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Abstract—Mapping and monitoring crops is a key step to-
wards sustainable intensification of agriculture and addressing
global food security. A dataset like ImageNet that revolutionized
computer vision applications can accelerate development of novel
crop mapping techniques. Currently, the United States Depart-
ment of Agriculture (USDA) annually releases the Cropland Data
Layer (CDL) which contains crop labels at 30m resolution for the
entire United States of America. While CDL is state of the art
and is widely used for a number of agricultural applications,
it has a number of limitations (e.g., pixelated errors, labels
carried over from previous years and errors in classification
of minor crops). In this work, we create a new semantic
segmentation benchmark dataset, which we call CalCROP21, for
the diverse crops in the Central Valley region of California at
10m spatial resolution using a Google Earth Engine based robust
image processing pipeline and a novel attention based spatio-
temporal semantic segmentation algorithm STATT. STATT uses
re-sampled (interpolated) CDL labels for training, but is able
to generate a better prediction than CDL by leveraging spatial
and temporal patterns in Sentinel2 multi-spectral image series to
effectively capture phenologic differences amongst crops and uses
attention to reduce the impact of clouds and other atmospheric
disturbances. We also present a comprehensive evaluation to show
that STATT has significantly better results when compared to
the resampled CDL labels. We have released the dataset and the
processing pipeline code for generating the benchmark dataset.

Index Terms—Remote Sensing, Spatio-temporal data, Seman-
tic Segmentation, Large Scale dataset

I. INTRODUCTION

With the rise in world’s population, food supplies must
scale up to keep pace with the growing demand. Hence it
is critical to ensure that farm lands are being used efficiently
from an environmental perspective.In particular, mapping and
monitoring crops is a key step towards forecasting yield,
guiding sustainable management practices, measuring the loss
of productive cropland due to urbanization and evaluating
progress in conservation efforts.

Indeed advances in Earth observation technologies have led
to the collection of vast amount of accurate and reliable remote
sensing data. There are many Land Cover Land Use (LULC)

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 1625

maps that are present for agriculture [12], [15], [20], [21], [23]
but only a small subset of these provide crop labels at a pixel
level [3], [12], [21]. Of these, the most used is the Cropland
Data Layer(CDL). In the United States, the Department of
Agriculture’s (USDA) Cropland Data Layer (CDL) provides
a publicly available land-cover classification map annually at
30m resolution which includes major crop commodities for
the conterminous United States (CONUS) [5]. CDL product
has driven the advancement of research in areas ranging from
agricultural sustainability studies [8], [11], to environmental
issues [2], [7], land conversion assessments [18], [22], crop
rotations [4], [16], farmer surveys [14] and many more [6].
While CDL is the state-of-the-art spatially explicit identifi-
cation product for crops, it has a number of limitations [17],
[19]. First, the CDL is created using a pixel based classification
algorithm and hence contains pixelated errors in crop labels.
Second, each pixel is not updated every year and labels
for some pixels are not updated from previous years which
sometimes leads to incorrect labels. Third, CDL is known to
have low accuracy in classifying many minor crops such as
alfalfa, hay, tree crops, and many vegetable crops [13]. Finally,
CDL labels are created using Landsat images, which are at
30m resolution, leading to mixed pixels errors. The Sentinel
constellation provides images at a finer resolution (10m) and
more frequent temporal scale (5days vs 15 days) and thus
offers the possibility of creating crop labels at 10m resolution.

To overcome the limitations of existing pixel level crop
maps and datasets and to facilitate deep learning research in
RS-based crop mapping, this paper presents a new seman-
tic segmentation benchmark dataset for crops, CalCROP21.
Specifically, the input images were created using a Google
Earth Engine based robust image processing pipeline on the
multi-spectral temporal images collected by the Sentinel-2
constellation in the Central Valley of California in 2018. A
novel spatio-temporal semantic segmentation [10] method was
used to generate better quality labels using resampled CDL as
initial labels. The efficacy of this methodology relies on several
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key assumptions. First, the noisy coarse resolution CDL labels
are still of good enough quality to be used for training a
classifier. Second, a classifier that makes use of space and
time is more effective in dealing with the training label noise
than one that ignores such information. Third, labels at the
geographical farm boundaries can be mixed and their labels
at the coarse resolution are not trustworthy, whereas labels at
the interior of a region are likely to be more confident.

To summarize, our contributions in this paper are as follows:

« We provide a first large scale semantic segmentation
dataset that includes both input images as well as labels
for a diverse array of crops at 10m resolution for Central
Valley, CA. Specifically, each pixel in the image is labeled
as one of 21 crop or 7 non crop classes. Of the 21 crop
classes, many are minor crops (Eg, Onions, Garlic) for
which existing datasets such as CDL are known to have
poor quality labels. To the best of our knowledge this
is the first large scale pixel wise crop map that provides
labels for minor crops as well.

« We use a novel spatio-temporal deep learning method that
makes use of the phenotypic differences among crops at
multiple time steps. This method uses resampled CDL
labels (that are noisy and are at 30m resolution) and
produces higher quality labels at 10m resolution.

« We validate the quality of the labels via a detailed
quantitative and qualitative evaluation.

« We provide the processing pipeline code for further use
by the community in collecting images and generating
results for a different year and using different temporal
frequency for any region in the world.

For a full length version of this paper which more figures
and description please refer to [9].

II. RELATED WORKS

Several benchmark datasets are available for land use and
land cover (LULC) mapping. While many datasets are avail-
able for LULC there are few that cover agricultural area and
even fewer that include pixel wise crop classification, To the
best of our knowledge there is no dataset on crop semantic
segmentation that includes minor crops. For example, in the
context of cropland mapping after CDL (described in Section
1), BigEarthNet [21] is the one most relevant dataset which
provides 590,326 image patches from 125 Sentinel-2 tiles
and associates each image patch with a subset of 43 Corine
Land Cover classes over Europe. However, there are several
limitations in this dataset which make it less ideal for crop
monitoring. First, the topology of the classes included do not
distinguish between different crops but rather between broad
vegetation types (forest, agriculture, grassland, etc). Second,
due to the association of labels to entire image patch it captures
the presence and not the area of a certain category of land
cover.

ITI. DATA SOURCES

We use freely available multi-spectral satellite images and
data products to create our dataset. Specifically, we use
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Sentinel-2 as the input images and the Cropland Data Layer
as initial labels. Here we describe the data sources involved
in creating the dataset.

A. Input Satellite Imagery

In our dataset, we use the multi-spectral images captured
by the two polar-orbiting satellites as part of the Sentinel-2
mission operated by the European Space Agency (ESA). Due
to Its high revisit time of 5 days, phenological characteristics
of different crops can be observed compared to using single
snapshot (or few snapshots) for the whole season. The multi-
spectral images has 13 bands in the visible, near infrared, and
short wave infrared part of the spectrum, each having a spatial
resolution of 10, 20 or 60m. The captured images are available
in the form of tiles, each of which have a unique ID and covers
an area of 10,000 sq km.

B. Crop Labels

The Cropland Data Layer (CDL) is an annual publicly
available land cover classification map for the entire US. With
over 200 classes, CDL provides land cover maps covering
the entire conterminous United States (CONUS) at 30-meter
spatial resolution with a high accuracy up to 95% for clas-
sifying major crop types (i.e., Corn, Soybean, and Wheat).
The CDL data products are free to download from Google
Earth Engine [1]. Although CDL is a very useful product that
has led to the development of many downstream applications,
the product is plagued with noise that arise due to the reasons
discussed in Section 1. In particular, it has high accuracy (up to
95%) for classifying major crops(e.g., Corn, Soybean, Wheat),
but it is known to have poor accuracy for minor crops (e.g.,
Alfalfa, Hay and Tree crops) [13].

IV. PROCESSING PIPELINE

We use Google Earth Engine to build a robust image pro-
cessing pipeline to create biweekly Sentinel image composites.
Using the obtained biweekly composites and CDL labels,
we develop a novel spatio-temporal deep learning method to
improve upon the original CDL labels. In the following, we
describe these steps in details.

A. Generation of bi-weekly Sentinel-2 multispectral compos-
ites

Many land covers, e.g., different types of crops, are in-
distinguishable at a single time step. In particular, different
crops have different seeding time and harvesting time, which
is also affected by weather conditions. Hence, different crops
show discriminative signatures at different points of time [10].
Hence, we consider all the images available in a year for
this dataset. However, these images often have clouds and
other atmospheric disturbances. Here, we generate bi-weekly
image composites using a robust Google Earth Engine based
pipeline to reduce the impact of these atmospheric distur-
bances. Specifically, we collect all available images within a
2-week period and score every pixel of each tile using a the
quality band (QA60), which presents information as to whether
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Fig. 1: Evolution of labels through each preprocessing step
are shown for two randomly chosen regions (rows). The
first columns shows the raw CDL labels resampled at 10m
resolution. The second columns shows a revised set of labels,
where similar classes have been combined and untrustworthy
classes have been grouped as unknown class (in light purple).
The third column, which we use for training, shows one level
of erosion done classwise at boundaries and also removal of
connected components of size less than 4 pixels.

a pixel is cloud-free, dense cloud or cirrus cloud. Based on
the amount of cloud-free pixels the collection of images are
sorted and finally the best images merged to create a cloud-
free mosaic.Thus we obtain 24 mosaics in a year per tile, each
in the projection of the zone (for California crop belt, 8 tiles
are in EPSG:32610 - WGS 84 / UTM zone 10N and 3 are in
EPSG:32611 - WGS 84 / UTM zone 11N). All the bands are
resampled to 10m spatial resolution and then exported from
Google Earth Engine. Since some Sentinel tile images may be
slightly larger than the area they are supposed to cover, we
use GDAL to clip the images and reproject them so that every
pixel is of 10mx 10m resolution.

This finally produces 24 georeferenced files each of which
has a shape of (10980,10980,10) for a tile, with 10 sig-
nifying the number of bands (10m and 20m) used. Since
our objective is to map the entire crop belt in the Central
Valley of California, we found that 11 Sentinel-2 tiles covers
this crop belt, namely TIOSEH, T10SEJ, T10SFG, T10SFH,
T10SFJ, TI0SGF, T10SGG, T10TEK, T11SKA, T11SKV, and
TI11SLV, giving a total of 264 tif files. As a preprocessing
step we first clip the bottom and top 2%ile of each channel of
the satellite images and then apply max-min normalization.
Following the preprocessing of the images, we split each
tile into 100 grids each of size 10kmx10km (1098x 1098
pixels). We combine all the 24 composite images corre-
sponding to same grid together to form an array of shape
(24,1098,1098,10): 24 timestamps, (1098,1098) pixels and 10
channels. We have 1,100 grid arrays in total, each of which
is named as “TILEID_YEAR_ROW_COL_IMAGE.npy”, e.g.,
“T11SKA_2018_5_6_IMAGE.npy” corresponds to the 5th
row and 6th column (indexed from 0) of the tile TIISKA
in 2018.

1627

B. Pre-processing of CDL

We use Google Earth Engine to fetch the CDL labels and
crop them using each georeferenced Sentinel-2 tile, which
produces a label image at 30m resolution for each tile. We
then resample the labels to 10m resolution to create 11 label
tiles of shape (10980,10980). CDL provides labels for more
than 200 crop classes, many of which are completely absent
or rarely present in the California Central Valley region. In
our dataset we exclude these absent classes in the California
Central Valley region. In addition, CDL provides state-wise
validation metrics for their labels using ground-truth labels.
We also exclude those classes for which the number of pixels
used for CDL validation is too few as their labels cannot be
trusted. Specifically, we include a crop class in our dataset if
it fulfils the following conditions: The crop class has at least
1 million pixels in the study region and The crop class has at
least 100 validation pixels used by CDL

For non-crop classes we only apply the first condition (e.g.,
wetlands, grass, forests, hay, urban etc.) as their validation
metrics are not provided by CDL.Following these steps we
are left with 34 classes: {Corn, Cotton, Rice, Sunflower,
Barley, Winter Wheat, Safflower, Dry Beans, Onions, Toma-
toes, Cherries, Grapes, Citrus, Almonds, Walnut, Pistachio,
Garlic, Olives, Pomegranates, Alfalfa, Hay, Barren, Fallow
and Idle, Deciduous Forests, Evergreen forest, Mixed Forests,
Clover and wildflower, Shrubland, Grass, Woody wetlands,
Herbaceous Wetlands, Water, Urban, Double Crops}. For
training and evaluation purposes we combine the different
forest classes to a super class “Forest Combined”, wetland
classes to “Wetlands Combined”, and combine {Grass, Shrub-
land, Clover, Wildflower} to “Grass combined”. We also do
not use Double Crops in our study and label all those pixels
as unknown class. Following the preprocessing of the labels
we are left with 21 crop classes and 7 other classes and we
refer to this label set as CDL-combined.

Since the CDL is originally at 30m resolution, which we
resample to 10m (to match with the resolution of input
images), the boundary pixels are mixed and thus they could
contain regions of multiple classes. Given the uncertainty
of labels at spatial boundaries between any two classes, we
perform 1 pixel erosion for each class and replace these eroded
pixels with unknown class and remove connected components
of a class that are less than or equal to size 4. These labels
are called CDL-combined-eroded. Fig 1 shows the progression
of the labels through these preprocessing steps. Similar to the
image data, post erosion we segment and store the label in
arrays of shape (1098,1098) and have the naming convention
as TILEID_YEAR_ROW_COL_PREPROCESSED_CDL
_LABEL.npy.

C. Grid curation

As described earlier, in our dataset we have 1,100 grids of
1098 x 1098 pixels in size covering the entire crop belt in Cali-
fornia’s Central Valley. Many of these grids are predominantly
covered by non-crop classes, and hence are removed from the
dataset resulting in 367 acceptable grids. Specifically, a grid
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Fig. 2: Overlay of 11 tiles in Central Valley of California
region we used in our study along with Distribution of
Train/Val/Test grids. Green, light blue, and red represent the
regions used for training, validation and testing, respectively.
The purple regions denote the non-agricultural land and are
not used in our experiments.

is included if it follows both of the following conditions: The
erid has at least 50% pixels that are not unknown and out of
the valid pixels the grid has at least 50% pixels that belong to
crop classes

D. Label Improvement using STATT

As described earlier, CDL based labels cannot be used
directly as reference labels. To improve the quality of CDL
labels, we used the STATT model proposed by the authors
in [10] which uses spatial as well as temporal information to
effectively model the phenology of crops and reduce the effects
of clouds and other atmospheric disturbances. Specifically
STATT uses a UNET style architecture to extract spatial fea-
tures and a bidirectional Long-Short Term Memory (biLSTM)
to model temporal progression of the crop specific growing
and harvesting patterns. Further it uses attention networks
to aggregate the hidden representations for each time-step
based on their contribution to the classification performance.
Finally, using these attention scores, the spatial features by the
convolutional encoders at multiple resolutions are aggregated
and passed using skip connections to the convolutional decoder
to generate segmentation maps. A comparison of STATT with
alternative approaches that model either the spatial or temporal
information, or both (but not as effectively as STATT) is
available in [10].

To demonstrate the efficacy of this method in improving
the quality of CDL labels, we divided the grids into train,
validation and test set. To make sure we create a training set
that is balanced amongst classes and is also spread uniformly
across space, we adopt a gridwise count based data splitting
strategy which sorts grids based on number of crop pixels.
With this approach we created a training set of 210 grids,
validation set of 84 grids and test set of 73 grids. The color
coded final distribution of the sets along with raw labels can
be seen in the Fig. 2.
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Fig. 3: Argmax predictions vs Region Growing predictions on
certain patches in test area which demonstrate the advantage
of Region Growing over Argmax. (Arrows represent places of
improvement by Region growing over Argmax)

Following the approach as outlined in [10], STATT extracts
patches of size 32x32 pixels from the training grids. Using
this input patch of size 32x 32, we output labels for a patch of
size 16 16. For this task, we use three convolutional blocks in
our encoder each having two convolutional layers. Thus there
are six convolutional layers having 64,64,128,128,256,256
channels and filters of size 3x3. To downsample the output of
the convolutional blocks STATT uses max-pooling of size 2x2
after the first and second convolutional blocks. In the decoder,
STATT has two convolutional blocks each of which consistsof
two convolutional layers. The four convolutional layers of the
decoder have 128,128,64,64 channels respectively. To upsam-
ple the output we add transposed-convolutional layers before
the first and second convolutional block of the decoder having
128,64 channels respectively and kernel size of 2x2. Finally,
STATT has a fully-connected layer with input dimension of
64 and output dimension equal to the number of classes i.e.
28. The model was trained using the training dataset for 50
epochs and the validation performance was used as the model
selection criteria.

The output of the model are softmax probabilities over the
classes for each pixel thus having shape of (16,16,34). By
combining all the patches within a grid, we create probability
erids of shape (16,16,34). Usually for multi-class classification
the decision is made by predicting the class for which the
model gives the highest probability. We refer to it as the
argmaz prediction. In a multi-class classification setting,
confusion between classes can easily occur when dealing with
a large number of classes. Furthermore, class confusion also
happens at the geographical boundary of different classes (e.g.
fields with different crops or roads around field).

We use a region growing strategy to post-process the pixel-
wise probability outputs instead of directly taking argmazx
outputs. Specifically, for each class, the pixels that have
highest probability value greater than 0.9 are considered as
confident anchor pixels. Starting from these anchor pixels,
we include all the pixels in their neighborhood which have
at least 0.3 probability of belonging to the same class as
the anchor pixels. Since the region growing strategy produces
class-wise prediction maps, clashes between two or more class
at certain pixels are bound to happen, in which case we assign
unknown values to those pixels. We observe that majority of
such clashes occur near the boundaries which is expected due
to the reasons that were described above. As illustrated in
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Fig 3, this method is very effective in removing noise within
fields and also removing confusion at boundaries by replacing
them with “"unknown”. We store the STATT labels in arrays
of shape (1098,1098) and have the naming convention as
TILEID_YEAR_ROW_COL,_STATT.npy.

E. Final Dataset

In summary, our dataset covers the entire California Central
Valley Crop Belt using the 367 grids of cloud filtered multi-
spectral images (each in (1098,1098,10)), and we call these
image grids. For each image grid, we also provide both the
raw and preprocessed CDL grid as well as STATT grid of
size (1098,1098). STATT labels are provided for a total of
442,456,668 pixels (44,000 sq. km) covering 29 classes, of
which 249,946,750 pixels (25,000 sq. km) belong to one of the
21 crop classes and the remaining 192,509,918 pixels (19,000
sq. km) belong to other 8 classes including unknown.

The entire dataset including Image Grids, CDL grids, pre-
processed CDL grids and STATT grids for the acceptable grids
as well as the Image grids and CDL grids for the rest of the
entire region can be found in the link given below !.

V. EVALUATION

In this section we present the quantitative analysis of the
results of our approach on the test regions. We observe that out
of the total 57,795,199 pixels, STATT and CDL labels differ
in 9,785,767 pixels (16.93%). Focusing only on pixels that are
labeled as crop, disagreement drops to 6.97%. Table 1 shows
precision, recall, and Fl-scores for all classes while treating
pre-processed CDL labels as ground truth. We notice that F1-
score is usually high for classes that have high support (see
left half of Table I) and usually low for classes that have low
support (right half of Table I). As we discuss in the following,
STATT labels are generally more accurate than those provided
by CDL.

Fig. 4 shows a comparison of the segmentation maps of
STATT and the corresponding patch from the CDL layer. In all
four triplets, We notice that STATT generally performs much
better in detecting boundaries and removing noise. In the first
triplet of the first column, we can see how a noisy field is
replaced with a smooth prediction of fallow land. In the second
we can see how a fallow prediction by CDL is replaced with
cotton by STATT and it can be verified in the third image of
the triplet, an image in July, that the field cannot be fallow as
there is a crop present. In the first triplet of the second column,
one can observe removal of erroneous cotton speckles present
in the CDL map, and in the final triplet we can see smoothing
of multiple fields by the STATT map over the region.

Further, we analyze the pixels where our map does not
match with CDL. We have noticed errors in the CDL layer at
numerous locations throughout the crop belt which are mainly
of two types:

« incorrect labeling of complete (or large parts of) fields

Uhttps://drive.google.com/drive/folders/ I EnXXRHNoTyIbM-_
5p-P9pH4zH3xyTqBp?lusp=sharing
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Fig. 4: Segmentation map comparisons on some patches from
CDL and STATT in the test regions, Each triplet shown
depicts a situation where STATT produces better labels. For
description on each triplet please refer to Section V

Fig. 5: Visual Analysis of Grid TI0SGF_2018_5_4. One can
observe from the visual images that many fields in this region
are fallow throughout the year but CDL labels them as Winter
Wheat (such as the field next to the triangular Cotton (red)
field). However STATT does not make these mistakes and
correctly labels the region as Fallow land.

« spatially discontinuous label prediction (i.e., label of a
pixel differs from its surrounding pixels that all belong
to a different class)

In the next few paragraphs we systemically discuss and
analyze these cases on some of the fields within California
Crop belt.

A. Visual analysis of a sample of patches

The first way to compare our dataset and CDL is to visually
inspect images over time, check the growing time, rate of
greenness and harvest time to assign a label to the field, and
then check whether CDL or STATT is correct. Although this
method cannot be scaled to every field due to substantial
manual effort and expertise needed regarding crop growing
patterns, we can still use this approach to verify disagreement
between CDL and STATT where one predicts fallow and idle
land and the other predicts a crop. Since no crop is grown
year around in a fallow or idle land, it should be easy to
verify the correct prediction. We observed numerous cases in
the California Central Valley crop belt where CDL predicted
a crop and STATT predicted fallow land. An example of this
can be seen in Fig. 5. In this grid, We can observe numerous
fields as fallow throughout the year (such as the one one next
to the triangle shaped cotton field) but CDL labels them as
crop (the field next to the triangle cotton field is labelled as
winter wheat by CDL). Through this first method of visual
analysis, we were able to verify many cases of fallow vs crop
disagreement, in which the STATT prediction of fallow seems
appropriate.
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TABLE I: Precision, Recall, and F1-Score of STATT labels

in the test region with CDL as groundtruth. We also mention

support(in pixels), that is the count classwise of CDL labels used during evaluation (10000 pixels equals 1 sq.km).

STATT

CLASS Precision Recall Fl-score Support | CLASS Precision  Recall Fl-score Support
Fallow and Idle 0.6587 0.8069  0.7253 8448934 | Safflower 0.8965 0.5623  0.6911 682725
Almonds 0.9172 09107 09139 8336706 | Hay 0.3869 02360  0.2932 644262
Rice 0.9668 0.9941 0.9803 6920141 | Wetlands Combined | 0.7462 0.2604 0.386 396679
Grass Combined 0.7742 07109  0.7412 6579739 | Garlic 09214 09079 09146 332639
Walnut 0.9167 0.8050  0.8572 3469078 | Barren 0.7746 00735 0.1343 272560
Cotton 09730  0.9691 0.9710 3382440 | Sunflower 0.9586 0.8479  0.8999 261263
Urban 0.8265 0.8248  0.8257 3330554 | Onions 0.5718 07729  0.6573 260724
Grapes 0.7663 0.8052  0.8258 2855088 | Pomegranates 0.8164 04295  0.5628 219041
Pistachio 0.9065 0.8528  0.8788 2665781 | Olives 0.4636 0.6974 0.557 214675
Tomatoes 0.9018 0.9383 09197 2580987 | Forests Combined 0.0000  0.0000  0.0000 211352
Winter Wheat 0.8753 0.5944  0.7080 1927378 | Citrus 0.8559 0.8382  0.8469 173361
Alfalfa 0.7422 0.8708  0.8013 1576520 | Barley 0.9435 0.0886 0.162 172028
Water 09300 09843 09564 935492 Dry Beans 0.8227 0.7487  0.7839 126070
Comn 0.6819 0.8472  0.7557 716901 Cherries 0.6550 04440  0.5293 102081
OVERALL Precision Recall Fl-score Support | CROPS ONLY Precision  Recall Fl-score Support
MEAN 0.7732 0.6754  0.6885 57795199 | MEAN: 0.8067 07262 0.7386 37,619,880
Weighted MEAN 0.834 0.8307  0.8251 57795199 | Weighted MEAN 0.8882 0.8699  0.8731 37,619,889
ACCURACY: 0.8307 ACCURACY 0.9303

Fig. 6: Comparison of NDVI for some fields with disagreeemnt
between CDL labels and STATT labels. Each triplet denotes a
case where the labels produced by STATT are better than CDL,
as the series of the field (represented in Green) lies closer to
the series of the class denoted by STATT.

B. Visual analysis of a sample of NDVI time series

Here we resolve the disagreement between STATT and
CDL labels by analyzing the NDVI time series of the field
in question (i.e. a continuous region where STATT and CDL
differs). In each disagreement there are two classes in analysis,
the CDL prediction class and the STATT prediction class.
If the NDVI series of field lies closer to the characteristic
NDVI series of the STATT prediction class than the CDL
prediction class then we can say that the field is actually
the STATT prediction class and vice versa. Now the question
arises, how do we obtain this characteristic NDVI series of
different classes in our dataset? To get the characteristic NDVI
series we take the median (timestamp wise) of the NDVI series
for pixels agreeing with the class of interest in the grid where
the field of interest is located. What we mean by pixels of
agreement are those pixels where CDL and STATT agree, i.e
predict the same class at that pixel. we use only agreement
pixels within the grid of the field because we found that across
grids crops have different NDVI series due to local farmer

practices, weather conditions and cloud cover patterns.

We now plot the characteristic NDVI series for both the
CDL prediction class and the STATT prediction class on the
same graph. We then plot the median NDVI series timestamp
wise of all the pixels in the field of interest on the same graph
and check which characteristic NDVI series it lies closer to. If
the NDVI series of the field is closer to the characteristic series
of the class labeled by STATT compared to the characteristics
series of the class labeled by CDL, then we can say that STATT
label was correct, and vice versa. We found that in a vast
majority of cases, whenever there is a field of disagreement,
the NDVI series of the field lies closer to the STATT prediction
class signature than the CDL prediction class signature. Fig. 6
shows 8 triplets for some fields where we conducted this
method of analysis. The first image in the triplet is the CDL
prediction and the second image is the STATT prediction,
and in each of these images there is a red boundary denoting
the field of interest. One can observe that in all the triplets,
the predicted class within the field of interest (i.e the red
boundary) differs between the CDL image and the STATT
image. The third image is the NDVI plot of the three timeseries
described before, i.e the CDL prediction class characteristic
NDVI series (denoted by the plot in the color of the CDL
prediction class), the STATT prediction class characteristic
NDVI series (denoted by the plot in the color of the STATT
prediction class) and the NDVI series of the field of interest
(denoted by the signature in the green color). All examples in
Fig. 6 show that the green line lies closer to the STATT class
NDVI line thus showing superiotiy over CDL labels.

C. Comprehensive analysis of all pixels where STATT and
CDL disagree

The previous two methods prove to be very useful while
doing field analysis and using a combination of the two we can
show for each field who is correct. However, neither of these
methods give a global perspective nor do they quantify how
much better STATT’s predictions are when compared to those
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Fig. 7: Class wise Area under the curve plots. The x axis
represents the NMSE and the y axis represents the Score(-)
value for the corresponding NMSE from x axis. The red and
blue curves represent CDL and STATT, respectively. We also
mention F1-Score of that class in each plot.

of CDL’s predictions. To address this issue, we use a third
method of analysis in which we devise a function to measure
closeness of pixels to ground reality, and after plotting the
function, use area under the curve to establish which strategy,
i.e. CDL or STATT, is better.

After obtaining the map for STATT and CDL, we calculate
the characteristic NDVI series gridwise for each class using
the agreement pixels as described in the previous section. Now
we consider a characteristic series to be valid only if there are
at least T" pixels in agreement in the grid, and T is set to 100 in
this work. Now for each pixel of disagreement for each class
we calculate the Normalised Mean Square Error (NMSE) with
the characteristic NDVTI series and the NDVI series of the the
pixel of disagreement. For each strategy (CDL or STATT),
we first sort all the disagreement pixels according to their
NMSE. Then we compute Score(E) for each strategy, which
is defined to be the proportion of disagreement pixels with
NMSE less than a particular error E over all the disagreement
pixels, i.e., Score(), for a particular error (E) as follows:

# dizagreement pizels in strategy with NMSE less than E

Score(E) = [t}

Total No. of pizelz of disagreement in strategy
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where strategy represents either CDL or STATT.

The function Score represents the fraction of total disagree-
ments pixels whose NMSE lies below a set threshold error
denoted by E. The notion behind this function is that, the
closer the NMSEs of the disagreement pixels are to zero, the
faster Score rises as E rises. At the max error, the Score will be
1, as all NMSE:s lie below the threshold. Our hypothesis is that
the STATT disagreement pixels have lower errors and so Score
will rise faster for STATT when compared to CDL. As a result,
STATT will reach a higher Score faster and will thus have
more area under the plot of Score until the max error. A plot
of this function is constructed for each class with E starting
from 0 and ranging up til maximum NMSE error recorded for
that class, which we denote as F,,,,. which could come from
a CDL disagreement pixel or a STATT disagreement pixel We
then calculate Area under the curve as follows:

max

E
Areastrateqy = (/D Score(E) dE)/Emax (2)

We divide the area of each plot by FEn., to keep it
within the range (0,1).The plots of curve for each class can
be seen in Fig. 7, with Blue representing STATT and red
representing CDL. We can see that STATT has a higher area
when compared to CDL in almost all the classes. We also see
from the figure that in a lot of classes the blue line lies above
the red line throughout the plot. This experiment solidifies our
claim that STATT labels are closer to the ground reality than
when compared to the labels provided by CDL.

VI. CONCLUSION

In this paper we presented CalCROP21, a georeferenced
data set for a diverse array of crops grown in the Central Valley
of California. This dataset contains multi spectral Sentinel
imagery along with crop labels at 10m resolution for year 2018
that are derived using a novel spatial-temporal deep learning
method that makes use of noisy CDL labels available at 30m
resolution. Our extensive analysis of this dataset demonstrates
the superiority of our dataset over CDL. We have also released
our processing pipeline and associated datasets that can be
used by the community to generate crop labels for other years
and for creating similar data sets for other parts of US. We
anticipate this dataset will catalyze the innovation in machine
learning research on remote sensing data (e.g., classifying
multiple imbalanced classes and modeling heterogeneous data
over space), and also enable the use of this information
for studying crop distribution and its implications by the
agricultural community.
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