Dense(50)
Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu)

Dense(10) Dense(10) Dense(10) Dense(10) Dense(10)
Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax)

1 4 8 16
Compression Ratio

0

10

20

30

40

50

60

70

80

Te
st

in
g

Ac
cu

ra
cy

 (
%

)

CIFAR10
IMGNET-A
IMGNET-B

Figure 7: Comparison of the testing accuracy of the vanilla models for the original dataset (compression ratio =1) and
compressed dataset (latent variables) with compression ratio = 4, 8, 16.

1 4 8 16
Compression Ratio

0

10

20

30

40

50

60

70

80

F-
Sc

or
e

(%
)

CIFAR10
IMGNET-A
IMGNET-B

Figure 8: Comparison of F-Score of the vanilla models for the original dataset (compression ratio =1) and compressed dataset
(latent variables) with compression ratio = 4, 8, 16.

8

layer in the fifth model (Model_5) is smaller than that of the
other models. Model_5 suffers from overfitting if the number
of neurons in the first layer is 256, the same number used in
the other models. Hence, the size of the dense layer is lowered
to reduce overfitting and achieve good performance.

A 2-stage training method is used for the transfer learning
model to minimize the error between the ground truth labels
and the predicted labels. This approach is different from the
training approach used for Model-A and Model-B, which
are trained from scratch. In the first stage, the base layer
is fixed while the fully connected top layer is trained using
the Adam optimizer after being initialized using the glorot-
uniform method. This approach is taken to initialize the
weight of the top layer close to the weight of the base layer.
The complete model is then retrained, and all the weights
are appropriately tuned using the stochastic gradient descent
(SGD) with momentum optimizer. SGD with momentum is
used because it is less aggressive than the Adam optimizer. The
use of an aggressive optimizer in the second step might cause
the weights (information) in the base layer to be significantly
eroded or lost. The categorical cross-entropy is used as the
cost function in the entire training process.

D. Experiments

This work seeks to propose a new approach to design and
implement deep learning models for distributed systems with-
out compromising data privacy and security. It achieves this
by extracting the most important/critical machine intelligible
features but human unintelligible features from the dataset.
These features are then transmitted across the communication
network from the edge devices to the edge server, where they
are aggregated and used to train a classifier. The experimental
methods, performance metrics, and tools used in validating our
proposed framework are explained in this section.

1) Experimental method: A 2-stage methodology is used
to validate our proposed framework, and this method is the
same irrespective of the type of dataset or model used. In
the first stage, the training set of the original input dataset
(uncompressed images) is used to train the classifier. After
that, the test set is used to obtain the needed performance
metric to set the baseline performance.

In the second stage, the training set of the feature maps
(compressed images of the dataset used in stage 1) is used
to train the same classifier model. The feature map, which is
smaller than the original image by a pre-determined factor,
is obtained by passing the original dataset through the au-
toencoder’s encoder. After that, the performance metric of the
classifier is obtained using the test set of the feature maps and
the performance compared to the baseline performance.

2) Performance Metric: The effectiveness of the frame-
work is assessed using a simple classification task. The test
accuracy of the model obtained after the training process is
used as the primary performance metric although the F-score
measurement of the models is also obtained to further validate
the performance of the models. Furthermore, our proposed
framework’s effect on the training time, testing time, and the
number of model parameters is also investigated. It should be

noted that the primary performance metric for this section of
the framework is application specific. For Natural language
processing applications for example, this metric will change
to either of Cosine Similarity, Jaccard Similarity, Perplexity or
Word Error Rate.

3) Software and Hardware: The design, training, and
testing of the deep learning models (Autoencoders and CNN
Classifiers) are implemented using Keras deep learning frame-
work on TensorFlow backend, running on an NVIDIA Tesla
P100-PCIE-16GB GPU.

IV. RESULTS AND ANALYSIS

The results of the experimental work are presented in this
section. The proposed framework’s performance is compared
with our baseline using the performance metrics stated in
Section III-D2 above. The baseline performance is represented
by compression ratio one (1), and it is synonymous with
using the uncompressed image to test our various models.
Furthermore, it should be noted that the vanilla model for
the CIFAR10 and ImageNet datasets are different as stated in
section III-D

Figure 7 shows the testing accuracy of vanilla CNN
Classifiers (Model-A and Model-B) when trained and tested
with compressed and uncompressed CIFAR10 and ImageNet
datasets. The testing accuracy for the compression ratio 1
(uncompressed images), representing our baseline, is highest
across all the cases, as expected. This observation is because
all the features in the raw images are used for the classification
task. Furthermore, the testing accuracy for IMGNET-A is
larger than the testing accuracy of IMGNET-B. The differences
in performance can be attributed to the very close similarity
in the images in IMGNET-B, as classifying such images is a
much more difficult classification task than classifying images
in IMGNET-A. The classifier requires more information than
what is available to identify each of the class in IMGNET-B
than IMGNET-A uniquely.

A general degradation in the testing accuracy is observed
in Figure 7 as the compression ratio is increased, although the
rate of degradation varies across the models used for the three
(3) datasets. The rate of degradation of the testing accuracy of
the model trained with CIFAR10 dataset is the highest for all
the compression ratios. The observed degradation is because
the small dimension of the CIFAR10 images (32 × 32 × 3)
implies that the number of features needed to perform a clas-
sification task is even smaller when compressed. This means
the information contained in the image has been reduced,
making it difficult for the model to have enough information
to identify each class. Furthermore, the rate of degradation
of the testing accuracy for the IMGNET-A dataset is very
modest across all the compression ratios. However, similar
performance is not observed in IMGNET-B, particularly for
compression ratios 8 and 16 despite having the same image
dimension (224 × 224 × 3) as the IMGNET-A dataset. The
larger degree of degradation observed in the model trained
on IMGNET-B for compression ratios 8 and 16 is due to
the complexity of the classification task. The degradation is
because of the similarities in the images that make up the

9

VGG16 VGG19 InceptionV3 InceptionResnetV2 Resnet50

Base Layer

0

20

40

60

80

100

Te
st

in
g

Ac
cu

ra
cy

 (
%

)

IMGNET-B_1 IMGNET-A_1 IMGNET-B_4 IMGNET-A_4

Figure 9: Testing accuracy of the transfer learning based model (Model-C) using different base models for the ImageNet dataset
with compression ratio = 4.

1 4 8 16
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 #
 o

f P
ar

am
et

er
s

CIFAR10
IMGNET

Figure 10: Comparison of the normalized number of vanilla model parameters vs. data compression ratio

various classes in IMGNET-B, which indicates more features
are needed to identify the image for each class uniquely. The
considerable diversity in the IMGNET-A dataset classes makes
the classification task less complex and requires fewer features
to identify each class and differentiate between the classes
uniquely. This reduced complexity explains why it suffers low
degradation in testing accuracy even at a higher compression
ratio despite fewer features being used for classification. In
order to further validate the performance of the models, the
F-score of the models is obtained and shown in Figure 8.
It can be observed that the F-score values of the models
for various compression ratios are approximately the same as
the corresponding model accuracy values. Furthermore, the F-
score values show a similar trend as the testing accuracy when

the compression ratio is increased. This is expected because
the dataset used for this work is a balanced dataset.

The testing accuracy of the transfer learning based model
(Model-C) for the ImageNet dataset compressed by a factor
of 4, using different base models, is shown in Figure 9. The
transfer learning model is not designed and trained using
the CIFAR10 datasets as its performance is poor with the
compressed images. The poor performance can be attributed to
the deep nature of the transfer learning based model. Due to its
depth, the transfer learning model has an inadequate number
of features available at the fully connected layer of the model
(top layer) where classification takes place. Hence, there are
inadequate features available for the classes in the dataset to
be uniquely identified. The same reason also explains why

10

1 4 8 16
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

CIFAR10
IMGNET

(a) Comparison of the normalized testing time

1 4 8 16
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
es

ti
ng

 T
im

e

CIFAR10
IMGNET

(b) Comparison of the normalized training time

Figure 11: Comparison of the normalized testing time and training time of the vanilla models for various compression ratios
for CIFAR10 and ImageNet datasets.

the transfer learning model is only designed and tested with
the ImageNet dataset with a compression ratio of four(4). At
higher compression ratios (8 and 16), the performance is poor
with the compressed images as there are fewer features at the
fully connected layer of the model (top layer) for the model to
uniquely identity each class in the IMGNET-A and IMGNET-
B dataset.

From Figure 7 and Figure 9, it is observed that the testing
accuracy of the transfer learning model across different base
models for IMGNET-A and IMGNET-B datasets at compres-
sion ratio 1 (baseline) and 4 is higher than the corresponding
performance of the vanilla model (Model-A and Model-B).
This phenomenon can be attributed to the powerful feature
extraction property of the various base layers used in the

transfer learning model. The base layer is a neural network of
various configurations or architectures trained on the complete
ImageNet dataset for the classification task. The base layer
has powerful feature extraction property because it has been
trained on a classification task similar to the classification task
at hand and achieves satisfactory testing accuracy.

As observed with the vanilla model in Figure 7, the testing
accuracy for compression ratio 1 (baseline) is better than the
testing accuracy for compression ratio 4 for both IMGNET-A
and IMGNET-B datasets with the transfer learning model as
well (Figure 9). Furthermore, the performance of the transfer
learning model trained on the IMGNET-A dataset is better
than that of the model trained on the IMGNET-B dataset
for compression ratios one (1) and four (4). However, the

11

rate of degradation in the testing accuracy for compression
ratio 4 is higher than what is observed for the vanilla models
(Figure 7) for both IMGNET-A and IMGNET-B datasets.
The degradation can also be attributed to the deep nature of
the transfer learning models as the small amount of infor-
mation/features available at the fully connected layer of the
model (top layer) are not distinct enough to make an accurate
classification. The number of parameters in a convolutional
neural network is determined by many factors such as the
filter size, the number of filters, the size of the input data,
the number and type of hidden layers. Hence, a reduction
in the number of trainable parameters can be achieved by
reducing the size of the input data. The relationship between
the normalized number of parameters in the vanilla model
for the CIFAR10 and ImageNet datasets vs. the compression
ratio is shown in Figure 10. It can be observed that for the
same compression ratio, the rate of reduction in the normalized
number of parameters of the vanilla model for the ImageNet
dataset is much bigger than that for the CIFAR10 dataset. This
is because when the compression ratio increases, the already
low-resolution images from CIFAR10 cannot be reduced much
further by the model, and the number of parameters needed
will remain almost constant for compression ratios 4, 8, and
16. On the contrary, the number of required parameters will
keep decreasing in the case of the ImageNet dataset for
compression ratio 4 and 8 because the images have much
higher resolution, and as a result, the parameters will keep
decreasing when the input image becomes smaller. However,
when the compression ratio is 16 for ImageNet, the images
are already small, they cannot be reduced much further, and
thus will not affect the number of parameters.

Figure 11 shows the normalized amount of time required
for testing and training of the vanilla models at various
compression ratios for CIFAR10 and ImageNet datasets, re-
spectively. A reduction in training and testing time is observed
across the compression ratios and the models. The reduction
can be attributed to the decreasing size of the input data, which
directly affects the total number of trainable parameters. As
the size of the input images decrease with the increase in
compression factor, the total number of trainable parameters
at the fully connected layer and the total number of train-
able parameters also decrease. The total number of trainable
parameters in a model indicate the degree of complexity of
the resulting model and the amount of time required to train
the model (training time) and test the model (testing time).
Hence, the reduction in the training time and testing time as
the compression factor increases.

Although Figures 9-10 represents a desirable improvement
in some of the properties of the resulting model, such as
training time, testing time, and the number of parameters
as the compression factor increases, the model accuracy, as
shown in Figures 7-8 reduces with increase in the compression
factor. These Figures show the trade-off between the degree
of privacy desired and the model accuracy. It also represents a
trade-off between our proposed method and the compression
factor of one, which is equivalent to server-only computation.
Our proposed framework leverages on both the resources at
the edge and at the cloud server. The edge computation part

(autoencoder) helps extract the useful features needed for
training at the cloud server. The cloud server provides the
resource needed to train the deep learning model (classifier).
Training only at the edge will lead to poor performance as
there are no sufficient data and edge device cannot handle large
deep model due to limited computing resource. Training only
at the server will require all data available at the server, which
might not be possible due to privacy concerns and limited
bandwidth. Hence, there is a need to find an optimal trade-off
point between the compression and model accuracy.

Although the testing accuracy is used as the primary metric
for the framework in this work, this could change as the choice
of this metric is application specific. The choice of testing
accuracy as the primary metric in this paper is informed by the
use of an image classification model as the second model. With
object detection application, average precision or intersection
over union metric can be used to judge the effectiveness
of the model. In cases where a metric that is application
dependent is desired, the use of the mean squared error (MSE),
which is the cost function used in training the autoencoder
can be considered. The MSE is the difference between the
encoder input and the decoder output. This metric is the same
irrespective of the type of application the framework is used
for. The lower the MSE, the more the effectiveness of the
encoder model in extracting the latent variable/features in
the input. Furthermore, there is a strong negative correlation
between the MSE and the testing accuracy. This is because
the output of the pre-trained encoder is used in training the
classification model in the second part of the model. Hence, the
lower the MSE of the encoder, the better the accuracy of the
resulting model trained with the output of the encoder. The plot
of the MSE of the encoder used in generating the compressed
input for Model-A and Model-B is shown in Figure 12. It
is noticed from the table that the MSE increases with an
increase in the compression ratio for a particular dataset,
which speaks to the inverse relationship between the MSE
of the encoder and the testing accuracy of the classification
model. It is also noticed that the MSE value of the encoders
for ImageNet-A dataset is bigger than the MSE value of the
encoders of ImageNet-B dataset. This same trend is noticed
in Figure 7 where the testing accuracy of the models trained
with compressed images of ImageNet-A is bigger than those
of ImageNet-B. This behavior is attributed to the degree of
complexity of the images in ImageNet-B dataset due to their
close similarity as compared to images in ImageNet-A.

V. DISCUSSIONS AND RELATED WORKS

There is a growing trend of deploying powerful and ad-
vanced deep learning models to achieve state-of-the-art perfor-
mance in processing IoT images and videos. The deployment
of the deep learning model either only locally (on IoT edge
device) or only at the server fit different scenarios [26]. On
the one hand, IoT edge device only training/deployment is
a good choice when the deep learning model is relatively
small, and it does not suffer from data privacy and security
concerns associated with sending data to the server. However,
limited computational power, memory, and energy resource

12

4 8 16
Compression Ratio

0.50

0.52

0.54

0.56

0.58

0.60

M
ea

n
Sq

ua
re

d
Er

ro
r

CIFAR10 IMGNET-A IMGNET-B

Figure 12: Comparison of the mean squared error of the vanilla models for the original dataset (compression ratio =1) and the
compressed dataset (latent variables) with compression ratio=4,8,16.

of IoT/mobile edge devices make it difficult to achieve good
latency and energy consumption when training/inferencing
on large models [26]. On the other hand, the server only
deployment will provide help from edge servers to IoT/mobile
devices via computation offloading to handle large models.
Although server only deployment achieves scalability, low
cost, and satisfactory quality of service (QoS), it suffers
communication overhead for uploading the raw data and
downloading the outputs, which consume much bandwidth and
causes unpredictable latency due to the wireless channel [10],
[26]. Also, privacy and security concerns are raised due to the
transmission of raw data.

The desire to leverage on the merit of the server only and
the IoT/mobile edge device only deployment of deep learning
models has necessitated a new paradigm called collabora-
tive intelligence, or collaborative training, or device-edge co-
inference [11], [27]. In this new paradigm, the deep learning
model is split between the edge device and the server as
the computation required for earlier layers is done on the
IoT/mobile edge device and the output of the layers called
feature tensors are sent to the server for further process-
ing [28]. Despite the advantages of collaborative intelligence
in terms of less communication overhead and better data
privacy, determining the optimal computation partition point
in order to achieve reduced latency and edge device energy
consumption is non-trivial because the choice of the best
partition point depends on the system factors such as wireless
channel state, computation capability of edge devices and
edge servers and the deep learning model [10]. Many recent
studies proposed various approaches to address this issue,
such as [10], [27] Furthermore, it is possible to compress the
intermediate features before sending them to the server instead
of direct transfer [26], [28], [29].

Several methods are proposed in the literature to address the
privacy and security concerns associated with data for training

deep learning, such as homomorphic encryption [30], differen-
tial privacy [31], [32] and secure multiparty computation [33].
Furthermore, there are many authentication and key agreement
schemes that have been proposed to ensure data privacy and
security in IoT systems. An authentication framework that
uses a digital certificate-based signature scheme that supports
efficient signature operations with fast, modular arithmetic
operations is proposed in [34]. The authors in [35] pro-
posed ID-based cryptography (IBC) for authentication and the
pseudonym-based mechanism for conditional privacy preser-
vation and non-repudiation in urban vehicle communication.
A similar authentication method for an edge-based smart
grid environment which uses one-way hash functions, XOR
computations, and an elliptic curve cryptosystem (ECC), is
used in [36]. A framework that uses the cryptography based
concept such as physically unclonable functions (PUF) and
hash operations to achieve high levels of security at minimal
computational resource cost, without requiring storage of secu-
rity keys is proposed in [37]. Although a similar authentication
scheme in [37] is proposed in [38], its uniqueness lies in
the use of only one-way secure hash function and bitwise
XOR operations for drone and users to authenticate each other.
A multi-factor authenticated key establishment scheme based
on the PUF, reverse fuzzy extractor, and cryptographic one-
way hash function is proposed in [39] for secure smart grid
communication.

In addition, some sanitation based methods have also
been proposed to ensure data security and privacy. An ant
colony system that uses a heuristic function based on pre-
large concept and fitness function, with consideration for past
selection and current situation, to reduce and monitor the
side effects for a designated sanitation procedure is used
in [40]. Although a similar ant colony optimization method
is proposed in [41], it differs in that it uses multiple objective
sanitation models and transaction deletion to hide and secure

13

confidential and sensitive information. The method also uses
pre-large conceptual model to reduce multiple scans of the
database throughout the evaluation process to achieve lower
computational cost. The work in [42] proposed a semantic
privacy framework for the Internet of Medical Things, which
improves the utility of the sanitized document by identifying
negated assertions before the sanitation process and uses
industry-standard metrics. Also, many particle swarm opti-
mization (PSO) sanitation frameworks have been proposed.
A hierarchical-cluster method, which uses a multi-objective
particle swarm optimization framework to hide confidential
information, balance the side effects while still discovering
useful and meaningful information in the sanitized dataset,
is proposed in [43]. The uniqueness of the PSO sanitation
method in [44] lies in the use of the fitness function to
minimize the side effects of sanitation by determining the
maximum number of transactions to be deleted to efficiently
hide sensitive itemsets and pre-large concept to speed up
the evolution process. Similarly, PSO method with multiple
thresholds and requires minimum support function threshold
to hide sensitive information in a utility database is proposed
in [45]. It should be noted that the proposed framework
is not a substitute for sanitation or authentication methods.
Authentication methods are used to establish trust between
parties before data transmission to prevent unauthorized access
or stealing of data. Data sanitation methods are used to hide
confidential information by deleting it. This privacy preserving
method is quite different from the aim of this study, where
data might not be available to trusted parties due to privacy
concerns. Authentication and data sanitation methods can
still be used in conjunction with our proposed framework to
provide an extra layer of privacy and security.

Despite the success of these methods, some issues remain,
such as performance degradation, non-trivial overhead, or
limited application [46]–[48]. The use of collaborative deep
learning method, such as federated learning and SplitNN, in
distributed learning, has been introduced in recent years to
solve the problem of data privacy. Federated learning is a type
of machine learning where the goal is to train a high-quality
centralized model while the data remains distributed over a
large number of clients [3]. It involves sharing model param-
eters and model gradients through a parameter server without
sharing their local data. Federated learning is based on an
iterative model averaging, and it is robust to unbalanced data
and non-i.i.d. data distribution. Federated learning has been ap-
plied to mobile keyboard prediction, vocabulary word learning,
and google keyboard query suggestions improvement [49]–
[51]. Federated learning may be viewed as an extension of
the idea discussed in [52], [53] that stochastic gradient descent
can be implemented in parallel and asynchronously. Federated
learning may suffer from non-trivial communication cost. To
deal with the high communication cost, an efficient multi-
objective evolutionary algorithm, based on a scalable network
connectivity encoding method, is proposed in [5]. The use of
structured and sketched updates are introduced in [4] to help
reduce the uplink communication bottleneck.

Federated learning may also suffer from security/privacy
issues due to the need to communicate the model parameters

to the central server. One recent study showed potential
security/privacy issues due to the possibility of reconstructing
original data from the shared gradient [54]. Secure aggrega-
tion, a type of secure multi-party computation algorithm for
federated learning, is introduced in [55]. Secure aggregation
helps guarantee the privacy of data used in generating gra-
dients shared by each model and improving communication
efficiency. Furthermore, it is observed that federated learning
performs poorly when the data distributed across the training
center is strictly non-i.i.d. of a single class. This statistical
challenge is resolved by creating and using a small subset
of globally shared data between all the edge devices [56] or
adopting a multi-task learning approach [57].

SplitNN can be considered to be a form of collaborative
intelligence in a distributed learning environment [7], [58].
The edge device trains the first sub-network up to the cut
layer and sends the intermediate features to the server, and the
server processes the second sub-network using the received
features, a process known as forward propagation. In turn,
the server generates the gradient for the final layer, back-
propagates the error up to the cut-layer, and sends the relevant
gradients to the edge device. The edge device then uses the
received gradient to generate the required gradient needed to
update the weight [59]. In cases where there is more than one
client, the training of the model is done sequentially, which is
different from federated learning where the training is done in
parallel [59].

The first work on SplitNN is done in [7] where its perfor-
mance is compared with large SGD and federated learning.
It established that SplitNN achieves a significantly lower
computational burden on clients and lower communication
cost during training than other distributed learning methods.
Furthermore, it also showed that SplitNN achieves faster
convergence than federated learning when there are many
clients. The work on SplitNN in [7] is extended in [60]
to use all of the partial clients-networks on each iteration
sequentially. This method is suited for vertically partitioned
data. It is achieved with each client computes a fixed portion
of the computation graph and passes it to the server. The
server computes the rest and performs back-propagation, and
returns back the Jacobians to the client. Then the client can
perform their respective back-propagation. The use of SplitNN
to demonstrate the importance of collaborative training of deep
learning model using health data is demonstrated in [61], [62].
In [61] several novel configurations of SplitNN are introduced.
It also established that SplitNN achieves higher accuracies
than that of other distributed learning methods on classification
tasks and drastically lowers computational requirements on the
client’s side. Furthermore, SplitNN requires lower communica-
tion bandwidth than federated learning when there are a more
significant number of clients.

A comparison between collaborative and non-collaborative
training modes is carried out, and the impact of the number
of clients on the performance of both modes is investigated
in [62]. The privacy property of SplitNN is enhanced in [63] by
minimizing the distance correlation between the intermediate
features and the input data to reduce leakage. The empirically
evaluation and comparison of both federated learning and

14

SplitNN using imbalanced data and non-independent and
identically distributed (non-IID) data using real-world IoT
settings for performance and overhead (training time, commu-
nication overhead, power consumption, and memory usage)
is shown in [64]. To leverage on the advantages of federated
learning and SplitNN, SplitFed (SFL), a combination of both
approaches to eliminate their inherent drawbacks, is introduced
in [59].

Compared to collaborative intelligence, where the size of
the intermediate feature tensor at the cut layer or optimal
layer might be bigger than the original input features, the size
of the encoder’s intermediate feature tensor in the proposed
framework is always smaller than its original input. The
encoder compresses the original data to latent vectors, and
the compression ratio can be controlled to provide additional
flexibility. Uploading of compressed intermediate features to
the server leads to lower transmission latency and energy
consumption [10], [11]. Although it is possible to compress
the intermediate features before sending them to the server
in collaborative intelligence, an additional compression step
must occur. On the contrary, the proposed autoencoder will
extract salient features as latent vectors and perform controlled
compression at the same time without the need for additional
steps for compression.

In SplitNN, the training of the model is done sequentially.
As a result, the training may be very time consuming when
the number of edge devices is significant. On the contrary,
the autoencoders at the edge devices can be trained in parallel
in the proposed framework. Constant communication is also
required to exchange intermediate features and gradients in
SplitNN, which incurs much overhead and high communica-
tion cost. In the proposed framework, the edge device will
send the latent vectors only once for the server to train the
CNN classifier.

Autoencoder has been applied to address data privacy
concerns in several recent works [2], [65], [66]. In [65], a
convolutional autoencoder that perturbs an input face image
to impart privacy to a subject is proposed. It is shown the
method can protect gender privacy of face images. A proof-of-
concept study has been performed in [2] to use an autoencoder
for preserving video privacy, especially when non-healthcare
professionals are involved. A modified sparse denoising au-
toencoder has been applied in [66] to reduce the sparsity and
denoise the data. A 3-class classification is performed on the
reconstructed data obtained from the autoencoder, and it is
shown that the classifier can classify the original black class
data as the transformed gray class data.

Although autoencoder has been used to address data privacy
concerns, this work is the first to use autoencoder for address-
ing privacy concerns, communication cost, and deep learning
efficiency associated with mobile edge computing systems
with a large number of edge devices. The enhanced privacy is
achieved using the autoencoder to extract human unintelligible
but machine intelligible features from the data. The features or
latent vectors are then used to train the classifier. Furthermore,
the proposed approach comes with the added advantage of
reducing the dimensionality of data needed to be transmitted,
reducing the communication cost and the number of model

parameters, training time, and inference time. This approach
does not suffer from leaking gradient problem associated
with federated learning [54] or increase in the size of the
intermediate features early on in the models as sometimes
observed in SplitNN [10].

VI. CONCLUSIONS

Edge intelligent computing is an important emerging re-
search topic with the deployment of 5G and IoT in recent
years. At the same time, privacy preservation of users is
indispensable. The proposed framework encourages novel de-
sign and implementation of efficient privacy-preserving edge
intelligent computing. The proposed framework provides 1)
flexibility of training autoencoder at each edge device indi-
vidually, thus protect the data privacy of end-users because
raw data is not transmitted at any time; 2) after the training
of autoencoder is complete, raw data is âĂİcompressedâĂİ
and âĂİencryptedâĂİ by the encoder before transmitting to
the edge server, and this will reduce the communications
cost, and further protect the data privacy and security; 3)
the autoencoder will provide features to the classifier at the
server, thus allow the classifier to be trained on the features
with less and controlled dimensions; 4) the decoupling of
the training of the autoencoder at the edge devices and the
training of the classifier at the edge server relaxes the frequent
communications requirement between edge devices and edge
server. Experiments have been carried out using CIFAR10 and
ImageNet datasets. A detailed analysis of the tradeoff between
classifier accuracy, the dimensionality of data, compression
ratio, and various choices of classifiers has been given to
provide benchmarks and insights on the proposed scheme. To
the best of our knowledge, this is the first attempt to design a
framework to address the image classification problem in an
edge computing scenario, where an autoencoder is designed
to compress the raw images and extract salient features at the
same time. In the paper, the proposed framework has been
compared to the uncompressed approach (compression ratio =
1), which can be considered the baseline model. In addition,
all the transfer learning models are indeed state-of-the-art.
Combining them with the proposed framework will result in a
highly efficient and privacy-preserving edge intelligent com-
puting solution. For future work, comparison with federated
learning and SplitNN in terms of classifier performance vs.
the communications cost and model complexity will be carried
out for image classification tasks. The comparison will help
quantify the advantages and disadvantages of the proposed
approach. Furthermore, the use of other types of autoencoder
to extract latent variables and the use of knowledge distillation
to help mitigate the reduction in the model accuracy will be
explored.

ACKNOWLEDGMENT

This research work is supported in part by the U.S. National
Science Foundation (NSF) award 2018945, the U.S. Office of
the Under Secretary of Defense for Research and Engineering
(OUSD(R&E)) under agreement number FA8750-15-2-0119.
The U.S. Government is authorized to reproduce and distribute

15

reprints for governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. National Science
Foundation or the Office of the Under Secretary of Defense
for Research and Engineering (OUSD(R&E)) or the U.S.
Government.

REFERENCES

[1] R. Ramesh, “Predictive analytics for banking user data using aws
machine learning cloud service,” in 2017 2nd International Conference
on Computing and Communications Technologies (ICCCT), Feb 2017,
pp. 210–215.

[2] M. D’Souza, M. Johnson, J. Dorn, C. Van Munster, M. Diederich,
C. Kamm, S. Steinheimer, K. Kravalis, J. Boisvert, I. Ormesher,
L. Walsh, A. Sellen, F. Dahlke, B. Uitdehaag, and L. Kappos,
“Autoencoder - a new method for keeping data privacy when
analyzing videos of patients with motor dysfunction (p4.001),”
Neurology, vol. 90, no. 15 Supplement, 2018. [Online]. Available:
https://n.neurology.org/content/90/15_Supplement/P4.001

[3] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Federated learning of deep networks using model averaging,” CoRR,
vol. abs/1602.05629, 2016. [Online]. Available: http://arxiv.org/abs/
1602.05629

[4] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
2016. [Online]. Available: https://arxiv.org/abs/1610.05492

[5] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,”
CoRR, vol. abs/1812.07478, 2018. [Online]. Available: http://arxiv.org/
abs/1812.07478

[6] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3298981

[7] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, 2018.

[8] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” CoRR, vol. abs/1712.07557, 2017.
[Online]. Available: http://arxiv.org/abs/1712.07557

[9] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for federated learning on user-held data,” in NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[10] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving
device-edge cooperative inference of deep learning via 2-step pruning,”
IEEE INFOCOM 2019 - IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pp. 1–6, 2019.

[11] J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems,” 2020 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops), pp.
1–6, 2020.

[12] “Google Edge Tpu,” https://coral.ai/docs/edgetpu/faq/.
[13] “Jetson Nano Developer Kit,” https://developer.nvidia.com/embedded/jetson-

nano-developer-kit.
[14] M. Maggipinto, C. Masiero, A. Beghi, and G. A. Susto, “A

convolutional autoencoder approach for feature extraction in virtual
metrology,” Procedia Manufacturing, vol. 17, pp. 126 – 133, 2018,
28th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM2018), June 11-14, 2018, Columbus, OH,
USAGlobal Integration of Intelligent Manufacturing and Smart Industry
for Good of Humanity. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2351978918311399

[15] I. J. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,”
Nature, vol. 521, pp. 436–444, 2015.

[16] D. Adesina, J. Bassey, and L. Qian, “Robust deep radio frequency
spectrum learning for future wireless communications systems,” IEEE
Access, vol. 8, pp. 148 528–148 540, 2020.

[17] Z. Yu, E. Tan, D. Ni, J. Qin, S. Chen, S. Li, B. Lei, and T. Wang,
“A deep convolutional neural network-based framework for automatic
fetal facial standard plane recognition,” IEEE Journal of Biomedical and
Health Informatics, vol. 22, no. 3, pp. 874–885, 2018.

[18] D. Sahoo, Q. Pham, J. Lu, and S. C. H. Hoi, “Online deep learning:
Learning deep neural networks on the fly,” CoRR, vol. abs/1711.03705,
2017. [Online]. Available: http://arxiv.org/abs/1711.03705

[19] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama,
“Machine learning for streaming data: State of the art, challenges,
and opportunities,” vol. 21, no. 2, p. 6âĂŞ22, Nov. 2019. [Online].
Available: https://doi.org/10.1145/3373464.3373470

[20] I. Kontopoulos, A. Makris, and K. Tserpes, “A deep learning streaming
methodology for trajectory classification,” ISPRS International Journal
of Geo-Information, vol. 10, no. 4, 2021. [Online]. Available:
https://www.mdpi.com/2220-9964/10/4/250

[21] A. Dosovitskiy and T. Brox, “Inverting visual representations with
convolutional networks,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4829–4837, 2016.

[22] A. Mahendran and A. Vedaldi, “Understanding deep image representa-
tions by inverting them,” 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5188–5196, 2015.

[23] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[25] F. Chollet, Deep Learning with Python, 1st ed. USA: Manning
Publications Co., 2017.

[26] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
pp. 565–576, 2021.

[27] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” SIGARCH Comput. Archit. News,
vol. 45, no. 1, p. 615âĂŞ629, Apr. 2017. [Online]. Available:
https://doi.org/10.1145/3093337.3037698

[28] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6, 2019.

[29] H. Choi and I. Bajic, “Near-lossless deep feature compression for
collaborative intelligence,” 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP), pp. 1–6, 2018.

[30] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. E. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,” ArXiv,
vol. abs/1412.6181, 2014.

[31] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation, M. Agrawal, D. Du, Z. Duan,
and A. Li, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 1–19.

[32] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
ArXiv, vol. abs/1607.00133, 2016.

[33] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network pre-
dictions via minionn transformations,” IACR Cryptology ePrint Archive,
vol. 2017, p. 452, 2017.

[34] Y. Tian, J. Yuan, and H. Song, “Efficient privacy-preserving
authentication framework for edge-assisted internet of drones,” Journal
of Information Security and Applications, vol. 48, p. 102354, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2214212618307038

[35] J. Li, H. Lu, and M. Guizani, “Acpn: A novel authentication framework
with conditional privacy-preservation and non-repudiation for vanets,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4,
pp. 938–948, 2015.

[36] C.-M. Chen, L. Chen, Y. Huang, S. Kumar, and J. M.-T. Wu,
“Lightweight authentication protocol in edge-based smart grid environ-
ment,” EURASIP Journal on Wireless Communications and Networking,
vol. 68, 2021.

[37] P. Gope and B. Sikdar, “An efficient privacy-preserving authenticated
key agreement scheme for edge-assisted internet of drones,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13 621–
13 630, 2020.

[38] Y. Zhang, D. He, L. Li, and B. Chen, “A lightweight authentication
and key agreement scheme for internet of drones,” Computer
Communications, vol. 154, pp. 455–464, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419319358

16

[39] P. Gope, “Pmake: Privacy-aware multi-factor authenticated key
establishment scheme for advance metering infrastructure in smart
grid,” Computer Communications, vol. 152, pp. 338–344, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0140366419313210

[40] J. M.-T. Wu, J. Zhan, and J. C.-W. Lin, “Ant colony system sanitization
approach to hiding sensitive itemsets,” IEEE Access, vol. 5, pp. 10 024–
10 039, 2017.

[41] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and M. Aloqaily,
“Privacy-preserving multiobjective sanitization model in 6g iot environ-
ments,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5340–5349,
2021.

[42] “N-sanitization: A semantic privacy-preserving framework for unstruc-
tured medical datasets,” Computer Communications, vol. 161, pp. 160–
171, 2020.

[43] J. C.-W. Lin, J. M.-T. Wu, P. Fournier-Viger, Y. Djenouri, C.-H. Chen,
and Y. Zhang, “A sanitization approach to secure shared data in an iot
environment,” IEEE Access, vol. 7, pp. 25 359–25 368, 2019.

[44] J. C.-W. Lin, Q. Liu, P. Fournier-Viger, T.-P. Hong, M. Voznak,
and J. Zhan, “A sanitization approach for hiding sensitive itemsets
based on particle swarm optimization,” Engineering Applications of
Artificial Intelligence, vol. 53, pp. 1–18, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197616300653

[45] J. M.-T. Wu, G. Srivastava, U. Yun, S. Tayeb, and J. C.-W. Lin,
“An evolutionary computation-based privacy-preserving data mining
model under a multithreshold constraint,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 3, p. e4209, 2021.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.
4209

[46] H. Bae, J. Jang, D. Jung, H. Jang, H. Ha, and S. Yoon, “Security and
privacy issues in deep learning,” ArXiv, vol. abs/1807.11655, 2018.

[47] J. Zhao, Y. Chen, and W. Zhang, “Differential privacy preservation in
deep learning: Challenges, opportunities and solutions,” IEEE Access,
vol. 7, pp. 48 901–48 911, 2019.

[48] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS âĂŹ15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1310âĂŞ1321.
[Online]. Available: https://doi.org/10.1145/2810103.2813687

[49] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong,
D. Ramage, and F. Beaufays, “Applied federated learning: Improving
google keyboard query suggestions,” CoRR, vol. abs/1812.02903, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02903

[50] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” CoRR, vol. abs/1811.03604, 2018. [Online]. Available:
http://arxiv.org/abs/1811.03604

[51] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated
learning of out-of-vocabulary words,” CoRR, vol. abs/1903.10635,
2019. [Online]. Available: http://arxiv.org/abs/1903.10635

[52] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. aurelio Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and
A. Y. Ng, “Large scale distributed deep networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1223–1231. [Online]. Available: http://papers.nips.cc/paper/4687-
large-scale-distributed-deep-networks.pdf

[53] J. Chen, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting
distributed synchronous SGD,” CoRR, vol. abs/1604.00981, 2016.
[Online]. Available: http://arxiv.org/abs/1604.00981

[54] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” CoRR, vol.
abs/1906.08935, 2019. [Online]. Available: http://arxiv.org/abs/1906.
08935

[55] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in CCS ’17, 2017.

[56] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018. [Online].
Available: http://arxiv.org/abs/1806.00582

[57] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” CoRR, vol. abs/1705.10467, 2017. [Online]. Available:
http://arxiv.org/abs/1705.10467

[58] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey,
“No peek: A survey of private distributed deep learning,” ArXiv, vol.
abs/1812.03288, 2018.

[59] C. Thapa, M. Chamikara, and S. Camtepe, “Splitfed: When federated
learning meets split learning,” ArXiv, vol. abs/2004.12088, 2020.

[60] I. Ceballos, V. Sharma, E. Múgica, A. Singh, A. Román, P. Vepakomma,
and R. Raskar, “Splitnn-driven vertical partitioning,” ArXiv, vol.
abs/2008.04137, 2020.

[61] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
ArXiv, vol. abs/1812.00564, 2018.

[62] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in health-
care,” ArXiv, vol. abs/1912.12115, 2019.

[63] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “Reducing leakage
in distributed deep learning for sensitive health data,” 2019.

[64] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. yeon Kim,
S. ÃĞamtepe, H. Kim, and S. Nepal, “End-to-end evaluation of federated
learning and split learning for internet of things,” 2020 International
Symposium on Reliable Distributed Systems (SRDS), pp. 91–100, 2020.

[65] V. Mirjalili, S. Raschka, A. Namboodiri, and A. Ross, “Semi-adversarial
networks: Convolutional autoencoders for imparting privacy to face
images,” 2018 International Conference on Biometrics (ICB), Feb 2018.
[Online]. Available: http://dx.doi.org/10.1109/ICB2018.2018.00023

[66] R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, “Privacy-
preserving deep learning algorithm for big personal data analysis,”
Journal of Industrial Information Integration, vol. 15, pp. 1 – 14,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2452414X18301456

Omobayode Fagbohungbe is currently working
towards his Ph.D. degree at U.S. DOD Center of Ex-
cellence in Research and Education for Big Military
Data Intelligence (CREDIT Center), Department of
Electrical and Computer Engineering, Prairie View
A&M University, Texas, USA. Prior to now, he
received the B.S. degree in Electronic and Electrical
Engineering from Obafemi Awolowo University, Ile-
Ife, Nigeria and the M.S. degree in Control Engi-
neering from the University of Manchester, Manch-
ester, United Kingdom. His research interests are in

the area of big data, data science, robust deep learning models and artificial
intelligence.

Sheikh Rufsan Reza received his B.S. (2013) in
electrical and electronics engineering from North
South University in Bangladesh and M.S. (2016)
in electrical engineering from University of Mas-
sachusetts Lowell, MA. He is currently working on
his PhD in electrical engineering from Prairie View
A&M University. His research interest includes im-
plementing lighter and robust machine learning mod-
els compatible for resource constraint devices for
computer vision tasks.

Xishuang Dong received the B.E. and M.E. degrees
in Computer Science and Technology, and Computer
Software and Theory from Harbin University of
Science and Technology, and Harbin Engineering
University, respectively in 2005 and 2008, respec-
tively. He received the Ph.D. degree in Computer
Application Technology from Harbin Institute of
Technology, China, in 2013. He is an Assistant Pro-
fessor with Department of Electrical and Computer
Engineering at Prairie View A&M University. His
research interests include deep learning, computa-

tional systems biology, and natural language processing.

17

Lijun Qian (SM’08) is Regents Professor and
holds the AT&T Endowment in the Department
of Electrical and Computer Engineering at Prairie
View A&M University (PVAMU), a member of
the Texas A&M University System, Prairie View,
Texas, USA. He is also the Director of the Center
of Excellence in Research and Education for Big
Military Data Intelligence (CREDIT Center). He

received BS from Tsinghua University, MS from
Technion-Israel Institute of Technology, and PhD
from Rutgers University. Before joining PVAMU,

he was a member of technical staff of Bell-Labs Research at Murray Hill,
New Jersey. He was a visiting professor of Aalto University, Finland. His
research interests are in the area of big data processing, artificial intelligence,
wireless communications and mobile networks, network security and intrusion
detection, and computational and systems biology.

