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Abstract

Excalibur is a nonparametric, hierarchical framework for precision wavelength calibration of spectrographs. It is
designed with the needs of extreme-precision radial-velocity (EPRV) instruments in mind, which require
calibration or stabilization to better than 10−4 pixels. Instruments vary along only a few dominant degrees of
freedom, especially EPRV instruments that feature highly stabilized optical systems and detectors. Excalibur takes
advantage of this property by using all calibration data to construct a low-dimensional representation of all
accessible calibration states for an instrument. Excalibur also takes advantage of laser-frequency combs or etalons,
which generate a dense set of stable calibration points. This density permits the use of a nonparametric wavelength
solution that can adapt to any instrument or detector oddities better than parametric models, such as a polynomial.
We demonstrate the success of this method with data from the Extreme Precision Spectrograph (EXPRES), which
uses a laser-frequency comb. When wavelengths are assigned to laser comb lines using excalibur, the rms of the
residuals is about one-fifth that of wavelengths assigned using polynomial fits to individual exposures. Radial-
velocity measurements of HD34411 show a reduction in rms scatter over a 10 month time baseline from 1.17 to
1.05 m s−1.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Radial velocity (1332); Astronomical
techniques (1684); Astronomical instrumentation (799); Spectrometers (1554); Computational methods (1965)

Supporting material: machine-readable table

1. Introduction

Precise radial-velocity (RV) programs have been fruitful in
finding and characterizing extrasolar planets (e.g., Mayor et al.
2011; Bonfils et al. 2013; Plavchan et al. 2015; Butler et al.
2017). These programs typically make use of spectrographs with
resolutions on the order of 50,000–100,000, which correspond to
line widths on the order of -3000 m s 1. The state-of-the-art RV
precision had reached -1 m s 1 by 2016 (Fischer et al. 2016). The
newest generation of instruments aims to reach -0.1 m s 1

precision, the required precision for detecting terrestrial worlds.
This requires new spectrographs to be calibrated or stabilized
to better than 10−4 of a pixel (assuming that the spectrographs
are well sampled). Two next-generation spectrographs, the
Extreme Precision Spectrograph (EXPRES) and the Echelle
Spectrograph for Rocky Exoplanets and Stable Spectroscopic
Observations (ESPRESSO), have been commissioned for more
than a year and are demonstrating< -0.1m s 1 instrumental errors
and~ -0.2 m s 1 errors on stars (Pepe et al. 2013; Jurgenson et al.
2016; Blackman et al. 2020; Brewer et al. 2020; Petersburg et al.
2020; Suárez Mascareño et al. 2020).

Traditionally, wavelength solutions are constructed by fitting
a polynomial to lines from a calibration source in order to
describe the relationship between wavelength and pixel for
each echelle order (Butler et al. 1996; Lovis & Pepe 2007;
Cersullo et al. 2019). In this framework, each calibration image
is treated independently. The returned wavelength solutions
work well at the level of 1 -m s 1 precision.

The move toward 0.1 -m s 1 RV precision necessitates
higher-fidelity calibration data and wavelength models. These

models need to account for high-order spatial variations that
can arise from small imperfections in the optics of an
instrument and nonuniformity in detector pixel sizes/spacing.
There has been a significant effort in using an entire set of
calibration images to identify incongruous thorium–argon
(ThAr) lines (Coffinet et al. 2019) or obtain high-resolution
Fourier transform spectra of reference cells (Wang et al. 2020).
It has also been found that using multiple polynomials in the
dispersion direction, tuned to capture detector defects, better
describes the wavelength solution than a single, continuous
polynomial (Milaković et al. 2020).
Here, we propose to simplify and improve calibration programs

for extreme-precision RV (EPRV) hardware systems with two
practical yet innovative ideas. The first flows from the fact that
calibration sources, which include arc lamps (in some wavelength
ranges), etalons, and laser-frequency combs (LFCs), illuminate the
spectrograph with very stable, very dense sets of lines—almost
every location in the spectrograph image plane is surrounded by
nearby, useful calibration lines. This enables use of a calibration
methodology that is nonparametric, or not defined by a prescribed
analytic function described by a finite number of parameters: if
every point in the spectrograph detector is sufficiently surrounded
by nearby calibration lines, the wavelength solution can, for
example, be made simply as an interpolation of the calibration
data. The density of lines removes the need to enforce any
functional form for the wavelength solution (such as a continuous
ninth-order polynomial). In some ways, this is a generalization of
recent work that demonstrates the efficacy of constructing
a wavelength solution as multiple, segmented polynomials
(Milaković et al. 2020). A nonparametric approach will improve
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calibration accuracy by not forcing the choice of a parametric
form that may bias the calibration, especially when the chosen
function is inappropriate (as, for example, polynomials are at
detector edges).

The second simple idea follows from the observation that
most physical systems have only a few dominant degrees of
freedom, meaning most spectrographs vary along only a small
number of axes in “calibration space,” or the (very high-
dimensional) space of all possible wavelength solutions. This is
particularly true of EPRV instruments, which are equipped with
stringent environmental stabilizing. The thermomechanical
stability of these instruments reduces the variations they
experience to something that can be represented by a low-
dimensional framework. That is, spectrographs, especially
stabilized ones, should have few environmentally accessible
degrees of freedom. This renders it inadvisable to fit each
calibration exposure or calibrate each science exposure
independently. Instead, all the calibration data (or all the data)
should be used to determine the calibration space in which the
instrument can and does vary. Subsequent calibration work
then need only determine where in the small, accessible part of
calibration space the spectrograph is located for each exposure.

In the context of probabilistic models, this structure is
hierarchical: the calibration data are used not just to determine
the wavelength solution at one moment, but also to determine
the possible calibration space of wavelength solutions at all
moments. In statistics, this concept is often described as
denoising: we can improve calibration by recognizing that
every calibration exposure contains information about every
other calibration exposure. Thus, every exposure can be
improved (i.e., denoised) with information from every other
exposure.

The method we propose here—excalibur—embodies these
ideas. It is a nonparametric, hierarchical, data-driven method to
generate a wavelength model. By being nonparametric, it
delivers enormous freedom to the wavelength solution to match
or adapt to any instrument or detector oddities. By being
hierarchical, it restricts that freedom tremendously, but it does
so appropriately for the empirically determined variations in a
spectrograph.

The method excalibur is designed for temperature-con-
trolled, fiber-fed spectrographs with good calibration sources,
such as LFCs or etalons. We have in mind EPRV instruments
and EPRV science cases, primarily because the need for good
wavelength calibration is so great in this field. Nevertheless, we
expect excalibur to have applications for other kinds of
spectrographs in other contexts. Excalibur should be applicable
to spectrographs with low-dimensional variability, though the
precision of the returned wavelengths will depend on the
available calibration sources (more discussion in Section 6
below).

2. Method

The excalibur method is designed to take many calibration
images, each containing a series of calibration lines with
known wavelengths and well-fit detector positions, and denoise
and interpolate this information into a full wavelength model
applicable to all exposures taken with the instrument. It
operates on two core ideas: the wavelength solution should be
allowed flexibility, but it lives in a very low-dimensional
calibration space where the degrees of freedom are set by the

limited kinematics of the spectrograph hardware. Excalibur
therefore assumes that the space of possible calibration states
for an instrument is low-dimensional, but assumes very little
about the forms of those states.
Excalibur also assumes dense enough calibration line

coverage with well-fit line centers to provide sufficient
constraints on an interpolated wavelength solution across an
echelle order. Upstream errors in line center positions may
propagate through excalibur wavelength models. The required
line density is dependent on the required precision of the
returned wavelength model; larger spacing between lines offers
less constraint and is likely to return worse wavelengths. We
revisit and quantify these conditions in Section 6.
Wavelength calibration is usually posed in the following

way: given an exposure n and echelle order m, there is a
relationship between the 2D (x, y)-position on the detector and
the wavelength λ:

l q=x y m n f x y m, , , , , ; , 1n( ) ( ) ( )

where qn represents the parameters describing the wavelength
solution for a given exposure.
Classically, pipelines employ polynomials to construct

smooth wavelength solutions for each exposure. For example,
the EXPRES pipeline sets the function qf x y m, , ; n( ) from
Equation (1) to a 2D, ninth-order polynomial, where qn
represents the polynomial coefficients cnij unique to each
exposure n (Petersburg et al. 2020):

åål = +
= =

x m n c x m, , noise. 2
i j

n i j
i j

0

9

0

9

, ,( ) ( )

Here, the y dependence is dropped as, in our framing, this
dependence is carried by the spectral order m. The line position
on the detector is therefore uniquely identified by the echelle
order m and pixel in the dispersion direction x. The coefficients
cnij are interpolated from the time of the calibration exposures
to the time tn of a science exposure n by a third-order
polynomial with respect to time. This third-order polynomial is
evaluated at the time of noncalibration, science exposures to
reconstruct the coefficients for a 2D, ninth-order polynomial
wavelength solution for that exposure. Each calibration image
obtains its cnij independently.
Given a stabilized instrument with low degrees of freedom,

however, the calibration of any image can be reliably informed
by the calibration of every other image. The calibration data
themselves can be used to develop a low-dimensional basis for
expressing the space of all possible calibrations for a
spectrograph with few degrees of freedom.
If the space of all calibration possibilities is in fact K-

dimensional (where K is a small integer, e.g., 2 or 8 or
thereabouts) and if the calibration variations are so small that
they can be linearized, then the function qf x m, ; n( ) from
Equation (1) should be low-dimensional. In excalibur, we
transpose the calibration model—making the position x a
function of λ—into the following form:

l l l= + S
=

x m n g m a g m, , , , , 3K

k
n k k0

1
,( ) ( ) ( ) ( )

where lg m,0 ( ) is the fiducial, mean, or standard calibration of
the spectrograph, an,k denotes the K scalar amplitudes for each
exposure n, and lg m,k ( ) denotes the basis functions expres-
sing the “directions” in calibration space in which the
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spectrograph can depart from the fiducial calibration. The
resultant lx m n, ,( ), a list of calibration line positions for a
given exposure, can be regarded as the calibration state of the
spectrograph for that exposure. When this calibration structure
is used to deliver a wavelength solution, lx m n, ,( ) can be
inverted into l x m n, ,( ) to recover the wavelengths for each
detector position x and echelle order m (Bauer et al. 2015).
The challenge is to learn these basis functions lg m,k ( ) from

the data and get the K amplitudes an,k for every exposure n.
There are many ways to discern the basis functions. In this
paper, we present one implementation of excalibur using
principal-component analysis (PCA; Pearson 1901; Jolliffe &
Cadima 2016). PCA is justifiable in the limit where exposures
have very high signal-to-noise ratios (S/N), as is usually the
case with typical calibration images. There are many
alternatives to PCA for this dimensionality reduction; we
return to this point in Section 5 below.

2.1. Dimensionality Reduction: Denoising of Calibration
Frames

Excalibur will use calibration images to determine (1) the
space in which an instrument varies and (2) where in the
accessible calibration space the spectrograph is located for each
exposure. For each calibration exposure n, excalibur requires a
full list of lines (λ, m) that are expected to appear in each
calibration exposure. Each line is uniquely defined by a
combination of echelle order m and “true” or theoretical
wavelength λ. There are many strategies for identifying
calibration line positions and matching them to their assigned
wavelengths; this problem is left out of the scope of this work.

Excalibur assumes that line positions have been identified
“correctly,” as the position of a calibration line is determined in
the same way as the position of a stellar line when extracting

RVs. This also inherently assumes that the calibration lines are
not subject to any effect that the science exposures are not—for
example, differences in charge transfer inefficiency. We
caution that systematic errors or large uncertainties in fitting
line positions easily propagate to biases in the wavelength
models returned by excalibur. For more discussion, see
Section 7.
For each exposure n, every line (λ, m) has an associated

fitted (measured) detector position lx m n, ,( )—for example,
an x-pixel in a 2D extracted echelle order. Fitted line centers
that are missing from an exposure (e.g., because the fit failed
due to noise or the line is not in its usual echelle order) can be
assigned a NaN (hardware not-a-number) for that exposure
instead. Let there be P lines per exposure. Excalibur reads in an
N×P matrix of line positions for each of the P lines for each
of the N exposures.
The mean of measured line positions over the set of

calibration exposures represents the fiducial or standard
calibration of the spectrograph, lg m,0 ( ). In this implementa-
tion of excalibur, PCA is performed on the difference between
this fiducial calibration and each individual line position. The
returned principal components serve as basis functions

lg m,k ( ) expressing the possible deviations of the
spectrograph from this fiducial calibration. The magnitude of
each principal component for each exposure, an,k, represents
the scalar amplitude of these deviations for each exposure.
Excalibur then uses a small number K of principal components
to reconstruct a denoised version of the line positions as
formulated in Equation (3).
Missing line center measurements, which were previously

marked by NaN, are replaced with denoised estimates. This is
done iteratively until the estimates of missing line centers
change by less than 0.01%. This process can be repeated on
line centers deemed outliers by some metric, to account for

Figure 1. A cartoon representation of the excalibur method, as described in Section 2. We exaggerate variations in measured line positions, changes in calibration
space, and interpolation deviations for clarity. In step one, dimensionality reduction and denoising (Section 2.1), the complete set of line positions for all exposures is
analyzed to return a set of K basis vectors gn, which represent different ways the spectrograph calibration changes. These basis vectors span the K-dimensional
calibration space of the spectrograph, which includes all possible wavelength solutions. In step two (Section 2.2), the amplitude of each basis vector, an k, , is
interpolated to return the calibration state for a specific science exposure, returned as a set of denoised calibration lines. The assigned wavelengths of these denoised
line positions are then interpolated onto other pixels in step three (Section 2.3) to construct a full wavelength model that returns the wavelength as a function of
detector position x and echelle order m.
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lines that may have been misidentified or misfit. The principal
components from the final iteration are used to define the
spectrograph’s calibration space, while the associated ampli-
tudes for each component pinpoint are used to identify where in
that calibration space the spectrograph is located for each
calibration exposure.

Algorithm 1. Dimensionality Reduction and Denoising

Data: Line positions lx m n, ,( ) for each exposure n, with wavelengths λ and
echelle orders m

Result: Basis vectors of the low-dimensional calibration space, lg m,k ( ), and
location of exposures in calibration space expressed by amplitudes an k,

While change in missing or outlier line centers > 0.01% do
 l l=g m x m n, , ,0 ( ) ( );
using singular-value decomposition, find SU V, , s.

t. l lS = -U V x m n g m, , ,0* ( ( ) ( ));
let = Sa Un k, · and l =g m V,k ( ) ;
 l l l= + å =x m n g m a g m, , , ,k

K
n k k0 1 ,( ) ( ) ( ) for

 lx m n, ,( )=NaN, where K is a small integer. End

2.2. Interpolating Calibration Position

In excalibur, the amplitude an k, of each principal component
is interpolated to determine the calibration state of the
spectrograph. For example, the amplitude can be interpolated
with respect to time to recreate the calibration state of the
spectrograph at different times. The choice of what to
interpolate against depends on the dominant contribution to
variation in the calibration of the instrument.

In the implementation of excalibur presented here, the
amplitudes of the principal components are interpolated
linearly with respect to time. This is discussed more in
Section 5.1. Let a prime denote values related to a science
exposure ¢n for which we want wavelengths. We use linearly
interpolated magnitudes ¢an k, at time ¢tn to construct the
calibration state of the spectrograph for that point in time.
Using the interpolated amplitudes ¢an k, and the basis vectors

lg m,k ( ) returned by the denoising process, a new set of
calibration lines l¢ ¢x m n, ,( ) can be constructed for any
exposure as formulated in Equation (3).

2.3. Interpolating a Wavelength Solution

From the denoising step, excalibur can now construct a set
of calibration lines l¢ ¢x m n, ,( ) for any exposure ¢n . To
construct a wavelength solution, we invert l¢ ¢x m n, ,( ) to
l ¢ ¢x m n, ,( ) by interpolating known wavelengths of the
calibration lines over the detector position. For instance,
interpolating the known wavelengths versus the line centers for
an echelle order m onto every integer x will generate
wavelengths for each pixel in the echelle order.

After experiments, we find that a cubic-spline interpolation
that enforces monotonicity, such as a piecewise cubic Hermite
interpolating polynomial (PCHIP) interpolator, works well for
interpolating wavelengths onto pixels. A cubic spline allows
for more flexibility than a parameterized function, while
enforced monotonicity allows the wavelength solution
l ¢ ¢x m n, ,( ) to be invertible and prevents the spurious
deviations that may befall a cubic spline. Choices of
interpolation scheme K and other tests are further discussed in
Section 5.3.

Algorithm 2. Generating Wavelength Solution

Data: The fiducial calibration of the spectrograph, lg m, ;0 ( ) the magnitudes of
the principal components for each exposure, a ;n k, the basis vectors spanning
the calibration space of the spectrograph, lg m,k ( )

Result: Wavelengths for detector positions ¢ ¢x m n,( ) of exposure ¢n with time

¢tn , where the prime is used to denote values relevant to this new exposure
Find ¢an k, by interpolating an k, with respect to ¢tn ;

l l l¢ ¢ = + å = ¢x m n g m a g m, , , ,k
K

n k k0 1 ,( ) ( ) ( ), where K=6.
For each unique m do
interpolate λ with respect to l¢ ¢x m n, ,( ) onto
pixels ¢ ¢x m n,( ).
End

The implementation of excalibur described here is hosted on
GitHub.6

3. Data

We test excalibur using data from EXPRES. EXPRES is an
environmentally stabilized, fiber-fed optical spectrograph with
a median resolving power l d= = ~lR 137,000 over a
wavelength range of 390–780 nm (Jurgenson et al. 2016;
Blackman et al. 2020). EXPRES has two different wavelength
calibration sources, a ThAr lamp and a Menlo Systems LFC.
LFCs are unique in that the wavelengths of their emission lines
are stable and exactly known at picometer accuracy (Wilken
et al. 2012; Molaro et al. 2013; Probst et al. 2014).
Rather than using a simultaneous calibration fiber, two to

three LFC exposures are obtained roughly every 30 minutes
while the telescope is slewing to new targets. ThAr exposures
are taken at the beginning and end of each night. All calibration
data are taken through the science fiber, so that calibration light
travels down the same optical pathway and is projected onto
the same pixels as the science observations. Light passes
through a pupil slicer and double scrambler before being
injected into a rectangular fiber, which is fed through a
mechanical agitator to ensure modal mixing (Petersburg et al.
2018).
The LFC lines cover echelle orders 84–124, which contain

approximately 19,200 calibration lines. Though our results are
primarily based on work with LFC data, there will be some
discussion of applications to arc lamps below. The ThAr lines
cover all 86 extracted orders of EXPRES (echelle orders
75–160), which include approximately 5300 lines. For both the
LFC and ThAr data, lines that appear in less than 60% of the
exposures are not included in the analysis. Similarly, exposures
with more than 60% of expected lines missing are cut from the
analysis. A list of echelle orders m, line wavelengths λ, and
pixel positions x are calculated by the EXPRES pipeline
(Petersburg et al. 2020) for every line of every exposure and
read into excalibur.
Line positions from the EXPRES pipeline are generated as

follows. A ThAr wavelength solution is generated from each
ThAr exposure using the IDL code thid.pro, developed by
Jeff Valenti. This code identifies ThAr lines by matching lines
in an exposure against a line atlas. Line matching is carried out
in an automated and unsupervised way with a Levenberg–
Marquardt minimization routine. Once each line’s position is
identified and matched to a wavelength from the line atlas, a

6 https://www.github.com/lilylingzhao/excalibur
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sixth-order, 2D polynomial is fit over the pixel location x,
echelle order m, and scaled wavelength lm (wavelengths are
scaled in order to distinguish lines that may appear in more
than one order).

Flat-relative, optimally extracted LFC data is background-
corrected using a univariate spline. Each peak in an echelle
order is then fit with a Gaussian. The mean of this fitted
Gaussian to a single peak is taken to be the center of the line.
For each line, the ThAr wavelength solution is used to estimate
the mode number of the line. The precise wavelength is then
calculated using

= ´ +f n f f 4n r 0 ( )

where the repetition rate fr is known from the design of the LFC
and the offset frequency f0 has been determined by Menlo
Systems, the manufacturer of the LFC.

In order to comfortably satisfy the assumption that there
exists only low-order variation, which is needed for excalibur,
we use exposures from after the LFC stabilized following
servicing in summer 2019, when the photonic crystal fiber was
replaced and the polarization was changed to shift the
wavelength range of the LFC redward. In the results presented
here, we use 1227 LFC exposures and 78 ThAr exposures
taken between 2019 October 14 and December 18 on 29 unique
nights.

4. Tests

We perform a series of tests to validate the performance of
excalibur and benchmark excalibur-generated wavelengths
against wavelengths generated by a classic, nonhierarchical,
parametric method. To implement training/validation tests, we
leave out a subset of calibration lines with known wavelengths as
a “validation” sample, generate wavelengths for these lines using
the remaining data, and compare the predicted wavelength to the
assigned wavelength of each line. This inherently folds in errors in
the measured line center of each calibration line, but this
contribution to the residuals will be the same across all tests.

To assess the classic, polynomial-driven method of wave-
length calibration, we take each LFC exposure and separate the
lines into even- and odd-indexed lines. We then construct a
wavelength solution using only the odd-indexed lines and use
that wavelength solution to predict wavelengths for the even-
indexed lines; i.e., a polynomial is fit to just the odd-indexed
lines and then evaluated at the detector positions of the even-
indexed lines (see Equation (2)). We then generate a
wavelength solution using only the even-indexed lines and
use it to predict wavelengths for the odd-indexed lines.

To test the interpolation step of excalibur (Section 2.3), we
employ excalibur on all LFC exposures with odd-indexed lines
removed. The resultant basis vectors g x y m, ,k ( ) and ampli-
tudes an,k are therefore only informed by the even-indexed lines
of each LFC exposure. We then predict wavelengths for the
odd-indexed lines that have been excluded, and compare these
predictions to their assigned wavelengths. This allows us to test
how accurately an interpolated wavelength solution can predict
wavelengths.

To test the denoising step of excalibur (Sections 2.1 and
2.2), we employ excalibur on a randomly selected 90% of all
LFC exposures. This means the basis vectors g x y m, ,k ( ) and
weights an,k are constructed using information from only 90%
of all exposures. We use the results to predict wavelengths for
all the lines in the remaining 10% of calibration exposures.

This allows us to test how well we can pinpoint the calibration
state of the spectrograph using excalibur.
The polynomial and interpolation tests remove the same 50%

of lines from each exposure, while the denoising test
completely removes a randomly selected 10% of calibration
exposures and their associated line position measurements.
Errors from interpolation will be localized, extending only to
neighboring lines. We therefore aggressively remove every
other line to ensure we capture these local effects. The PCA
denoising, on the other hand, folds in information of all lines
from all exposures. Here, it is sufficient to completely remove
10% of the exposures, a traditional training/validation fraction.
Since the information being removed varies between each test
depending on its focus, we present the results per line, treating
each line as an independent test.
The residuals of a wavelength solution represent the

difference between the wavelength solution evaluated at the
line position of a calibration line and the assigned theoretical
wavelength (i.e., that from Equation (4) for the LFC lines) on a
line-by-line basis in every exposure. The reported rms of a
wavelength solution is therefore the per-line rms, i.e.,

åå=
´

´

l l

l-

= =

-
c

N P
RMS line m s 5

n

N

p

P
1

1 1

2
n p p

p

, ,pred. ,theory

,theory

⎡
⎣⎢

⎤
⎦⎥

[ ] ( )

( )

where lp,theory is the theoretical wavelength for line p, ln p, ,pred.

is the wavelength predicted by the constructed wavelength
solution for line p in exposure n, and residuals from all P lines
from all N exposures are used, for a total of N×P lines. The
difference in wavelength is converted to units of meters per
second, a more intuitive metric for EPRV work.

4.1. Results

Histograms of the per-line residuals for each of the above-
described polynomial, interpolation, and denoising tests are
shown in Figure 2. Note that the spread in residuals is much
smaller for both the denoising and interpolation tests relative to
the results of the polynomial wavelength solution.
The per-line residuals from the denoising test also exhibit

smaller spread than those from interpolation alone. This

Figure 2. Difference in predicted and theoretical wavelengths for the
wavelength calibration tests described in Section 4. The per-line rms as
defined in Equation (5) is given in the top-right corner in each method’s
corresponding color. Incorporating denoising returns the smallest spread in
residuals.
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suggests that the spectrograph truly is accurately represented by
a low-dimensional model. Recreating line positions using this
model gives better line position estimates than treating each
exposure independently. The low-dimensional model does not
incorporate noise from individual line measurements. Return-
ing more precise denoised line positions results in smaller per-
line residuals.

Excalibur-generated wavelengths also exhibit less structure
in the returned residuals. For a randomly selected example LFC
exposure, Figure 3 plots each line with respect to its echelle
order (y-axis) and x-pixel on the detector (x-axis) colored by the
difference between the predicted and theoretical wavelengths
for that line in units of meters per second.

The residuals of the classic, polynomial wavelength solution
are shown in the top plot of Figure 3. There are a lot of vertical
structures and some hints of periodic diagonal structures as
well. The residuals of the interpolation test for the same
exposure are shown in the bottom plot of Figure 3. There are no
coherent structures here and smaller residuals.

This shows how the flexibility of an interpolated model can
account for high-order instrument or detector defects, which
emerge as structures in the residuals of the classic, smooth,
polynomial-driven wavelength solution. This same flexibility
may similarly allow interpolated wavelength solutions to
account for position errors in pixel image blocks for different
detectors depending on how the interpolation is framed
(Fischer et al. 2016; Milaković et al. 2020).
Though the interpolated wavelength solution returns lower,

less structured residuals than the polynomial wavelength
solution when guided by LFC lines, the flexibility of an
interpolated wavelength solution can result in much worse
residuals when not properly constrained—for example, in
regions between widely separated calibration lines. The left
plot of Figure 4 shows the residuals when ThAr calibration
lines, which are much fewer and less regularly spaced than
LFC lines, are run through excalibur and used to predict
wavelengths for the (completely independent) LFC exposures
taken during the same range of time. Overplotted in yellow are
the positions of the ThAr lines.

Note that running excalibur informed by only ThAr lines
cannot be regarded as a direct comparison to the LFC runs, as

the increased uncertainty and variability in using ThAr line
positions alone makes the resultant wavelength predictions an
order of magnitude worse—hence the different scale of the
colorbar in the left plot of Figure 4 as compared to Figure 3. All
the same, the residuals are in general worse where lines are
further apart (for example, in redder echelle orders) than where
lines are denser.
Figure 4 (right) plots the residuals for a subset of order 94 for

both a polynomial-based method and a PCHIP-based method
guided by either ThAr lines or LFC lines. The PCHIP model
with ThAr lines (orange, dashed curve) returns huge residuals
between two widely separated ThAr lines that extend out of
frame. The classic, polynomial fit exhibits similar residuals in
both amplitude and shape whether the set of ThAr lines or the
set of LFC lines is used. An interpolated wavelength solution
using LFC lines (black, solid curve) exhibits the lowest
residuals.
The move to an interpolated wavelength solution is driven

by the assumption that a high density of calibration lines allows
for more freedom in the resultant wavelength solution. This
freedom allows the wavelength solution to more accurately
ascribe wavelengths. This flexibility, however, is no longer
justified in the regime where there are large separations
between calibration lines, as this no longer provides sufficient
constraint on the interpolated wavelength solution, as is the
case in some regions of a classic ThAr lamp.

4.2. Impact on RV Measurements

We test excalibur-generated wavelengths on RV measure-
ments using EXPRES observations of HD 34411, which are
presented in Table 1. HD 34411 is a G0V star. It is 4.8 Gyr old
and relatively quiet ( ¢ = -Rlog 5.09HK ; Brewer et al. 2016).
Because HD 34411 has no known planets and should have a
smaller contribution from stellar signals, it is a good star with
which to test the effects of wavelength calibration on the rms of
the returned RVs. We use 114 observations of HD 34411 taken
between 2019 October 8 and 2020 March 5 with S/N of 250.
RV measurements are derived using a chunk-by-chunk,
forward-modeling algorithm run by the EXPRES team
(Petersburg et al. 2020).

Figure 3. Residuals of a single LFC exposure plotted with respect to detector position (as defined by echelle order and x-pixel) for parametric (left) and nonparametric
(right) wavelength calibration methods. Each line is colored by the difference between the predicted wavelength and the theoretical wavelength for each line, given in
units of meters per second. High-order structure, i.e., vertical stripes and patchiness, is apparent in the residuals to a polynomial wavelength solution, which assumes
smoothness.
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Figure 5 compares the resultant RVs when using a classic,
ninth-degree polynomial wavelength solution and an excalibur-
generated wavelength model. Using excalibur-generated wave-
lengths reduces the rms of the entire data set from -1.17 m s 1

with the classic wavelength solution to -1.05 m s 1. This is
equivalent to removing an independent, additive noise comp-
onent of = --0.52 m s 1.17 1.051 2 2( ).

We conduct a direct test of a classically generated
wavelength solution with excalibur wavelengths on four other
data sets. All targets show a reduced or comparable RV rms.
However, the results from these data sets cannot be interpreted
as directly as those with HD 34411, due to larger contributions
from stellar variability, known planets, etc. As completely
mitigating these different effects is out of the scope of this
paper, we focus here on the results with HD 34411.

5. Choose Your Own Implementation

We have described and tested only one implementation of
excalibur. Using PCA and an interpolated wavelength solution
is a statistically straightforward step toward a complete
hierarchical and nonparametric wavelength model. It is
possible to upgrade both the denoising and wavelength solution
steps to true models. It is also possible, of course, to implement
either step individually. A hierarchical framework can be used
to simply denoise the lines before they are fit to a parametric
model, and a nonparametric model can be used on lines that
have not been denoised.

For dimensionality reduction and denoising, PCA could be
replaced by a probabilistic PCA model or other probabilistic
linear reduction methods, such as heteroskedastic matrix
factorization (Tsalmantza & Hogg 2012). It is also possible
to move to nonlinear reduction methods, like a Gaussian-
process latent variable model, an autoencoder, or a normalizing
flow (e.g., Kramer 1991; Woodbridge et al. 2020). Using a
nonlinear denoising model could enable excalibur to capture
large-scale changes as well as small variations in calibration
state.
The wavelength solution could also move past interpolation.

For example, a Gaussian process could be used that is
constrained to ensure monotonicity. Replacing each step with
a model will allow for full, hierarchical Bayesian inference.
This means the uncertainty from wavelength calibration could
be completely marginalized out. Doing so will have the largest
impact if the wavelength calibration is a significant fraction of
the error budget.
The implementation of excalibur presented here, using PCA

for denoising and interpolating a wavelength solution, uses
various global variables and methods that we believe are
optimal or close to optimal for constructing a high-fidelity
wavelength solution. The following subsections will describe
each choice and the associated decision-making process.

5.1. Dimensionality of the Calibration Space, K

The dimensionality of the calibration space where the
spectrograph is located is represented by K. In practice, it is
the number of principal components, or basis vectors, used to
reconstruct the denoised line centers. K needs to be large
enough so that all variability in the spectrograph is captured.
Too large, however, and the reconstruction will begin to
incorporate noise, thereby defeating the purpose.
Figure 6 shows the fiducial calibration state and the first nine

principal components constructed using LFC lines, which
represent deviations from the fiducial calibration state. There is
clear structure in the first and second principal components.
Components three through six show smaller or more localized
structures. Components three and four have aberrant behavior

Figure 4. Residuals when using ThAr lines to predict wavelengths for LFC lines. Left: Residuals for a single LFC exposure plotted with respect to detector position
and colored by residual, as in Figure 3. The positions of ThAr lines are overplotted in yellow. In general, residuals are greater between ThAr lines with greater
separation. Right: Comparison of polynomial and interpolated wavelength solutions using either just ThAr lines or just LFC lines for a subset of echelle order 94. The
shape of the residuals from a polynomial fit is similar whether using ThAr lines or LFC lines. A PCHIP-interpolated wavelength model guided by LFC lines returns
the smallest residuals.

Table 1
EXPRES RVs Obtained Using Excalibur Wavelengths

JD-2,440,000 RV ( -m s 1) Error ( -m s 1)

18,764.4771 3.139 0.335
18,764.4791 1.035 0.332
18,764.4810 3.074 0.324
18,771.4179 −1.927 0.342
18,771.4196 2.688 0.357

(This table is available in its entirety in machine-readable form.)
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Figure 5. HD 34411 RVs measured with EXPRES. We zoom in on all but eight of the exposures, which were taken over 150 days later. All RVs are shown in blue;
nightly binned RVs are overplotted as orange squares. The rms of the data set and the rms of the binned values are given in the top-left corner. Left: RVs derived using
a polynomial-based wavelength solution. Right: RVs derived using wavelengths from the implementation of excalibur presented in this paper.

Figure 6. Top: The fiducial calibration of the spectrograph, i.e., the mean line positions for each line throughout the epoch of stability. The following 3×3 grid of
plots shows the first nine principal components constructed using LFC lines. These principal components represent the basis vectors along which the calibration of the
spectrograph can deviate from the fiducial calibration. For each principal component, or basis vector, each calibration line is plotted according to its echelle order and
x-pixel and colored by the value of the basis vector for that line. Principal components beyond the sixth one steadily become more dominated by noise.
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on the edges of the two bluest echelle orders, where a lower
signal results in more variation in the line fits. Later principal
components become dominated by noise and show less
coherent structures.

In deciding a K value, we run denoising tests, as described in
Section 4, for K values spanning 2 to 512. The resultant per-
line rms for each test is plotted in Figure 7. One would expect
the returned wavelengths to get increasingly more accurate
with larger K until components that represent only noise are
incorporated. Residuals might then get worse before ultimately
starting to get better again with large K, which marks when the
model starts overfitting the data. Though the returned rms never
gets worse, we find that the improvement plateaus between
K=6 and K=128. Comparisons of wavelengths returned by
a K=6 model versus a K=32 model show significant
differences in less than 10 bluer lines, which are known to have
greater error and variance in their measured line positions. We
therefore settle on a K value of 6.

5.2. Interpolation of Calibration State to Science Exposures

Figure 8 shows the amplitudes of the first and second
principal components with respect to time on the left. Though
there exists a complex overall shape to the amplitudes with
respect to time, a clear linear trend exists within each night.
This is shown by the right plots in Figure 8. As the beginning-
of-night and end-of-night calibration sets always include LFC
exposures, we use a simple linear interpolation to interpolate
principal-component amplitudes with respect to time.

The choice of interpolation method can help identify how
many wavelength calibration images are truly needed. It is
unnecessary to take calibration images at times when the same
information can be reconstructed at the desired precision by a
well-chosen interpolation scheme. For example, with the
EXPRES data shown here, it is clear that nightly calibration
images are needed, but for a linear trend, only two calibration
images throughout the night are strictly required.

We also test an implementation of excalibur where the K
principal components within a night are fit to a cubic with
respect to time rather than being linearly interpolated. This
emulates the current, polynomial-based wavelength solution
implemented in the EXPRES pipeline, where polynomial fits to
calibration files are interpolated to science exposures by fitting

polynomial coefficients with respect to time to a cubic. We find
that using a cubic in place of linear interpolation returns a
comparable RV rms for most targets, though it appears to do
better when a night has sparse calibration data. This suggests
that the nightly behavior of EXPRES with respect to time is
well described by a cubic function, but LFC exposures are
typically taken with enough frequency that a linear interpola-
tion provides a good approximation (see Figure 8).
The amplitudes an k, can also be interpolated with respect to

any good housekeeping data, not just time. The best results will
come from interpolating with respect to whatever is most
strongly correlated with the calibration state of the spectro-
graph. For example, with EXPRES, which is passively
temperature-controlled, the returned amplitudes an k, are
extremely correlated with the optical bench temperature, as
shown in the top-left plot of Figure 8, suggesting it would also
be possible to interpolate the amplitudes with respect to
temperature.
Another pertinent example would be a spectrograph that is

mounted on a telescope and therefore moves with the telescope.
In this case, it may be important to interpolate at least in part
with respect to the position of the telescope, which enables the
resultant calibration to incorporate the gravitational loading
experienced by the spectrograph.

5.3. Interpolation of Wavelengths with Respect to Pixels

In the implementation described and tested by this paper,
interpolation of wavelengths over pixels is done order by order
using a PCHIP interpolator. This interpolation incorporates the
flexibility needed to model the changing dispersion of the
spectrograph across an echelle order along with any detector
defects while also enforcing monotonicity, which we know
must be true across any one echelle order.
A simple linear interpolation would give erroneously low

values everywhere. Due to the dispersion intrinsic to echelle
spectrographs, the wavelength change between pixels grows
greater with greater wavelengths, even within an order. This
means that the function of wavelength versus pixel across an
echelle order will always be monotonically increasing and
concave down everywhere.
Though less of an issue with LFC lines, a more classic cubic-

spline interpolation can run into issues with arc lines, which are
irregularly spaced or even blended. Close lines appearing at
virtually the same pixel location but with different wavelengths
could coerce a cubic spline into a very high slope. This is
demonstrated by the green line in Figure 9, which shows the
results of interpolating between ThAr lines rather than between
LFC lines. A line blend appears at approximately pixel 5300,
causing the spline to twist to nearly vertical to account for both
points. This leads to huge deviations from the correct
wavelengths around this line blend as the extraneously high
slope of the spline is accounted for.
These huge digressions can be avoided by allowing for some

smoothing in the interpolation. In Figure 9, we show an
example in orange using SciPy’s implementation of a
univariate spline. While the result appears to follow the
calibration lines much better, the smoothing ultimately causes
larger residuals that are spatially correlated (Figure 9, right). In
all echelle orders, the edges are overestimated while the middle
is underestimated, shown by the flattened shape of the
histogram of residuals. The resultant wavelength solution
underestimates the curvature of the pixel–wavelength relation,

Figure 7. Per-line rms of returned wavelength models for different values of K.
The per-line rms, as defined in Equation (5), provides a measure of the
accuracy of a wavelength model. There is a dotted vertical line at K=6, and
the dotted horizontal line is the rms for K=6. The improvement around K=6
plateaus.
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giving rise to issues similar to those with an inflexible,
parametric wavelength solution. Introducing this smoothing
parameter enforces a smoothness we have no reason to believe
is true of the data, thereby reintroducing one of the problems
encountered with parametric models.

We instead turn to the PCHIP algorithm, which damps down
huge deviations in the traditional cubic spline by requiring the

resulting interpolated function to be monotonic. Monotonicity
is a constraint we know must be true for any one echelle order.
The PCHIP interpolator, like the classic cubic spline, shows
issues of a ThAr line blend around pixel 5300, but the effect is
much smaller and is exerted on fewer pixels. Figure 9, right,
shows that using the PCHIP interpolator returns the lowest-
spread residuals.

Figure 8. Amplitudes of the first two principal components shown as a function of time (left) or hours from midnight (right). The top row of plots shows the
amplitudes for the first principal component, while the bottom row shows the amplitudes for the second principal component. Lines show the result of a linear
interpolation. In the top-right plot, the temperature of the optical bench is also plotted, in orange. In the right plots, the principal-component amplitudes for each night
are artificially offset by the median amplitude per night. All days are therefore roughly on the same scale, but the y-axis is different from that on the left plots. In the
right column, points are colored by the MJD of each exposure.

Figure 9. Residuals from different interpolation schemes over pixels in echelle order 100. ThAr lines, shown as blue circles, are used to construct a wavelength
solution that is then evaluated at each LFC line, shown as blue vertical lines. The residuals of each wavelength solution for a subset of the order are shown on the left.
Histograms of the residuals for each method for the complete order are shown on the right. Note: There is a blended ThAr line at approximately pixel 5300, the
rightmost ThAr line plotted.
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There likely exists an even more fitting model between an
overly constrained polynomial fit and a completely free spline
interpolation. For example, there has been success in
interpolating wavelengths with respect to pixels using a
segmented polynomial in the dispersion direction, especially
when tuned to known detector defects (Milaković et al. 2020).
Stiffer, more constrained splines or carefully chosen knot
positions may afford the perfect marriage of freedom and
constraint that will better describe wavelength changes with
pixels.

6. Application to Other Spectrographs

We focus on an EPRV use case here because there is a strong
need for wavelength calibration in the EPRV community.
EXPRES is representative of the newest generation of EPRV
spectrographs, and an LFC provides stable, dense calibration
lines with known wavelengths, ideal for excalibur. The
applicability of excalibur to any one instrument is a detailed
question of the kind of variance experienced by the
spectrograph and calibration sources available, but we hope
to provide some approximate benchmarks and diagnostics here.

Implementing excalibur will require an existing library of
calibration exposures that span the range of calibration space
accessible by the spectrograph, or at least the space accessed by
the science exposures being calibrated. A new set of calibration
exposures would be needed for any changes to the instrument
that could significantly change the accessible calibration space.
While there is no exact cutoff for how many exposures are
needed, the number is certainly much larger than K, the
dimensionality of the calibration space. More calibration
exposures will help with denoising. The number of calibration
exposures required throughout a night will depend on how
much the instrument varies throughout the night as well as on
the chosen interpolation scheme, as mentioned in Section 5.1.

As an empirical assessment of the required line density, we
remove LFC lines from the EXPRES data and calculate the per-
line rms of the returned wavelengths for the removed lines.
These tests are similar to the interpolation test explained in
Section 4, in that a fraction of lines are systematically removed
from the analysis. An increasing fraction of lines are removed
to simulate different line densities. For these line density tests,
though, we also implement denoising, unlike the pure
interpolation test of Section 4.

Figure 10 plots the scatter of the residuals of the wavelengths
returned by excalibur as a function of the separation between
lines in units of resolution elements. It gives an approximate
estimation of the expected error between lines of different
separation. Note, however, that the stability of the lines and
their measured line centers quickly becomes the dominant error
source in the calibration lamps over the separation between
lines. Additionally, in this assessment, the lines remain
uniformly spaced. The required line density depends on the
resolution of the given spectrograph, the required precision of
the returned wavelength solution, and the chosen interpolation
scheme.

This implementation of excalibur to EXPRES data inter-
polates calibration information to the science data using
surrounding calibration exposures. Simultaneous calibration
data can be used to reinforce the determined calibration state of
an instrument at the time of the science exposures. This
simultaneous calibration data can come from calibration light

shone through a reference fiber or any metadata (e.g.,
temperature, pressure, time) that correlates with the calibration.
For example, we have seen that the calibration state of
EXPRES is correlated with the temperature of the optical
bench, even with the optical bench temperature varying by less
than one degree. This correlation is not seen in the RVs,
suggesting changes with temperature are calibrated out at the
wavelength stage.
With a simultaneous reference fiber, the position of

calibration lines taken through the reference fiber can simply
be concatenated to the array of line positions taken through the
science fiber. Both sets of lines will then be used when the low-
dimensional basis is constructed. This allows the simultaneous
calibration information to contribute to the construction of the
complete calibration space of the spectrograph and pinpoint
where the spectrograph is in that calibration space for any
exposure.
The calibration for any science exposure with a simultaneous

reference can be determined by finding the amplitude of each
basis vector that most closely recreates the calibration line
positions through the reference fiber. These amplitudes can
then be used to recreate the calibration line positions through
the science fiber as well. This replaces the need to interpolate
the basis vector amplitudes from calibration exposures to
science exposures, something that is done with respect to time
in the example implementation described in this paper. The
result is likely to be even more precise, as this method
incorporates more data. This method, like all other analysis
involving a simultaneous reference fiber, will work only as well
as the reference fiber’s ability to trace changes in the main
science fiber.
It is also possible to apply excalibur to etalon data with

some modifications. The simplest implementation is if the
free spectral range (FSR) and therefore the wavelength of each
line of the etalon are well known. The etalon data can be
interpolated onto a set of fiducial lines with set wavelengths.
These fiducial lines would therefore be identifiable by echelle
order and wavelength alone, with only their line positions
varying with different exposures. This returns us to the same
framework as developed for the case of an LFC. This marks the
simplest implementation of excalibur on etalon data, as the

Figure 10. Per-line rms as a function of spacing between lines in units of
resolution elements. The average line spacing is calculated using the average
distance between LFC lines across the wavelength range.
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uncertainty of a line’s wavelength is upstream of the model
rather than built in.

Incorporating the FSR as part of the excalibur model will
require introducing a free parameter to capture changes in the
FSR independent of the variation in an instrument’s calibration
state. The calibration state can then be described with respect to
the mode number, which will be used to uniquely identify a
calibration line across exposures rather than the wavelength.
The FSR is then used to determine how the mode number of
each line maps to wavelength for a given exposure. The FSR
must not vary so much that the change in this mode-number-to-
wavelength mapping becomes nonlinear. This model would
require a simultaneous reference or other housekeeping data
that can be used to determine the FSR for every exposure.

In terms of dimensionality reduction, most physical systems
should have only a few dominant axes along which they vary,
meaning excalibur should be adaptable to a wide range of
instrument designs. With PCA, this can be tested by plotting
the amplitude of the returned principal components, which
should fall quickly after a few components. It should be noted
that this only provides a measure of the variance in the PCA
space and is not an explicit test of end-to-end variation in the
resulting model. This condition is therefore necessary but not
sufficient if implementing excalibur with PCA.

It could still be possible to run excalibur on a
spectrograph that has a high-dimensional calibration space,
meaning a large number of basis vectors are required to capture
all the variance in the spectrograph. In this regime, there is
always the risk of overfitting. Regularizing the principal-
component amplitudes—for example, by insisting the ampli-
tudes for higher principal components be smaller—can help to
return reasonable models (Foreman-Mackey et al. 2015).
Within such a framework, excalibur may still deliver good
results.

For the results presented here, the data is broken up into
different periods of stability based on where the principal-
component amplitudes show huge deviations. This is done
visually, though there exist many change-point detection
algorithms that could be used (Aminikhanghahi & Cook 2017).
There is a trade-off in including more exposures between
introducing greater variation, but also more data to offer
constraints that may be optimized. Here, a period of stability is
chosen manually in order to focus on separating out time-
domain intervals in which the data is relatively homogeneous,
e.g., when most exposures show the same calibration lines.
Homogeneity is, of course, implicitly required when imple-
menting PCA. Different denoising models will be able to
account for different amounts of stability or a lack thereof.

Lastly, we caution that excalibur is extremely sensitive to
upstream changes that may affect the line centers. For example,
PCA is good for detecting variability but is agnostic to the
source of the variability. This is why the principal components
shown in Figure 6 exhibit errant values for bluer LFC lines,
which have lower signals and therefore exhibit more variation
in their fitted line centers. It is essential that the line positions
being fed to excalibur capture only the changes in the
spectrograph’s calibration state, not potential errors in the
fitted line centers.

7. Discussion

We show that excalibur returns a lower per-line rms than
classic, parametric methods by a factor of 5 (Section 4). The

residuals are also smoother, exhibiting less spatial correlation
(Figure 3). Using excalibur wavelengths reduces the rms in the
RVs of HD 34411 from -1.17 m s 1 to -1.05 m s 1 (Section 4.2).
In implementing excalibur on EXPRES data, we have

successfully constructed a model of EXPRES’s accessible
calibration space, confirming that EXPRES truly is an
instrument with low degrees of freedom. Excalibur does not
make any claims about what variability each basis vector
represents. Those interested in interpreting the variability are
encouraged to investigate how the amplitude of the different
vectors varies with different housekeeping data to find its
source.
Starting with a list of calibration lines with known

wavelengths and well-fit line centers for each calibration
exposure, excalibur will denoise and interpolate the given lines
into a full wavelength solution. Excalibur leverages the
stability of contemporary EPRV instruments and the high
density of lines made available by new calibration sources,
such as LFCs and etalons, to achieve more accurate
wavelengths. Excalibur therefore assumes dense enough
calibration lines to properly constrain a nonparametric
wavelength model and assumes that the instrument has low
degrees of freedom.
Denser calibration lines allow us to move to more flexible

wavelength models, which can then account for nonsmooth
features in the wavelength solution. Stabilized spectrograph
hardware makes it more likely that the calibration space of the
instrument is low-dimensional. All calibration images in a
given period of stability can therefore be used to constrain the
accessible calibration space of the spectrograph as well as
where in that calibration space the spectrograph lies. We have
described only one, fairly simplistic implementation of
excalibur here. There are many other options for both the
denoising and the interpolation steps, as mentioned in
Section 5.
An advantage of this implementation of excalibur, where

PCA is applied to line positions from all LFC exposures, is the
ability to isolate exposures that exhibit errant variation, which
is typically associated with flawed exposures. This allows us to
quickly vet for problematic LFC exposures, which otherwise
would have required visual inspection of all 1200+ LFC
exposures. In a classic framework where each calibration
exposure is treated independently, these aberrant exposures
would likely have persisted undetected and are liable to sway
the resultant wavelength solutions for at least an entire night.
On the other hand, PCA captures all variance, regardless of

source. Though excalibur endeavors to capture only variation
in the instrument, PCA is also sensitive to uncertainties and
failures in the upstream line position fitting. For example, we
have seen that lower-signal lines that are harder to accurately fit
have greater variety in returned line positions, which is in turn
captured by the PCA. In this sense, excalibur is actually a
model of not just the instrument but all the upstream choices
used to drive line positions. High-fidelity line positions are
essential to ensuring the PCA is capturing variations in just the
spectrograph’s calibration rather than including changes in how
well a line can be fit or other effects.
Along these lines, we caution that with any wavelength

solution, there is a perfect degeneracy between what is defined
as the “position of the line” and the resultant wavelength
solution. If, for example, a cross-correlation method is used to
extract RVs from the data, a systematic difference may be
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introduced depending on what exactly is defined to be the line
position, whether it be the mode of the Gaussian fit, the first
moment of a complicated point-spread function, or the output
of a particular peak-finding algorithm. In principle, the best
way to mitigate this uncertainty would be to use a calibration
source that looks like a star.

Compared to traditional methods, which involve fitting high-
order polynomials, excalibur has several useful statistical
properties. Excalibur is technically robust to localized issues
that arise from either the calibration source or the pipeline used
to return line positions. With an interpolated wavelength
model, one errant line position will only affect the resultant
wavelength model out to close, neighboring lines. The effect of
an outlier is diminished and kept localized. In contrast, an
entire parametric fit will be affected by a single errant line,
changing the wavelength solution for the entire exposure for a
2D fit. Through denoising and outlier rejection, excalibur adds
additional robustness against erroneous line positions.

The locality of the interpolation carries other benefits as well.
Manufacturing artifacts in the detector or other optical elements
can lead to nonsmooth structures in the wavelength solution
that cannot be captured by polynomials or other smooth
functions (see Figure 3). An interpolated model introduces
greater flexibility, accounting for such high-order effects. As
discussed in Section 5.3, there are better and worse
interpolators for the task, which may differ for different
instruments and different calibration sources. Instead of using
an interpolator at all, there might be better results from
implementing something more sophisticated, such as a kernel
method or a Gaussian process with a kernel adapted for the
specifics of an instrument. There are in principle an enormous
number of nonparametric methods to explore, which we leave
outside the scope of this paper.

Similarly, PCA is just one of many possible dimensionality
reduction methods. We choose to implement excalibur using
PCA here for simplicity and computational tractability. PCA is
a good option because the instrument changes here are small
enough that a linear model is an appropriate representation of
the changes. If excalibur is updated to a full probabilistic
model, the PCA along with the interpolation model will have to
be upgraded to something with better probabilistic properties.
Other, nonlinear denoising methods may be more robust to
large changes, allowing all calibration images ever taken with
an instrument to be used to construct the accessible calibration
state regardless of hardware adjustments. Further discussion of
other implementations of excalibur can be found in Section 5.

Excalibur can be applied to any data that contains
information about the calibration state of the spectrograph (see
Section 6). For example, though LFC and ThAr exposures are
used as examples in this paper, excalibur would work similarly
for an etalon or any other arc lamp with a list of lines and
assigned wavelengths. Simultaneous calibration information
can easily be accounted for by simply including the line
position information from the simultaneous reference when
constructing a low-dimensional basis of the instrument’s
calibration space.

Once we have defined a calibration space that captures all
possible degrees of freedom for a stabilized spectrograph, there
will be many options for pinpointing where the spectrograph is
located within that calibration space. Good housekeeping data,
such as temperature or pressure, could be used in addition to or
instead of time (as mentioned in Section 5.1). Telemetry that is

seen to be correlated with the calibration state of the
spectrograph can even be added to the data used to construct
the low-dimensional basis. Furthermore, all exposures taken
with the spectrograph in principle contain information about
the calibration state of the spectrograph. Theoretically, tellurics,
lines in science exposures, or just the trace positions
themselves could also be used to determine the instrument’s
calibration state, thereby providing free simultaneous calibra-
tion information.
Excalibur is designed and optimized for EPRV spectro-

graphs. In the battle to construct a high-fidelity data pipeline for
EPRV measurements, we have shown that excalibur represents
a step toward mitigating the error from wavelength calibration,
as demonstrated by tests using EXPRES data (Section 4).
Though the focus is on EPRV instruments here, excalibur
should be largely applicable to nearly any other astronomical
spectrograph.
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