PPE Circuits for Rational Polynomials

Susan Hohenberger
Johns Hopkins University
Baltimore, MD, USA
susan@cs.jhu.edu

ABSTRACT

Pairings are a powerful algebraic setting for realizing cryptographic
functionalities. One challenge for cryptographers who design pair-
ing systems is that the complexity of many systems in terms of
the number of group elements and equations to verify has been
steadily increasing over the past decade and is approaching the
point of being unwieldy. To combat this challenge, multiple inde-
pendent works have utilized computers to help with the system
design. One common design task that researchers seek to automate
is summarized as follows: given a description of a set of trusted
elements T (e.g., a public key) and a set of untrusted elements U
(e.g., a signature), automatically generate an algorithm that verifies
U with respect to T using the pairing and group operations. To
date, none of the prior automation works for this task have support
for solutions with rational polynomials in the exponents despite
many pairing constructions employing them (e.g., Boneh-Boyen
signatures, Gentry’s IBE, Dodis-Yampolskiy VRF).

We demonstrate how to support this essential class of pairing
systems for automated exploration. Specifically, we present a so-
lution for automatically generating a verification algorithm with
novel support for rational polynomials. The class of verification
algorithms we consider in this work is called PPE Circuits (intro-
duced in [HVW20]). Intuitively, a PPE Circuit is a circuit supporting
pairing and group operations, which can test whether a set of ele-
ments U verifies with respect to a set of elements T. We provide a
formalization of the problem, an algorithm for searching for a PPE
Circuit supporting rational polynomials, a software implementa-
tion, and a detailed performance evaluation. Our implementation
was tested on over three dozen schemes, including over ten test
cases that our tool can handle, but prior tools could not. For all test
cases where a PPE Circuit exists, the tool produced a solution in
three minutes or less.

CCS CONCEPTS
« Security and privacy — Cryptography.

KEYWORDS
Automated Design; Provable Security; Pairing-based Cryptography

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484562

Satyanarayana Vusirikala
University of Texas at Austin
Austin, TX, USA
satya@cs.utexas.edu

ACM Reference Format:

Susan Hohenberger and Satyanarayana Vusirikala. 2021. PPE Circuits for
Rational Polynomials. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS 21), November 15-19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 20 pages. https:
//doi.org/10.1145/3460120.3484562

1 INTRODUCTION

Computer automation has the potential to revolutionize the cryp-
tographic design process, from discovering novel cryptographic
functionalities to verifying their security. Computers can operate
faster, with higher accuracy, and at a lower cost than the primarily
manual process in place today. The key technical challenge is to
devise (provably correct) algorithms that capture the human mind’s
incredible creativity in searching for a scheme with the desired
functionality or in devising an approach for reducing the security
of a cryptosystem to the hardness of a well-studied math problem.

Over the past decade, the field of cryptographic computer au-
tomation has exploded with promising results. There are software
tools for building novel cryptographic algorithms [9, 10, 14, 20,
45-47, 51], translating schemes from one algebraic setting to an-
other [3, 5, 7, 8, 55], analyzing the security of cryptographic as-
sumptions [15, 19], strengthening the security of signatures [8]
and automating proof generation and/or verification [18, 21-24].
Excitingly, these tools were employed to verify the security of
protocols in Amazon Web Services Key Management Service [11],
the cryptographic hash standard SHA-3 [13], key exchange proto-
cols [17, 34], multiparty computation protocols [44], commitment
schemes [52], software stacks [12], protocols in the Universal Com-
posability framework [34] and even algorithms designed by other
automated tools [6]. See Barbosa et al. [16] for a recent survey on
cryptographic automation.

The goal of this work is to continue this momentum by present-
ing a novel tool for automating cryptographic design. Specifically,
we focus on the pairing algebraic setting and put forth a tool that
given a description of a set of trusted elements T (e.g., public pa-
rameters) and a set of untrusted elements U (e.g., an IBE private
key) can automatically generate an algorithm that verifies U with
respect to T using the pairing and group operations. What dis-
tinguishes our tool from prior works is that it supports schemes
with rational polynomials (e.g., schemes with elements of the form
g'/a, gb/(@+c) etc). This includes schemes such as Boneh-Boyen
signatures [27] and identity-based encryption (IBE) [25], Gentry’s
IBE [37], the Dodis-Yampolskiy verifiable random function [36],
the Le-Gabillon multisignatures [49], and more, which prior tools
did not handle. Thus, we solve one of the major open problems
for pairing-based automation [47]. We now describe our goals and
contributions.

https://doi.org/10.1145/3460120.3484562
https://doi.org/10.1145/3460120.3484562
https://doi.org/10.1145/3460120.3484562

Pairing Product Equations (PPEs) and PPE Circuits. We focus on
the pairing algebraic setting, which is known for its high speed,
small bandwidth, and novel functionalities. The setting consists
of groups G1, Gy and G of prime order p, and a pairing function
which is an efficient, non-degenerate map e : Gy x G2 — Gr,
such that for all g € G, h € Gz and a,b € Z, it holds that
e(g% h?) = e(g, h)??. In some cases, G; can be the same as Gy.
See Appendix A.1 for a formal treatment. This function is often
leveraged in a cryptographic system to verify some elements with
respect to others. E.g., it might be used to verify a signature using
the public key.

Discovering correct verification algorithms can be extremely
challenging. For instance, consider these public parameters for
Waters Dual System Encryption [57]: (g, w,u,h,71 = v,y =
vvgz, ‘flb, sz, gb, g, g%, gbal R gb“Z, e(g, g)““lb). Is it obvious how
to use them with the pairing function to verify a private key of the
form (gaalvr1+r2’g—av;'1+rzgzl,g—bzl’ ,U;‘H'rzgzz’ g—bZZ’grzb, grl
(u'wth)™)), where I and t are public? No.!

To make searching for verification algorithms easier, multiple
works [20, 46, 47] have employed computers to hunt for them and
we build on this line of work. We begin our technical discussion by
formalizing the concept of a “pairing verification algorithm” as a
Pairing Product Equation (PPE) Circuit.

Following [43], a pairing product equation (PPE) over variables
ZAXi)2, Vi) is an equation of the form

n m m n
Z-[Jetany)- [Jexu By - [| [e vpr =1
i=1 i=1

i=1 j=1

>

where A, X; € G1, B;,Y; € G2,Z € Gr,yij € Zp. Following [47],
a PPE Circuit is a circuit whose gates are AND, OR, NOT or PPEs;
that is, a circuit that can evaluate PPEs together with other basic
logic. (We define this formally in Section 2.)

Earlier Automated Discovery of PPEs and PPE Circuits. Barthe,
Fagerholm, Fiore, Scedrov, Schmidt, and Tibouchi [20] presented an
automated tool for designing optimal structure-preserving signa-
tures in the pairing setting in 2015. The tool considers increasingly
larger candidates for the public key and signature structure, testing
to see if there is a conjunction of PPEs that can verify the sig-
nature with respect to the public key. In 2019, Hohenberger and
Vusirikala [46] generalized this approach with a tool that takes in a
description of any set of trusted pairing elements T and untrusted
pairing elements U and searches for a conjunction of PPEs that can
verify U with respect to T. In 2020, Hohenberger, Vusirikala, and
Waters [47] formalized the concept of a PPE Circuit and presented
the AutoCircuitPPE tool?, which takes as input the description of
the sets T and U and searches for a PPE Circuit that can verify U
with respect to T. They demonstrated that increasing the power
of the verification algorithm to arbitrary logic over PPEs enabled
the discovery of several novel verification algorithms including the
first algorithm to verify the Boyen-Waters anonymous IBE [31]
private keys with respect to the public key using 27 PPEs and 124
boolean gates.

!Indeed, no efficient verification algorithm even exists assuming that the Waters
Dual System Encryption scheme is secure [46], even though prior works [1] were
interested in finding such an algorithm.

Zhttps://github.com/JHUISI/auto-tools

Limitation of Prior Works. In prior works [20, 46, 47], all elements
of T and U had to be of the form ¢/ ™ for some multivariate poly-
nomial f over variables u = {uy, ..., ug}. These tools did not allow
elements with rational polynomials, such as gf (W/hW) tobeinT or
U, because for various settings of the variables u, the denominator
h(u) may evaluate to zero making the element ¢/ /(%) yndefined
and the prior algorithms did not address how to handle/prevent
these undefined elements. However, many pairing-based cryptosys-
tems use rational polynomials (e.g., [2, 25, 27, 36, 37, 49]). Thus,
finding a way to support rational polynomials in automated cryp-
tographic design was viewed as an important open problem [47].

1.1 Summary of Our Results

This work presents a formalization (Section 2), an algorithm (Sec-
tion 3) and software (Section 4) that takes as input a description of
trusted pairing elements T and untrusted pairing elements U, where
elements of either set can be of the form gf W/ for multivariate
polynomials f, h over variables u = {uy, ..., u}, and outputs either
a PPE Circuit that verifies U with respect to T or the special symbol
unknown. The property we require (and prove) of our automator
is that if it outputs a circuit, the circuit correctly verifies any U
given a valid T. However, outputting unknown is not a guarantee
that no circuit exists. Our algorithm (see Figure 7) is a superset of
prior logic [20, 46, 47], finding all schemes they could, and with the
addition of new logic many more. We name the implemented tool
AutoRationalPPE.

We tested AutoRationalPPE on over thirty-five test cases, in-
cluding over ten cases that our tool could handle, but prior tools
could not. These newly successful test cases include the Boneh-
Boyen signatures [27], Boneh-Boyen IBE [25], Gentry’s IBE [37], the
Dodis-Yampolskiy verifiable random function [36], the Le-Gabillon
multisignatures [49] and more. We included several custom test
cases to test schemes with over 100 elements, invoke different sub-
routines, etc. See Table 1.

For test cases where a PPE Circuit exists, AutoRationalPPE out-
put a solution in 3 minutes or less. Furthermore, for 90% of the cases,
it took under one minute. For schemes with solutions, the test case
that took the longest was the Boneh-Boyen Hierarchical Identity
Based Encryption [25] with 160 levels, which took almost three
minutes. We designed Custom Testcase 6 specifically to challenge
the tool with over 100 elements. For this test case, T contains g¢
and U contains g“z,gas, ... ,g“%, gl/aloo, gl/a. The tool took under
4 seconds to output a solution with 102 PPEs and 103 boolean gates.

We include two test cases that provably do not have PPE Cir-
cuits (including the impossibility of verifying the private keys
of [57] with respect to its public parameters, since this system
has semi-functional keys that are not in the private-key space but
cannot be distinguished from private keys). For both of these cases,
AutoRationalPPE correctly aborts and outputs unknown. It took 5.5
minutes to output unknown on [57], which was its longest-running
time in our tests.

Overall, we believe the tool is easy to understand and quick
enough for practical use. The source code of AutoRationalPPE is
publicly available at https://github.com/JHUISI/auto-tools.

https://github.com/JHUISI/auto-tools

1.2 Technical Overview

As stated in Section 1.1, the main algorithm of AutoRationalPPE (in
Figure 7) takes as input a description of sets T and U and outputs
either a PPE Circuit or the symbol unknown.

This algorithm is recursive. The base case is when there are no
untrusted elements (U = () and in this case, a trivial PPE Circuit
that outputs 1 on all inputs is the output. When U # 0, the algorithm
tries to “move” a single element F € U to T by seeing if there is
a test (that can be encoded as a circuit C) that validates F. If it
cannot find any F € U that it can “move”, then it aborts and outputs
unknown. If it can “‘move” an F, then it recurses on the (smaller)
subproblem where T’ = T U {F} and U’ = U/{F}. Suppose circuit
C’ is the output of the call on T’ and U’. The PPE Circuit output is
a combination® of C and C”.

This is our solution in a nutshell. The technical core of this
algorithm is in (1) how an element can be “moved” from U to T
and (2) how to build the final PPE Circuit as a combination of
subproblem circuits. We tackle the first challenge by applying one
of the four rules outlined below.

For all descriptions below, let F = g/ (/A1) Let InTrusted be
the set of variables in u that appear in any element in T. So, if
T = {ga7gb} and U = {gab’gac,gac/(a+h)’gl/(d+a)}, then u =
{a,b,c,d} and InTrusted = {a,b}. Let Space(T) be the set of ele-
ments that can be computed using elements of T.

Rules 1 and 2 are for when F contains only variables in InTrusted.
Rules 3a and 3b are for when F contains one or more variables not
in InTrusted; these are necessary to handle the fresh randomness
used in private keys and signatures, etc.

Rule 1 (Figure 2): This is a simple rule. It moves F € U to T
if (1) all variables in F are in InTrusted, (2) A = e(F,g) for
some A € Space(T) and (3) h(u) # 0. Here F can only be
paired with the generator g. In our example, we can check
(g%, g%) = e(F, g) to test if F is g2%.

Rule 2 (Figure 4): This is a generalization of Rule 1 that allows F
to be paired with an element F” € Space(T), instead of only the
generator g. It is less efficient than Rule 1, because it requires
both our recursive algorithm and the PPE Circuit it builds to
condition on whether or not F/ = ¢°. (Because the equation
e(g,9)° = e(F, F’) is trivially satisfied for all F when F’ = ¢°
and thus cannot be used to validate F in this case.)

In the first branch, we check if (1) F’ # ¢°, (2) all variables in
F are in InTrusted, (3) there exists an A € Space(T) such that
A = e(F,F’) and (4) h(u) # 0. If all conditions are met, it moves
F to T/, recurses on that smaller problem and adds this logic to
the PPE Circuit with a validation for F and a check that F’ # ¢°.
For instance, e(g%¢, g) = e(F, g%*?) can be used to check that
Fis g2¢/(@+b) swhen a + b # 0.

In the second branch where F’ = ¢°, the algorithm recurses on
the (possibly) reduced sets T/, U’ where zero is substituted for
the exponent of F’. It also adds any subcircuit produced for this
problem to the PPE circuit together with a check that F’ = ¢°.In
our example, where T = {g%, ¢} and U = {g20, g2¢, gac/(a+D)
gl/(d“‘) }, if we substitute a + b = 0 into these sets, element

3This combination is sometimes as simple as C AND C’, but as the reader can
see from Figure 7, it may also be more complex.

g2¢/(@+b) hecomes undefined. This branch is thus not allowed
and returns a circuit that always rejects.

The logic from these two branches will be connected with an
OR gate.

Rule 3a (Figure 5): Rule 3a handles F = ¢/ W/h() in U where

the numerator f(u) contains a variable not in InTrusted, but
all variables of the denominator h(u) are in InTrusted. Here we
look at numerators f(u) = h'u}i + h", where (1) u; is not in
InTrusted, 2) b’ and h(u) contain only variables in InTrusted,
(3) h”" does not contain uj, (4) d is relatively prime to p — 1 and
(5) h(u) # 0. This rule has a larger potential branching degree
than Rule 2, because it must additionally branch on whether
h’ # 0 since it cannot use F to validate u; if u; is zeroed out by
h’inF.
In our example, Rule 3a would identify F = g%¢ as a candidate
to move to trusted as ¢ is not in InTrusted. It must condition on
whether a = 0. In the branch where a # 0, it would move g%¢ to
trusted and set InTrusted = {a, b, c}. In the branch where a = 0,
it performs this substitution and recurses on the subproblem
T = {gO’gb} and U’ = {gO’gO’gC/b’gl/d}'

Rule 3b (Figure 6): Rule 3b is the same as Rule 3a, except now
all variables of the numerator must be in InTrusted and the
denominator contains a variable not in InTrusted. Using our
example, we consider the variable d in element F = g1/(d+@)
Since there is no coefficient for variable d, it will not need to
branch, and the rule will move F to T, and the main algorithm
will recurse on this smaller problem.

Tracking Zeros. Critically to our support for rational polynomials,
our main algorithm and rules also contain logic to ensure that at
no point is a denominator of any element zero or reduced with a
polynomial that evaluates to zero, because without this check, we
could erroneously lose track of when an element becomes unde-
fined. For instance, suppose the polynomial for an exponent of an
element is a(a + ¢)/(b(a + ¢)). We cannot reduce this to a/b unless
we first check that a + ¢ # 0.

Putting It All Together. Each time we apply one of the above rules, it
reduces the number of untrusted elements by one. It also adds logic
to our PPE Circuit, sometimes including 2 to 4 conditional branches.
The running time of our algorithm is exponential in the worst case
(see Section 3.4), but as discussed above, our tool is surprisingly effi-
cient in practice. In our tool, we also added optimizations to identify
and reduce redundant logic, where some branches led to checking
the same values repeatedly. In our tests, these optimizations greatly
reduced the size of the output circuits. The example we used here
with T = {g%,¢%} and U = {gP, g2¢, gac/(a+b) g1/(d+a)y yses all
four rules and after optimizations results in a PPE Circuit with 6
PPEs and 8 boolean gates. It is a simplified version of the Custom
Test Case 5 in Table 1 and Appendix D.2.

1.2.1 Relationship to Prior Work. On the same inputs, the running
time of our tool and the most comprehensive prior tool called

AutoCircuitPPE [47] are usually within a few seconds of each other.
They also find similar solutions.? This is good news considering

4Currently, both tools output the first solution they find instead of caching several
solutions and picking the most optimal. We discuss the possibility of adjusting this for
our tool in Section 4.4.

that our support for rational polynomials considerably enlarges the
potential branching degree of the search algorithm, which could
have negatively impacted both the search time and PPE Circuit size.
Our tool is even faster in some cases (such as the 100-DDH test
case).

The AutoRationalPPE code uses some elements of the public
source code of AutoCircuitPPE2. Both tools use the Generic Group
Analyzer [19], which has some support for rational polynomials.
However, we chose to write the needed subroutines to handle ra-
tional polynomials from scratch.

The high-level idea behind our Rules 1 and 2 have roots in sim-
ilar rules from [20, 46, 47], but are more complex as they require
“tracking zeros" as discussed above to prevent elements becom-
ing undefined. The high-level idea behind our Rules 3a and 3b
was inspired by [46, 47], although we removed redundancy, added
generalization and expanded it to keep elements from becoming
undefined. We then split it in two depending on whether a vari-
able not in InTrusted appears in the numerator (Rule 3a) or the
denominator (Rule 3b).

2 DEFINITIONS: EXPANDING PPE CIRCUITS

In the section, we formalize the notion of PPE Circuits with sup-
port for rational polynomials. It is an extension of the basic PPE
Circuits proposed in [47], and the basic PPE instance and challenge
notions proposed in [46]. We make a few critical changes needed
to handle undefined elements arising from an evaluation of zero in
the denominator of a rational polynomial. Let g1, g2, g7 be group
generators of prime order p for groups G1, G2, G respectively. Fol-
lowing [46, 47], we first rewrite any cryptographic scheme using a
single group generator for each group. For example, all elements in
G are set up to be derived as g7 for a single generator g; € G and
x € Zp. Thus, we now represent each group element in the scheme
with its group, along with a polynomial representing its exponent.
We represent a pairing-based cryptographic scheme in this form as
a PPE problem instance.

DEFINITION 2.1 (PPE PROBLEM INSTANCE [46, 47]). A pairing
product equation (PPE) problem instance II consists of >

e pairing parameters G =(p,g1,92.97.G1, G2,Gr.€),
e positive integers n, m,

o multivariate rational poly. r = (fi/h1,..., fm/hm) overn
variables in Zyp denotedu = (u1,...,un),

o a sequence of pairing group identifiers in I = {1,2, T} denoted
a=(a1,...,am),

e g set Trusted C [1,m].

The pairing parameters above can optionally indicate the type
of pairing group (e.g., Type L, II or IIl); unless otherwise speci-
fied we assume Type III pairings. Throughout the paper, we use
the notation InTrusted(IT) to denote the set of variables that ap-
pear in the Trusted set of polynomials of IT i.e., InTrusted(II) =
Ui eTrusted { variables used in f;} U {variables used in h;} C u. We
simplify the notation and use InTrusted whenever the problem
instance IT is implicit.

>Unlike the definition of [46], we do not include the set Fixed in the PPE Problem
Instance definition and unlike [47], we allow rational polynomials.

DEFINITION 2.2 (PPE CHALLENGE [46]). LetII = (G,n,m,r =
(fi/h1, ..., fm/hm).u, a, Trusted) be a PPE problem instance as in
Definition 2.1. Let R = (R, ..., Ry,) be comprised of pairing group
elements, where each R; is in group Gg;. R is called a challenge to
PPE instance I1. Challenges are classified as:

® R=(Ry,...,Rpm) is a YES challenge if there exists an assign-
ment to variablesu = (uy,...,uy) € ZZ such that for all i,

R; = géii(“)/hi(u). 6
e R=(Ry,...,Rp) isaNO challenge if it is not a YES challenge
and 3 an assignment tou = (u1,...,up) € Zz such that for

alli € Trusted, R; = gQi(“)/h"(“).é
® R = (Ry,...,Rp) is an INVALID challenge if it is neither a
YES nor NO challenge.

Following [46, 47], we can view an YES challenge as meaning
that both the trusted and untrusted elements are distributed as they
should be. Whereas in a NO challenge, the trusted elements are
correctly formed, but the untrusted ones are not. In an INVALID
challenge, the “trusted” elements are not drawn from the proper
distribution (e.g., the public parameters are not correct). Thus, we
do not consider this case.

Our goal is to automatically generate circuits that take as input
a PPE challenge (Definition 2.2) and output 1 for all YES challenges
and 0 for all NO challenges. The circuit will input a set of pairing
elements and output a single bit. Each gate of the circuit can be an
AND/OR/NOT/PPE gate.

The following three definitions do not require alteration from [47].

DEFINITION 2.3 (PPE Circurt [47]). A PPE circuit C is a tuple
(G, m, a, N, Gates, out, GateType, A, B), where

® G =(p, 91,92, 97, CG1, G2, G, €) establishes the algebraic set-
ting,

e integer m specifies the number of group elements in the circuit
input. We will refer to these as Inputs = {1,...,m}.

o the vector ¢ = (a1, ...,am) is a sequence of pairing group
identifiers in I = {1,2, T} for the input elements,

o integer N is the number of gates in the PPE circuit,

e Gates = {m+1,...,m+N}. We will refer to Wires = InputsU
Gates.

e out is the integer in Gates denoting the output gate. Unless
otherwise stated, out = m + N.

e GateType : Gates — {PPE,AND, OR,NOT} is a function
that identifies the gate functionality, which is one of the fol-
lowing:

— PPE: description includes a circuit with m Inputs wires
whose logic forms that of a PPE over variablesR1, ..., Rm
where each R; € Gy, as specified by o and the single output
wire of the PPE carries a bit representing whether or not the
input satisfies the PPE,

— AND: for gate g, the description specifies two integers a, b
wherem+1<a<b<yg.

— OR: for gate g, the description specifies two integers a, b
wherem+1<a<b<g.

SNote that since R; is a well-defined group element, satisfying R; = gﬁi(“)/h"“‘)

also implies h;(u) # 0.

— NOT: for gate g, the description specifies one integer a where
m+l<a<g.

e A : Gates — Wires and B : Gates — Wires are functions.
For any gate AND/OR/NOT g, A(g) identifies g’s first incom-
ing wire. For any AND/OR gate g, B(g) identifies g’s second
incoming wire. We require that g > B(g) > A(g), ignoring
B(g) when undefined. Recall that the input wires for all PPE
gates are the Inputs.

The circuit takes as input m group elements and outputs a single
output on a wire out.

DErFINITION 2.4 (PPE Circulit EvarLvaTion [47]). A PPE cir-
cuit evaluation Eval : C X (x1,...,xm) takes as input a PPE cir-
cuit C = (G, m, , N, Gates, out, GateType, A, B) together with an
m-element PPE challenge (x1,...,xm) which must be consistent
with (G, @) (i.e, xi € Gg,;). The algorithm outputs a bit in {0,1}.
The default evaluation algorithm is as follows. The input group ele-
ments (x1,- -+ ,Xm) are assigned to the m input wires. For each gate
g € Gates (in the increasing order of g), compute sq as follows ac-
cording to the description of GateType(g):

o if (PPE, §), then evaluate the PPE f using the assignment to
variables in (Ry, . . ., Ry). If the PPE is satisfied, then set sg =1
Otherwise, set sg = 0.

e if AND, then sg = sa(g) A SB(g)-

e ifOR, thensg = s4(g) V SB(g)-

o if NOT, then Sg = TSA(g)-

This algorithm outputs soyt. For the AND, OR and NOT gates, by the
rules of the circuit description, sa(g) and sp(q) will be defined before
they are used.

Following [47], we let C(x) denote Eval(C, x) i.e., evaluation of
the circuit C on input x. We let Cy(x) denote the output of gate g
of the circuit C on input x.

DEFINITION 2.5 (PPE CircurT TESTABLE / TESTING CIRCUITS [47]).
A PPE problem instance Il = (G, n, m, r,u, &, Trusted) is said to be
PPE circuit testable if and only if there exists a PPE circuit C =
(G, m, a, N, Gates, out, GateType, A, B). such that both of the fol-
lowing hold:
e C(x) =1 for every YES challenge x,
e C(y) = 0 for every NO challengey.
There are no conditions on the behavior of C for INVALID challenges.
For any PPE problem instanceIl, we call such a PPE circuit C a testing
circuit. A testing circuit for a PPE problem instance need not be unique.

For consistency, we adopt the circuit shorthands from [47], which
we review for the reader in Appendix B.

3 SEARCHING FOR A PPE TESTING CIRCUIT
WITH RATIONAL POLYNOMIAL SUPPORT

In this section, we describe an algorithm that searches for a PPE
testing circuit Q for a given PPE problem. The algorithm takes a PPE
problem IT as input and either outputs a PPE testing circuit Q or the
special symbol unknown. In the former case, the problem IT is circuit
testable. In contrast, in the latter case, we cannot determine whether
IT is PPE circuit testable or not. Therefore, the algorithm has one-
sided correctness. If the algorithm outputs that IT has testing circuit
Q, this will be true.

Following the prior works [46, 47], our algorithm proceeds in a
sequence of steps. In each step, the algorithm (attempts to) “reduce
the complexity” of its input by adding a rational polynomial f;/h; to
the set Trusted and simultaneously modifying the testing circuit Q.
The prior works define a set of rules to determine which polynomial
is supposed to be added to Trusted and how to modify the testing
circuit Q at each step. In the end, if we can obtain Trusted = [1, m],
then we will have found a testing circuit. If, at any point, Trusted #
[1, m] but none of the movement rules can be applied, the algorithm
terminates and outputs unknown. As the earlier works consider
only regular polynomials, we extend the rules to the case where
the PPE problem contains rational polynomials.

Reception List
Input: Pairing information G, Lengths |t;], [t2], |tT|
Output: Reception lists 1, Iy, 11

(1) for each i € {1, 2, T}, initialize 1; with |t;| number of
fresh variables, i.e., let1; = {w; 1, - =+, wy j1;/}

(2) If an isomorphism ¢ : G; — Gy exists, thenly := 1, UL;.
If an isomorphism ¢ : G, — Gy exists, thenl; :=1; Ul

B) Ir=1r U{B1f2: 1 €Ly, f2 €lp}

Figure 1: Algorithm to find reception list of a list of polyno-
mials

3.1 Completion Lists for a List of Polynomials

In the section, we review the concept of completion lists in the
pairing setting as described by Barthe et al. [19]. Consider any list
r=[fi/h1,..., fi/hi] of polynomials. Let the ith entry belongs to
the group G, where a; € 7 = {1,2,T} forall i < k. For any group
Gy, let t; be all the polynomials in the group i.e., t; = {fj/hj : aj =
i}. We now recall the notion of completion CL(r) = {s1,s2,sT}
of the list r of polynomials with respect to a group setting [19].
Intuitively, CL(r) is the list of all polynomials that can be computed
by an adversary by applying pairing and isomorphism operations,
when he has access to the elements in the list r.

The algorithm to compute the completion CL(r) proceeds in two
steps. In the first step, it computes the reception lists {1;};c 7 as
shown in Figure 1. The elements of the reception lists are mono-
mials over variables w; j for i € I, j € [t;|. The monomials
characterize which products of elements in t the adversary can
compute by applying pairing operations. The result of the first
step is independent of the elements in the lists t and only de-
pends on the lengths of the lists. In the second step, the algo-
rithm computes the actual polynomials from the reception lists
ass; = [my(t),...,mp, ()] for [my,...,my,] = 1;, where every
my is a monomial over the variables w; ; and my(t) denotes the
result of evaluating the monomial m; by substituting w; ; with
t;[j] fori € I and j € |t;|. When evaluating these monomials, we
do not cancel out any common factor in the numerator and the
denominator of the result.

3.2 Rules for Moving Polynomials into the
Trusted Set

We now describe four rules for reducing the complexity of a PPE
instance. We mean reducing the number of elements represented

by the rational polynomials, not in the set Trusted. We derive the
rules closely based on the rules proposed in [46, 47] that were
designed for non-rational polynomials. From now on, we assume
the formal variables Ry, Ry, - - - , Ry, represent group elements of
any PPE challenge corresponding to IT. These formal variables also
represent the input wires of the PPE circuit C being constructed.

3.2.1 Rule 1: Simple move of a rational polynomial with all
InTrusted variables to Trusted set. In this section, we show how
to simplify the given PPE problem by moving a rational polynomial
not in Trusted to Trusted. Given a PPE problem IT = (G,n,m,,
u, ¢, Trusted) and an index k € [m], rule 1 can possibly be applied
if k ¢ Trusted and the polynomial fi./hy € r consists only of
variables u; € InTrusted (these conditions are necessary, but not
sufficient). The rule 1, which is shown in Figure 2 is adapted from
Rule 1in [46, 47]. These works for non-rational polynomials express
the untrusted polynomial f; in terms of polynomials in Trusted.
Such an expression gives rise to a pairing product equation that can
verify the well-formedness of the k" element in any PPE challenge.
In this paper, we adopt Rule 1 to rational polynomials. Here, we
additionally express the denominator Ay in terms of the Trusted
polynomials and add a pairing production equation to the final
PPE circuit to verify that the denominator hj does not evaluate to
0. We now formally describe our Rule 1 in Figure 2 and prove its
correctness property in Lemma 3.1.

LEmMA 3.1 (CORRECTNESS OF RULE 1). Let II = (G,n,m,1,u,
a, Trusted) be a PPE problem instance as in Definition 2.1 and let
k € [m]. Suppose L# (C,I1') = Rule1(I1, k). Then, for every testing
circuit C’ for I, it holds that C AND C’ is a testing circuit for II.

Proof. The proof of this lemma appears in Appendix C.1.

Description of Rule 1
Input: A PPE problem IT = (G, n, m, 1, u, &, Trusted) and an
integer k € [1, m].
Output: A PPE circuit C and a circuit PPE problem IT’, or the
symbol L (meaning could not apply rule).
Steps of Rule1(I, k):

(1) If k € Trusted or rp = fix/hg € r has variables not in
InTrusted, abort and output L.

(2) Compute completion lists {si, s2, s} = CL(rT"’Sted).For
any i € I and j < |s;|, lets;[j] = £;[j1/h:[j], S: /] =
gsofi[j], and let U; [j] be the pairing product term comput-
ing S;[j] in terms of formal variables Ry, - - -, Rp,.

(3) Foreachi € I,let H; be a least common multiple of the

polynomials {#;[j]} jels;|» and let the polynomial f,[]]
be such that f;[j]/H; = f;[j1/hi[j].

(4) Check if there exist and index i € I and constant vectors
a=(a, ", asyp)andb = (by, - - -, bjs;|) with entries
inZp st

IsT] IsT] A s
_Je _ . frijl
rk=h*=zaj'ST[l]=Zaj'H7T 0]
Jj=1 Jj=1
Isil Isil A
_ q filj]
hk:;bj.si[,]:;bj- i,)

These equations can also be expressed as

IsTl
frx - Hr = hi 'Zaj'fTU] 3)
=1
Isil
hi -Hi=) b - fill] @
=1

respectively. Computing such coefficient vectors reduces
to checking if the polynomial 0 belongs to the span of all
the polynomials in the left hand side and the right hand
side of the above equation.

If such a, b exists, define the PPEs

Iszl Ry ifap =T

A= Ul ={e(Rp. 92) ifax =1
7= e(g1, Rp) ifagp =2

G

~

Isil

B:=[|uli? =1
Jj=1

where I; is the identity element in group G;. Now
define PPE circuit C as MakeCircuit(G, m, a, A)
AND (NOT MakeCircuit(G, m, «, B)). Output
the circuit C along with PPE problem II' =
(G, n, m, 1, u, a, TrustedU{k}).If such a, b do not exist,
output L.

Figure 2: Procedure for moving certain rational polynomi-
als rp = fi./hg with all InTrusted variables to Trusted

Description of SubstituteZero Algorithm
Input: A PPE Problem IT = (G, n, m, r, u, o, Trusted) and poly-
nomial A.
Output: A PPE Problem I or L.

e Construct vector r’ of m rational polynomials as follows.

For each k € [m], let ri = fi/hg.

- If fx = Poly,; - h + Poly, for some polynomials Poly,
and Poly,, such that (1) Poly, does not have h as a
factor, and (2) the number of monomials in Poly, is
less than f; when expressed in canonical form, then
set numg = Poly,. Otherwise, set numy = fj.

- If hy = Poly; - h + Poly, for some polynomials Poly,
and Poly,, such that (1) Poly; does not have h as a
factor, and (2) the number of monomials in Poly, is
less than hj when expressed in canonical form, then
set denomy = Poly,. Otherwise, set denomy = hy.

- 1 = numg/denomg.

o If denomy = 0 for any k, then output L. Otherwise,
output I’ = (G, n, m, v, u, &, Trusted).

Figure 3: Algorithm for updating a PPE problem instance
when a specified polynomial 4 is set to 0.

3.2.2 Rule 2: More general move of a rational polynomial
with all InTrusted variables to Trusted set. In this section, we
show a more general way to move a rational polynomial not in
Trusted to Trusted. Given a PPE problem IT = (G,n, m, r, u, &, Trusted)
and an index k € [m], rule 2 can possibly be applied if k ¢ Trusted
and the polynomial fi/hy € r consists only of variables u; €
InTrusted (these conditions are necessary, but not sufficient). In
Rule 1, we expressed the untrusted polynomial fi /hy in terms of
polynomials in Trusted. However, in the expression, we didn’t allow
fx/hy to be multiplied by any factor. In rule 2, we consider more
general way to express fi/hy in terms of polynomials in Trusted,
by allowing expressions of the form

(fx/hg) - (some combination of trusted polynomials)

= (some other combination of trusted polynomials).

Once we obtain such an expression, we move f;/hy to the trusted
set and add a PPE corresponding to the expression to our final
PPE circuit. This PPE is supposed to verify well-formedness of k? h
untrusted element in any PPE challenge.

However, there is one issue here. Suppose the factor that is
multiplied to fi./hy in the above expression evaluates to 0 on a
given PPE challenge. In that case, the PPE does not verify the well-
formedness of fi/hy as the PPE might be trivially satisfied. To
solve the issue, we adopt the approach proposed by [46, 47] in
their Rule 3. We break the scenario into 2 cases. (1) The factor that
is multiplied to fi/hy in the above expression does not evaluate
to 0. (2) The factor evaluates to 0. In the former case, the above
PPE validates the well-formedness of the untrusted element. In the
latter case, we try to apply other rules. As earlier, we additionally
express the denominator hy in terms of the Trusted polynomials
and add a pairing production equation to the final PPE circuit to
verify that the denominator h; does not evaluate to 0. We now
formally describe our Rule 2 in Figure 4 and prove its correctness
property in Lemma 3.2.

LEMMA 3.2 (CORRECTNESS OF RULE 2). Let Il = (G,n,m,1,u,
a, Trusted) be a PPE problem instance as in Definition 2.1 and let
k € [m]. Suppose L# (Isldentity, C,II",1I"") = Rule2(IL, k).

o IfI1” #.1, for every pair of testing circuits C' and C"" for Il
and 11" respectively, the PPE circuit

Z := ((NOT Isldentity) AND C AND C’) OR (Isldentity AND C”)

is a testing circuit for I1.
o IfT1” =1, for every testing circuit C’ forIl’,

Z := ((NOT Isldentity) AND C AND C’)
is a testing circuit for II.
Proof. The proof of this lemma appears in Appendix C.2.

3.2.3 Rule 3a: General move of a rational polynomial r; =
fx/hi with multiple non-InTrusted variables to the Trusted
set. We now describe a way to move a rational polynomial not
in Trusted to Trusted when the polynomial is allowed to have
non-InTrusted variables’ in the numerator. Given a PPE problem
IT = (G,n,m,r, u, &, Trusted) and an index k € [m], rule 3a can
possibly be applied if k ¢ Trusted, the polynomial h € r consists
only of variables u; € InTrusted, and f; contains one or more
non-InTrusted variables (these conditions are necessary, but not
sufficient). In Figure 5, we formally describe the Rule 3a, which is
an extension of Rule 4 in [46, 47]. We prove its correctness property
in Lemma 3.3.

LEMMA 3.3 (CORRECTNESS OF RULE 3A). Let Il = (G,n,m,r,u,
a, Trusted) be a PPE problem instance as in Definition 2.1, j € [n]
and k € [m]. Suppose L# (Isldentity, C,IT’,11"") = Rule3a(IL, j, k).

e IfI1” #1, for every pair of testing circuits C' and C" forII’
and I1"" respectively, the PPE circuit

Z = ((NOT Isldentity) AND C AND C’) OR (Isldentity AND C”)

is a testing circuit for I1.
o IfT1” =1, for every testing circuit C’ forIl’,

Z := ((NOT Isldentity) AND C AND C’)
is a testing circuit for I1.
Proof. The proof of this lemma appears in Appendix C.3.

3.24 Rule 3b: General move of a rational polynomial r, =
fx/hr with multiple non-InTrusted variables to the Trusted
set. In this section, we show describe a way to move a rational poly-
nomial not in Trusted to Trusted when the polynomial is allowed
to have non-InTrusted variables® in the denominator. Given a PPE
problem IT = (G,n, m,r, u, &, Trusted) and an index k € [m], rule
3b can possibly be applied if k ¢ Trusted, the polynomial f; € r
consists only of variables u; € InTrusted, and h; contains one or
more non-InTrusted variables (these conditions are necessary, but
not sufficient). In Figure 6, we formally describe the Rule 3b. We
prove its correctness property in Lemma 3.4.

"Recall that InTrusted variables are the set of all variables used in the Trusted
set of polynomials.

8Recall that InTrusted variables are the set of all variables used in the Trusted
set of polynomials.

Steps of Rule2(II, k):

RN
with entries in Zj, s.t.

Isal s

These equations can also be expressed as

e

side and the right-hand side of the above equation.)
(5) If such (a, b, c) exist, then compute PPEs

[se|

Isil
A= ([| Vel =1a), D=1 = [|Ulj19
j=1 Jj=1

where I, is the identity element in group G.

Trusted set of polynomials).

(6) If such (a, b, c) do not exist, then output L.

Description of Rule 2
Input: A PPE problem IT = (G, n, m, r, u, o, Trusted) and an integer k € [1, m].
Output: Two PPE circuits Isldentity, C and two circuit PPE problems IT’, I1”, or the symbol L (meaning could not apply rule).

(1) If k € Trusted or ay = T or rg = fi./hy € r has variables not in InTrusted, abort and output L.

(2) Compute completion lists {sq, s, s7} = CL(r"™st¢d) Forany i € T and j < |s;|, let s;[j] = j?i U1/R: 1), Silj] = gz,ii[j], and let U;[j] be
the pairing product term computing S;[j] in terms of formal variables Ry, - - - , Rp,.

(3) Foreachi € I,let H; be aleast common multiple of the polynomials {hi[j] }jels;|» and let the polynomialf,— [j] be such thatf,-[j]/Hl- =

(4) Let @ = 3 — ag. Check if there exists an index i € 7 and constant vectors a = (ay, - -

A ors IsT| IsT| A r.
ries (O by salil) = Z—’; -(ij -f“m) =>a; srlil=) a5 -fT[T’] 5)
j=1 J=1 « j j

Isil

fie - Hr - () by - fulil) = hic - Ha -), aj - frlJ] ()
Jj=t j

hy -Hr = ch - fri 8)

(Computing coefficient vectors a, b, ¢ reduces to checking if the polynomial 0 belongs to the span of all the polynomials in the left-hand

e Compute II' = (G, n, m, 1, u, &, Trusted U {k}) and I1” = SubstituteZero(Il, Z‘S"‘l b; -fa [j]), where the SubstituteZero algorithm
is described in Figure 3. Intuitively, SubstituteZero creates a new PPE problem instance by substituting ZlS“‘ b; - fa [j] with 0 in the

e If II” = I, then output L. Otherwise, output the circuit Isldentity := MakeCircuit(G, m, a, A), the circuit C :=
MakeCircuit(G, m, &, B) AND (NOT MakeCircuit(G, m, &, D)) and PPE problems IT’, I1”.

s sp)s b= (b1, -, bsg) and e = (c1, -+ -, €ps;))

Jj=1 J=1

.. fg] ©

Ist]

Jj=1
IsT]

j=1

b= [Ui - {e(Rk’ 16 Ual®) i = 1
j=1

e([154 Ua[/1%, Ry) if oy =2

Jj=1

Jj=1

Figure 4: A more general procedure for moving certain rational polynomials r;. = fi./h; with all InTrusted variables to Trusted

LEMMA 3.4 (CORRECTNESS OF RULE 3B). Let Il = (G,n,m,1,u,
a, Trusted) be a PPE problem instance as in Definition 2.1, j € [n]
and k € [m]. Suppose L# (Isldentity, C,IT’,11"") = Rule3b(IL, j, k).

o IfI1” #.1, for every pair of testing circuits C' and C"" forIl’
and 11" respectively, the PPE circuit

Z = ((NOT Isldentity) AND C AND C’) OR (Isldentity AND C”)

is a testing circuit for I
o IfII” =1, for every testing circuit C’ forIl’,

Z = ((NOT Isldentity) AND C AND C’)

is a testing circuit for I

Proof. The proof of this lemma appears in Appendix C.4.

3.3 Applying the Rules

We now describe how to combine Rules 1-3b into the main algo-
rithm that takes input a PPE problem and outputs a PPE circuit
or the special message unknown. Here unknown means that the

search did not produce an output but does not prove that no such
testing circuit for the input problem exists. We describe the algo-
rithm QSearch in Figure 7. Later in Theorem 1, we prove that if
this algorithm produces a testing circuit as output, then that cir-
cuit is guaranteed to classify PPE challenges for this PPE problem
correctly.

THEOREM 1 (CORRECTNESS OF THE PPE CIRCUIT SEARCHING AL-
GORITHM IN FIGURE 7). Let IT = (G,n,m,r, u, &, Trusted) be a
PPE problem instance as in Definition 2.1. Let C = QSearch(II). If
C # unknown, then C is a PPE testing circuit forI1 as in Definition 2.5,
and therefore I1 is circuit testable.

Proor. This follows the corresponding theorem in [47]. We
sketch how to prove this by induction on the number of untrusted
polynomials and the total number of monomials in all the poly-
nomials of f. The critical correctness arguments required have al-
ready been covered for each rule in Lemmas 3.1, 3.2, 3.3, 3.4. When
QSearch is invoked on IT with either zero untrusted polynomials or

Description of Rule 3a
Input: A PPE problem II = (G, n, m, r, u, «, Trusted) and integer k € [m].
Output: Either two PPE circuits Isldentity and C and two PPE problems IT’, I1”, or L (meaning could not apply the rule).
Steps of Rule3a(Il, j, k):

(1) Let the polynomial ry = fi/hg € r.If k € Trusted, then abort and output L.
(2) If fx is of the form h’ - qu + h” and any of the following conditions do not hold, abort and output L.
e j ¢ InTrusted,
o the polynomials h’, hj contains only variables in InTrusted, and
e the polynomial h” contains any variables other than u;, and
o the constant d € Z,, is relatively prime to p — 1,

(3) Compute completion lists {sq, sz, s7} = CL(rT'“StEd). Foranyi € 7 and j < |s;], let s;[j] :fi[]‘]/zi[j], Silj] = S’D] , and let U;[j] b

the pairing product term computing S;[j] in terms of formal variables Ry, - - - , Rpp,.

(4) Foreach i € 71, let H; be a least common multiple of the polynomials {h;[j]};¢|s;|, and let the polynomial f;[j] be such that f;[j]/H; =
£/ kiG]

(5) Check if there exists constant vectorsa = (ay, az, * -+, @jsp() andb = (by, by, - - -, bjs;|) with elements in Z, such that b’ = Z‘ST‘ aj fIT{LT’] R

and hy = Z‘ST‘ b; me These equations can be equivalently expressed as b’ - Hy = Z‘] 1 aj fT[_) land hy - Hr = Z‘ 7l b; fT Ul
(6) If such vector a exists, then

e Set PPE
Is]

IsTl
A=[oY =1r, B:=| |urin® =
j=1 j=1

j=
where I7 is the identity element of the group Gr. Define Isldentity := MakeCircuit(G, m, «, A), C := NOT MakeCircuit(G, m, o, B).
e Set PPE problem Il” = (G, n, m, 1, u, &, Trusted U {k}) and II” = SubstituteZero(II, h’), where the function SubstituteZero is defined
in Figure 3. If I1” = II, then output L. Otherwise, output Isldentity and IT’, IT”.
(7) If such vector a does not exist, then output L.

Figure 5: Procedure for moving a rational polynomial r; = fi./h; containing non-InTrusted variables only in f; to Trusted

Description of Rule 3b
Input: A PPE problem IT = (G, n, m, r, u, &, Trusted) and integer k € [m].
Output: Either a PPE circuit Isldentity and two PPE problems IT’, I1” or L (meaning could not apply the rule).
Steps of Rule3b(II, j, k):

(1) Let the polynomial rg = fi./hy € r.If k € Trusted, then abort and output L.
(2) If hy is of the form A’ - u]“i + h” and any of the following conditions do not hold, abort and output L.
e j ¢ InTrusted,
o the polynomials 4’, fi. contains only variables in InTrusted, and
e the polynomial h” contains any variables other than u;, and
o the constant d € Z,, is relatively prime to p — 1,

(3) Compute completion lists {sj, sz, s7} = CL(rTrusted) For any i € I and j < |s; |, let s;[j] :fi[i]/ﬁi[j], Silj] = S’U] , and let U;[j] b

the pairing product term computing S;[j] in terms of formal variables Ry, - - -, Ry,.
(4) Foreach i € 1, let H; be a least common multiple of the polynomials {h;[f]};¢|s;|, and let the polynomial f;[j] be such that f;[j]/H; =
fiU1/ RG]
(5) Check if there exists constant vectors a = (a1, @z, * * + , @jsp|) and b = (by, by, - - -, bjs;|) With elements in Z,, such that
IsTl Ao IsT]
. frll f T [1
h = 4 aj - TT’ f Z b

These equations can be equivalently expressed as h’ - Hy = ZI Tl a; - frljl, and fx - Hr = 2‘ 7! b; - frljl.
(6) If such vector a and b exists, then
e Set PPE
IsT] sT|
A= l_[UrljlY =1r, ﬂ bj =1y, D:=Ry=1Ir
j=1 =1
where I is the identity element of the group Gr. Define Isldentity = MakeCircuit(G, m, «, A), B’ = MakeCircuit(G, m, o, B) and
D’ = MakeCircuit(G, m, «, D).
e Set PPE problem Il" = (G, n, m, 1, u, &, Trusted U {k}) and I1” = SubstituteZero(Il, h’), where the function SubstituteZero is defined
in Figure 3. If I1” = II, then output L. Otherwise, output Isldentity, C = (NOT B’) OR (B’ AND D’) and IT’, IT".
(7) If such vector a does not exist, then output L.

Figure 6: Procedure for moving a rational polynomial ri = fi./h; containing non-InTrusted variables only in Ay to Trusted

zero total number of monomials, it outputs the always accepting cir-
cuit Cacc which is a valid testing circuit. Now suppose the QSearch
algorithm outputs a valid testing circuit or unknown on every prob-
lem 1’ which has at most @ number of untrusted polynomials and
at most f total number of monomials in f. Suppose QSearch out-
puts a circuit C # unknown on a problem IT with « + 1 untrusted
polynomials and at most f total number of monomials in r. It must
have invoked one of the 4 rules. By Lemmas 3.1, 3.2, 3.3, 3.4 and our
induction hypothesis, C is a valid testing circuit. Similarly, QSearch
outputs either a valid testing circuit or unknown when invoked on
a problem IT with at most & untrusted polynomials and § + 1 total
number of monomials in f. By induction, for any II, if QSearch(IT)
does not output unknown, then it outputs a valid testing circuit for

. [|

3.4 Efficiency of QSearch

The asymptotic time complexity of the QSearch algorithm will be
exponential, although fortunately our experiments from Section 4
show that it is surprisingly fast in practice. Let us now analyze its
running time. A call to QSearch scans all the untrusted polynomials
to check if any rule is applicable and then calls QSearch recursively
at most two times.

Let us first compute the time taken to scan all the untrusted
polynomials and check if any rule is applicable. Let us denote the
size of a polynomial to be the total number of additions and mul-
tiplications involved in the normal form of the polynomial (e.g.,
the size of x?yz + 3z3y> is 5). Therefore, multiplying 2 polynomials
of size s; and sy takes O(s1sy) time. Let the maximum size of all
polynomials f in the input be s. Executing any rule involves com-
puting completion lists followed by checking if 0 lies in the span of
certain polynomials. Computing completion lists of m polynomials
involves O(m?) polynomial multiplications take O(m? - s?) time.
Normalizing the rational polynomials to have a common denomina-
tor involves multiplying m? polynomials in the completion list each
of size s?, which takes O(m? -szmz) time. Suppose we want to check
if 0 lies in the span of O(m?) polynomials (number of polynomials in
the completion lists), each having at most O(szmz) monomials after
normalization. This involves solving a system of O(m? -szmz) linear
equations (upper bound on the number of monomials in the com-
pletion list) each of size O(m?). This takes at most O((m? - ssz)"’)
time, where n® is the complexity of multiplying two n X n matrices.
Therefore, applying all the rules to all the untrusted polynomials
takes at most O(m - (m? - szmz)“’) time.

Now let us compute the total number of times we call the QSearch
algorithm recursively. Suppose QSearch is run on problem IT and
suppose it triggers a rule that outputs two PPE problems II” and
I1””. We obtain the problem I1” by moving an untrusted polynomial
to the trusted set, and the problem I1"”” is obtained by substituting
some polynomial by zero. Note that II”” cannot be equal to the orig-
inal problem as Rule2 — 3b outputs L otherwise. Therefore some
polynomial of II”” has at least one lesser monomial than I1. Let the
total number of monomials in all the polynomials of I be k. By the
above analysis, the QSearch is recursively invoked at most om+k
times. As each recursive call takes at most O(m - (ms)?®) time, the
SZmz)a) .gm+k

total time taken by our algorithm is O(m - (m? -) time.

Even though our algorithm has high theoretical complexity, in Sec-
tion 4 we show that it runs reasonably fast for many real-world
schemes.

Main Algorithm for PPE Testing Circuit Search
Input: A PPE problem II = (G, n, m, 1, u, e, Trusted).
Output: A PPE circuit Q or the special symbol unknown.
Steps of QSearch(II):
Start. If Trusted = [m], then output the always accepting cir-
cuit Q := Cycc.
Rule 1. For k =1 to m,
(a) Call z = Rule1(I, k).
(b) If z = (C, 1) #L, then
(i) Call C’ = QSearch(IT’)
(ii) If C" # unknown, then output the PPE circuit Q :=
C AND C".
Rule 2-3b. For rule in {Rule2, Rule3a, Rule3b}, k = 1 to m,
(a) Call z = rule(I], k).
(b) If z = (Isldentity, C, I, IT”) #.L, then
(i) Call C’ = QSearch(IT")
(ii) If C" # unknown and II” =1, then output Q :=
((NOT Isldentity) AND C AND C).
(iii) If C" # unknown and I1” #1, then call C” =
QSearch(I1”)
(iv) If C" # unknown and C” # unknown, then output
the PPE circuit
Q = ((NOT Isldentity) AND C AND C’) OR
(Isldentity AND C”).
Final. Otherwise, output unknown.

Figure 7: Recursive procedure for searching for a PPE Test-
ing Circuit

4 IMPLEMENTATION

We implemented the PPE circuit searching algorithm described in
Figure 7 in a software tool called AutoRationalPPE. We ran the tool
on a number of signature, verifiable random function and advanced
encryption schemes as well as other types of pairing-based pub-
lic/private parameters, including some that are PPE circuit testable
and some that are provably not. Our tool was able to produce out-
puts for the schemes based on rational polynomials left open by the
previous AutoPPE and AutoCircuitPPE tools [46, 47] and for several
new schemes. We now present the design of the AutoRationalPPE
tool followed by its test case results and performance numbers.

4.1 AutoRationalPPE Implementation

We implemented AutoRationalPPE using Ocaml version 4.02.3. We
built the code on top of the AutoCircuitPPE® tool (Hohenberger et
al. [47]), which in turn utilizes some of the parsing tools and data
structures (to store polynomials) of the Generic Group Analyzer
(GGA) tool!® of Barthe et al. [19]. We also used the SageMath
package!! to solve systems of linear equations and implemented
the remaining logic ourselves.

*https://github.com/JHUISI/auto-tools
1Ohttps://github.com/generic-group-analyzer/gga
https://www.sagemath.org/

Input File Example
maps G1 * G1 ->GT.
trusted_polys [F1 = a] in G1.
untrusted_polys [F2 = a*a, F3 = a*a*a, F4 = 1/(a*a*a”a), F5 = 1/a] in G1.

Figure 8: Input file for our detailed example.

The input format of AutoRationalPPE is similar to the
AutoCircuitPPE tool, which makes testing with both tools easier.
For the sake of completeness, we present the input format below.
The tool’s input consists of pairing information (such as the Type I,
IT or ITT) and a set of trusted/untrusted polynomials along with their
group identifiers.'® In addition, the tool optionally takes as input
information that allows the tool to help the user encode some cryp-
tosystem parameters as a PPE problem instance. In particular, all
trusted and untrusted elements (represented by rational polynomi-
als) are bilinear group elements in G1, Gz or Gt and Definition 2.1
does not allow including an element in Z,, in either set. However,
since it is not uncommon for schemes to contain elements in the
Zp domain as part of their public or private parameters, we imple-
mented a workaround for those schemes similar to AutoPPE and
AutoCircuitPPE.'* The tool runs the algorithm in Figure 7 along
with a few optimizations implemented in AutoPPE and AutoCir-
cuitPPE such as computing completion list before applying all the
rules. It finally outputs either a PPE circuit or the special symbol
unknown. The PPE circuit computed by the QSearch algorithm is
generally very large, and therefore we further optimize the circuit
by a few techniques such as computing common sub-circuits only
once.

The source code for AutoRationalPPE comprises roughly 4K
lines of Ocaml code, and the input description of each pairing
based scheme we tested consists of less than 10 lines of code. The
ease of converting a given pairing based scheme into the input
format for AutoRationalPPE makes the tool highly practical and
useful. The source code of AutoRationalPPE is publicly available
at https://github.com/JHUISI/auto-tools.

12

4.2 A Detailed Example

In this section, we explain how to use our tool via a detalied example.
In Figure 8, we present a sample input to our tool. Here, we intend to
verify the well-formedness of group elements (_qf2 , gf3 s gi /at , g} / 9,
given gf i.e., the a is the trusted polynomial and (a?,a,1/a*, 1/a)
are the untrusted set of polynomials. We compute the PPE circuit
that verifies the well-formedness of above untrusted polynomials
using our tool.

In the input file to our tool, we specify the pairing information us-
ing the line maps G1%G1->GT, which denotes a Type I pairing!®. We
then specify the trusted set of polynomials along with their group
identifiers using trusted_polys [_] in G_. We then specify the
untrusted set of polynomials along with their group identifiers

2Unlike AutoCircuitPPE, our tool takes 2 polynomials for each formal variable
representing numerator and denominator.

3While this program input is in a slightly different format than Definition 2.1, we
stress that it is the same information.

4Whenever a polynomial f; / h; is added to the Trusted set, then the implementa-
tion also adds u; - f;/h; for any variables u; representing elements in Z,,.

15 Alternately, a Type II pairing could be specified by maps G1%G2->GT, isos G1
->G2, and a Type III pairing could be specified by maps G1*G2->GT.

Output of the Tool
F0=1inG1 F0=1in GT Fl1=ainG1 F2=a"2inG1
F3=2a"3in Gl F4=1/a"4in G1 F5=1/ain G1

Trusted setin G1: F1 =a
Untrusted set in G1: F2 = a?2, F3 =a"3,F4 = 1/a"4,F5=1/a
Rule 1 applied to F2 = a"2. C := e(F2,F0) = e(F1,F1)

Trusted set in G1: F1 = a, F2 = a2
Untrusted set in G1: F3 = a*3, F4 = 1/a"4, F5 = 1/a
Rule 1 applied to F3 = a*3. C := e(F3,F0) = e(F1,F2)

Trusted set in G1: F1 = a, F2=a"2,F3 = a"3

Untrusted set in G1: F4 = 1/a"4, F5 = 1/a

Rule 2 applied on F5 = 1/a. isidentity := F1 =1 C := (e(F5,F1) = FO AND
(NOT F1 = 1))

Trusted set in G1: F1 = a, F2=a"2,F3 =a"3,F5 = 1/a

Untrusted set in G1: F4 = 1/a"4

Rule 2 applied on F4 = 1/a"4. isidentity :=F2=1 C := (e(F4,F2) = e(F5,F5)
AND (NOT e(F2,F2) = I))

Execution time : 8.283724s

(e(F2,F0) = e(F1,F1) AND (e(F3,F0) = e(F1,F2) AND (((NOT F1 = I) AND
(e(F5,F1) = F0O AND (NOT F1 =1I))) AND ((NOT F2 =I) AND (e(F4,F2) =
e(F5,F5) AND (NOT e(F2,F2) =1))))))

Optimized Circuit:

G1:e(F2F0) = e(FLF1) G2:e(F3F0) = e(F1,F2) G3:Fl=1
G4:e(F5F1)=F0 G5:F2=1 G6: e(F4,F2) = e(F5,F5)
G7:e(F2F2)=1 G8:NOTG3 G9:G8 AND G4 G10:NOT G5
G11:NOT G7 G12: G6 AND G11 G13: G10 AND G12
G14:G9AND G13 G15: G2AND G14 G16: G1 AND G15

Figure 9: Output file for our detalied example. The final PPE
circuit is presented at the end. The wires of the PPE circuit
are denoted using Gxx.

using untrusted_polys[_] in G_.For each polynomial, we also
specify a formal variable F_ which is used in the PPE circuit output
by the tool. We specify comments using delimeters (*....*). We
present the output of the tool on the above input file in Figure 9. The
output file contains the list of rules applied during the execution
and the final circuit. Following AutoCircuitPPE, we also make a
few optimizations to the final circuit. The list of PPE and boolean
gates of the optimized circuit are presented at the end of the output.
Here, each wire of the circuit is denoted using Gxx notation. This
could be either output of a PPE or boolean gate.

In identity based encryption schemes, typically identity id is
a variable in Z,, and not a group element. In such cases, we can
specify id variable using Zp_vars [_]. Internally for every problem
instance II, for each trusted polynomial f/h and a Z, variable x;,
the AutoRationalPPE tool adds x; - f/h to the trusted set!®. Prior
tools also do this modification.

4.3 Case Studies

We evaluated AutoRationalPPE on various types of pairing-based
schemes using a MacBook Pro 2015 laptop with 2.7GHz Intel Core
i5 processor and 8GB 1867MHz DDR3 RAM. We present the results
along with average execution times over 10 runs in Figure 1. Like

161deally, for each polynomial poly on Z, variables x, one should include poly(x) -
f/h in the trusted set. The AutoRationalPPE tool supports such an operation for all
bounded degree polynomials on Z,, variables. However for the purpose of this example,
it suffices to include only x; - f/h to trusted set.

https://github.com/JHUISI/auto-tools

Scheme Pairing Type AutoCircuitPPE | PPE Circuit | Our Tool | #PPE | #Bool | Run
output Testability Output | Gates | Gates | Time
BF [29] Type I IBE Testable Testable Testable 1 0 3.61s
GS [39] Type I IBE Testable Testable Testable 1 0 4.06s
BB [25] (£ = 160) Type I HIBE Testable Testable Testable 1 0 177.57s
B [26] (|H(id)| = 8) Type I IBE Testable Testable Testable 1 0 25.5s
Waters [56] (IH(id)| = 16) Type I IBE Testable Testable Testable 1 0 50.22s
N [53] (B(H(id)) = 8) Type III IBE Testable Testable Testable 1 0 4.62s
BBG [28] (£ = 8) Type I HIBE Testable Testable Testable 5 4 6.87s
Waters [57] Type I IBE Unknown Not testable | Unknown 0 0 322.23s
BW [31] Type I | Anon-IBE Testable Testable Testable 28 125 | 20.56s
BB [25] Type I IBE N/A Testable Testable 2 2 5.02s
Gentry [38] Typel IBE N/A Testable Testable 2 2 2.15s
BLS [30] Type I | Signature Testable Testable Testable 1 0 3.69s
CL [33]-A TypeI | Signature Testable Testable Testable 2 1 3.60s
CL [33]-B Typel | Signature Testable Testable Testable 4 3 3.16s
CL [33]-B Type III | Signature Testable Testable Testable 4 3 3.21s
L [33]-C (B(msg) = 8) Typel | Signature Testable Testable Testable 16 15 25.08s
BW [32] TypeI | Signature Testable Testable Testable 1 0 36.38s
AGOT [4] Type II | Signature Testable Testable Testable 1 0 2.05s
BB [27] Type III | Signature N/A Testable Testable 2 2 2.30s
LG [49] Type III | Signature N/A Testable Testable 2 2 2.08s
ACDKNO [2] Type III | Signature Testable Testable Testable 12 20 3.20s
Dodis [35] (|C(x)| = 3) Type I VRF Testable Testable Testable 18 30 5.29s
Dodis [35] (|C(x)| = 4) Type I VRF Testable Testable Testable 28 49 95.5s
Lysyanskaya [50] (|C(x)| = 5) | Type III VRF Testable Testable Testable 5 4 10.38s
DY [36] Type I VRF N/A Testable Testable 3 3 2.01s
Jager [48] (|H(x)| = 4) Type III VRF Testable Testable Testable 5 4 5.12s
RW [54] (a = 8) Typel | CP-ABE Testable Testable Testable 9 8 13.96s
100-DDH TypeI | Custom Testable Testable Testable 1 0 3.78s
DLIN Typel | Custom Unknown Not Testable | Unknown 0 0 0.03s
Custom Testcase 1 TypeI | Custom N/A Testable Testable 2 2 1.89s
Custom Testcase 2 TypeI | Custom N/A Testable Testable 3 3 2.07s
Custom Testcase 3 Typel | Custom N/A Testable Testable 2 2 1.93s
Custom Testcase 4 Type Il | Custom N/A Testable Testable 7 9 2.07s
Custom Testcase 5 Type Il | Custom N/A Testable Testable 11 17 2.11s
Custom Testcase 6 Typel | Custom N/A Testable Testable 102 103 3.55s

Table 1: The output of AutoRationalPPE on various PPE circuit testability problems. Here, { represents the number of delegation
levels in a HIBE scheme, |H(id)| denotes the length of the hash of identity id, B(H(id)) denotes the number of blocks in the
hash of identity id, 8(msg) denotes the number of blocks in message msg, |C(x)| denotes the length of encoding of input x,
|H(x)| denotes the length of encoding of input x, and a denotes the number of attributes. The execution time is mentioned in
seconds. Here N/A denotes the fact that AutoCircuitPPE does not accept input with rational polynomials.

AutoCircuitPPE, we simplified checking whether the constant d is
relatively prime to p —1 in Rule 3a and 3b, by checking whether d is
a small prime (d € {1,3,5,7, 11}), as none of the real world schemes
have polynomials with high degree on their variables. Also, if a
PPE is trivially True/False,!” we replace the PPE with True/False
accordingly.

We evaluated our tool various, IBE, VRF, Signature schemes
and summarize our test results for 35 schemes in Table 1. For IBE

7For example, if denominator polynomial Ay is a constant in Rule3a, then the
circuit C is trivially True.

schemes, we ran our tool to compute a PPE circuit which tests
for well-formedness of a secret key of an identity given the mas-
ter public key and the identity. For Verifiable Random Function
(VRF) schemes, we aimed to construct a PPE circuit which tests
for validity of VRF output and proof of pseudorandomness given
the verification key and VRF input. For signature schemes, we ran
the tool to output a PPE circuit which acts as a verification proce-
dure that checks the well-formedness of a signature given message
and verification key. We encoded each of the schemes into a PPE

problem instance similar to [46] (See [46] Section 5.2 for more de-
tails). As in [46], we encode the VRF bit string input of [35, 48, 50]
schemes as a vector of Z,, variables. We observe that the size of
the polynomials in these schemes grow exponentially in size with
respect to the length of encoding of the input. Consequently, we
tested these schemes only with a short length encoding.

We demonstrate the flexibility of our tool by testing it on prob-
lem instances in all Type I, II and III pairing settings. We note that
our rules only supersede the rules proposed by AutoCircuitPPE.
Consequently, AutoRationalPPE outputs a PPE testing circuit for all
the problem instances on which AutoCircuitPPE outputs a PPE cir-
cuit. Additionally, AutoRationalPPE outputs PPE testing circuit for
many schemes which include rational polynomials such as Boneh-
Boyen IBE [25] and signatures [27], Gentry IBE [37], Le-Gabillon
multisignatures [49], Dodis-Yampolskiy VRF [36] and many of other
custom testcases. Even though the QSearch has exponential time
complexity, it runs pretty fast on many real world schemes. After
running QSearch algorithm in Section 3.3, we optimized the out-
put circuit to remove any redundant operations. For example, if
the same sub-circuit occurs in 2 different places, we compute it
only once. These optimizations are adapted from AutoCircuitPPE
tool. We display the number of PPE gates and Boolean gates post-
optimization in Table 1.

We also tested our tool on a few custom examples containing
rational polynomials, some of them having more than 100 polyno-
mials. In the custom testcase 6 (inspired by DDHI problem), the
trusted set contains polynomial F; = a in the group Gy, the un-
trusted set contains polynomials {F, = a® F3 =a Fy =a*,---,
Fog = a®?, Fioo = 1/a%, F101 = 1/a} in the group Gq. The problem
can be tested using the PPEs Fo = e(F1, F1), e(F3,9) = e(F2, Fy),

- ,e(Fi01,F1) = e(g,9), e(F100, Foo) = e(F101,9). Additionally,
some logic is used to consider the case where a = 0 and denomina-
tor of the polynomials is invalid. More details are in Appendix D.

4.4 Open Problems

This work solves a major open problem of [47] by solving the PPE
Circuit testability problem for schemes with rational polynomials.
We now remark on a few exciting, open problems.

First, all work on PPE automation to date [20, 46, 47] including
this work focuses on perfect verification, where each element is
checked individually. Some applications (such as signatures) could
use a relaxed (and possibly more efficient) verification procedure
where elements only need have some proper relationship to each
other. We view exploring this concept of sufficient verification as a
useful and exciting future direction. We discuss this in more detail
in Appendix E.

Second, PPE automation to date [20, 46, 47] including this work
focuses only on prime order groups. These groups are often highly
preferred to their composite order counterparts due to both band-
width and run time differences. Still the composite order setting
is often more unwieldy due to its use of different subgroups and
reliance on the property that pairing different subgroups results in
an identity. Handling the constraints of these different subgroups,
while properly handling identity and undefined elements, in our
framework seems non-trivial.

Finally, the current implementation of our tool (as is also the case
with AutoCircuitPPE [47]) outputs the first solution it finds, instead
of caching several solutions and outputting the most optimal. Since
PPE gates are the most costly, that is the metric on which we’d like
to optimize. As one example of non-optimality, our tool’s solution
for the Dodis VRF [35] takes 28 PPEs, while AutoCircuitPPE found
one that takes only 25 PPEs. One might consider a “deep search”
option, where the tool searches all promising branches of the search
space to collect a group of solutions and then outputs the solution
with the smallest number of PPE gates. The technical challenge
here is performing a deep search without incurring an exponential
explosion in the running time.

ACKNOWLEDGMENTS

Susan Hohenberger was supported by NSF CNS-1908181, the Office
of Naval Research N00014-19-1-2294, and a Packard Foundation
Subaward via UT Austin. Satyanarayana Vusirikala was supported
by a UT Austin Provost Fellowship, NSF CNS-1908611, and the
Packard Foundation.

The authors thank Brent Waters for helpful discussions and the
ACM CCS anonymous reviewers for presentation feedback.

REFERENCES

[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishi-

maki, and Miyako Ohkubo. 2012. Constant-Size Structure-Preserving Signatures:

Generic Constructions and Simple Assumptions. Cryptology ePrint Archive,

Report 2012/285. https://eprint.iacr.org/2012/285.

Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishi-

maki, and Miyako Ohkubo. 2012. Constant-Size Structure-Preserving Signatures:

Generic Constructions and Simple Assumptions. In ASIACRYPT.

[3] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. 2014. Converting
Cryptographic Schemes from Symmetric to Asymmetric Bilinear Groups. In
Advances in Cryptology - CRYPTO. Springer, 241-260.

[4] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. 2014. Structure-

Preserving Signatures from Type II Pairings. In Advances in Cryptology - CRYPTO

2014. 390-407.

Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. 2016. Design in Type-

I, Run in Type-III: Fast and Scalable Bilinear-Type Conversion Using Integer

Programming. In Advances in Cryptology - CRYPTO. Springer, 387-415.

[6] Joseph A. Akinyele, Gilles Barthe, Benjamin Grégoire, Benedikt Schmidt, and
Pierre-Yves Strub. 2014. Certified Synthesis of Efficient Batch Verifiers. In [EEE
27th Computer Security Foundations Symposium. IEEE Computer Society, 153-165.

[7] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. 2015. Automating
Fast and Secure Translations from Type-I to Type-III Pairing Schemes. In ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1370-1381.

[8] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. 2013. Using SMT

solvers to automate design tasks for encryption and signature schemes. In ACM

SIGSAC Conference on Computer and Communications Security. ACM, 399-410.

Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W. Pagano.

2012. Machine-generated algorithms, proofs and software for the batch veri-

fication of digital signature schemes. In the ACM Conference on Computer and

Communications Security. ACM, 474-487.

[10] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W. Pagano.
2014. Machine-generated algorithms, proofs and software for the batch verifi-
cation of digital signature schemes. Journal of Computer Security 22, 6 (2014),
867-912.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie
Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub,
and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS Key
Management Service. In CCS. 63-78.

[12] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir, Ben-

jamin Grégoire, Vincent Laporte, and Vitor Pereira. 2017. A Fast and Verified

Software Stack for Secure Function Evaluation. In CCS 2017.

José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, Francois

Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,

and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-

dards: Indifferentiability of Sponge and Secure High-Assurance Implementations

of SHA-3. In CCS. 1607-1622.

[2

[5

[

[13

https://eprint.iacr.org/2012/285

[14

(15

[16

[17]

[18

[19]

[20

[21

[22

[23

[24]

[25

[26]

[27

[28]

[29

[30]

(31

[32]

[33

[34]

[35

[36]

@
o

[38]

[39

[40]

(41

Miguel Ambrona, Gilles Barthe, Romain Gay, and Hoeteck Wee. 2017. Attribute-
Based Encryption in the Generic Group Model: Automated Proofs and New
Constructions. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 647-664.

Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. 2016. Automated Un-
bounded Analysis of Cryptographic Constructions in the Generic Group Model.
In Advances in Cryptology - EUROCRYPT. Springer, 822-851.

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-
mers, Kevin Liao, and Bryan Parno. 2019. SoK: Computer-Aided Cryptography.
Cryptology ePrint Archive, Report 2019/1393. https://eprint.iacr.org/2019/1393.
Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and Benedikt Schmidt. 2015.
Mind the Gap: Modular Machine-Checked Proofs of One-Round Key Exchange
Protocols. In Advances in Cryptology - EUROCRYPT. Springer, 689-718.

Gilles Barthe, Francois Dupressoir, Benjamin Gregoire, Alley Stoughton, and
Pierre-Yves Strub. 2018. EasyCrypt: Computer-Aided Cryptographic Proofs.
https://www.easycrypt.info/trac/.

Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,
and Benedikt Schmidt. 2014. Automated Analysis of Cryptographic Assumptions
in Generic Group Models. In Advances in Cryptology - CRYPTO. Springer, 95-112.

Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt Schmidt,
and Mehdi Tibouchi. 2015. Strongly-Optimal Structure Preserving Signatures
from Type II Pairings: Synthesis and Lower Bounds. In Public-Key Cryptography
- PKC. 355-376.

Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Jacomme,
and Elaine Shi. 2018. Symbolic Proofs for Lattice-Based Cryptography. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS. ACM, 538-555.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal
certification of code-based cryptographic proofs. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
90-101.

Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated
Proofs of Pairing-Based Cryptography. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1156-1168.

Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security
Protocols. In 2006 IEEE Symposium on Security and Privacy. IEEE Computer
Society, 140-154.

Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles. In Advances in Cryptology - EUROCRYPT.
Springer, 223-238.

Dan Boneh and Xavier Boyen. 2004. Secure Identity Based Encryption Without
Random Oracles. In CRYPTO. Springer, 443-459.

Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.
In EUROCRYPT.

Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based En-
cryption with Constant Size Ciphertext. In Advances in Cryptology - EUROCRYPT
2005. 440-456.

Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the
Weil Pairing. In Advances in Cryptology - CRYPTO. Springer, 213-229.

Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. In ASIACRYPT. Springer, 514-532.

Xavier Boyen and Brent Waters. 2006. Anonymous Hierarchical Identity-Based
Encryption (Without Random Oracles). In Advances in Cryptology - CRYPTO.
Springer, 290-307.

Xavier Boyen and Brent Waters. 2006. Compact Group Signatures Without
Random Oracles. In Advances in Cryptology - EUROCRYPT 2006. 427-444.

Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous
Credentials from Bilinear Maps. In Advances in Cryptology - CRYPTO. Springer,
56-72.

Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using EasyCrypt
to Mechanize Proofs of Universally Composable Security. In IEEE Computer
Security Foundations Symposium, CSF 2019.

Yevgeniy Dodis. 2003. Efficient Construction of (Distributed) Verifiable Random
Functions. In Public Key Cryptography - PKC. Springer, 1-17.

Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. In Proceedings of the 8th International Conference on
Theory and Practice in Public Key Cryptography (PKC’05).

Craig Gentry. 2006. Practical Identity-Based Encryption Without Random Oracles.
In EUROCRYPT. Springer.

Craig Gentry. 2006. Practical Identity-Based Encryption Without Random Oracles.
In Advances in Cryptology - EUROCRYPT. Springer, 445-464.

Craig Gentry and Alice Silverberg. 2002. Hierarchical ID-Based Cryptography.
In Advances in Cryptology - ASIACRYPT. Springer, 548-566.

Vipul Goyal. 2007. Reducing Trust in the PKG in Identity Based Cryptosystems.
In Advances in Cryptology - CRYPTO. Springer, 430-447.

Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. 2008. Black-box accountable
authority identity-based encryption. In Proceedings of the 2008 ACM Conference
on Computer and Communications Security. ACM, 427-436.

[42] Matthew Green and Susan Hohenberger. 2007. Blind Identity-Based Encryption
and Simulatable Oblivious Transfer. In Advances in Cryptology - ASIACRYPT.
Springer, 265-282.

[43] Jens Groth and Amit Sahai. 2008. Efficient non-interactive proof systems for

bilinear groups. In EUROCRYPT. Springer, 415-432.

Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-

Yves Strub. 2018. Computer-Aided Proofs for Multiparty Computation with

Active Security. In IEEE Computer Security Foundations Symposium, CSF 2018.

Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. 2015. Automated

Analysis and Synthesis of Authenticated Encryption Schemes. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security.

ACM, 84-95.

Susan Hohenberger and Satyanarayana Vusirikala. 2019. Are These Pairing

Elements Correct? Automated Verification and Applications. In ACM Conference

on Computer and Communications Security.

Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters. 2020. PPE Cir-

cuits: Formal Definition to Software Automation. In ACM Conference on Computer

and Communications Security.

Tibor Jager. 2015. Verifiable Random Functions from Weaker Assumptions. In

Theory of Cryptography - 12th Theory of Cryptography Conference, TCC. Springer,

121-143.

[49] Duc-Phong Le and Alban Gabillon. 2007. A New Multisignature Scheme based
on Strong Diffie-Hellman Assumption. In Conference on security in network ar-
chitecture and information systems.

[50] Anna Lysyanskaya. 2002. Unique Signatures and Verifiable Random Functions
from the DH-DDH Separation. In Advances in Cryptology - CRYPTO. Springer,
597-612.

[51] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. 2014. Automated Anal-
ysis and Synthesis of Block-Cipher Modes of Operation. In IEEE 27th Computer
Security Foundations Symposium. IEEE Computer Society, 140-152.

[52] Roberto Metere and Changyu Dong. 2017. Automated Cryptographic Analysis
of the Pedersen Commitment Scheme. In MMM-ACNS 2017.

[53] David Naccache. 2005. Secure and Practical Identity-Based Encryption. IACR
Cryptology ePrint Archive (2005). http://eprint.iacr.org/2005/369

[54] Yannis Rouselakis and Brent Waters. 2013. Practical constructions and new proof

methods for large universe attribute-based encryption. In 2013 ACM SIGSAC

Conference on Computer and Communications Security, CCS. ACM, 463-474.

Eftychios Theodorakis and John C. Mitchell. 2018. Semantic Security Invariance

under Variant Computational Assumptions. IACR Cryptol. ePrint Arch. 2018

(2018), 51. http://eprint.iacr.org/2018/051

Brent Waters. 2005. Efficient Identity-Based Encryption Without Random Oracles.

In EUROCRYPT. Springer, 114-127.

[57] Brent Waters. 2009. Dual System Encryption: Realizing Fully Secure IBE and
HIBE under Simple Assumptions. In CRYPTO. Springer, 619-636.

[44

[45

=
&

[47

(48

[55

[56

A PRELIMINARIES

We define the algebraic setting and notation used throughout this
work.

A.1 Pairings
Let G1, Gy and Gt be groups of prime order p. Amap e : Gy XGy —
Gr is an admissible pairing (also called a bilinear map) if it satisfies
the following three properties:
(1) Bilinearity: for all g1 € Gy, g2 € Gy, and a,b € Zp, it holds
that e(g%, h?) = e(g®, h?) = e(g, h)?P.
(2) Non-degeneracy: if g; and g are generators of G; and Gg,
resp., then e(g1, g2) is a generator of Gr.
(3) Efficiency: there exists an efficient method that given any
g1 € Gy and g2 € Gy, computes e(g1, g2)-

A pairing generator PGen is an algorithm that on input a se-
curity parameter 1’1, outputs the parameters for a pairing group
., 91,92, 91, G1, G2, G, €) such that Gy, Gz and Gt are groups of
prime order p € @(2’1) where g1 generates G1, g2 generates G and
e : G; X G2 — Gr is an admissible pairing. The above pairing is
called an asymmetric or Type-III pairing. In Type-II pairings, there
exists an efficient isomorphism ¢ from G; to G; or such an iso-
morphism ¢ from G, to G; but not both. In symmetric or Type-I

https://eprint.iacr.org/2019/1393
https://www.easycrypt.info/trac/
http://eprint.iacr.org/2005/369
http://eprint.iacr.org/2018/051

pairings, efficient isomorphisms and ¢ both exist, and thus we
can consider it as though G = G;. In this work, we support any of
these types of pairings. We will typically refer to Type III pairings
in our text, since they are general and typically the most efficient
choice for implementation, but our software tool in Section 4 can
handle any type. We represent identity elements of the groups
G1, G2, Gt by I3, Iz and IT respectively.

Given pairing parameters (p, 91,92, 97,G1, G2,Gr, €), we extend
prior definitions [43, 46] to define a pairing product equation over

variables Z, {X;}!",, {Y;}]_; as an equation of the form

o Z-[1is, e(AiYa) - TI32, e(Xi, Bi) - TT1Z, 17 e(Xi, Y)Yy
=1, where Aj,X; € G1,B;,Y; € Go,Z € GT’Yij S ZP' (This
is the traditional definition.)

e A H;ZlXiyi =1, where A, X; € G1,y; € Zp.

o A-TI™, Y} =1, where A, Y; € G, y; € Zp.

The second two PPE formats do not enable any additional func-
tionality over the traditional definition. However, they will later
help obtain more efficient identity tests. We sometimes rearrange
the terms of a PPE to improve readability. We observe that under
the above definition, one can employ a PPE to perform an identity
test in groups G1, G or Gr, either for a single element or according
to any of the above combinations of products and exponents.

A.2 Notation

We let [1, n] be shorthand for the set {1, ..., n}. We use v to denote
a vector and v; to denote the i-th element. For a vector v of length
n and a subset U C [1, n], we denote vU as the set of elements v;
fori =1,...,n wherei € U. Similarly vU denotes the subset of
elements v; fori = 1,...,n where i ¢ U. Let us denote the set of
pairing group identifiers {1, 2, T} by 7. Let x, y be polynomials over
variables in (u1, .. .,up), then by x = y, we mean that x and y are
equivalent polynomials.

B SHORTHAND NOTATIONS FOR CIRCUITS

For completeness, we include the shorthand notations for PPE
circuits due to [47] which we also use in our presentation.

o MakeCircuit(G, m, ar, P): Given group structure &G, number
of inputs m, group identifiers a, and a PPE P, the function
outputs a PPE circuit C = (G, m, &, N, Gates, out, GateType,
A, B), where N = 1,Gates = {m + 1},out=m + 1,
GateType(m + 1) = (PPE,P),A=0,B = 0.

e C,cc: We use the notation Cacc to denote the circuit
MakeCircuit(G, m, a, P), where P is an always accepting
PPE (for example, g1 = g1).

e Shift(C, k) : Given circuit C = (G, m, &, N, Gates, out,
GateType, A, B) and integer k > 1, function Shift(C, k) out-
puts a circuit C” obtained by shifting the gate names Gates by
an offset kie.,C’ = (G, m, &, N, Gates’, out’, GateType’, A’,
B’), where Gates” = {g + k : g € Gates}, out’ = out + k,
GateType’(g + k) = GateType(g), A’(g + k) = A(g) and
B’(g + k) = B(g), whenever A(g), B(g) are defined. Note:
Shift(C, k) still has {1, 2, - -, m} as the input wires.

e C; OP Cy (where OP € {AND, OR}): Given circuits C; =
(G, m, a, Ny, Gatesy, outq, GateType;, A1, By) and Cz = (G,

m, &, N2, Gatesy, outy, GateType,, Az, B2), let k be the small-
est integer not in Gates;. Let C; = Shift(Cz, k) = (G, m, «,
Na, Gates), out;, GateTypey, A7, By). The circuit C; OP Cy
is given by (G, m, &, N1+ N3 + 1, Gates, out, GateType, A, B),
where out is the smallest integer not in Gates; U Gates, the
set Gates = Gatesy U Gatesé U {out}, the functions

GateType;(g) if g € Gates;
GateType(g) = { GateType;(g) if g € Gates,
OoP if g = out

Ai1(g) if g € Gatesy

A(g) = {A%(9)
out; ifg=out

if g € Gates

Bi(g) if g € Gates;
B(g) = {B;(9) ifg € Gates,
out, ifg=out

e NOT C:GivencircuitC = (G, m, ¢, N, Gates, out, GateType, A, B),

we let NOT C denote the circuit (G, m, &, N +1, Gates’, out’,
GateType’, A’, B’), where out’ is the smallest integer not in
Gates, the set Gates’ = Gates U {out’}, functions

GateT’ if g € Gat
GateType/(g) = { °2¢ ype(9) ifg € Gates
NOT if g = out’
if g € Gates

out ifg=out’

and B’ is the same as B.

C PROOFS OF CORRECTNESS
C.1 Proof of Correctness for Rule 1

Proor. We observe that every PPE challenge for II is also a
challenge for IT’, as they all share the same group structure, the
number of elements of m, and the group indicator vector . Consider
any testing circuit C’ for IT’. We now argue by contradiction that
if C A C’ is not a testing circuit for II, then C’ cannot be a testing
circuit for I1”. Since C A C”’ is not testing set for II, then either:

e Case 1: There exists a YES challenge R for I such that CAC’
is not satisfied, or

e Case 2: There exists a NO challenge R for II such that C A C’
is satisfied.

We now analyze each of these cases.
Case 1: We know that CAC’ is not satisfied by the YES challenge
R. By the definition of being a YES challenge, there exists a variable

assignment u s.t. R; = g(f;i(“)/h"(“) for all i. We take this in two
subcases.

Case 1(a): Suppose that R satisfies PPE circuit C but not the
circuit C’. We know that R is also a YES challenge for IT” (it can
use the same settings u for the variables), but for which C’ is not
satisfied. This contradicts the starting assumption that C’ was a
testing circuit for IT”.

Case 1(b): Suppose that R does not satisfy the PPE circuit C. As
all the elements in R are well-formed, we know that h;(u) # 0 for
all j. As a result, u satisfies egs. (3) and (4) iff u satisfies egs. (1)
and (2). We know that egs. (3) and (4) are satisfied for all the variable

assignments. This means, the variable assignment u and thereby
the PPE challenge R satisfies egs. (1) and (2). This means R does
satisfy the circuit C.

Case 2: Here Ris a NO challenge for IT but C A C” is satisfied. By
Definition 2.2 of a NO challenge for II, there exists an assignment
to u'nTrusted gych that for all i € Trusted, R; = g);ii(u)/hi(u). R is
either a NO challenge or an INVALID challenge for I1’. We argue
that R is also a NO challenge for I/, by showing that u'"Trusted
satisfies R = g{;’;(“”hk(“).

This follows from the fact that PPE C is satisfied by this challenge
and that C explicitly tests that Ry is computed this way, possibly

also

with respect to an equivalent polynomial for fi/h; = ZI stl g

st[j] and hy # 0. Now since R is NO challenge for I, it remains
to see how it performs with respect to the circuit C’. However,
since C A C’ is satisfied by this challenge R, then C’ is satisfied as
well. This contradicts the original assumption that C” was a testing
circuit for IT’. B

C.2 Proof of Correctness for Rule 2

Proor. Consider any PPE challenge R = (Ry,R2,- - Ry,) for
problem II, and any testing circuits C’, C"’ for I, TI”” respectively.
We first observe that R is also a valid PPE challenge for I1” and I1”.
This is because both share the same group structure, the number
of elements m, and the group indicator vector . We prove that if R
is a YES challenge for II, then it satisfies circuit Z defined above,
and if R is a NO challenge for II, it does not satisfy the circuit Z.
We organize the proof into four cases.

Case 1 (Ris a YES challenge for IT & Isldentity unsatisfied):

In this case, by definition, there exists an assignment of variables
v such that Ry = ggl,(v)/hf(v) for all £ € [m]. As each Ry is a well
defined group element, this means hy(v) # 0. This means v satis-
fies eqgs. (5) and (6) iff v satisfies egs. (7) and (8). We choose (a, b, c)
such that egs. (7) and (8) are satisfied for all variable assignments.
Therefore, v satisfies eqs. (5) and (6). As Ry = gf[(v)/hf(v) forall € €
[m], the PPE challenge R also satsifies the circuit C. We also observe
that R is a YES challenge for I1”. This is because IT and I1’” have the
same set of polynomials {fj/h;};e[m] and only differ in the Trusted
set. As a result, R satisfies the circuit (NOT Isldentity) A C A C’,
thus satisfying Z.

Case 2 (R is a YES challenge for IT & satisfies Isldentity): Let

h= (zj'sa' bj - s¢[j]). We know that f; = Poly1, - h+ Poly2¢, hy =
Poly3, - h + Poly4, for polynomials Poly1,, Poly3,, where
Poly2,/Poly4, was replaced as the £ polynomial in IT"””. Consider
any assignment of v s.t. Ry = gg‘;(v)/h[(v), V¢ € [m]. AsRpisa
well-defined element, hy(v) # 0 and thereby Hy (V) # 0. We know
that [T; Ue[j]% = I, and therefore 3); b; -sq[j] = 3 bj - fulj]/He
evaluates to 0 for the variable assignment v. This implies, h(v) = 0.
We now break this case into 2 subcases - (2a) II”” #.1, (2b) [T’ =.L.
Case 2(a): In this case, we want to show that R is a YES challenge

for I1””. As h(v) = 0, Rp = gZ?IyZ[(V)/PO|y4[(V) for each ¢ € [m].

Therefore, R is a YES instance for II’” and satisfies the circuit
Isldentity A C”, thus satisfying Z.

Case 2(b): We argue that this case never occurs. As I1"”" =1, we
know that there is an index j s.t. Poly4; is a 0 polynomial. This
means, Rj - gé,-j(v)/h,-(v) - ngIyZJ(v)/Po[yélj(v)

element.

is not a well-defined

Case 3 (R is a NO challenge for IT & Isldentity unsatisfied):

Since we assume R does not satisfy the circuit Isldentity in this
case, we focus only on whether R satisfies C A C’. By definition,
R is a NO challenge for II, and therefore it cannot be a YES chal-
lenge for IT’, as both I1 and I1” share the same set of polynomials.
(Either it will be a NO challenge or an invalid challenge; the latter
in the case where the single element difference in the Trusted set
between the two problems was an improperly formed element.)
Observe that if R satisfies C, then R is a NO instance for IT’. Con-
gff (V)/he(v)

gfk(V)/hk(V)lS

sider any assignment of variables v such that R,
for all £ € Trusted. If R satisfies C, it means Ry =
Consequently, Ry = gff(v)/hf(v) for each ¢ € Trusted U {k}, and IT/

is a NO instance. Therefore, R does not simultaneously satisfy the
circuits C and C” and thereby does not satisfy Z.

Case 4 (R is a NO challenge for IT & satisfies Isldentity): Suppose
II”” =1, then R certainly doesn’t satisfy Z. Suppose I1"” #L. In
this case, we argue that R is a NO challenge for IT”. Let h =
(2 bj - saljl). We know that fy = Polyly - h + Poly2,hy =
Poly3, - h + Poly4, for some polynomials Poly1,, Poly3,, where
Poly2;/Poly4, was replaced as the £ polynomial in TI””. Consider
any assignment of variables v such that R, = ggt,(v)/ he® for all
{ € Trusted. As

(H S“'l []] 7) = Iq, the polynomial (}; b; - s¢ [j]) evaluates to 0

for the variable assignment v. Therefore, Ry = gP‘;]yz"(V)/ Polyde(v)

for each ¢ € Trusted. Moreover, R cannot be a YES instance for
I1””. This is because if there a variable assignment v such that

Ry = gZ?Iyz((v)/POIY‘”(V) for each ¢ € [m], that would mean Ry =
ggf[(v)/ he®) for each ¢ € [m] which contradicts our initial assump-

tion that R is a NO instance for IT. Therefore, R does not satisfy the
circuit C”, and thereby does not satisfy Z.
[

C.3 Proof of Correctness for Rule 3a

Proor. Consider any PPE challenge R = (Ry,Rz,--Ry,) for
problem II, and any testing circuits C’, C”” for II’, IT”’ respectively.
We first observe that R is also a valid PPE challenge for I1” and I1”’.
This is because both share the same group structure, the number
of elements m, and the group indicator vector a. We prove that if R
is a YES challenge for II, then it satisfies circuit Z defined above,
and if R is a NO challenge for II, it does not satisfy the circuit Z.
We organize the proof into four cases.

8Note that this crucially relies on the fact that [1; Ualj] bj % I, and therefore
2j bj - sa[j] does not evaluate to 0 for the variable assignment v.

Case 1 (R is a YES challenge for IT & Isldentity unsatisfied):

We first observe that R is also a YES challenge for I1’, as IT and IT’
have the same set of polynomials and only differ in the Trusted
set. As a result, R satisfies circuit C’. As R is a YES instance, there
exists a variable assignment v such that R, = gé{;(v)/ he®) for all
(. As Ry is a well-defined element, we know that h[(v) # 0. As

hy - Hy = z'ST' bj - frlj], we know that z'ST' bj - frlj]/Hr does

not evaluate to 0 on v. Therefore H lsT' Ur[j]% does not evaluate

to identity and R satsifies the c1rcu1t C, and thereby satisies the
circuit (NOT Isldentity) A C A C’, and thus satisfies Z.

Case 2 (R is a YES challenge for IT & satisfies Isldentity): Consider

any assignment of variables v s.t. Ry = gf{;(v)/h((v) V¢ € [m]. As
Ry is a well-defined element, hp(v) # 0 and thereby Hr(v) #
0. We k1:10w that [1; Ur[j]% = It and therefore }; a; - s7[j] =
2.j aj - frljl/Hr evaluates to 0 for the variable assignment v. This
implies, h’(v) = 0. We know that fp = Polyl, - b’ + Poly2,, hy =
Poly3, - h’ + Poly4, for some polynomials Poly1,, Poly3,, where
Poly2,/Poly4, was replaced as the € polynomial in I1”.

Suppose I1” #L. In this case, Ry = F(V)/he(v)

= gPOIyZ[(v)/PO[y‘l((V) for each ¢ € [m], and R is a YES instance for
’” and satisfies the circuit Isldentity A C”, and thus satisfies Z.

Suppose I1"” =1. In this case, we know that there is an index
_ gfj(v)/hj(v) _

is not a well-defined element. Therefore, such a

Jj s.t. Poly4; is a 0 polynomial. This means, R;
Poly2;(v)/Poly4;(v) .
aj

case never occurs.

Case 3 (R is a NO challenge for IT & Isldentity unsatisfied): In this

case, R is not a YES instance for 11’ as IT and I’ share the same

set of polynomials. (Either it will be a NO challenge or an in-
valid challenge; the latter in the case where the single element
difference in the Trusted set between the two problems was an
improperly formed element.) We know that, there exists an as-
signment of InTrusted variables {v;};einTrusted Such that Ry =

gf (WThe®) g all ¢ € Trusted. As R does not satisfy the circuit

Isldentity, [—[‘ST| Ur[j]% # Ir, which means h’(v) # 0. Suppose
{v; }lelnTrusted satisfies the circuit C. Then, hy (v) # 0, and for ev-

ery possible value of Ry and h”’, one can solve for u; such that

(W-ul+h") by .
Ri = 9oy . This is because of our condition that d does

not divide p — 1. Consequently, there exists a variable assignment v
such that Ry = gg[(v)/hf(v), V¢ € Trusted U {k}, and therefore R is
a NO challenge for IT” and does not satisfy C’. Because it does not
satisfy C A C’, it cannot satisfy Z.

Case 4 (R is a NO challenge for IT & satisfies Isldentity): Suppose

II” =1, then R doesn’t satisfy Z. Suppose I1"" #L. We argue
that R is a NO challenge for I1”’. We know that for any ¢ € [m],
f¢r = Polyly - B + Poly2g,hy = Poly3, - b’ + Poly4, for some
polynomials Poly1, Poly3,, where Poly2,/Poly4, is the £'# poly-
nomial of IT”. Let {v;}; clnTrusted D€ any variable assignment such
that Ry = g’,f{{,(")/h‘*(") for all ¢ € Trusted. As R satisfies the circuit
Isldentity, h’(v) = 0, and R, = gZ?Iyzf(v)/P°]y4f(v), Y¢ € Trusted.
Furthermore, R cannot be a YES instance for II”’. This is because if

R is a YES for I1”, then there exists a variable assignment v such
that Ry = gZ?Iyz((v)/POIY‘”(V) = gé‘;(")/h"(v) for all ¢ € [m], which
contradicts our assumption that R is a NO instance for IT. Therefore,
R is a NO challenge for IT"” and does not satisfy C”’, thus it cannot
satisfy Z.

|

C.4 Proof of Correctness for Rule 3b

Proor. This proof is very similar to the proof of Rule 3a. For
the sake of completeness, we present the full proof. Consider any
PPE challenge R = (R1, Ry, - - - Rp) for problem II, and any testing
circuits C’/,C"’ for I, 11" respectively. We first observe that R is
also a valid PPE challenge for I1” and IT"””. This is because both share
the same group structure, the number of elements m, and the group
indicator vector a. We prove that if R is a YES challenge for II, then
it satisfies circuit Z defined above, and if R is a NO challenge for
I1, it does not satisfy the circuit Z. We organize the proof into four
cases.

Case 1 (Ris a YES challenge for IT & Isldentity unsatisfied):

We first observe that R is also a YES challenge for IT’, as IT and 1T’
have the same set of polynomials and only differ in the Trusted
set. As a result, R satisfies circuit C’. Also, for every satisfying

assignment v that satsifies Ry = gf (W) o all ¢, we know that
either fi (v) # 0 or (fx(v) = 0and ri = 0). Therefore, R satsifies the
circuit C, and thereby satisies the circuit (NOT Isldentity) ACAC’,
and thus satisfies Z.

Case 2 (R is a YES challenge for IT & satisfies Isldentity): The proof
of this case is identical to the proof of Case 2 in Rule 3a.

Case 3 (R is a NO challenge for IT & Isldentity unsatisfied):

In this case, R is not a YES instance for I1’ as IT and II’ share the
same set of polynomials. (Either it will be a NO challenge or an
invalid challenge; the latter in the case where the single element
difference in the Trusted set between the two problems was an im-
properly formed element.) We know that, there exists an assignment

of InTrusted variables {v;};einTrusted Such that Ry = gg[(v)/hf(v)
for all £ € Trusted. As R does not satisfy the circuit Isldentity,
h’(v) # 0. Suppose {v;};einTrusted Satisfies the circuit C. It means
either f (v) # 0 or (fx(v) = 0 and Ry =14,). In the first case, for
every possible value of R, and h”’, one can solve for u; such that

fiol (W uf+h"y o
Rk = g, . This is because of our condition that d does

not divide p — 1. In the second case, any assignment of u; along

with {v; };einTrusted satisfies Ry = gﬁ,’;fv) Ihev) Consequently, there

exists a variable assignment v such that Ry = gg,(v)/h‘" (V), Ve €
Trusted U {k}, and therefore R is a NO challenge for II” and does
not satisfy C’. Because it does not satisfy C A C’, it cannot satisfy
Z.

Case 4 (R is a NO challenge for IT & satisfies Isldentity): The proof
of this case is identical to the proof of Case 4 in Rule 3a. [|

Input File Example
maps G1 * G1 ->GT.
Zp_vars [id,r].
trusted_polys [F1 = x, F2 = y] in G1.
untrusted_polys [F3 = 1/(id + x + r*y)] in G1.

Figure 10: Input file for Boneh Boyen IBE scheme.
D MORE EXAMPLES

In this section, we provide more sample test cases describing how
to use the AutoRationalPPE tool.

D.1 Boneh Boyen IBE

In this scheme, a central authority uses its master secret key msk to
generate a secret key for a user with identity id. The user would like
to verify whether the central authority gave him a well-formed key.
We want to use AutoRationalPPE to verify whether the secret key
for user id is well-formed. Here Trusted is the set of elements in the
master public key mpk and identity id. The non-trusted elements
are the elements in the secret key sk;q. For the sake of completeness,
we first present the Boneh Boyen IBE scheme [25].

. Setup(ll) — (mpk, msk): Sample a Type-I pairing group
(G1,Gr,e) of prime order p. Select a random group gen-
erator g « G, and random elements x,y « Z;‘,. Output
mpk = (9,97, 9Y), msk = (x,).

e KeyGen(msk,id) — skiq: Pick a random value r « Z;, and

output (r, g*/(d+x¥+r:9))) In case (id +x+r+*y) = 0 mod p,

try again with a different r.

We now describe the input to our tool in Figure 10.

We present the output generated by our tool in Figure 11. Note
that the trusted set contains 2 elements (id, r) in Zp. We input these
elements using Zp_vars[id,r]. syntax. We describe the gates of
the final circuit at the end using Gxx notation. For PPE gates, we
mention the PPE computed by the gate. For boolean gates, we
describe the boolean logic performed by the gate.

D.2 Custom Example

In this section, we describe our custom test case 5 mentioned in Ta-
ble 1. We design the test case so that all the four rules are invoked
here. We describe the input to our tool in Figure 12, and then de-
scribe the output generated by our tool in Figures 13 to 15. For
each recursive invocation of the QSearch algorithm, the output
file describes the set of trusted and untrusted polynomials and the
rule that is applied to the problem. The gates of the final optimized
circuit are described at the end in Figure 15 using Gxx notation. For
PPE gates, we mention the PPE computed by the gate. For boolean
gates, we mention the boolean logic performed by the gate.

E ON PERFECT VERSUS SUFFICIENT
VERIFICATION

Recall that the goal of our tool is to verify U with respect to T.
As in [46, 47], we define a PPE Circuit that must achieve perfect
verification where it outputs one if and only if all input elements of
U are exactly as specified. That is, if some element F is supposed

a+b

to have the form g%, then it must. Perfect verification gives total

Output File Example
F0=1in GT F1=xinG1
F3=1/id + x + r'y in G1
Fo*r =rin G1 F0%id = id in GT
F1*id = id*x in G1 F1*r = r*x in G1
F2"r=r"yin G1

FO=1inG1
F2=yinG1
Fo*id = id in G1
FO*r =rin GT
F2*id = id*y in G1

Trusted in G1: F1 = x, F2 = y, FO"id = id, FO*r = r, F1"id = id"x, F1*r = r"x,
F2*id = id*y, F2"r = 1y,

Trusted in GT: FO*id = id, FO*r =1,

Untrusted in G1: F3 = 1/id + x + r*y,

Rule 2 applied on F3 = 1/id + x + r*y. isidentity := F2"r*F0"id*F1 =1C :=
(e(F3,F2°r*F0"id*F1) = FO AND (NOT F2/r*F0*id*F1 = I))

Execution time : 11.597542s

The circuit output by QSearch:

((NOT F2"r*F0"id*F1 = I) AND (e(F3,F2"r*F0"id*F1) = FO AND (NOT
F2*r"F0"id*F1 = I))) AND ACC)

Optimized Circuit:
G1:F2"r"F0"id*F1 =1
G3:NOTG1

G2 : e(F3,F2"r*F0"id*F1) = FO
G4 : G3 AND G2

Figure 11: Output file for Boneh Boyen IBE scheme.

Input File Example
maps G1 * G2 ->GT.
trusted_polys [F1 = a, F2 = b] in G1.
trusted_polys [F3 = b] in G2.
untrusted_polys [F4 = a*c] in G1.
untrusted_polys [F5 = a*b, F6 = ¢, F7 = d, F8 = d/(b + a), F9 = x, F10 = y,
F11 = (x*a + y*b), F12 = 1/(s+a)] in G2.

Figure 12: Input file for the custom example.

confidence that the untrusted elements are as they should be. It
helps applications like accountable authority IBE [40, 41] or oblivi-
ous transfer from blind IBE [42], where a malicious authority with
a master secret key might be trying to fool a user. In some cases,
the perfect verification is necessary, and thus, it is good that we
can achieve it.

However, not all applications require perfect verification: sig-
natures are a prime example. The verification equation for many
signature schemes in the literature (e.g., see Section 5 of [2]) does
not guarantee that the purported signature comes from the space
of signatures output by the signing algorithm. Instead, in some
cases, it is enough to argue that even if the purported signature
is outside of this space, an adversary could not have computed
it without knowledge of the secret key. (Some of these schemes
verify a signature with, say, five elements using a single PPE. Thus,
they do not verify that each element of the signature is correct, but
rather that all five elements — whatever they are — have the proper
relationship to each other.) We might call this concept sufficient
verification, where the requirements on the PPE Circuit are relaxed
to output one if and only if the elements of U have some special
relationship that can be verified using T. If sufficient verification
is enough for an application, it is likely to offer better efficiency.
Now that this work establishes how to automate perfect verification
for large classes of prime-order pairing-based systems, we view

studying how to model, search for and apply sufficient verification

as a rich area for future research.

Output File Example
FO=1inG1 FO=1in G2 F0=1in GT Fl1=ainG1
F2=bin Gl F3=bin G2 F4 = a*cin G1
F5=a*bin G2 F6 = cin G2 F7=din G2
F8 =d/a + bin G2 F9 =xin G2 F10 =y in G2
F11 =a*x + b*y in G2 F12=1/a +sin G2
Trusted in G1: F1=a,F2=Db
Trusted in G2: F3 = b
Untrusted in G1: F4 = a*c, F5 = a*b, F6 = ¢, F7 = d, F8 = d/a + b, F9 = x, F10
=y, Fl1 =a"x + b"y, F12=1/a +s,
Rule 1 applied to F5 = a*b/1. C := e(F5,F0) = e(F1,F3)

Trustedin G1: F1=a,F2=Db

Trusted in G2: F3 = b, F5 = a*b

Untrusted in G1: F4 = a*c, F6 = ¢, F7 = d, F8 = d/a + b, F9 = x, F10 = y, F11
=a"x +b"y,F12=1/a +s,

Rule 3a applied on F4 = a*c/1 and variable c. isidentity := e(F1,F0) = I, C :=
(NOT REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b,

Untrusted in G1: F6 = ¢, F7 =d, F8 =d/a + b, F9 =x, F10 = y, F11 = a*x +
b*y,F12 = 1/a +s,

Rule 2 applied on F6 = ¢/1. isidentity := F1 = I C := e(F6,F1) = e(F4,F0)

Trusted in G1: F1 = a,F2 = b, F4 = a*c

Trusted in G2: F3 =b,F5 =a*b,F6 = ¢

Untrusted in G1: F7 = d, F8 = d/a + b, F9 = x, F10 = y, F11 = a*x + b*y, F12
=1/a+s,

Rule 3a applied on F7 = d/1 and variable d. isidentity := RE], C := (NOT RE])

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 =b, F5 = a*b, F6 = ¢, F7 = d,

Untrusted in G1: F8 = d/a + b, F9 = x, F10 = y, F11 = a*x + b*y, F12 = 1/a +
S,

Rule 2 applied on F8 = d/a + b. isidentity := F2*F1 = 1 C := (e(F8,F2*F1) =
e(F0,F7) AND (NOT F2°F1 = I)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 =b, F5 =a*b, F6 = ¢, F7 =d,F8 =d/a + b,

Untrusted in G1: F9 = x, F10 = y, F11 = a*™x + b*y, F12 = 1/a + s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := RE]J, C := (NOT REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 =b, F5 = a*b,F6 = ¢, F7=d,F8 =d/a + b, F9 = x,
Untrusted in G1: F10 = y, F11 = a*x + b*y, F12 = 1/a + s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := RE]J, C := (NOT
RE])

Trusted in G1: F1 = a,F2 = b, F4 = a*c

Trusted in G2: F3 =b, F5 =a*b, F6 = ¢, F7 =d, F8 =d/a + b,F9 =x,F10 = y,
Untrusted in G1: F11 = a*x + b*y, F12 = 1/a + s,

Rule 1 applied to F11 = a*x + b*y/1. C := e(F11,F0) = e(F2,F10)*e(F1,F9)

Output File Example
Trusted in G1: F1 = a,F2 = b, F4 = a*c
Trusted in G2: F3 =b, F5 = a*b, F6 =¢,F7 =d,F8 =d/a+ b, F9 =x,F10 = y,
F11 = a™x + b™y,
Untrusted in G1: F12 = 1/a + s,
Rule 3b applied on F12 = 1/a + s and variable s. isidentity := RE], C := ACC

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b, F5 =0,

Untrusted in G1: F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 =
1/s,

Rule 3a applied on F6 = ¢/1 and variable c. isidentity := RE], C := (NOT RE])

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b, F5 = 0, F6 = c,

Untrusted in G1: F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,
Rule 3a applied on F7 = d/1 and variable d. isidentity := REJ, C := (NOT RE])

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b,F5=0,F6 = ¢, F7 =d,

Untrusted in G1: F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 2 applied on F8 = d/b. isidentity := F2 = I C := (e(F8,F2) = e(F0,F7)
AND (NOT F2 = I))

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b, F5=0,F6 = ¢, F7 = d, F8 = d/b,

Untrusted in G1: F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := RE], C := (NOT RE])

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b, F5 =0,F6 = ¢, F7 =d, F8 = d/b, F9 = x,

Untrusted in G1: F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := RE], C := (NOT
REJ)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b,F5=0,F6 = ¢,F7 =d, F8 =d/b, F9 = x, F10 = y,
Untrusted in G1: F11 = b*y, F12 = 1/s,

Rule 1 applied to F11 = b*y/1. C := e(F11,F0) = e(F2,F10)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 = b, F5 = 0, F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 =y, F11
=by,

Untrusted in G1: F12 = 1/s,

Rule 3b applied on F12 = 1/s and variable s. isidentity := RE], C := ACC

Trusted in G1: F1=0,F2 = b,

Trusted in G2: F3 =b, F5 =0,

Untrusted in G1: F4 = 0, F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = by,
F12 = 1/s,

Rule 1 applied to F4 = 0/1.C:=F4 =1

Figure 13: Output file for the custom example.

Figure 14: Output file for the custom example (Cont’d).

Output File Example
Trusted in G1: F1=0,F2=b,F4 =0,
Trusted in G2: F3 = b, F5 = 0,
Untrusted in G1: F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 =
1/s,
Rule 3a applied on F6 = ¢/1 and variable c. isidentity := RE], C := (NOT REJ)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3=b, F5 =0, F6 = c,

Untrusted in G1: F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,
Rule 3a applied on F7 = d/1 and variable d. isidentity := RE], C := (NOT RE])

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b,F5=0,F6 = ¢, F7 =d,

Untrusted in G1: F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 2 applied on F8 = d/b. isidentity := F2 = I C := (e(F8,F2) = e(F0,F7)
AND (NOT F2 = I))

Trusted in G1: F1=0,F2 =b,F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = ¢, F7 = d, F8 = d/b,

Untrusted in G1: F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := RE], C := (NOT REJ)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 =b, F5 =0,F6 = ¢, F7 =d, F8 = d/b, F9 = x,

Untrusted in G1: F10 =y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := RE]J, C := (NOT
REJ)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 = b, F5 = 0,F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 =y,
Untrusted in G1: F11 = b*y, F12 = 1/s,

Rule 1 applied to F11 = b*y/1. C := e(F11,F0) = e(F2,F10)

Trusted in G1: F1=0,F2=b,F4 =0,

Trusted in G2: F3 = b, F5 = 0, F6 = ¢, F7 = d, F8 = d/b, F9 = x, F10 = y, F11
=b%y,

Untrusted in G1: F12 = 1/s,

Rule 3b applied on F12 = 1/s and variable s. isidentity := RE], C := ACC

Optimized Circuit:

G1:e(F5F0) = e(F1,F3) G2:e(F1,F0)=1 G3:F1=1

G4 : e(F6,F1) = e(F4,F0) G5:F2°F1=1 G6: e(F8,F2*F1) = e(F0,F7)
G7: e(F11,F0) = e(F2,F10)*e(F1,F9) G8:F2 =1

G9 : e(F8,F2) = e(FO,F7) G10: e(F11,F0) = e(F2,F10) G11:F4=1
G12:NOT G2 G13:NOT G3 G14:G13 AND G4 G15:NOT G5
G16: G15AND G6 G17:G16 AND G7 G18: G14 AND G17
G19: NOT G8 G20 : G19 AND G9 G21: G20 AND G10
G22 : G3 AND G21 G23 : G18 OR G22 G24 : G12 AND G23
G25: G11 AND G21 G26 : G2 AND G25 G27 : G24 OR G26
G28: G1 AND G27

Figure 15: Output file for the custom example (Cont’d).

	Abstract
	1 Introduction
	1.1 Summary of Our Results
	1.2 Technical Overview

	2 Definitions: Expanding PPE Circuits
	3 Searching for a PPE Testing Circuit with Rational Polynomial Support
	3.1 Completion Lists for a List of Polynomials
	3.2 Rules for Moving Polynomials into the Trusted Set
	3.3 Applying the Rules
	3.4 Efficiency of QSearch

	4 Implementation
	4.1 AutoRationalPPE Implementation
	4.2 A Detailed Example
	4.3 Case Studies
	4.4 Open Problems

	Acknowledgments
	References
	A Preliminaries
	A.1 Pairings
	A.2 Notation

	B Shorthand Notations for Circuits
	C Proofs of Correctness
	C.1 Proof of Correctness for Rule 1
	C.2 Proof of Correctness for Rule 2
	C.3 Proof of Correctness for Rule 3a
	C.4 Proof of Correctness for Rule 3b

	D More Examples
	D.1 Boneh Boyen IBE
	D.2 Custom Example

	E On Perfect versus Sufficient Verification

