
PPE Circuits for Rational Polynomials
Susan Hohenberger

Johns Hopkins University

Baltimore, MD, USA

susan@cs.jhu.edu

Satyanarayana Vusirikala

University of Texas at Austin

Austin, TX, USA

satya@cs.utexas.edu

ABSTRACT
Pairings are a powerful algebraic setting for realizing cryptographic

functionalities. One challenge for cryptographers who design pair-

ing systems is that the complexity of many systems in terms of

the number of group elements and equations to verify has been

steadily increasing over the past decade and is approaching the

point of being unwieldy. To combat this challenge, multiple inde-

pendent works have utilized computers to help with the system

design. One common design task that researchers seek to automate

is summarized as follows: given a description of a set of trusted

elements T (e.g., a public key) and a set of untrusted elements U
(e.g., a signature), automatically generate an algorithm that verifies

U with respect to T using the pairing and group operations. To

date, none of the prior automation works for this task have support

for solutions with rational polynomials in the exponents despite

many pairing constructions employing them (e.g., Boneh-Boyen

signatures, Gentry’s IBE, Dodis-Yampolskiy VRF).

We demonstrate how to support this essential class of pairing

systems for automated exploration. Specifically, we present a so-

lution for automatically generating a verification algorithm with

novel support for rational polynomials. The class of verification

algorithms we consider in this work is called PPE Circuits (intro-

duced in [HVW20]). Intuitively, a PPE Circuit is a circuit supporting

pairing and group operations, which can test whether a set of ele-

ments U verifies with respect to a set of elements T . We provide a

formalization of the problem, an algorithm for searching for a PPE

Circuit supporting rational polynomials, a software implementa-

tion, and a detailed performance evaluation. Our implementation

was tested on over three dozen schemes, including over ten test

cases that our tool can handle, but prior tools could not. For all test

cases where a PPE Circuit exists, the tool produced a solution in

three minutes or less.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Automated Design; Provable Security; Pairing-based Cryptography

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484562

ACM Reference Format:
Susan Hohenberger and Satyanarayana Vusirikala. 2021. PPE Circuits for

Rational Polynomials. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 20 pages. https:

//doi.org/10.1145/3460120.3484562

1 INTRODUCTION
Computer automation has the potential to revolutionize the cryp-

tographic design process, from discovering novel cryptographic

functionalities to verifying their security. Computers can operate

faster, with higher accuracy, and at a lower cost than the primarily

manual process in place today. The key technical challenge is to

devise (provably correct) algorithms that capture the human mind’s

incredible creativity in searching for a scheme with the desired

functionality or in devising an approach for reducing the security

of a cryptosystem to the hardness of a well-studied math problem.

Over the past decade, the field of cryptographic computer au-

tomation has exploded with promising results. There are software

tools for building novel cryptographic algorithms [9, 10, 14, 20,

45–47, 51], translating schemes from one algebraic setting to an-

other [3, 5, 7, 8, 55], analyzing the security of cryptographic as-

sumptions [15, 19], strengthening the security of signatures [8]

and automating proof generation and/or verification [18, 21–24].

Excitingly, these tools were employed to verify the security of

protocols in Amazon Web Services Key Management Service [11],

the cryptographic hash standard SHA-3 [13], key exchange proto-

cols [17, 34], multiparty computation protocols [44], commitment

schemes [52], software stacks [12], protocols in the Universal Com-

posability framework [34] and even algorithms designed by other

automated tools [6]. See Barbosa et al. [16] for a recent survey on

cryptographic automation.

The goal of this work is to continue this momentum by present-

ing a novel tool for automating cryptographic design. Specifically,

we focus on the pairing algebraic setting and put forth a tool that

given a description of a set of trusted elements T (e.g., public pa-

rameters) and a set of untrusted elements U (e.g., an IBE private

key) can automatically generate an algorithm that verifies U with

respect to T using the pairing and group operations. What dis-

tinguishes our tool from prior works is that it supports schemes

with rational polynomials (e.g., schemes with elements of the form

д1/a , дb/(a+c) , etc.). This includes schemes such as Boneh-Boyen

signatures [27] and identity-based encryption (IBE) [25], Gentry’s

IBE [37], the Dodis-Yampolskiy verifiable random function [36],

the Le-Gabillon multisignatures [49], and more, which prior tools

did not handle. Thus, we solve one of the major open problems

for pairing-based automation [47]. We now describe our goals and

contributions.

https://doi.org/10.1145/3460120.3484562
https://doi.org/10.1145/3460120.3484562
https://doi.org/10.1145/3460120.3484562

Pairing Product Equations (PPEs) and PPE Circuits. We focus on

the pairing algebraic setting, which is known for its high speed,

small bandwidth, and novel functionalities. The setting consists

of groups G1,G2 and GT of prime order p, and a pairing function
which is an efficient, non-degenerate map e : G1 × G2 → GT ,
such that for all д ∈ G1, h ∈ G2 and a,b ∈ Zp , it holds that

e (дa ,hb) = e (д,h)ab . In some cases, G1 can be the same as G2.
See Appendix A.1 for a formal treatment. This function is often

leveraged in a cryptographic system to verify some elements with

respect to others. E.g., it might be used to verify a signature using

the public key.

Discovering correct verification algorithms can be extremely

challenging. For instance, consider these public parameters for

Waters Dual System Encryption [57]: (д,w,u,h,τ1 = vva1
1
,τ2 =

vva2
2
,τb
1
,τb
2
,дb ,дa1 ,дa2 ,дba1 ,дba2 , e (д,д)αa1b). Is it obvious how

to use them with the pairing function to verify a private key of the

form (дαa1vr1+r2 ,д−αvr1+r2
1

дz1 ,д−bz1 ,vr1+r2
2

дz2 , д−bz2 ,дr2b , дr1 ,

(uIwth)r1)), where I and t are public? No.1

To make searching for verification algorithms easier, multiple

works [20, 46, 47] have employed computers to hunt for them and

we build on this line of work. We begin our technical discussion by

formalizing the concept of a “pairing verification algorithm” as a

Pairing Product Equation (PPE) Circuit.

Following [43], a pairing product equation (PPE) over variables

Z , {Xi }
m
i=1, {Yi }

n
i=1 is an equation of the form

Z ·
n∏
i=1

e (Ai ,Yi) ·
m∏
i=1

e (Xi ,Bi) ·
m∏
i=1

n∏
j=1

e (Xi ,Yj)
γi j = I,

where Ai ,Xi ∈ G1,Bi ,Yi ∈ G2,Z ∈ GT ,γi j ∈ Zp . Following [47],

a PPE Circuit is a circuit whose gates are AND, OR, NOT or PPEs;

that is, a circuit that can evaluate PPEs together with other basic

logic. (We define this formally in Section 2.)

Earlier Automated Discovery of PPEs and PPE Circuits. Barthe,
Fagerholm, Fiore, Scedrov, Schmidt, and Tibouchi [20] presented an

automated tool for designing optimal structure-preserving signa-

tures in the pairing setting in 2015. The tool considers increasingly

larger candidates for the public key and signature structure, testing

to see if there is a conjunction of PPEs that can verify the sig-

nature with respect to the public key. In 2019, Hohenberger and

Vusirikala [46] generalized this approach with a tool that takes in a

description of any set of trusted pairing elements T and untrusted

pairing elementsU and searches for a conjunction of PPEs that can

verifyU with respect to T . In 2020, Hohenberger, Vusirikala, and

Waters [47] formalized the concept of a PPE Circuit and presented

the AutoCircuitPPE tool
2
, which takes as input the description of

the sets T and U and searches for a PPE Circuit that can verify U
with respect to T . They demonstrated that increasing the power

of the verification algorithm to arbitrary logic over PPEs enabled

the discovery of several novel verification algorithms including the

first algorithm to verify the Boyen-Waters anonymous IBE [31]

private keys with respect to the public key using 27 PPEs and 124

boolean gates.

1
Indeed, no efficient verification algorithm even exists assuming that the Waters

Dual System Encryption scheme is secure [46], even though prior works [1] were

interested in finding such an algorithm.

2
https://github.com/JHUISI/auto-tools

Limitation of Prior Works. In prior works [20, 46, 47], all elements

of T andU had to be of the form дf (u) for some multivariate poly-

nomial f over variables u = {u1, . . . ,uk }. These tools did not allow

elements with rational polynomials, such as дf (u)/h (u) , to be inT or

U , because for various settings of the variables u, the denominator

h(u) may evaluate to zero making the element дf (u)/h (u) undefined
and the prior algorithms did not address how to handle/prevent

these undefined elements. However, many pairing-based cryptosys-

tems use rational polynomials (e.g., [2, 25, 27, 36, 37, 49]). Thus,

finding a way to support rational polynomials in automated cryp-

tographic design was viewed as an important open problem [47].

1.1 Summary of Our Results
This work presents a formalization (Section 2), an algorithm (Sec-

tion 3) and software (Section 4) that takes as input a description of

trusted pairing elementsT and untrusted pairing elementsU , where

elements of either set can be of the form дf (u)/h (u) for multivariate

polynomials f ,h over variables u = {u1, . . . ,uk }, and outputs either
a PPE Circuit that verifiesU with respect toT or the special symbol

unknown. The property we require (and prove) of our automator

is that if it outputs a circuit, the circuit correctly verifies any U
given a valid T . However, outputting unknown is not a guarantee

that no circuit exists. Our algorithm (see Figure 7) is a superset of

prior logic [20, 46, 47], finding all schemes they could, and with the

addition of new logic many more. We name the implemented tool

AutoRationalPPE.
We tested AutoRationalPPE on over thirty-five test cases, in-

cluding over ten cases that our tool could handle, but prior tools

could not. These newly successful test cases include the Boneh-

Boyen signatures [27], Boneh-Boyen IBE [25], Gentry’s IBE [37], the

Dodis-Yampolskiy verifiable random function [36], the Le-Gabillon

multisignatures [49] and more. We included several custom test

cases to test schemes with over 100 elements, invoke different sub-

routines, etc. See Table 1.

For test cases where a PPE Circuit exists, AutoRationalPPE out-

put a solution in 3 minutes or less. Furthermore, for 90% of the cases,

it took under one minute. For schemes with solutions, the test case

that took the longest was the Boneh-Boyen Hierarchical Identity

Based Encryption [25] with 160 levels, which took almost three

minutes. We designed Custom Testcase 6 specifically to challenge

the tool with over 100 elements. For this test case, T contains дa

andU contains дa
2

,дa
3

, . . . ,дa
99

,д1/a
100

,д1/a . The tool took under
4 seconds to output a solution with 102 PPEs and 103 boolean gates.

We include two test cases that provably do not have PPE Cir-

cuits (including the impossibility of verifying the private keys

of [57] with respect to its public parameters, since this system

has semi-functional keys that are not in the private-key space but

cannot be distinguished from private keys). For both of these cases,

AutoRationalPPE correctly aborts and outputs unknown. It took 5.5
minutes to output unknown on [57], which was its longest-running

time in our tests.

Overall, we believe the tool is easy to understand and quick

enough for practical use. The source code of AutoRationalPPE is

publicly available at https://github.com/JHUISI/auto-tools.

https://github.com/JHUISI/auto-tools

1.2 Technical Overview
As stated in Section 1.1, the main algorithm of AutoRationalPPE (in

Figure 7) takes as input a description of sets T andU and outputs

either a PPE Circuit or the symbol unknown.
This algorithm is recursive. The base case is when there are no

untrusted elements (U = ∅) and in this case, a trivial PPE Circuit

that outputs 1 on all inputs is the output.WhenU , ∅, the algorithm
tries to “move” a single element F ∈ U to T by seeing if there is

a test (that can be encoded as a circuit C) that validates F . If it
cannot find any F ∈ U that it can “move”, then it aborts and outputs

unknown. If it can “‘move” an F , then it recurses on the (smaller)

subproblem where T ′ = T ∪ {F } and U ′ = U /{F }. Suppose circuit
C ′ is the output of the call on T ′ and U ′. The PPE Circuit output is

a combination
3
of C and C ′.

This is our solution in a nutshell. The technical core of this

algorithm is in (1) how an element can be “moved” from U to T
and (2) how to build the final PPE Circuit as a combination of

subproblem circuits. We tackle the first challenge by applying one

of the four rules outlined below.

For all descriptions below, let F = дf (u)/h (u) . Let InTrusted be

the set of variables in u that appear in any element in T . So, if

T = {дa ,дb } and U = {дab ,дac ,дac/(a+b) ,д1/(d+a) }, then u =
{a,b, c,d } and InTrusted = {a,b}. Let Space(T) be the set of ele-

ments that can be computed using elements of T .
Rules 1 and 2 are for when F contains only variables in InTrusted.

Rules 3a and 3b are for when F contains one or more variables not

in InTrusted; these are necessary to handle the fresh randomness

used in private keys and signatures, etc.

Rule 1 (Figure 2): This is a simple rule. It moves F ∈ U to T
if (1) all variables in F are in InTrusted, (2) A = e (F ,д) for
some A ∈ Space(T) and (3) h(u) , 0. Here F can only be

paired with the generator д. In our example, we can check

e (дa ,дb) = e (F ,д) to test if F is дab .
Rule 2 (Figure 4): This is a generalization of Rule 1 that allows F

to be paired with an element F ′ ∈ Space(T), instead of only the
generator д. It is less efficient than Rule 1, because it requires

both our recursive algorithm and the PPE Circuit it builds to

condition on whether or not F ′ = д0. (Because the equation
e (д,д)0 = e (F , F ′) is trivially satisfied for all F when F ′ = д0

and thus cannot be used to validate F in this case.)

In the first branch, we check if (1) F ′ , д0, (2) all variables in
F are in InTrusted, (3) there exists an A ∈ Space(T) such that

A = e (F , F ′) and (4) h(u) , 0. If all conditions are met, it moves

F toT ′, recurses on that smaller problem and adds this logic to

the PPE Circuit with a validation for F and a check that F ′ , д0.

For instance, e (дac ,д) = e (F ,дa+b) can be used to check that

F is дac/(a+b) when a + b , 0.

In the second branch where F ′ = д0, the algorithm recurses on

the (possibly) reduced sets T ′,U ′ where zero is substituted for

the exponent of F ′. It also adds any subcircuit produced for this
problem to the PPE circuit together with a check that F ′ = д0. In

our example, where T = {дa ,дb } andU = {дab ,дac ,дac/(a+b) ,

д1/(d+a) }, if we substitute a + b = 0 into these sets, element

3
This combination is sometimes as simple as C AND C ′, but as the reader can

see from Figure 7, it may also be more complex.

дac/(a+b) becomes undefined. This branch is thus not allowed

and returns a circuit that always rejects.

The logic from these two branches will be connected with an

OR gate.

Rule 3a (Figure 5): Rule 3a handles F = дf (u)/h (u) in U where

the numerator f (u) contains a variable not in InTrusted, but
all variables of the denominator h(u) are in InTrusted. Here we
look at numerators f (u) = h′udj + h

′′
, where (1) uj is not in

InTrusted, 2) h′ and h(u) contain only variables in InTrusted,
(3) h′′ does not contain uj , (4) d is relatively prime to p − 1 and
(5) h(u) , 0. This rule has a larger potential branching degree

than Rule 2, because it must additionally branch on whether

h′ , 0 since it cannot use F to validate uj if uj is zeroed out by

h′ in F .
In our example, Rule 3a would identify F = дac as a candidate

to move to trusted as c is not in InTrusted. It must condition on

whether a = 0. In the branch where a , 0, it would move дac to
trusted and set InTrusted = {a,b, c}. In the branch where a = 0,

it performs this substitution and recurses on the subproblem

T ′ = {д0,дb } andU ′ = {д0,д0,дc/b ,д1/d }.
Rule 3b (Figure 6): Rule 3b is the same as Rule 3a, except now

all variables of the numerator must be in InTrusted and the

denominator contains a variable not in InTrusted. Using our

example, we consider the variable d in element F = д1/(d+a) .
Since there is no coefficient for variable d , it will not need to

branch, and the rule will move F to T , and the main algorithm

will recurse on this smaller problem.

Tracking Zeros. Critically to our support for rational polynomials,

our main algorithm and rules also contain logic to ensure that at

no point is a denominator of any element zero or reduced with a

polynomial that evaluates to zero, because without this check, we

could erroneously lose track of when an element becomes unde-

fined. For instance, suppose the polynomial for an exponent of an

element is a(a + c)/(b (a + c)). We cannot reduce this to a/b unless

we first check that a + c , 0.

Putting It All Together. Each time we apply one of the above rules, it

reduces the number of untrusted elements by one. It also adds logic

to our PPE Circuit, sometimes including 2 to 4 conditional branches.

The running time of our algorithm is exponential in the worst case

(see Section 3.4), but as discussed above, our tool is surprisingly effi-

cient in practice. In our tool, we also added optimizations to identify

and reduce redundant logic, where some branches led to checking

the same values repeatedly. In our tests, these optimizations greatly

reduced the size of the output circuits. The example we used here

with T = {дa ,дb } and U = {дab ,дac ,дac/(a+b) ,д1/(d+a) } uses all
four rules and after optimizations results in a PPE Circuit with 6

PPEs and 8 boolean gates. It is a simplified version of the Custom

Test Case 5 in Table 1 and Appendix D.2.

1.2.1 Relationship to Prior Work. On the same inputs, the running

time of our tool and the most comprehensive prior tool called

AutoCircuitPPE [47] are usually within a few seconds of each other.

They also find similar solutions.
4
This is good news considering

4
Currently, both tools output the first solution they find instead of caching several

solutions and picking the most optimal. We discuss the possibility of adjusting this for

our tool in Section 4.4.

that our support for rational polynomials considerably enlarges the

potential branching degree of the search algorithm, which could

have negatively impacted both the search time and PPE Circuit size.

Our tool is even faster in some cases (such as the 100-DDH test

case).

The AutoRationalPPE code uses some elements of the public

source code of AutoCircuitPPE2. Both tools use the Generic Group

Analyzer [19], which has some support for rational polynomials.

However, we chose to write the needed subroutines to handle ra-

tional polynomials from scratch.

The high-level idea behind our Rules 1 and 2 have roots in sim-

ilar rules from [20, 46, 47], but are more complex as they require

”tracking zeros" as discussed above to prevent elements becom-

ing undefined. The high-level idea behind our Rules 3a and 3b

was inspired by [46, 47], although we removed redundancy, added

generalization and expanded it to keep elements from becoming

undefined. We then split it in two depending on whether a vari-

able not in InTrusted appears in the numerator (Rule 3a) or the

denominator (Rule 3b).

2 DEFINITIONS: EXPANDING PPE CIRCUITS
In the section, we formalize the notion of PPE Circuits with sup-

port for rational polynomials. It is an extension of the basic PPE

Circuits proposed in [47], and the basic PPE instance and challenge

notions proposed in [46]. We make a few critical changes needed

to handle undefined elements arising from an evaluation of zero in

the denominator of a rational polynomial. Let д1,д2,дT be group

generators of prime order p for groups G1,G2,GT respectively. Fol-

lowing [46, 47], we first rewrite any cryptographic scheme using a

single group generator for each group. For example, all elements in

G1 are set up to be derived as д
x
1
for a single generator д1 ∈ G1 and

x ∈ Zp . Thus, we now represent each group element in the scheme

with its group, along with a polynomial representing its exponent.

We represent a pairing-based cryptographic scheme in this form as

a PPE problem instance.

Definition 2.1 (PPE Problem Instance [46, 47]). A pairing

product equation (PPE) problem instance Π consists of 5

• pairing parameters G =(p,д1,д2,дT ,G1,G2,GT ,e),
• positive integers n,m,
• multivariate rational poly. r = (f1/h1, . . . , fm/hm) over n
variables in Zp denoted u = (u1, . . . ,un),
• a sequence of pairing group identifiers in I = {1, 2,T } denoted
α = (α1, . . . ,αm),
• a set Trusted ⊆ [1,m].

The pairing parameters above can optionally indicate the type

of pairing group (e.g., Type I, II or III); unless otherwise speci-

fied we assume Type III pairings. Throughout the paper, we use

the notation InTrusted(Π) to denote the set of variables that ap-

pear in the Trusted set of polynomials of Π i.e., InTrusted(Π) =
∪i ∈Trusted{variables used in fi } ∪ {variables used in hi } ⊆ u. We

simplify the notation and use InTrusted whenever the problem

instance Π is implicit.

5
Unlike the definition of [46], we do not include the set Fixed in the PPE Problem

Instance definition and unlike [47], we allow rational polynomials.

Definition 2.2 (PPE Challenge [46]). Let Π = (G,n,m, r =
(f1/h1, . . . , fm/hm), u,α , Trusted) be a PPE problem instance as in
Definition 2.1. Let R = (R1, . . . ,Rm) be comprised of pairing group
elements, where each Ri is in group Gαi . R is called a challenge to
PPE instance Π. Challenges are classified as:

• R = (R1, . . . ,Rm) is a YES challenge if there exists an assign-
ment to variables u = (u1, . . . ,un) ∈ Z

n
p such that for all i ,

Ri = д
fi (u)/hi (u)
αi . 6

• R = (R1, . . . ,Rm) is aNO challenge if it is not a YES challenge
and ∃ an assignment to u = (u1, . . . ,un) ∈ Z

n
p such that for

all i ∈ Trusted, Ri = д
fi (u)/hi (u)
αi .6

• R = (R1, . . . ,Rm) is an INVALID challenge if it is neither a
YES nor NO challenge.

Following [46, 47], we can view an YES challenge as meaning

that both the trusted and untrusted elements are distributed as they

should be. Whereas in a NO challenge, the trusted elements are

correctly formed, but the untrusted ones are not. In an INVALID
challenge, the “trusted” elements are not drawn from the proper

distribution (e.g., the public parameters are not correct). Thus, we

do not consider this case.

Our goal is to automatically generate circuits that take as input

a PPE challenge (Definition 2.2) and output 1 for all YES challenges

and 0 for all NO challenges. The circuit will input a set of pairing

elements and output a single bit. Each gate of the circuit can be an

AND/OR/NOT/PPE gate.

The following three definitions do not require alteration from [47].

Definition 2.3 (PPE Circuit [47]). A PPE circuit C is a tuple
(G,m,α , N ,Gates, out,GateType,A,B), where

• G = (p,д1,д2,дT ,G1,G2,GT , e) establishes the algebraic set-
ting,
• integerm specifies the number of group elements in the circuit
input. We will refer to these as Inputs = {1, . . . ,m}.
• the vector α = (α1, . . . ,αm) is a sequence of pairing group
identifiers in I = {1, 2,T } for the input elements,
• integer N is the number of gates in the PPE circuit,
• Gates = {m+1, . . . ,m+N }. We will refer toWires = Inputs∪
Gates.
• out is the integer in Gates denoting the output gate. Unless
otherwise stated, out =m + N .
• GateType : Gates → {PPE,AND,OR,NOT} is a function
that identifies the gate functionality, which is one of the fol-
lowing:
– PPE: description includes a circuit with m Inputs wires
whose logic forms that of a PPE over variables R1, . . . , Rm
where each Ri ∈ Gαi as specified byα and the single output
wire of the PPE carries a bit representing whether or not the
input satisfies the PPE,

– AND: for gate д, the description specifies two integers a,b
wherem + 1 ≤ a < b < д.

– OR: for gate д, the description specifies two integers a,b
wherem + 1 ≤ a < b < д.

6
Note that since Ri is a well-defined group element, satisfying Ri = д

fi (u)/hi (u)
αi

also implies hi (u) , 0.

– NOT: for gate д, the description specifies one integer a where
m + 1 ≤ a < д.

• A : Gates → Wires and B : Gates → Wires are functions.
For any gate AND/OR/NOT д, A(д) identifies д’s first incom-
ing wire. For any AND/OR gate д, B (д) identifies д’s second
incoming wire. We require that д > B (д) > A(д), ignoring
B (д) when undefined. Recall that the input wires for all PPE
gates are the Inputs.

The circuit takes as inputm group elements and outputs a single

output on a wire out.

Definition 2.4 (PPE Circuit Evaluation [47]). A PPE cir-

cuit evaluation Eval : C × (x1, . . . ,xm) takes as input a PPE cir-
cuit C = (G,m,α ,N ,Gates, out,GateType,A,B) together with an
m-element PPE challenge (x1, . . . ,xm) which must be consistent
with (G,α) (i.e., xi ∈ Gαi). The algorithm outputs a bit in {0, 1}.
The default evaluation algorithm is as follows. The input group ele-
ments (x1, · · · ,xm) are assigned to them input wires. For each gate
д ∈ Gates (in the increasing order of д), compute sд as follows ac-
cording to the description of GateType(д):
• if (PPE, β), then evaluate the PPE β using the assignment to
variables in (R1, . . . ,Rk). If the PPE is satisfied, then set sд = 1.
Otherwise, set sд = 0.
• if AND, then sд = sA(д) ∧ sB (д) .
• if OR, then sд = sA(д) ∨ sB (д) .
• if NOT, then sд = ¬sA(д) .

This algorithm outputs sout. For the AND, OR and NOT gates, by the
rules of the circuit description, sA(д) and sB (д) will be defined before
they are used.

Following [47], we let C (x) denote Eval(C, x) i.e., evaluation of

the circuit C on input x. We let Cд (x) denote the output of gate д
of the circuit C on input x.

Definition 2.5 (PPECircuit Testable / TestingCircuits [47]).

A PPE problem instance Π = (G,n,m, r, u,α , Trusted) is said to be
PPE circuit testable if and only if there exists a PPE circuit C =
(G,m,α ,N , Gates, out,GateType,A,B). such that both of the fol-
lowing hold:
• C (x) = 1 for every YES challenge x,
• C (y) = 0 for every NO challenge y.

There are no conditions on the behavior of C for INVALID challenges.
For any PPE problem instance Π, we call such a PPE circuitC a testing
circuit. A testing circuit for a PPE problem instance need not be unique.

For consistency, we adopt the circuit shorthands from [47], which

we review for the reader in Appendix B.

3 SEARCHING FOR A PPE TESTING CIRCUIT
WITH RATIONAL POLYNOMIAL SUPPORT

In this section, we describe an algorithm that searches for a PPE

testing circuitQ for a given PPE problem. The algorithm takes a PPE

problem Π as input and either outputs a PPE testing circuitQ or the

special symbol unknown. In the former case, the problemΠ is circuit

testable. In contrast, in the latter case, we cannot determine whether

Π is PPE circuit testable or not. Therefore, the algorithm has one-

sided correctness. If the algorithm outputs that Π has testing circuit

Q , this will be true.

Following the prior works [46, 47], our algorithm proceeds in a

sequence of steps. In each step, the algorithm (attempts to) “reduce

the complexity” of its input by adding a rational polynomial fi/hi to
the set Trusted and simultaneously modifying the testing circuit Q .

The prior works define a set of rules to determine which polynomial

is supposed to be added to Trusted and how to modify the testing

circuit Q at each step. In the end, if we can obtain Trusted = [1,m],

then we will have found a testing circuit. If, at any point, Trusted ,
[1,m] but none of the movement rules can be applied, the algorithm

terminates and outputs unknown. As the earlier works consider
only regular polynomials, we extend the rules to the case where

the PPE problem contains rational polynomials.

Reception List
Input: Pairing information G, Lengths |t1 |, |t2 |, |tT |
Output: Reception lists l1, l2, lT

(1) for each i ∈ {1, 2, T }, initialize li with |ti | number of

fresh variables, i.e., let li = {wi,1, · · · , wi, |li | }

(2) If an isomorphism ψ : G1 → G2 exists, then l2 := l2 ∪ l1.
If an isomorphism ϕ : G2 → G1 exists, then l1 := l1 ∪ l2

(3) lT := lT ∪ {β1β2 : β1 ∈ l1, β2 ∈ l2 }

Figure 1: Algorithm to find reception list of a list of polyno-
mials
3.1 Completion Lists for a List of Polynomials
In the section, we review the concept of completion lists in the

pairing setting as described by Barthe et al. [19]. Consider any list

r = [f1/h1, . . . , fk/hk] of polynomials. Let the ith entry belongs to

the group Gαi , where αi ∈ I = {1, 2,T } for all i ≤ k . For any group
Gi , let ti be all the polynomials in the group i.e., ti = { fj/hj : α j =
i}. We now recall the notion of completion CL(r) = {s1, s2, sT }
of the list r of polynomials with respect to a group setting [19].

Intuitively, CL(r) is the list of all polynomials that can be computed

by an adversary by applying pairing and isomorphism operations,

when he has access to the elements in the list r.
The algorithm to compute the completion CL(r) proceeds in two

steps. In the first step, it computes the reception lists {li }i ∈I as

shown in Figure 1. The elements of the reception lists are mono-

mials over variables wi, j for i ∈ I, j ∈ |ti |. The monomials

characterize which products of elements in t the adversary can

compute by applying pairing operations. The result of the first

step is independent of the elements in the lists t and only de-

pends on the lengths of the lists. In the second step, the algo-

rithm computes the actual polynomials from the reception lists

as si = [m1 (t), . . . ,m |li | (t)] for [m1, . . . ,m |li |] = li , where every
mk is a monomial over the variables wi, j andmk (t) denotes the
result of evaluating the monomial mk by substituting wi, j with

ti [j] for i ∈ I and j ∈ |ti |. When evaluating these monomials, we

do not cancel out any common factor in the numerator and the

denominator of the result.

3.2 Rules for Moving Polynomials into the
Trusted Set

We now describe four rules for reducing the complexity of a PPE

instance. We mean reducing the number of elements represented

by the rational polynomials, not in the set Trusted. We derive the

rules closely based on the rules proposed in [46, 47] that were

designed for non-rational polynomials. From now on, we assume

the formal variables R1,R2, · · · ,Rm represent group elements of

any PPE challenge corresponding to Π. These formal variables also

represent the input wires of the PPE circuit C being constructed.

3.2.1 Rule 1: Simple move of a rational polynomial with all
InTrusted variables to Trusted set. In this section, we show how

to simplify the given PPE problem by moving a rational polynomial

not in Trusted to Trusted. Given a PPE problem Π = (G,n,m, r,
u,α ,Trusted) and an index k ∈ [m], rule 1 can possibly be applied

if k < Trusted and the polynomial fk/hk ∈ r consists only of

variables ui ∈ InTrusted (these conditions are necessary, but not

sufficient). The rule 1, which is shown in Figure 2 is adapted from

Rule 1 in [46, 47]. These works for non-rational polynomials express

the untrusted polynomial fk in terms of polynomials in Trusted.
Such an expression gives rise to a pairing product equation that can

verify the well-formedness of the kth element in any PPE challenge.

In this paper, we adopt Rule 1 to rational polynomials. Here, we

additionally express the denominator hk in terms of the Trusted
polynomials and add a pairing production equation to the final

PPE circuit to verify that the denominator hk does not evaluate to

0. We now formally describe our Rule 1 in Figure 2 and prove its

correctness property in Lemma 3.1.

Lemma 3.1 (Correctness of Rule 1). Let Π = (G,n,m, r, u,
α , Trusted) be a PPE problem instance as in Definition 2.1 and let
k ∈ [m]. Suppose ⊥, (C,Π′) = Rule1(Π,k). Then, for every testing
circuit C ′ for Π′, it holds that C AND C ′ is a testing circuit for Π.

Proof. The proof of this lemma appears in Appendix C.1.

Description of Rule 1
Input: A PPE problem Π = (G, n,m, r, u, α , Trusted) and an

integer k ∈ [1,m].

Output: A PPE circuit C and a circuit PPE problem Π′, or the

symbol ⊥ (meaning could not apply rule).

Steps of Rule1(Π, k):

(1) If k ∈ Trusted or rk = fk /hk ∈ r has variables not in
InTrusted, abort and output ⊥.

(2) Compute completion lists {s1, s2, sT } = CL(rTrusted). For
any i ∈ I and j ≤ |si |, let si [j] = f i [j]/hi [j], Si [j] =
дsi [j]αi , and let Ui [j] be the pairing product term comput-

ing Si [j] in terms of formal variables R1, · · · , Rm .

(3) For each i ∈ I, let Hi be a least common multiple of the

polynomials {hi [j]}j∈|si | , and let the polynomial
ˆfi [j]

be such that
ˆfi [j]/Hi ≡ f i [j]/hi [j].

(4) Check if there exist and index i ∈ I and constant vectors

a = (a1, · · · , a |sT |) and b = (b1, · · · , b |si |) with entries

in Zp s.t.

rk ≡
fk
hk
≡

|sT |∑
j=1

aj · sT [j] ≡
|sT |∑
j=1

aj ·
ˆfT [j]
HT

(1)

hk ≡
|si |∑
j=1

bj · si [j] ≡
|si |∑
j=1

bj ·
ˆfi [j]
Hi

(2)

These equations can also be expressed as

fk · HT ≡ hk ·
|sT |∑
j=1

aj · ˆfT [j] (3)

hk · Hi ≡

|si |∑
j=1

bj · ˆfi [j] (4)

respectively. Computing such coefficient vectors reduces

to checking if the polynomial 0 belongs to the span of all

the polynomials in the left hand side and the right hand

side of the above equation.

(5) If such a, b exists, define the PPEs

A :=

|sT |∏
j=1

UT [j]aj =




Rk if αk = T
e (Rk , д2) if αk = 1

e (д1, Rk) if αk = 2

B :=

|si |∏
j=1

Ui [j]bj = Ii

where Ii is the identity element in group Gi . Now

define PPE circuit C as MakeCircuit(G,m, α , A)
AND (NOT MakeCircuit(G,m, α , B)). Output

the circuit C along with PPE problem Π′ =

(G, n,m, r, u, α , Trusted∪{k }). If such a, b do not exist,
output ⊥.

Figure 2: Procedure for moving certain rational polynomi-
als rk = fk/hk with all InTrusted variables to Trusted

Description of SubstituteZero Algorithm
Input: A PPE Problem Π = (G, n,m, r, u, α , Trusted) and poly-
nomial h.
Output: A PPE Problem Π′ or ⊥.

• Construct vector r′ ofm rational polynomials as follows.

For each k ∈ [m], let rk = fk /hk .
– If fk = Poly

1
· h + Poly

2
for some polynomials Poly

1

and Poly
2
, such that (1) Poly

2
does not have h as a

factor, and (2) the number of monomials in Poly
2
is

less than fk when expressed in canonical form, then

set numk = Poly
2
. Otherwise, set numk = fk .

– If hk = Poly
3
· h + Poly

4
for some polynomials Poly

3

and Poly
4
, such that (1) Poly

3
does not have h as a

factor, and (2) the number of monomials in Poly
4
is

less than hk when expressed in canonical form, then

set denomk = Poly
4
. Otherwise, set denomk = hk .

– r ′k = numk /denomk .

• If denomk = 0 for any k , then output ⊥. Otherwise,

output Π′ = (G, n,m, r′, u, α , Trusted).

Figure 3: Algorithm for updating a PPE problem instance
when a specified polynomial h is set to 0.

3.2.2 Rule 2: More general move of a rational polynomial
with all InTrusted variables to Trusted set. In this section, we

show a more general way to move a rational polynomial not in

Trusted to Trusted. Given a PPE problemΠ = (G,n,m, r, u,α ,Trusted)
and an index k ∈ [m], rule 2 can possibly be applied if k < Trusted
and the polynomial fk/hk ∈ r consists only of variables ui ∈
InTrusted (these conditions are necessary, but not sufficient). In

Rule 1, we expressed the untrusted polynomial fk/hk in terms of

polynomials in Trusted. However, in the expression, we didn’t allow
fk/hk to be multiplied by any factor. In rule 2, we consider more

general way to express fk/hk in terms of polynomials in Trusted,
by allowing expressions of the form

(fk/hk) · (some combination of trusted polynomials)

= (some other combination of trusted polynomials).

Once we obtain such an expression, we move fk/hk to the trusted

set and add a PPE corresponding to the expression to our final

PPE circuit. This PPE is supposed to verify well-formedness of kth

untrusted element in any PPE challenge.

However, there is one issue here. Suppose the factor that is

multiplied to fk/hk in the above expression evaluates to 0 on a

given PPE challenge. In that case, the PPE does not verify the well-

formedness of fk/hk as the PPE might be trivially satisfied. To

solve the issue, we adopt the approach proposed by [46, 47] in

their Rule 3. We break the scenario into 2 cases. (1) The factor that

is multiplied to fk/hk in the above expression does not evaluate

to 0. (2) The factor evaluates to 0. In the former case, the above

PPE validates the well-formedness of the untrusted element. In the

latter case, we try to apply other rules. As earlier, we additionally

express the denominator hk in terms of the Trusted polynomials

and add a pairing production equation to the final PPE circuit to

verify that the denominator hk does not evaluate to 0. We now

formally describe our Rule 2 in Figure 4 and prove its correctness

property in Lemma 3.2.

Lemma 3.2 (Correctness of Rule 2). Let Π = (G,n,m, r, u,
α , Trusted) be a PPE problem instance as in Definition 2.1 and let
k ∈ [m]. Suppose ⊥, (IsIdentity,C,Π′,Π′′) = Rule2(Π,k).

• If Π′′ ,⊥, for every pair of testing circuits C ′ and C ′′ for Π′

and Π′′ respectively, the PPE circuit

Z := ((NOT IsIdentity) AND C AND C ′) OR (IsIdentity AND C ′′)

is a testing circuit for Π.
• If Π′′ =⊥, for every testing circuit C ′ for Π′,

Z := ((NOT IsIdentity) AND C AND C ′)

is a testing circuit for Π.

Proof. The proof of this lemma appears in Appendix C.2.

3.2.3 Rule 3a: General move of a rational polynomial rk =
fk/hk with multiple non-InTrusted variables to the Trusted
set. We now describe a way to move a rational polynomial not

in Trusted to Trusted when the polynomial is allowed to have

non-InTrusted variables
7
in the numerator. Given a PPE problem

Π = (G,n,m, r, u,α ,Trusted) and an index k ∈ [m], rule 3a can

possibly be applied if k < Trusted, the polynomial hk ∈ r consists
only of variables ui ∈ InTrusted, and fk contains one or more

non-InTrusted variables (these conditions are necessary, but not

sufficient). In Figure 5, we formally describe the Rule 3a, which is

an extension of Rule 4 in [46, 47]. We prove its correctness property

in Lemma 3.3.

Lemma 3.3 (Correctness of Rule 3a). Let Π = (G,n,m, r, u,
α , Trusted) be a PPE problem instance as in Definition 2.1, j ∈ [n]
and k ∈ [m]. Suppose ⊥, (IsIdentity,C,Π′,Π′′) = Rule3a(Π, j,k).

• If Π′′ ,⊥, for every pair of testing circuits C ′ and C ′′ for Π′

and Π′′ respectively, the PPE circuit

Z := ((NOT IsIdentity) AND C AND C ′) OR (IsIdentity AND C ′′)

is a testing circuit for Π.
• If Π′′ =⊥, for every testing circuit C ′ for Π′,

Z := ((NOT IsIdentity) AND C AND C ′)

is a testing circuit for Π.

Proof. The proof of this lemma appears in Appendix C.3.

3.2.4 Rule 3b: General move of a rational polynomial rk =
fk/hk with multiple non-InTrusted variables to the Trusted
set. In this section, we show describe a way to move a rational poly-

nomial not in Trusted to Trusted when the polynomial is allowed

to have non-InTrusted variables
8
in the denominator. Given a PPE

problem Π = (G,n,m, r, u,α ,Trusted) and an index k ∈ [m], rule

3b can possibly be applied if k < Trusted, the polynomial fk ∈ r
consists only of variables ui ∈ InTrusted, and hk contains one or

more non-InTrusted variables (these conditions are necessary, but

not sufficient). In Figure 6, we formally describe the Rule 3b. We

prove its correctness property in Lemma 3.4.

7
Recall that InTrusted variables are the set of all variables used in the Trusted

set of polynomials.

8
Recall that InTrusted variables are the set of all variables used in the Trusted

set of polynomials.

Description of Rule 2
Input: A PPE problem Π = (G, n,m, r, u, α , Trusted) and an integer k ∈ [1,m].

Output: Two PPE circuits IsIdentity, C and two circuit PPE problems Π′, Π′′, or the symbol ⊥ (meaning could not apply rule).

Steps of Rule2(Π, k):

(1) If k ∈ Trusted or αk = T or rk = fk /hk ∈ r has variables not in InTrusted, abort and output ⊥.

(2) Compute completion lists {s1, s2, sT } = CL(rTrusted). For any i ∈ I and j ≤ |si |, let si [j] = f i [j]/hi [j], Si [j] = д
si [j]
αi , and let Ui [j] be

the pairing product term computing Si [j] in terms of formal variables R1, · · · , Rm .

(3) For each i ∈ I, let Hi be a least common multiple of the polynomials {hi [j]}j∈|si | , and let the polynomial
ˆfi [j] be such that

ˆfi [j]/Hi ≡

f i [j]/hi [j].
(4) Let α = 3 − αk . Check if there exists an index i ∈ I and constant vectors a = (a1, · · · , a |sT |), b = (b1, · · · , b |sα |) and c = (c1, · · · , c |si |)

with entries in Zp s.t.

rk · (
|sα |∑
j=1

bj · sα [j]) ≡
fk
hk
·

(|sα |∑
j=1

bj ·
ˆfα [j]
Hα

)
≡

|sT |∑
j=1

aj · sT [j] ≡
|sT |∑
j=1

aj ·
ˆfT [j]
HT

(5)

hk ≡
|si |∑
j=1

c j · si [j] ≡
|si |∑
j=1

c j ·
ˆfi [j]
Hi

(6)

These equations can also be expressed as

fk · HT · (
|sα |∑
j=1

bj · ˆfα [j]) ≡ hk · Hα ·

|sT |∑
j=1

aj · ˆfT [j] (7)

hk · HT ≡
|sT |∑
j=1

c j · ˆfT [j] (8)

(Computing coefficient vectors a, b, c reduces to checking if the polynomial 0 belongs to the span of all the polynomials in the left-hand

side and the right-hand side of the above equation.)

(5) If such (a, b, c) exist, then compute PPEs

A := (

|sα |∏
j=1

Uα [j]bj = Iα), D := Ii =
|si |∏
j=1

Ui [j]cj B :=

|sT |∏
j=1

UT [j]aj =



e (Rk ,
∏|sα |

j=1 Uα [j]
bj) if αk = 1

e (
∏|sα |

j=1 Uα [j]
bj , Rk) if αk = 2

where Iα is the identity element in group Gα .

• Compute Π′ = (G, n,m, r, u, α , Trusted ∪ {k }) and Π′′ = SubstituteZero(Π,
∑|sα |
j=1 bj ·

ˆfα [j]), where the SubstituteZero algorithm

is described in Figure 3. Intuitively, SubstituteZero creates a new PPE problem instance by substituting

∑|sα |
j=1 bj ·

ˆfα [j] with 0 in the

Trusted set of polynomials).

• If Π′′ = Π, then output ⊥. Otherwise, output the circuit IsIdentity := MakeCircuit(G,m, α , A), the circuit C :=

MakeCircuit(G,m, α , B) AND (NOT MakeCircuit(G,m, α , D)) and PPE problems Π′, Π′′.
(6) If such (a, b, c) do not exist, then output ⊥.

Figure 4: A more general procedure for moving certain rational polynomials rk = fk/hk with all InTrusted variables to Trusted

Lemma 3.4 (Correctness of Rule 3b). Let Π = (G,n,m, r, u,
α , Trusted) be a PPE problem instance as in Definition 2.1, j ∈ [n]
and k ∈ [m]. Suppose ⊥, (IsIdentity,C,Π′,Π′′) = Rule3b(Π, j,k).
• If Π′′ ,⊥, for every pair of testing circuits C ′ and C ′′ for Π′

and Π′′ respectively, the PPE circuit

Z := ((NOT IsIdentity) AND C AND C ′) OR (IsIdentity AND C ′′)

is a testing circuit for Π.
• If Π′′ =⊥, for every testing circuit C ′ for Π′,

Z := ((NOT IsIdentity) AND C AND C ′)

is a testing circuit for Π.

Proof. The proof of this lemma appears in Appendix C.4.

3.3 Applying the Rules
We now describe how to combine Rules 1-3b into the main algo-

rithm that takes input a PPE problem and outputs a PPE circuit

or the special message unknown. Here unknown means that the

search did not produce an output but does not prove that no such

testing circuit for the input problem exists. We describe the algo-

rithm QSearch in Figure 7. Later in Theorem 1, we prove that if

this algorithm produces a testing circuit as output, then that cir-

cuit is guaranteed to classify PPE challenges for this PPE problem

correctly.

Theorem 1 (Correctness of the PPE Circuit Searching Al-

gorithm in Figure 7). Let Π = (G,n,m, r, u,α , Trusted) be a
PPE problem instance as in Definition 2.1. Let C = QSearch(Π). If
C , unknown, thenC is a PPE testing circuit forΠ as in Definition 2.5,
and therefore Π is circuit testable.

Proof. This follows the corresponding theorem in [47]. We

sketch how to prove this by induction on the number of untrusted

polynomials and the total number of monomials in all the poly-

nomials of f . The critical correctness arguments required have al-

ready been covered for each rule in Lemmas 3.1, 3.2, 3.3, 3.4. When

QSearch is invoked on Π with either zero untrusted polynomials or

Description of Rule 3a
Input: A PPE problem Π = (G, n,m, r, u, α , Trusted) and integer k ∈ [m].

Output: Either two PPE circuits IsIdentity and C and two PPE problems Π′, Π′′, or ⊥ (meaning could not apply the rule).

Steps of Rule3a(Π, j, k):

(1) Let the polynomial rk = fk /hk ∈ r. If k ∈ Trusted, then abort and output ⊥.

(2) If fk is of the form h′ · udj + h
′′
and any of the following conditions do not hold, abort and output ⊥.

• j < InTrusted,
• the polynomials h′, hk contains only variables in InTrusted, and
• the polynomial h′′ contains any variables other than uj , and
• the constant d ∈ Zp is relatively prime to p − 1,

(3) Compute completion lists {s1, s2, sT } = CL(rTrusted). For any i ∈ I and j ≤ |si |, let si [j] = f i [j]/hi [j], Si [j] = д
si [j]
αi , and let Ui [j] be

the pairing product term computing Si [j] in terms of formal variables R1, · · · , Rm .

(4) For each i ∈ I, let Hi be a least common multiple of the polynomials {hi [j]}j∈|si | , and let the polynomial
ˆfi [j] be such that

ˆfi [j]/Hi ≡

f i [j]/hi [j].

(5) Check if there exists constant vectors a = (a1, a2, · · · , a |sT |) and b = (b1, b2, · · · , b |sT |) with elements inZp such thath′ ≡
∑|sT |
j=1 aj ·

ˆfT [j]
HT

,

and hk ≡
∑|sT |
j=1 bj ·

ˆfT [j]
HT

These equations can be equivalently expressed as h′ · HT ≡
∑|sT |
j=1 aj ·

ˆfT [j] and hk · HT ≡
∑|sT |
j=1 bj ·

ˆfT [j].
(6) If such vector a exists, then
• Set PPE

A :=

|sT |∏
j=1

UT [j]aj = IT , B :=

|sT |∏
j=1

UT [j]bj = IT ,

where IT is the identity element of the group GT . Define IsIdentity := MakeCircuit(G,m, α , A), C := NOT MakeCircuit(G,m, α , B).
• Set PPE problem Π′ = (G, n,m, r, u, α , Trusted ∪ {k }) and Π′′ = SubstituteZero(Π, h′), where the function SubstituteZero is defined

in Figure 3. If Π′′ = Π, then output ⊥. Otherwise, output IsIdentity and Π′, Π′′.
(7) If such vector a does not exist, then output ⊥.

Figure 5: Procedure for moving a rational polynomial rk = fk/hk containing non-InTrusted variables only in fk to Trusted

Description of Rule 3b
Input: A PPE problem Π = (G, n,m, r, u, α , Trusted) and integer k ∈ [m].

Output: Either a PPE circuit IsIdentity and two PPE problems Π′, Π′′ or ⊥ (meaning could not apply the rule).

Steps of Rule3b(Π, j, k):

(1) Let the polynomial rk = fk /hk ∈ r. If k ∈ Trusted, then abort and output ⊥.

(2) If hk is of the form h′ · udj + h
′′
and any of the following conditions do not hold, abort and output ⊥.

• j < InTrusted,
• the polynomials h′, fk contains only variables in InTrusted, and
• the polynomial h′′ contains any variables other than uj , and
• the constant d ∈ Zp is relatively prime to p − 1,

(3) Compute completion lists {s1, s2, sT } = CL(rTrusted). For any i ∈ I and j ≤ |si |, let si [j] = f i [j]/hi [j], Si [j] = д
si [j]
αi , and let Ui [j] be

the pairing product term computing Si [j] in terms of formal variables R1, · · · , Rm .

(4) For each i ∈ I, let Hi be a least common multiple of the polynomials {hi [j]}j∈|si | , and let the polynomial
ˆfi [j] be such that

ˆfi [j]/Hi ≡

f i [j]/hi [j].
(5) Check if there exists constant vectors a = (a1, a2, · · · , a |sT |) and b = (b1, b2, · · · , b |sT |) with elements in Zp such that

h′ ≡
|sT |∑
j=1

aj ·
ˆfT [j]
HT

, fk ≡
|sT |∑
j=1

bj ·
ˆfT [j]
HT

.

These equations can be equivalently expressed as h′ · HT ≡
∑|sT |
j=1 aj ·

ˆfT [j], and fk · HT ≡
∑|sT |
j=1 bj ·

ˆfT [j].
(6) If such vector a and b exists, then

• Set PPE

A :=

|sT |∏
j=1

UT [j]aj = IT , B :=

|sT |∏
j=1

UT [j]bj = IT , D := Rk = IT

where IT is the identity element of the group GT . Define IsIdentity = MakeCircuit(G,m, α , A), B′ = MakeCircuit(G,m, α , B) and
D′ = MakeCircuit(G,m, α , D).

• Set PPE problem Π′ = (G, n,m, r, u, α , Trusted ∪ {k }) and Π′′ = SubstituteZero(Π, h′), where the function SubstituteZero is defined

in Figure 3. If Π′′ = Π, then output ⊥. Otherwise, output IsIdentity, C = (NOT B′) OR (B′ AND D′) and Π′, Π′′.
(7) If such vector a does not exist, then output ⊥.

Figure 6: Procedure for moving a rational polynomial rk = fk/hk containing non-InTrusted variables only in hk to Trusted

zero total number of monomials, it outputs the always accepting cir-

cuitCacc which is a valid testing circuit. Now suppose the QSearch
algorithm outputs a valid testing circuit or unknown on every prob-

lem Π′ which has at most α number of untrusted polynomials and

at most β total number of monomials in f . Suppose QSearch out-

puts a circuit C , unknown on a problem Π with α + 1 untrusted
polynomials and at most β total number of monomials in r. It must

have invoked one of the 4 rules. By Lemmas 3.1, 3.2, 3.3, 3.4 and our

induction hypothesis,C is a valid testing circuit. Similarly,QSearch
outputs either a valid testing circuit or unknown when invoked on

a problem Π with at most α untrusted polynomials and β + 1 total
number of monomials in f . By induction, for any Π, if QSearch(Π)
does not output unknown, then it outputs a valid testing circuit for

Π.

3.4 Efficiency of QSearch
The asymptotic time complexity of the QSearch algorithm will be

exponential, although fortunately our experiments from Section 4

show that it is surprisingly fast in practice. Let us now analyze its

running time. A call toQSearch scans all the untrusted polynomials

to check if any rule is applicable and then callsQSearch recursively

at most two times.

Let us first compute the time taken to scan all the untrusted

polynomials and check if any rule is applicable. Let us denote the

size of a polynomial to be the total number of additions and mul-

tiplications involved in the normal form of the polynomial (e.g.,

the size of x2yz + 3z3y3 is 5). Therefore, multiplying 2 polynomials

of size s1 and s2 takes O (s1s2) time. Let the maximum size of all

polynomials f in the input be s . Executing any rule involves com-

puting completion lists followed by checking if 0 lies in the span of

certain polynomials. Computing completion lists ofm polynomials

involves O (m2) polynomial multiplications take O (m2 · s2) time.

Normalizing the rational polynomials to have a common denomina-

tor involves multiplyingm2
polynomials in the completion list each

of size s2, which takesO (m2 ·s2m
2

) time. Suppose we want to check

if 0 lies in the span ofO (m2) polynomials (number of polynomials in

the completion lists), each having at mostO (s2m
2

) monomials after

normalization. This involves solving a system ofO (m2 ·s2m
2

) linear
equations (upper bound on the number of monomials in the com-

pletion list) each of sizeO (m2). This takes at mostO ((m2 · s2m
2

)ω)
time, where nω is the complexity of multiplying two n ×n matrices.

Therefore, applying all the rules to all the untrusted polynomials

takes at most O (m · (m2 · s2m
2

)ω) time.

Now let us compute the total number of timeswe call theQSearch
algorithm recursively. Suppose QSearch is run on problem Π and

suppose it triggers a rule that outputs two PPE problems Π′ and
Π′′. We obtain the problem Π′ by moving an untrusted polynomial

to the trusted set, and the problem Π′′ is obtained by substituting

some polynomial by zero. Note that Π′′ cannot be equal to the orig-
inal problem as Rule2 − 3b outputs ⊥ otherwise. Therefore some

polynomial of Π′′ has at least one lesser monomial than Π. Let the
total number of monomials in all the polynomials of Π be k . By the

above analysis, the QSearch is recursively invoked at most 2
m+k

times. As each recursive call takes at most O (m · (ms)2ω) time, the

total time taken by our algorithm isO (m · (m2 ·s2m
2

)ω ·2m+k) time.

Even though our algorithm has high theoretical complexity, in Sec-

tion 4 we show that it runs reasonably fast for many real-world

schemes.

Main Algorithm for PPE Testing Circuit Search
Input: A PPE problem Π = (G, n,m, r, u, α , Trusted).
Output: A PPE circuit Q or the special symbol unknown.
Steps of QSearch(Π):

Start. If Trusted = [m], then output the always accepting cir-

cuit Q := Cacc.

Rule 1. For k = 1 tom,

(a) Call z = Rule1(Π, k).
(b) If z = (C, Π′) ,⊥, then

(i) Call C′ = QSearch(Π′)
(ii) If C′ , unknown, then output the PPE circuit Q :=

C AND C′.
Rule 2-3b. For rule in {Rule2, Rule3a, Rule3b}, k = 1 tom,

(a) Call z = rule(Π, k).
(b) If z = (IsIdentity, C, Π′, Π′′) ,⊥, then

(i) Call C′ = QSearch(Π′)
(ii) If C′ , unknown and Π′′ =⊥, then output Q :=

((NOT IsIdentity) AND C AND C′).
(iii) If C′ , unknown and Π′′ ,⊥, then call C′′ =

QSearch(Π′′)
(iv) If C′ , unknown and C′′ , unknown, then output

the PPE circuit

Q := ((NOT IsIdentity) AND C AND C′) OR
(IsIdentity AND C′′).

Final. Otherwise, output unknown.

Figure 7: Recursive procedure for searching for a PPE Test-
ing Circuit

4 IMPLEMENTATION
We implemented the PPE circuit searching algorithm described in

Figure 7 in a software tool called AutoRationalPPE. We ran the tool

on a number of signature, verifiable random function and advanced

encryption schemes as well as other types of pairing-based pub-

lic/private parameters, including some that are PPE circuit testable

and some that are provably not. Our tool was able to produce out-

puts for the schemes based on rational polynomials left open by the

previousAutoPPE andAutoCircuitPPE tools [46, 47] and for several
new schemes. We now present the design of the AutoRationalPPE
tool followed by its test case results and performance numbers.

4.1 AutoRationalPPE Implementation
We implemented AutoRationalPPE using Ocaml version 4.02.3. We

built the code on top of the AutoCircuitPPE9 tool (Hohenberger et
al. [47]), which in turn utilizes some of the parsing tools and data

structures (to store polynomials) of the Generic Group Analyzer

(GGA) tool
10

of Barthe et al. [19]. We also used the SageMath

package
11

to solve systems of linear equations and implemented

the remaining logic ourselves.

9
https://github.com/JHUISI/auto-tools

10
https://github.com/generic-group-analyzer/gga

11
https://www.sagemath.org/

Input File Example
maps G1 * G1 ->GT.

trusted_polys [F1 = a] in G1.

untrusted_polys [F2 = a*a, F3 = a*a*a, F4 = 1/(a*a*a*a), F5 = 1/a] in G1.

Figure 8: Input file for our detailed example.

The input format of AutoRationalPPE is similar to the

AutoCircuitPPE tool, which makes testing with both tools easier.
12

For the sake of completeness, we present the input format below.

The tool’s input consists of pairing information (such as the Type I,

II or III) and a set of trusted/untrusted polynomials along with their

group identifiers.
13

In addition, the tool optionally takes as input

information that allows the tool to help the user encode some cryp-

tosystem parameters as a PPE problem instance. In particular, all

trusted and untrusted elements (represented by rational polynomi-

als) are bilinear group elements in G1,G2 or GT and Definition 2.1

does not allow including an element in Zp in either set. However,

since it is not uncommon for schemes to contain elements in the

Zp domain as part of their public or private parameters, we imple-

mented a workaround for those schemes similar to AutoPPE and

AutoCircuitPPE.
14

The tool runs the algorithm in Figure 7 along

with a few optimizations implemented in AutoPPE and AutoCir-

cuitPPE such as computing completion list before applying all the

rules. It finally outputs either a PPE circuit or the special symbol

unknown. The PPE circuit computed by the QSearch algorithm is

generally very large, and therefore we further optimize the circuit

by a few techniques such as computing common sub-circuits only

once.

The source code for AutoRationalPPE comprises roughly 4K

lines of Ocaml code, and the input description of each pairing

based scheme we tested consists of less than 10 lines of code. The

ease of converting a given pairing based scheme into the input

format for AutoRationalPPE makes the tool highly practical and

useful. The source code of AutoRationalPPE is publicly available

at https://github.com/JHUISI/auto-tools.

4.2 A Detailed Example
In this section, we explain how to use our tool via a detalied example.

In Figure 8, we present a sample input to our tool. Here, we intend to

verify the well-formedness of group elements (дa
2

1
,дa

3

1
,д1/a

4

1
,д1/a

1
),

given дa
1
i.e., the a is the trusted polynomial and (a2,a3, 1/a4, 1/a)

are the untrusted set of polynomials. We compute the PPE circuit

that verifies the well-formedness of above untrusted polynomials

using our tool.

In the input file to our tool, we specify the pairing information us-

ing the line maps G1*G1->GT, which denotes a Type I pairing
15
. We

then specify the trusted set of polynomials along with their group

identifiers using trusted_polys [_] in G_. We then specify the

untrusted set of polynomials along with their group identifiers

12
Unlike AutoCircuitPPE, our tool takes 2 polynomials for each formal variable

representing numerator and denominator.

13
While this program input is in a slightly different format than Definition 2.1, we

stress that it is the same information.

14
Whenever a polynomial fi /hi is added to the Trusted set, then the implementa-

tion also adds uj · fi /hi for any variables uj representing elements in Zp .
15
Alternately, a Type II pairing could be specified by maps G1*G2->GT, isos G1

->G2, and a Type III pairing could be specified by maps G1*G2->GT.

Output of the Tool
F0 = 1 in G1 F0 = 1 in GT F1 = a in G1 F2 = a^2 in G1

F3 = a^3 in G1 F4 = 1/a^4 in G1 F5 = 1/a in G1

Trusted set in G1: F1 = a

Untrusted set in G1: F2 = a^2, F3 = a^3, F4 = 1/a^4, F5 = 1/a

Rule 1 applied to F2 = a^2. C := e(F2,F0) = e(F1,F1)

Trusted set in G1: F1 = a, F2 = a^2

Untrusted set in G1: F3 = a^3, F4 = 1/a^4, F5 = 1/a

Rule 1 applied to F3 = a^3. C := e(F3,F0) = e(F1,F2)

Trusted set in G1: F1 = a, F2 = a^2, F3 = a^3

Untrusted set in G1: F4 = 1/a^4, F5 = 1/a

Rule 2 applied on F5 = 1/a. isidentity := F1 = I C := (e(F5,F1) = F0 AND

(NOT F1 = I))

Trusted set in G1: F1 = a, F2 = a^2, F3 = a^3, F5 = 1/a

Untrusted set in G1: F4 = 1/a^4

Rule 2 applied on F4 = 1/a^4. isidentity := F2 = I C := (e(F4,F2) = e(F5,F5)

AND (NOT e(F2,F2) = I))

Execution time : 8.283724s

(e(F2,F0) = e(F1,F1) AND (e(F3,F0) = e(F1,F2) AND (((NOT F1 = I) AND

(e(F5,F1) = F0 AND (NOT F1 = I))) AND ((NOT F2 = I) AND (e(F4,F2) =

e(F5,F5) AND (NOT e(F2,F2) = I))))))

Optimized Circuit:

G1 : e(F2,F0) = e(F1,F1) G2 : e(F3,F0) = e(F1,F2) G3 : F1 = I

G4 : e(F5,F1) = F0 G5 : F2 = I G6 : e(F4,F2) = e(F5,F5)

G7 : e(F2,F2) = I G8 : NOT G3 G9 : G8 AND G4 G10 : NOT G5

G11 : NOT G7 G12 : G6 AND G11 G13 : G10 AND G12

G14 : G9 AND G13 G15 : G2 AND G14 G16 : G1 AND G15

Figure 9: Output file for our detalied example. The final PPE
circuit is presented at the end. The wires of the PPE circuit
are denoted using Gxx.

using untrusted_polys[_] in G_. For each polynomial, we also

specify a formal variable F_ which is used in the PPE circuit output

by the tool. We specify comments using delimeters (*....*). We

present the output of the tool on the above input file in Figure 9. The

output file contains the list of rules applied during the execution

and the final circuit. Following AutoCircuitPPE, we also make a

few optimizations to the final circuit. The list of PPE and boolean

gates of the optimized circuit are presented at the end of the output.

Here, each wire of the circuit is denoted using Gxx notation. This
could be either output of a PPE or boolean gate.

In identity based encryption schemes, typically identity id is

a variable in Zp and not a group element. In such cases, we can

specify id variable using Zp_vars [_]. Internally for every problem
instance Π, for each trusted polynomial f /h and a Zp variable xi ,

the AutoRationalPPE tool adds xi · f /h to the trusted set
16
. Prior

tools also do this modification.

4.3 Case Studies
We evaluated AutoRationalPPE on various types of pairing-based

schemes using a MacBook Pro 2015 laptop with 2.7GHz Intel Core

i5 processor and 8GB 1867MHz DDR3 RAM. We present the results

along with average execution times over 10 runs in Figure 1. Like

16
Ideally, for each polynomial poly on Zp variables x, one should include poly(x) ·

f/h in the trusted set. The AutoRationalPPE tool supports such an operation for all

bounded degree polynomials on Zp variables. However for the purpose of this example,

it suffices to include only xi · f /h to trusted set.

https://github.com/JHUISI/auto-tools

Scheme Pairing Type

AutoCircuitPPE

output

PPE Circuit

Testability

Our Tool

Output

#PPE

Gates

#Bool

Gates

Run

Time

BF [29] Type I IBE Testable Testable Testable 1 0 3.61s

GS [39] Type I IBE Testable Testable Testable 1 0 4.06s

BB [25] (ℓ = 160) Type I HIBE Testable Testable Testable 1 0 177.57s

BB [26] (|H (id) | = 8) Type I IBE Testable Testable Testable 1 0 25.5s

Waters [56] (|H (id) | = 16) Type I IBE Testable Testable Testable 1 0 50.22s

N [53] (B (H (id)) = 8) Type III IBE Testable Testable Testable 1 0 4.62s

BBG [28] (ℓ = 8) Type I HIBE Testable Testable Testable 5 4 6.87s

Waters [57] Type I IBE Unknown Not testable Unknown 0 0 322.23s

BW [31] Type I Anon-IBE Testable Testable Testable 28 125 20.56s

BB [25] Type I IBE N/A Testable Testable 2 2 5.02s

Gentry [38] Type I IBE N/A Testable Testable 2 2 2.15s

BLS [30] Type I Signature Testable Testable Testable 1 0 3.69s

CL [33]-A Type I Signature Testable Testable Testable 2 1 3.60s

CL [33]-B Type I Signature Testable Testable Testable 4 3 3.16s

CL [33]-B Type III Signature Testable Testable Testable 4 3 3.21s

CL [33]-C (B (msg) = 8) Type I Signature Testable Testable Testable 16 15 25.08s

BW [32] Type I Signature Testable Testable Testable 1 0 36.38s

AGOT [4] Type II Signature Testable Testable Testable 1 0 2.05s

BB [27] Type III Signature N/A Testable Testable 2 2 2.30s

LG [49] Type III Signature N/A Testable Testable 2 2 2.08s

ACDKNO [2] Type III Signature Testable Testable Testable 12 20 3.20s

Dodis [35] (|C (x) | = 3) Type I VRF Testable Testable Testable 18 30 5.29s

Dodis [35] (|C (x) | = 4) Type I VRF Testable Testable Testable 28 49 95.5s

Lysyanskaya [50] (|C (x) | = 5) Type III VRF Testable Testable Testable 5 4 10.38s

DY [36] Type I VRF N/A Testable Testable 3 3 2.01s

Jager [48] (|H (x) | = 4) Type III VRF Testable Testable Testable 5 4 5.12s

RW [54] (a = 8) Type I CP-ABE Testable Testable Testable 9 8 13.96s

100-DDH Type I Custom Testable Testable Testable 1 0 3.78s

DLIN Type I Custom Unknown Not Testable Unknown 0 0 0.03s

Custom Testcase 1 Type I Custom N/A Testable Testable 2 2 1.89s

Custom Testcase 2 Type I Custom N/A Testable Testable 3 3 2.07s

Custom Testcase 3 Type I Custom N/A Testable Testable 2 2 1.93s

Custom Testcase 4 Type III Custom N/A Testable Testable 7 9 2.07s

Custom Testcase 5 Type III Custom N/A Testable Testable 11 17 2.11s

Custom Testcase 6 Type I Custom N/A Testable Testable 102 103 3.55s

Table 1: The output of AutoRationalPPE on various PPE circuit testability problems. Here, ℓ represents the number of delegation
levels in a HIBE scheme, |H (id) | denotes the length of the hash of identity id, B (H (id)) denotes the number of blocks in the
hash of identity id, B (msg) denotes the number of blocks in message msg, |C (x) | denotes the length of encoding of input x ,
|H (x) | denotes the length of encoding of input x , and a denotes the number of attributes. The execution time is mentioned in
seconds. Here N/A denotes the fact that AutoCircuitPPE does not accept input with rational polynomials.

AutoCircuitPPE, we simplified checking whether the constant d is

relatively prime to p−1 in Rule 3a and 3b, by checking whether d is

a small prime (d ∈ {1, 3, 5, 7, 11}), as none of the real world schemes

have polynomials with high degree on their variables. Also, if a

PPE is trivially True/False,
17

we replace the PPE with True/False

accordingly.

We evaluated our tool various, IBE, VRF, Signature schemes

and summarize our test results for 35 schemes in Table 1. For IBE

17
For example, if denominator polynomial hk is a constant in Rule3a, then the

circuit C is trivially True.

schemes, we ran our tool to compute a PPE circuit which tests

for well-formedness of a secret key of an identity given the mas-

ter public key and the identity. For Verifiable Random Function

(VRF) schemes, we aimed to construct a PPE circuit which tests

for validity of VRF output and proof of pseudorandomness given

the verification key and VRF input. For signature schemes, we ran

the tool to output a PPE circuit which acts as a verification proce-

dure that checks the well-formedness of a signature given message

and verification key. We encoded each of the schemes into a PPE

problem instance similar to [46] (See [46] Section 5.2 for more de-

tails). As in [46], we encode the VRF bit string input of [35, 48, 50]

schemes as a vector of Zp variables. We observe that the size of

the polynomials in these schemes grow exponentially in size with

respect to the length of encoding of the input. Consequently, we

tested these schemes only with a short length encoding.

We demonstrate the flexibility of our tool by testing it on prob-

lem instances in all Type I, II and III pairing settings. We note that

our rules only supersede the rules proposed by AutoCircuitPPE.

Consequently,AutoRationalPPE outputs a PPE testing circuit for all
the problem instances on which AutoCircuitPPE outputs a PPE cir-

cuit. Additionally, AutoRationalPPE outputs PPE testing circuit for

many schemes which include rational polynomials such as Boneh-

Boyen IBE [25] and signatures [27], Gentry IBE [37], Le-Gabillon

multisignatures [49], Dodis-Yampolskiy VRF [36] andmany of other

custom testcases. Even though the QSearch has exponential time

complexity, it runs pretty fast on many real world schemes. After

running QSearch algorithm in Section 3.3, we optimized the out-

put circuit to remove any redundant operations. For example, if

the same sub-circuit occurs in 2 different places, we compute it

only once. These optimizations are adapted from AutoCircuitPPE

tool. We display the number of PPE gates and Boolean gates post-

optimization in Table 1.

We also tested our tool on a few custom examples containing

rational polynomials, some of them having more than 100 polyno-

mials. In the custom testcase 6 (inspired by DDHI problem), the

trusted set contains polynomial F1 = a in the group G1, the un-
trusted set contains polynomials {F2 = a2, F3 = a3, F4 = a4, · · · ,
F99 = a99, F100 = 1/a100, F101 = 1/a} in the group G1. The problem
can be tested using the PPEs F2 = e (F1, F1), e (F3,д) = e (F2, F1),
· · · , e (F101, F1) = e (д,д), e (F100, F99) = e (F101,д). Additionally,
some logic is used to consider the case where a = 0 and denomina-

tor of the polynomials is invalid. More details are in Appendix D.

4.4 Open Problems
This work solves a major open problem of [47] by solving the PPE

Circuit testability problem for schemes with rational polynomials.

We now remark on a few exciting, open problems.

First, all work on PPE automation to date [20, 46, 47] including

this work focuses on perfect verification, where each element is

checked individually. Some applications (such as signatures) could

use a relaxed (and possibly more efficient) verification procedure

where elements only need have some proper relationship to each

other. We view exploring this concept of sufficient verification as a

useful and exciting future direction. We discuss this in more detail

in Appendix E.

Second, PPE automation to date [20, 46, 47] including this work

focuses only on prime order groups. These groups are often highly

preferred to their composite order counterparts due to both band-

width and run time differences. Still the composite order setting

is often more unwieldy due to its use of different subgroups and

reliance on the property that pairing different subgroups results in

an identity. Handling the constraints of these different subgroups,

while properly handling identity and undefined elements, in our

framework seems non-trivial.

Finally, the current implementation of our tool (as is also the case

with AutoCircuitPPE [47]) outputs the first solution it finds, instead

of caching several solutions and outputting the most optimal. Since

PPE gates are the most costly, that is the metric on which we’d like

to optimize. As one example of non-optimality, our tool’s solution

for the Dodis VRF [35] takes 28 PPEs, while AutoCircuitPPE found

one that takes only 25 PPEs. One might consider a “deep search”

option, where the tool searches all promising branches of the search

space to collect a group of solutions and then outputs the solution

with the smallest number of PPE gates. The technical challenge

here is performing a deep search without incurring an exponential

explosion in the running time.

ACKNOWLEDGMENTS
Susan Hohenberger was supported by NSF CNS-1908181, the Office

of Naval Research N00014-19-1-2294, and a Packard Foundation

Subaward via UT Austin. Satyanarayana Vusirikala was supported

by a UT Austin Provost Fellowship, NSF CNS-1908611, and the

Packard Foundation.

The authors thank Brent Waters for helpful discussions and the

ACM CCS anonymous reviewers for presentation feedback.

REFERENCES
[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishi-

maki, and Miyako Ohkubo. 2012. Constant-Size Structure-Preserving Signatures:

Generic Constructions and Simple Assumptions. Cryptology ePrint Archive,

Report 2012/285. https://eprint.iacr.org/2012/285.

[2] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishi-

maki, and Miyako Ohkubo. 2012. Constant-Size Structure-Preserving Signatures:

Generic Constructions and Simple Assumptions. In ASIACRYPT.
[3] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. 2014. Converting

Cryptographic Schemes from Symmetric to Asymmetric Bilinear Groups. In

Advances in Cryptology - CRYPTO. Springer, 241–260.
[4] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. 2014. Structure-

Preserving Signatures from Type II Pairings. In Advances in Cryptology - CRYPTO
2014. 390–407.

[5] Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. 2016. Design in Type-

I, Run in Type-III: Fast and Scalable Bilinear-Type Conversion Using Integer

Programming. In Advances in Cryptology - CRYPTO. Springer, 387–415.
[6] Joseph A. Akinyele, Gilles Barthe, Benjamin Grégoire, Benedikt Schmidt, and

Pierre-Yves Strub. 2014. Certified Synthesis of Efficient Batch Verifiers. In IEEE
27th Computer Security Foundations Symposium. IEEE Computer Society, 153–165.

[7] JosephA. Akinyele, Christina Garman, and SusanHohenberger. 2015. Automating

Fast and Secure Translations from Type-I to Type-III Pairing Schemes. In ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1370–1381.

[8] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. 2013. Using SMT

solvers to automate design tasks for encryption and signature schemes. In ACM
SIGSAC Conference on Computer and Communications Security. ACM, 399–410.

[9] JosephA. Akinyele, MatthewGreen, SusanHohenberger, andMatthewW. Pagano.

2012. Machine-generated algorithms, proofs and software for the batch veri-

fication of digital signature schemes. In the ACM Conference on Computer and
Communications Security. ACM, 474–487.

[10] JosephA. Akinyele, MatthewGreen, SusanHohenberger, andMatthewW. Pagano.

2014. Machine-generated algorithms, proofs and software for the batch verifi-

cation of digital signature schemes. Journal of Computer Security 22, 6 (2014),

867–912.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie

Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub,

and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS Key

Management Service. In CCS. 63–78.
[12] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir, Ben-

jamin Grégoire, Vincent Laporte, and Vitor Pereira. 2017. A Fast and Verified

Software Stack for Secure Function Evaluation. In CCS 2017.
[13] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, Francois

Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,

and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-

dards: Indifferentiability of Sponge and Secure High-Assurance Implementations

of SHA-3. In CCS. 1607–1622.

https://eprint.iacr.org/2012/285

[14] Miguel Ambrona, Gilles Barthe, Romain Gay, and Hoeteck Wee. 2017. Attribute-

Based Encryption in the Generic Group Model: Automated Proofs and New

Constructions. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 647–664.

[15] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. 2016. Automated Un-

bounded Analysis of Cryptographic Constructions in the Generic Group Model.

In Advances in Cryptology - EUROCRYPT. Springer, 822–851.
[16] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-

mers, Kevin Liao, and Bryan Parno. 2019. SoK: Computer-Aided Cryptography.

Cryptology ePrint Archive, Report 2019/1393. https://eprint.iacr.org/2019/1393.

[17] Gilles Barthe, JuanManuel Crespo, Yassine Lakhnech, and Benedikt Schmidt. 2015.

Mind the Gap: Modular Machine-Checked Proofs of One-Round Key Exchange

Protocols. In Advances in Cryptology - EUROCRYPT. Springer, 689–718.
[18] Gilles Barthe, Francois Dupressoir, Benjamin Gregoire, Alley Stoughton, and

Pierre-Yves Strub. 2018. EasyCrypt: Computer-Aided Cryptographic Proofs.

https://www.easycrypt.info/trac/.

[19] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,

and Benedikt Schmidt. 2014. Automated Analysis of Cryptographic Assumptions

in Generic Group Models. In Advances in Cryptology - CRYPTO. Springer, 95–112.
[20] Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt Schmidt,

and Mehdi Tibouchi. 2015. Strongly-Optimal Structure Preserving Signatures

from Type II Pairings: Synthesis and Lower Bounds. In Public-Key Cryptography
- PKC. 355–376.

[21] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Jacomme,

and Elaine Shi. 2018. Symbolic Proofs for Lattice-Based Cryptography. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS. ACM, 538–555.

[22] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal

certification of code-based cryptographic proofs. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,

90–101.

[23] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated

Proofs of Pairing-Based Cryptography. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1156–1168.

[24] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security

Protocols. In 2006 IEEE Symposium on Security and Privacy. IEEE Computer

Society, 140–154.

[25] Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-Based

Encryption Without Random Oracles. In Advances in Cryptology - EUROCRYPT.
Springer, 223–238.

[26] Dan Boneh and Xavier Boyen. 2004. Secure Identity Based Encryption Without

Random Oracles. In CRYPTO. Springer, 443–459.
[27] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.

In EUROCRYPT.
[28] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based En-

cryption with Constant Size Ciphertext. In Advances in Cryptology - EUROCRYPT
2005. 440–456.

[29] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the

Weil Pairing. In Advances in Cryptology - CRYPTO. Springer, 213–229.
[30] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT. Springer, 514–532.
[31] Xavier Boyen and Brent Waters. 2006. Anonymous Hierarchical Identity-Based

Encryption (Without Random Oracles). In Advances in Cryptology - CRYPTO.
Springer, 290–307.

[32] Xavier Boyen and Brent Waters. 2006. Compact Group Signatures Without

Random Oracles. In Advances in Cryptology - EUROCRYPT 2006. 427–444.
[33] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In Advances in Cryptology - CRYPTO. Springer,
56–72.

[34] Ran Canetti, Alley Stoughton, andMayank Varia. 2019. EasyUC: Using EasyCrypt

to Mechanize Proofs of Universally Composable Security. In IEEE Computer
Security Foundations Symposium, CSF 2019.

[35] Yevgeniy Dodis. 2003. Efficient Construction of (Distributed) Verifiable Random

Functions. In Public Key Cryptography - PKC. Springer, 1–17.
[36] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In Proceedings of the 8th International Conference on
Theory and Practice in Public Key Cryptography (PKC’05).

[37] Craig Gentry. 2006. Practical Identity-Based EncryptionWithout RandomOracles.

In EUROCRYPT. Springer.
[38] Craig Gentry. 2006. Practical Identity-Based EncryptionWithout RandomOracles.

In Advances in Cryptology - EUROCRYPT. Springer, 445–464.
[39] Craig Gentry and Alice Silverberg. 2002. Hierarchical ID-Based Cryptography.

In Advances in Cryptology - ASIACRYPT. Springer, 548–566.
[40] Vipul Goyal. 2007. Reducing Trust in the PKG in Identity Based Cryptosystems.

In Advances in Cryptology - CRYPTO. Springer, 430–447.
[41] Vipul Goyal, Steve Lu, Amit Sahai, and BrentWaters. 2008. Black-box accountable

authority identity-based encryption. In Proceedings of the 2008 ACM Conference
on Computer and Communications Security. ACM, 427–436.

[42] Matthew Green and Susan Hohenberger. 2007. Blind Identity-Based Encryption

and Simulatable Oblivious Transfer. In Advances in Cryptology - ASIACRYPT.
Springer, 265–282.

[43] Jens Groth and Amit Sahai. 2008. Efficient non-interactive proof systems for

bilinear groups. In EUROCRYPT. Springer, 415–432.
[44] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-

Yves Strub. 2018. Computer-Aided Proofs for Multiparty Computation with

Active Security. In IEEE Computer Security Foundations Symposium, CSF 2018.
[45] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. 2015. Automated

Analysis and Synthesis of Authenticated Encryption Schemes. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 84–95.

[46] Susan Hohenberger and Satyanarayana Vusirikala. 2019. Are These Pairing

Elements Correct? Automated Verification and Applications. In ACM Conference
on Computer and Communications Security.

[47] Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters. 2020. PPE Cir-

cuits: Formal Definition to Software Automation. InACM Conference on Computer
and Communications Security.

[48] Tibor Jager. 2015. Verifiable Random Functions from Weaker Assumptions. In

Theory of Cryptography - 12th Theory of Cryptography Conference, TCC. Springer,
121–143.

[49] Duc-Phong Le and Alban Gabillon. 2007. A New Multisignature Scheme based

on Strong Diffie-Hellman Assumption. In Conference on security in network ar-
chitecture and information systems.

[50] Anna Lysyanskaya. 2002. Unique Signatures and Verifiable Random Functions

from the DH-DDH Separation. In Advances in Cryptology - CRYPTO. Springer,
597–612.

[51] Alex J. Malozemoff, Jonathan Katz, andMatthew D. Green. 2014. Automated Anal-

ysis and Synthesis of Block-Cipher Modes of Operation. In IEEE 27th Computer
Security Foundations Symposium. IEEE Computer Society, 140–152.

[52] Roberto Metere and Changyu Dong. 2017. Automated Cryptographic Analysis

of the Pedersen Commitment Scheme. In MMM-ACNS 2017.
[53] David Naccache. 2005. Secure and Practical Identity-Based Encryption. IACR

Cryptology ePrint Archive (2005). http://eprint.iacr.org/2005/369

[54] Yannis Rouselakis and Brent Waters. 2013. Practical constructions and new proof

methods for large universe attribute-based encryption. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS. ACM, 463–474.

[55] Eftychios Theodorakis and John C. Mitchell. 2018. Semantic Security Invariance

under Variant Computational Assumptions. IACR Cryptol. ePrint Arch. 2018
(2018), 51. http://eprint.iacr.org/2018/051

[56] BrentWaters. 2005. Efficient Identity-Based EncryptionWithout RandomOracles.

In EUROCRYPT. Springer, 114–127.
[57] Brent Waters. 2009. Dual System Encryption: Realizing Fully Secure IBE and

HIBE under Simple Assumptions. In CRYPTO. Springer, 619–636.

A PRELIMINARIES
We define the algebraic setting and notation used throughout this

work.

A.1 Pairings
LetG1,G2 andGT be groups of prime orderp. A map e : G1×G2 →
GT is an admissible pairing (also called a bilinear map) if it satisfies
the following three properties:

(1) Bilinearity: for all д1 ∈ G1, д2 ∈ G2, and a,b ∈ Zp , it holds

that e (дa ,hb) = e (дb ,ha) = e (д,h)ab .
(2) Non-degeneracy: if д1 and д2 are generators of G1 and G2,

resp., then e (д1,д2) is a generator of GT .
(3) Efficiency: there exists an efficient method that given any

д1 ∈ G1 and д2 ∈ G2, computes e (д1,д2).

A pairing generator PGen is an algorithm that on input a se-

curity parameter 1
λ
, outputs the parameters for a pairing group

(p,д1,д2,дT ,G1,G2,GT , e) such that G1, G2 and GT are groups of

prime order p ∈ Θ(2λ) where д1 generates G1, д2 generates G2 and
e : G1 × G2 → GT is an admissible pairing. The above pairing is

called an asymmetric or Type-III pairing. In Type-II pairings, there

exists an efficient isomorphism ψ from G1 to G2 or such an iso-

morphism ϕ from G2 to G1 but not both. In symmetric or Type-I

https://eprint.iacr.org/2019/1393
https://www.easycrypt.info/trac/
http://eprint.iacr.org/2005/369
http://eprint.iacr.org/2018/051

pairings, efficient isomorphisms ψ and ϕ both exist, and thus we

can consider it as though G1 = G2. In this work, we support any of

these types of pairings. We will typically refer to Type III pairings

in our text, since they are general and typically the most efficient

choice for implementation, but our software tool in Section 4 can

handle any type. We represent identity elements of the groups

G1,G2,GT by I1, I2 and IT respectively.

Given pairing parameters (p,д1,д2,дT ,G1,G2,GT , e), we extend
prior definitions [43, 46] to define a pairing product equation over

variables Z , {Xi }
m
i=1, {Yi }

n
i=1 as an equation of the form

• Z ·
∏n

i=1 e (Ai ,Yi) ·
∏m

i=1 e (Xi ,Bi) ·
∏m

i=1
∏n

j=1 e (Xi ,Yj)
γi j

= 1, where Ai ,Xi ∈ G1,Bi ,Yi ∈ G2,Z ∈ GT ,γi j ∈ Zp . (This
is the traditional definition.)

• A ·
∏m

i=1 X
γi
i = 1, where A,Xi ∈ G1,γi ∈ Zp .

• A ·
∏n

i=1 Y
γi
i = 1, where A,Yi ∈ G2,γi ∈ Zp .

The second two PPE formats do not enable any additional func-

tionality over the traditional definition. However, they will later

help obtain more efficient identity tests. We sometimes rearrange

the terms of a PPE to improve readability. We observe that under

the above definition, one can employ a PPE to perform an identity

test in groupsG1,G2 orGT , either for a single element or according

to any of the above combinations of products and exponents.

A.2 Notation
We let [1,n] be shorthand for the set {1, . . . ,n}. We use v to denote

a vector and vi to denote the i-th element. For a vector v of length

n and a subset U ⊆ [1,n], we denote vU as the set of elements vi

for i = 1, . . . ,n where i ∈ U . Similarly vU denotes the subset of

elements vi for i = 1, . . . ,n where i < U . Let us denote the set of

pairing group identifiers {1, 2,T } by I. Let x ,y be polynomials over

variables in (u1, . . . ,un), then by x ≡ y, we mean that x and y are

equivalent polynomials.

B SHORTHAND NOTATIONS FOR CIRCUITS
For completeness, we include the shorthand notations for PPE

circuits due to [47] which we also use in our presentation.

• MakeCircuit(G,m,α , P): Given group structure G, number

of inputsm, group identifiers α , and a PPE P , the function
outputs a PPE circuitC = (G,m,α ,N ,Gates, out,GateType,
A,B), where N = 1,Gates = {m + 1}, out =m + 1,
GateType(m + 1) = (PPE, P),A = ∅,B = ∅.
• Cacc: We use the notation Cacc to denote the circuit

MakeCircuit(G,m,α , P), where P is an always accepting

PPE (for example, д1 = д1).
• Shift(C,k) : Given circuit C = (G,m,α ,N ,Gates, out,
GateType,A,B) and integer k ≥ 1, function Shift(C,k) out-
puts a circuitC ′ obtained by shifting the gate namesGates by
an offset k i.e.,C ′ = (G,m,α ,N ,Gates′, out′,GateType′,A′,
B′), where Gates′ = {д + k : д ∈ Gates}, out′ = out + k ,
GateType′(д + k) = GateType(д), A′(д + k) = A(д) and
B′(д + k) = B (д), whenever A(д),B (д) are defined. Note:

Shift(C,k) still has {1, 2, · · · ,m} as the input wires.
• C1 OP C2 (where OP ∈ {AND,OR}): Given circuits C1 =

(G,m,α ,N1,Gates1, out1, GateType1,A1,B1) andC2 = (G,

m,α ,N2,Gates2, out2,GateType2,A2,B2), letk be the small-

est integer not in Gates1. Let C ′
2
= Shift(C2, k) = (G,m,α ,

N2,Gates′
2
, out′

2
,GateType′

2
,A′

2
,B′

2
). The circuit C1 OP C2

is given by (G,m,α ,N1+N2+1,Gates, out,GateType,A,B),
where out is the smallest integer not in Gates1 ∪Gates′

2
, the

set Gates = Gates1 ∪ Gates′
2
∪ {out}, the functions

GateType(д) =




GateType
1
(д) if д ∈ Gates1

GateType′
2
(д) if д ∈ Gates′

2

OP if д = out

A(д) =




A1 (д) if д ∈ Gates1
A′
2
(д) if д ∈ Gates′

2

out1 if д = out

B (д) =




B1 (д) if д ∈ Gates1
B′
2
(д) if д ∈ Gates′

2

out′
2

if д = out

• NOT C : Given circuitC = (G,m,α ,N ,Gates, out,GateType,A,B),
we letNOT C denote the circuit (G,m,α ,N +1,Gates′, out′,
GateType′,A′,B′), where out′ is the smallest integer not in

Gates, the set Gates′ = Gates ∪ {out′}, functions

GateType′(д) =



GateType(д) if д ∈ Gates

NOT if д = out′

A(д) =



A(д) if д ∈ Gates

out if д = out′

and B′ is the same as B.

C PROOFS OF CORRECTNESS
C.1 Proof of Correctness for Rule 1

Proof. We observe that every PPE challenge for Π is also a

challenge for Π′, as they all share the same group structure, the

number of elements ofm, and the group indicator vectorα . Consider
any testing circuit C ′ for Π′. We now argue by contradiction that

if C ∧C ′ is not a testing circuit for Π, then C ′ cannot be a testing
circuit for Π′. Since C ∧C ′ is not testing set for Π, then either:

• Case 1: There exists a YES challenge R for Π such thatC ∧C ′

is not satisfied, or

• Case 2: There exists a NO challenge R for Π such thatC ∧C ′

is satisfied.

We now analyze each of these cases.

Case 1:We know thatC∧C ′ is not satisfied by the YES challenge
R. By the definition of being a YES challenge, there exists a variable

assignment u s.t. Ri = д
fi (u)/hi (u)
αi for all i . We take this in two

subcases.

Case 1(a): Suppose that R satisfies PPE circuit C but not the

circuit C ′. We know that R is also a YES challenge for Π′ (it can
use the same settings u for the variables), but for which C ′ is not
satisfied. This contradicts the starting assumption that C ′ was a
testing circuit for Π′.

Case 1(b): Suppose that R does not satisfy the PPE circuit C . As
all the elements in R are well-formed, we know that hj (u) , 0 for

all j. As a result, u satisfies eqs. (3) and (4) iff u satisfies eqs. (1)

and (2). We know that eqs. (3) and (4) are satisfied for all the variable

assignments. This means, the variable assignment u and thereby

the PPE challenge R satisfies eqs. (1) and (2). This means R does

satisfy the circuit C .
Case 2:Here R is aNO challenge for Π butC∧C ′ is satisfied. By

Definition 2.2 of a NO challenge for Π, there exists an assignment

to uInTrusted such that for all i ∈ Trusted, Ri = д
fi (u)/hi (u)
αi . R is

either a NO challenge or an INVALID challenge for Π′. We argue

that R is also a NO challenge for Π′, by showing that uInTrusted also
satisfies Rk = д

fk (u)/hk (u)
αk .

This follows from the fact that PPEC is satisfied by this challenge

and that C explicitly tests that Rk is computed this way, possibly

with respect to an equivalent polynomial for fk/hk ≡
∑ |sT |
j=1 aj ·

sT [j] and hk , 0. Now since R is NO challenge for Π′, it remains

to see how it performs with respect to the circuit C ′. However,
since C ∧C ′ is satisfied by this challenge R, then C ′ is satisfied as

well. This contradicts the original assumption thatC ′ was a testing
circuit for Π′.

C.2 Proof of Correctness for Rule 2
Proof. Consider any PPE challenge R = (R1,R2, · · ·Rm) for

problem Π, and any testing circuits C ′,C ′′ for Π′,Π′′ respectively.
We first observe that R is also a valid PPE challenge for Π′ and Π′′.
This is because both share the same group structure, the number

of elementsm, and the group indicator vector α . We prove that if R
is a YES challenge for Π, then it satisfies circuit Z defined above,

and if R is a NO challenge for Π, it does not satisfy the circuit Z .
We organize the proof into four cases.

Case 1 (R is a YES challenge for Π & IsIdentity unsatisfied):

In this case, by definition, there exists an assignment of variables

v such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ [m]. As each Rℓ is a well
defined group element, this means hℓ (v) , 0. This means v satis-

fies eqs. (5) and (6) iff v satisfies eqs. (7) and (8). We choose (a, b, c)
such that eqs. (7) and (8) are satisfied for all variable assignments.

Therefore, v satisfies eqs. (5) and (6). As Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈

[m], the PPE challenge R also satsifies the circuitC . We also observe

that R is a YES challenge for Π′. This is because Π and Π′ have the
same set of polynomials { fj/hj }j ∈[m]

and only differ in the Trusted
set. As a result, R satisfies the circuit (NOT IsIdentity) ∧ C ∧ C ′,
thus satisfying Z .

Case 2 (R is a YES challenge for Π & satisfies IsIdentity): Let

h = (
∑ |sα |
j=1 bj · sα [j]). We know that fℓ = Poly1ℓ ·h + Poly2ℓ ,hℓ =

Poly3ℓ · h + Poly4ℓ for polynomials Poly1ℓ ,Poly3ℓ , where
Poly2ℓ/Poly4ℓ was replaced as the ℓth polynomial in Π′′. Consider

any assignment of v s.t. Rℓ = д
fℓ (v)/hℓ (v)
αℓ

, ∀ℓ ∈ [m]. As Rℓ is a

well-defined element, hℓ (v) , 0 and thereby Hα (v) , 0. We know

that

∏
j Uα [j]

bj = Iα and therefore

∑
j bj · sα [j] =

∑
j bj · ˆfα [j]/Hα

evaluates to 0 for the variable assignment v. This implies, h(v) = 0.

We now break this case into 2 subcases - (2a) Π′′ ,⊥, (2b) Π′ =⊥.
Case 2(a): In this case, we want to show that R is a YES challenge

for Π′′. As h(v) = 0, Rℓ = д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

for each ℓ ∈ [m].

Therefore, R is a YES instance for Π′′ and satisfies the circuit

IsIdentity ∧C ′′, thus satisfying Z .
Case 2(b): We argue that this case never occurs. As Π′′ =⊥, we

know that there is an index j s.t. Poly4j is a 0 polynomial. This

means, Rj = д
fj (v)/hj (v)
α j = д

Poly2j (v)/Poly4j (v)
α j is not a well-defined

element.

Case 3 (R is a NO challenge for Π & IsIdentity unsatisfied):

Since we assume R does not satisfy the circuit IsIdentity in this

case, we focus only on whether R satisfies C ∧ C ′. By definition,

R is a NO challenge for Π, and therefore it cannot be a YES chal-

lenge for Π′, as both Π and Π′ share the same set of polynomials.

(Either it will be a NO challenge or an invalid challenge; the latter

in the case where the single element difference in the Trusted set

between the two problems was an improperly formed element.)

Observe that if R satisfies C , then R is a NO instance for Π′. Con-

sider any assignment of variables v such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ Trusted. If R satisfies C , it means Rk = д
fk (v)/hk (v)
αk

18
.

Consequently, Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for each ℓ ∈ Trusted ∪ {k }, and Π′

is a NO instance. Therefore, R does not simultaneously satisfy the

circuits C and C ′ and thereby does not satisfy Z .

Case 4 (R is a NO challenge for Π & satisfies IsIdentity): Suppose
Π′′ =⊥, then R certainly doesn’t satisfy Z . Suppose Π′′ ,⊥. In
this case, we argue that R is a NO challenge for Π′′. Let h =
(
∑
j bj · sα [j]). We know that fℓ = Poly1ℓ · h + Poly2ℓ ,hℓ =

Poly3ℓ · h + Poly4ℓ for some polynomials Poly1ℓ ,Poly3ℓ , where
Poly2ℓ/Poly4ℓ was replaced as the ℓth polynomial in Π′′. Consider

any assignment of variables v such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all

ℓ ∈ Trusted. As
(
∏ |sα |

j=1 Uα [j]
bj) = Iα , the polynomial (

∑
j bj · sα [j]) evaluates to 0

for the variable assignment v. Therefore, Rℓ = д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

for each ℓ ∈ Trusted. Moreover, R cannot be a YES instance for

Π′′. This is because if there a variable assignment v such that

Rℓ = д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

for each ℓ ∈ [m], that would mean Rℓ =

д
fℓ (v)/hℓ (v)
αℓ

for each ℓ ∈ [m] which contradicts our initial assump-

tion that R is a NO instance for Π. Therefore, R does not satisfy the

circuit C ′′, and thereby does not satisfy Z .

C.3 Proof of Correctness for Rule 3a
Proof. Consider any PPE challenge R = (R1,R2, · · ·Rm) for

problem Π, and any testing circuits C ′,C ′′ for Π′,Π′′ respectively.
We first observe that R is also a valid PPE challenge for Π′ and Π′′.
This is because both share the same group structure, the number

of elementsm, and the group indicator vector α . We prove that if R
is a YES challenge for Π, then it satisfies circuit Z defined above,

and if R is a NO challenge for Π, it does not satisfy the circuit Z .
We organize the proof into four cases.

18
Note that this crucially relies on the fact that

∏
j Uα [j]

bj , Iα and therefore∑
j bj · sα [j] does not evaluate to 0 for the variable assignment v.

Case 1 (R is a YES challenge for Π & IsIdentity unsatisfied):

We first observe that R is also a YES challenge for Π′, as Π and Π′

have the same set of polynomials and only differ in the Trusted
set. As a result, R satisfies circuit C ′. As R is a YES instance, there

exists a variable assignment v such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all

ℓ. As Rℓ is a well-defined element, we know that hℓ (v) , 0. As

hk · HT ≡
∑ |sT |
j=1 bj ·

ˆfT [j], we know that

∑ |sT |
j=1 bj ·

ˆfT [j]/HT does

not evaluate to 0 on v. Therefore
∏ |sT |

j=1 UT [j]
bj

does not evaluate

to identity and R satsifies the circuit C , and thereby satisies the

circuit (NOT IsIdentity) ∧C ∧C ′, and thus satisfies Z .

Case 2 (R is a YES challenge for Π & satisfies IsIdentity): Consider

any assignment of variables v s.t. Rℓ = д
fℓ (v)/hℓ (v)
αℓ

, ∀ℓ ∈ [m]. As

Rℓ is a well-defined element, hℓ (v) , 0 and thereby HT (v) ,
0. We know that

∏
j UT [j]

aj = IT and therefore

∑
j aj · sT [j] =∑

j aj · ˆfT [j]/HT evaluates to 0 for the variable assignment v. This
implies, h′(v) = 0. We know that fℓ = Poly1ℓ · h′ + Poly2ℓ ,hℓ =
Poly3ℓ · h′ + Poly4ℓ for some polynomials Poly1ℓ ,Poly3ℓ , where
Poly2ℓ/Poly4ℓ was replaced as the ℓth polynomial in Π′′.

Suppose Π′′ ,⊥. In this case, Rℓ = д
fℓ (v)/hℓ (v)
αℓ

= д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

for each ℓ ∈ [m], and R is a YES instance for
Π′′ and satisfies the circuit IsIdentity ∧C ′′, and thus satisfies Z .

Suppose Π′′ =⊥. In this case, we know that there is an index

j s.t. Poly4j is a 0 polynomial. This means, Rj = д
fj (v)/hj (v)
α j =

д
Poly2j (v)/Poly4j (v)
α j is not a well-defined element. Therefore, such a

case never occurs.

Case 3 (R is a NO challenge for Π & IsIdentity unsatisfied): In this

case, R is not a YES instance for Π′ as Π and Π′ share the same

set of polynomials. (Either it will be a NO challenge or an in-

valid challenge; the latter in the case where the single element

difference in the Trusted set between the two problems was an

improperly formed element.) We know that, there exists an as-

signment of InTrusted variables {vi }i ∈InTrusted such that Rℓ =

д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ Trusted. As R does not satisfy the circuit

IsIdentity,
∏ |sT |

j=1 UT [j]
aj , IT , which means h′(v) , 0. Suppose

{vi }i ∈InTrusted satisfies the circuit C . Then, hk (v) , 0, and for ev-

ery possible value of Rk and h′′, one can solve for uj such that

Rk = д
(h′ ·udj +h

′′)/hk
αk . This is because of our condition that d does

not divide p − 1. Consequently, there exists a variable assignment v
such that Rℓ = д

fℓ (v)/hℓ (v)
αℓ

, ∀ℓ ∈ Trusted ∪ {k }, and therefore R is

a NO challenge for Π′ and does not satisfy C ′. Because it does not
satisfy C ∧C ′, it cannot satisfy Z .

Case 4 (R is a NO challenge for Π & satisfies IsIdentity): Suppose
Π′′ =⊥, then R doesn’t satisfy Z . Suppose Π′′ ,⊥. We argue

that R is a NO challenge for Π′′. We know that for any ℓ ∈ [m],

fℓ = Poly1ℓ · h′ + Poly2ℓ ,hℓ = Poly3ℓ · h′ + Poly4ℓ for some

polynomials Poly1ℓ ,Poly3ℓ , where Poly2ℓ/Poly4ℓ is the ℓth poly-

nomial of Π′′. Let {vi }i ∈InTrusted be any variable assignment such

that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ Trusted. As R satisfies the circuit

IsIdentity, h′(v) = 0, and Rℓ = д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

, ∀ℓ ∈ Trusted.
Furthermore, R cannot be a YES instance for Π′′. This is because if

R is a YES for Π′′, then there exists a variable assignment v such

that Rℓ = д
Poly2ℓ (v)/Poly4ℓ (v)
αℓ

= д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ [m], which

contradicts our assumption that R is aNO instance for Π. Therefore,
R is a NO challenge for Π′′ and does not satisfy C ′′, thus it cannot
satisfy Z .

C.4 Proof of Correctness for Rule 3b
Proof. This proof is very similar to the proof of Rule 3a. For

the sake of completeness, we present the full proof. Consider any

PPE challenge R = (R1,R2, · · ·Rm) for problem Π, and any testing

circuits C ′,C ′′ for Π′,Π′′ respectively. We first observe that R is

also a valid PPE challenge for Π′ and Π′′. This is because both share
the same group structure, the number of elementsm, and the group

indicator vector α . We prove that if R is a YES challenge for Π, then
it satisfies circuit Z defined above, and if R is a NO challenge for

Π, it does not satisfy the circuit Z . We organize the proof into four

cases.

Case 1 (R is a YES challenge for Π & IsIdentity unsatisfied):

We first observe that R is also a YES challenge for Π′, as Π and Π′

have the same set of polynomials and only differ in the Trusted
set. As a result, R satisfies circuit C ′. Also, for every satisfying

assignment v that satsifies Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ, we know that

either fk (v) , 0 or (fk (v) = 0 and rk = 0). Therefore, R satsifies the

circuitC , and thereby satisies the circuit (NOT IsIdentity) ∧C ∧C ′,
and thus satisfies Z .

Case 2 (R is a YES challenge for Π & satisfies IsIdentity): The proof
of this case is identical to the proof of Case 2 in Rule 3a.

Case 3 (R is a NO challenge for Π & IsIdentity unsatisfied):

In this case, R is not a YES instance for Π′ as Π and Π′ share the
same set of polynomials. (Either it will be a NO challenge or an

invalid challenge; the latter in the case where the single element

difference in the Trusted set between the two problems was an im-

properly formed element.)We know that, there exists an assignment

of InTrusted variables {vi }i ∈InTrusted such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

for all ℓ ∈ Trusted. As R does not satisfy the circuit IsIdentity,
h′(v) , 0. Suppose {vi }i ∈InTrusted satisfies the circuit C . It means

either fk (v) , 0 or (fk (v) = 0 and Rk = Iαk). In the first case, for

every possible value of Rk and h′′, one can solve for uj such that

Rk = д
fk /(h′ ·udj +h

′′)
αk . This is because of our condition that d does

not divide p − 1. In the second case, any assignment of uj along

with {vi }i ∈InTrusted satisfies Rk = д
fk (v)/hk (v)
αk . Consequently, there

exists a variable assignment v such that Rℓ = д
fℓ (v)/hℓ (v)
αℓ

, ∀ℓ ∈

Trusted ∪ {k }, and therefore R is a NO challenge for Π′ and does

not satisfy C ′. Because it does not satisfy C ∧C ′, it cannot satisfy
Z .

Case 4 (R is a NO challenge for Π & satisfies IsIdentity): The proof

of this case is identical to the proof of Case 4 in Rule 3a.

Input File Example
maps G1 * G1 ->GT.

Zp_vars [id,r].

trusted_polys [F1 = x, F2 = y] in G1.

untrusted_polys [F3 = 1/(id + x + r*y)] in G1.

Figure 10: Input file for Boneh Boyen IBE scheme.

D MORE EXAMPLES
In this section, we provide more sample test cases describing how

to use the AutoRationalPPE tool.

D.1 Boneh Boyen IBE
In this scheme, a central authority uses its master secret keymsk to
generate a secret key for a user with identity id. The user would like
to verify whether the central authority gave him a well-formed key.

We want to use AutoRationalPPE to verify whether the secret key

for user id is well-formed. Here Trusted is the set of elements in the

master public key mpk and identity id. The non-trusted elements

are the elements in the secret key skid. For the sake of completeness,

we first present the Boneh Boyen IBE scheme [25].

• Setup(1λ) → (mpk,msk): Sample a Type-I pairing group

(G1,GT , e) of prime order p. Select a random group gen-

erator д ← G1, and random elements x ,y ← Z∗p . Output

mpk = (д,дx ,дy), msk = (x ,y).
• KeyGen(msk, id) → skid: Pick a random value r ← Zp and

output (r ,д1/(id+x+r∗y))). In case (id+x +r ∗y) = 0 mod p,
try again with a different r .

We now describe the input to our tool in Figure 10.

We present the output generated by our tool in Figure 11. Note

that the trusted set contains 2 elements (id, r) in Zp . We input these

elements using Zp_vars[id,r]. syntax. We describe the gates of

the final circuit at the end using Gxx notation. For PPE gates, we

mention the PPE computed by the gate. For boolean gates, we

describe the boolean logic performed by the gate.

D.2 Custom Example
In this section, we describe our custom test case 5 mentioned in Ta-

ble 1. We design the test case so that all the four rules are invoked

here. We describe the input to our tool in Figure 12, and then de-

scribe the output generated by our tool in Figures 13 to 15. For

each recursive invocation of the QSearch algorithm, the output

file describes the set of trusted and untrusted polynomials and the

rule that is applied to the problem. The gates of the final optimized

circuit are described at the end in Figure 15 usingGxx notation. For

PPE gates, we mention the PPE computed by the gate. For boolean

gates, we mention the boolean logic performed by the gate.

E ON PERFECT VERSUS SUFFICIENT
VERIFICATION

Recall that the goal of our tool is to verify U with respect to T .
As in [46, 47], we define a PPE Circuit that must achieve perfect
verification where it outputs one if and only if all input elements of

U are exactly as specified. That is, if some element F is supposed

to have the form дa+b , then it must. Perfect verification gives total

Output File Example
F0 = 1 in G1 F0 = 1 in GT F1 = x in G1

F2 = y in G1 F3 = 1/id + x + r*y in G1

F0^id = id in G1 F0^r = r in G1 F0^id = id in GT

F0^r = r in GT F1^id = id*x in G1 F1^r = r*x in G1

F2^id = id*y in G1 F2^r = r*y in G1

Trusted in G1: F1 = x, F2 = y, F0^id = id, F0^r = r, F1^id = id*x, F1^r = r*x,

F2^id = id*y, F2^r = r*y,

Trusted in GT: F0^id = id, F0^r = r,

Untrusted in G1: F3 = 1/id + x + r*y,

Rule 2 applied on F3 = 1/id + x + r*y. isidentity := F2^r*F0^id*F1 = I C :=

(e(F3,F2^r*F0^id*F1) = F0 AND (NOT F2^r*F0^id*F1 = I))

Execution time : 11.597542s

The circuit output by QSearch:

(((NOT F2^r*F0^id*F1 = I) AND (e(F3,F2^r*F0^id*F1) = F0 AND (NOT

F2^r*F0^id*F1 = I))) AND ACC)

Optimized Circuit:

G1 : F2^r*F0^id*F1 = I G2 : e(F3,F2^r*F0^id*F1) = F0

G3 : NOT G1 G4 : G3 AND G2

Figure 11: Output file for Boneh Boyen IBE scheme.

Input File Example
maps G1 * G2 ->GT.

trusted_polys [F1 = a, F2 = b] in G1.

trusted_polys [F3 = b] in G2.

untrusted_polys [F4 = a*c] in G1.

untrusted_polys [F5 = a*b, F6 = c, F7 = d, F8 = d/(b + a), F9 = x, F10 = y,

F11 = (x*a + y*b), F12 = 1/(s+a)] in G2.

Figure 12: Input file for the custom example.

confidence that the untrusted elements are as they should be. It

helps applications like accountable authority IBE [40, 41] or oblivi-

ous transfer from blind IBE [42], where a malicious authority with

a master secret key might be trying to fool a user. In some cases,

the perfect verification is necessary, and thus, it is good that we

can achieve it.

However, not all applications require perfect verification: sig-

natures are a prime example. The verification equation for many

signature schemes in the literature (e.g., see Section 5 of [2]) does

not guarantee that the purported signature comes from the space

of signatures output by the signing algorithm. Instead, in some

cases, it is enough to argue that even if the purported signature

is outside of this space, an adversary could not have computed

it without knowledge of the secret key. (Some of these schemes

verify a signature with, say, five elements using a single PPE. Thus,

they do not verify that each element of the signature is correct, but

rather that all five elements – whatever they are – have the proper

relationship to each other.) We might call this concept sufficient
verification, where the requirements on the PPE Circuit are relaxed

to output one if and only if the elements of U have some special

relationship that can be verified using T . If sufficient verification

is enough for an application, it is likely to offer better efficiency.

Now that this work establishes how to automate perfect verification

for large classes of prime-order pairing-based systems, we view

studying how to model, search for and apply sufficient verification

as a rich area for future research.

Output File Example
F0 = 1 in G1 F0 = 1 in G2 F0 = 1 in GT F1 = a in G1

F2 = b in G1 F3 = b in G2 F4 = a*c in G1

F5 = a*b in G2 F6 = c in G2 F7 = d in G2

F8 = d/a + b in G2 F9 = x in G2 F10 = y in G2

F11 = a*x + b*y in G2 F12 = 1/a + s in G2

Trusted in G1: F1 = a, F2 = b

Trusted in G2: F3 = b

Untrusted in G1: F4 = a*c, F5 = a*b, F6 = c, F7 = d, F8 = d/a + b, F9 = x, F10

= y, F11 = a*x + b*y, F12 = 1/a + s,

Rule 1 applied to F5 = a*b/1. C := e(F5,F0) = e(F1,F3)

Trusted in G1: F1 = a, F2 = b

Trusted in G2: F3 = b, F5 = a*b

Untrusted in G1: F4 = a*c, F6 = c, F7 = d, F8 = d/a + b, F9 = x, F10 = y, F11

= a*x + b*y, F12 = 1/a + s,

Rule 3a applied on F4 = a*c/1 and variable c. isidentity := e(F1,F0) = I, C :=

(NOT REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b,

Untrusted in G1: F6 = c, F7 = d, F8 = d/a + b, F9 = x, F10 = y, F11 = a*x +

b*y, F12 = 1/a + s,

Rule 2 applied on F6 = c/1. isidentity := F1 = I C := e(F6,F1) = e(F4,F0)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c

Untrusted in G1: F7 = d, F8 = d/a + b, F9 = x, F10 = y, F11 = a*x + b*y, F12

= 1/a + s,

Rule 3a applied on F7 = d/1 and variable d. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c, F7 = d,

Untrusted in G1: F8 = d/a + b, F9 = x, F10 = y, F11 = a*x + b*y, F12 = 1/a +

s,

Rule 2 applied on F8 = d/a + b. isidentity := F2*F1 = I C := (e(F8,F2*F1) =

e(F0,F7) AND (NOT F2*F1 = I))

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c, F7 = d, F8 = d/a + b,

Untrusted in G1: F9 = x, F10 = y, F11 = a*x + b*y, F12 = 1/a + s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c, F7 = d, F8 = d/a + b, F9 = x,

Untrusted in G1: F10 = y, F11 = a*x + b*y, F12 = 1/a + s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := REJ, C := (NOT

REJ)

Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c, F7 = d, F8 = d/a + b, F9 = x, F10 = y,

Untrusted in G1: F11 = a*x + b*y, F12 = 1/a + s,

Rule 1 applied to F11 = a*x + b*y/1. C := e(F11,F0) = e(F2,F10)*e(F1,F9)

Figure 13: Output file for the custom example.

Output File Example
Trusted in G1: F1 = a, F2 = b, F4 = a*c

Trusted in G2: F3 = b, F5 = a*b, F6 = c, F7 = d, F8 = d/a + b, F9 = x, F10 = y,

F11 = a*x + b*y,

Untrusted in G1: F12 = 1/a + s,

Rule 3b applied on F12 = 1/a + s and variable s. isidentity := REJ, C := ACC

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0,

Untrusted in G1: F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 =

1/s,

Rule 3a applied on F6 = c/1 and variable c. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c,

Untrusted in G1: F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F7 = d/1 and variable d. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d,

Untrusted in G1: F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 2 applied on F8 = d/b. isidentity := F2 = I C := (e(F8,F2) = e(F0,F7)

AND (NOT F2 = I))

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b,

Untrusted in G1: F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x,

Untrusted in G1: F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := REJ, C := (NOT

REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y,

Untrusted in G1: F11 = b*y, F12 = 1/s,

Rule 1 applied to F11 = b*y/1. C := e(F11,F0) = e(F2,F10)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y, F11

= b*y,

Untrusted in G1: F12 = 1/s,

Rule 3b applied on F12 = 1/s and variable s. isidentity := REJ, C := ACC

Trusted in G1: F1 = 0, F2 = b,

Trusted in G2: F3 = b, F5 = 0,

Untrusted in G1: F4 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y,

F12 = 1/s,

Rule 1 applied to F4 = 0/1. C := F4 = I

Figure 14: Output file for the custom example (Cont’d).

Output File Example
Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0,

Untrusted in G1: F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 =

1/s,

Rule 3a applied on F6 = c/1 and variable c. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c,

Untrusted in G1: F7 = d, F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F7 = d/1 and variable d. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d,

Untrusted in G1: F8 = d/b, F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 2 applied on F8 = d/b. isidentity := F2 = I C := (e(F8,F2) = e(F0,F7)

AND (NOT F2 = I))

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b,

Untrusted in G1: F9 = x, F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F9 = x/1 and variable x. isidentity := REJ, C := (NOT REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x,

Untrusted in G1: F10 = y, F11 = b*y, F12 = 1/s,

Rule 3a applied on F10 = y/1 and variable y. isidentity := REJ, C := (NOT

REJ)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y,

Untrusted in G1: F11 = b*y, F12 = 1/s,

Rule 1 applied to F11 = b*y/1. C := e(F11,F0) = e(F2,F10)

Trusted in G1: F1 = 0, F2 = b, F4 = 0,

Trusted in G2: F3 = b, F5 = 0, F6 = c, F7 = d, F8 = d/b, F9 = x, F10 = y, F11

= b*y,

Untrusted in G1: F12 = 1/s,

Rule 3b applied on F12 = 1/s and variable s. isidentity := REJ, C := ACC

Optimized Circuit:

G1 : e(F5,F0) = e(F1,F3) G2 : e(F1,F0) = I G3 : F1 = I

G4 : e(F6,F1) = e(F4,F0) G5 : F2*F1 = I G6 : e(F8,F2*F1) = e(F0,F7)

G7 : e(F11,F0) = e(F2,F10)*e(F1,F9) G8 : F2 = I

G9 : e(F8,F2) = e(F0,F7) G10 : e(F11,F0) = e(F2,F10) G11 : F4 = I

G12 : NOT G2 G13 : NOT G3 G14 : G13 AND G4 G15 : NOT G5

G16 : G15 AND G6 G17 : G16 AND G7 G18 : G14 AND G17

G19 : NOT G8 G20 : G19 AND G9 G21 : G20 AND G10

G22 : G3 AND G21 G23 : G18 OR G22 G24 : G12 AND G23

G25 : G11 AND G21 G26 : G2 AND G25 G27 : G24 OR G26

G28 : G1 AND G27

Figure 15: Output file for the custom example (Cont’d).

	Abstract
	1 Introduction
	1.1 Summary of Our Results
	1.2 Technical Overview

	2 Definitions: Expanding PPE Circuits
	3 Searching for a PPE Testing Circuit with Rational Polynomial Support
	3.1 Completion Lists for a List of Polynomials
	3.2 Rules for Moving Polynomials into the Trusted Set
	3.3 Applying the Rules
	3.4 Efficiency of QSearch

	4 Implementation
	4.1 AutoRationalPPE Implementation
	4.2 A Detailed Example
	4.3 Case Studies
	4.4 Open Problems

	Acknowledgments
	References
	A Preliminaries
	A.1 Pairings
	A.2 Notation

	B Shorthand Notations for Circuits
	C Proofs of Correctness
	C.1 Proof of Correctness for Rule 1
	C.2 Proof of Correctness for Rule 2
	C.3 Proof of Correctness for Rule 3a
	C.4 Proof of Correctness for Rule 3b

	D More Examples
	D.1 Boneh Boyen IBE
	D.2 Custom Example

	E On Perfect versus Sufficient Verification

