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Executive Summary

The neutrino sector o↵ers one of the most sensitive probes of new physics beyond the Standard Model
of Particle Physics (SM). The mechanism of neutrino mass generation is still unknown. The observed
suppression of neutrino masses hints at a large scale, conceivably of the order of the scale of a Grand
Unified Theory (GUT), a unique feature of neutrinos that is not shared by the charged fermions. The
origin of neutrino masses and mixing is part of the outstanding puzzle of fermion masses and mixings,
which is not explained in the SM. Flavor model building for both quark and lepton sectors is important
in order to gain a better understanding of the origin of the structure of mass hierarchy and flavor mixing,
which constitute the dominant fraction of the SM parameters.

Recent activities in neutrino flavor model building based on non–Abelian discrete flavor symmetries
and modular flavor symmetries have been shown to be a promising direction to explore. The emerging
models provide a framework that has a significantly reduced number of undetermined parameters in
the flavor sector. In addition, such framework a↵ords a novel origin of CP violation from group theory,
due to the intimate connection between physical CP transformation and group theoretical properties of
non–Abelian discrete groups.

Model building based on non–Abelian discrete flavor symmetries and their modular variants enables
the particle physics community to interpret the current and anticipated upcoming data from neutrino
experiments. Non–Abelian discrete flavor symmetries and their modular variants can result from com-
pactification of a higher–dimensional theory. Pursuit of flavor model building based on such frameworks
thus also provides the connection to possible UV completions, in particular to string theory. We em-
phasize the importance of constructing models in which the uncertainties of theoretical predictions are
smaller than, or at most compatible with, the error bars of measurements in neutrino experiments.
While there exist proof–of–principle versions of bottom–up models in which the theoretical uncertain-
ties are under control, it is remarkable that the key ingredients of such constructions were discovered
first in top–down model building. We outline how a successful unification of bottom–up and top–down
ideas and techniques may guide us towards a new era of precision flavor model building in which future
experimental results can give us crucial insights in the UV completion of the SM.
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1 Introduction

One of the most pressing questions in modern particle physics is what underlies the Standard Model of
Particle Physics (SM). While we continuously expand our understanding of how a consistent theory of
quantum gravity may look like, it is far less clear how the SM may fit into such a scheme. The lack of
direct evidence of new physics at current collider experiments appears to prevent us from inferring what
a ultraviolet (UV) completion of the SM may look like. On the other hand, the discovery of neutrino
oscillations has provided the very first compelling piece of evidence for new physics beyond the SM. While
we have a rather good comprehension of the structure of the SM gauge sector, a fundamental understanding
of the structure of the flavor sector, which possesses the dominant fraction of the SM parameters, is still
lacking. At present, the mechanism for neutrino mass generation is still unknown. Given that neutrinos
are the only neutral fermions in the SM, there exist many possible new physics scenarios that can yield
masses for either Dirac or Majorana neutrinos. Given the expected wealth of experimental data obtained
from current and future neutrino experiments, it is imperative to construct robust flavor models, capable of
providing nontrivial testable predictions, in order to understand and interpret the data, while at the same
time allowing us to relate these predictions to properties of the physics that may complete the SM in the
UV.

Utilizing past and existing e↵orts to understand the origin of flavor, the purpose of this White Paper is to
demonstrate that some of the most compelling bottom–up models have a clear connection to candidates for a
consistent description of quantum gravity, as they possess common ingredients or employ similar approaches.
These common features thus serve as examples of phenomenological applications of formal tools developed
from top–down constructions aiming to UV complete the SM. On the other hand, e↵orts on bottom–up
model building provide a way towards identifying those top–down constructions that are realized in nature.

More specifically, it has been known for more than 30 years that the Yukawa couplings in certain types of
string compactifications are modular forms [1, 2] (cf. the discussion around Equation (19) of [3]). However,
only much more recently explicit neutrino mass models utilizing modular forms have been put forward [4].
In the bottom–up approach, motivated by the observed large neutrino mixing, there have been many flavor
models being proposed, utilizing non–Abelian discrete groups [5], which we review in Section 4. Despite
major e↵orts over many years, it is probably fair to say that this approach has not yet provided us with a
complete and compelling picture. A big obstacle in making this scheme fully successful is the fact that these
symmetries need to be broken, and breaking the symmetries typically lead to ad hoc choices and additional
parameters which limit the predictive power of the scheme. As we will discuss in more detail in Section 5,
Feruglio’s approach [4] avoids these complications largely.

This paper is organized as follows. In Section 2 we briefly review the current status of our understanding
of the lepton sector, and the expected outcomes of current and future neutrino experiments. In Section 3
we discuss various mechanisms that have been proposed to explain neutrino mass generation. Some aspects
of discrete symmetries in flavor physics are reviewed in Section 4. Their modular cousins are discussed in
Section 5. Section 6 contains a discussion and outlook.

2 What do we know about the lepton sector?

2.1 What do we currently know?

About half a century ago, the possibility of massive neutrinos was theoretically introduced, leading to the
notion of neutrino oscillations, described by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing ma-
trix [6–8]. Super–Kamiokande and the Sudbury Neutrino Observatory gave a direct evidence of atmospheric
neutrino oscillations [9] and solar neutrino oscillations [10], respectively, providing the very first evidence of
physics beyond the SM. In a little more than two decades, our community went from seeing the first evidence
of nonvanishing neutrino mass to measuring the three mixing angles and two squared mass di↵erences with
good precision. In addition, with the wealth of experimental data available, we have now some hint for a
nonvanishing Dirac CP phase �CP . The results from the global fit of the mixing angles and mass splittings
are summarized in Table 2.1.
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While the measurements of several neutrino oscillation parameters have entered a precision era, there
are still many outstanding puzzles in regards to neutrino properties. First of all, oscillation experiments
can only inform us of the squared mass di↵erences instead of the absolute masses. Current experimental
data is still consistent with the neutrino mass spectrum either with the two lightest neutrinos having a
smaller mass di↵erence, which is defined as the normal ordering (NO), or with the two lightest neutrinos
having a larger mass di↵erence, which is defined as the inverted ordering (IO). For both NO and IO,
�m

2
21 = (7.42+0.21

�0.20)⇥ 10�5 eV2, but the second squared mass di↵erence depends on the ordering. For NO,

�m
2
31 = (2.51±0.027)⇥10�3 eV2, and for IO, �m

2
32 = (�2.49+0.026

�0.028)⇥10�3 eV2 [11,12]. On the other hand,
there still exists a tension between the best fit values of the solar parameters ✓12 and �m

2
21 in KamLAND

and the solar neutrino analysis, even though it has been reduced from 2.2� to 1.1� [11]. For the atmospheric
parameters, ✓23 and �m

2
31, the IO fit is more consistent between T2K and NOvA than the NO fit [11]. In

addition, for the Dirac CP phase �CP , T2K gives the current best fit value, 195� [13], which is closer to the
CP conserving value, 180� (0.6�), than it was in the previous results, 215� [14].

Di↵erent types of experiments have been built to further reduce the uncertainties in the measurements.
It is conceivable that there might be tensions among di↵erent experiments. These potential tensions thus
could be a pathway to unravel some new physics [15]. Interesting neutrino experiments that might unveil new
directions in physics include the scattering of high energy neutrinos against di↵erent targets. For example,
⌫e � e scattering or coherent elastic ⌫�nucleus scattering (CE⌫NS) have successfully refined the limits of
current measurements and tested some proposed new physics scenarios [16].

2.2 What do we expect to know?

Current and future experiments will allow us to pin down the leptonic mixing parameters with a precision
that is comparable to, or even better than, the one in the quark sector (see Figure 2.1). In the near future,
the currently running experiments T2K and NOvA will not significantly further improve the precision on
�CP . However, there are long–baseline neutrino experiments under construction designed to investigate
the leptonic CP violation. We are expecting to see CP violation at 3� significance for 75% of the �CP
allowed range in Hyper–Kamiokande’s 10 years of operation [17]. Also, DUNE is expected to get sensitivity
at 3� significance for more than 75% in 14 years of operation [18]. Besides the measurements in beam
experiments, �CP is also expected to be measured by JUNO, which is also under construction. They plan
to use the combination of JUNO detector and a superconductive cyclotron to get 3� significance for 22% of
the �CP allowed range [19].

Depending on which mass ordering Nature chooses, the physics predicted from them could be di↵erent.
For instance, the neutrinoless double beta decay depends on a mass term hm��i which is related to the
lightest mass eigenstate. If Nature follows NO, then the lightest mass will be m1, which will urge the
experimental resolution to be better than 0.004 eV in order to measure the neutrinoless double beta decay.
However, our current experiments cannot achieve this precision yet [21].

On the other hand, present and future experiments, including Super–Kamiokande, NOvA, DUNE, JUNO,
etc., are working on determining the mass ordering. For instance, Super–Kamiokande is using atmospheric
neutrinos by comparing �m

2
32 electron and muon neutrino disappearance channels. If NO is favored, then

the squared mass di↵erence in electron neutrino disappearance will be larger than that in muon neutrino
disappearance, and vice versa for IO [22].

There is also physics beyond the SM that we are expecting to learn soon. This includes higher–order
interference [23], and neutrino decoherence [24]. There is an advantage of probing the Sorkin’s triple path
interference with neutrino oscillation in JUNO. The accuracy of probing for triple–path interference in JUNO
with neutrinos is comparable to that of the electromagnetic probes.

2.3 What do we want to know?

At the same time, we currently do not even know which operators should be included in the Lagrange density
of the SM in order to provide the correct description of the mechanism that generates neutrino masses. That
is, we do not know whether neutrinos are Dirac or Majorana particles, nor do we know what the scale of
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Normal Ordering (best fit) Inverted Ordering (��2
= 2.6)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.304+0.013

�0.012 0.269 ! 0.343 0.304+0.012
�0.012 0.269 ! 0.343

✓12/
�

33.44+0.77
�0.74 31.27 ! 35.86 33.45+0.77

�0.74 31.27 ! 35.87

sin
2 ✓23 0.573+0.018

�0.023 0.405 ! 0.620 0.578+0.017
�0.021 0.410 ! 0.623

✓23/
�

49.2+1.0
�1.3 39.5 ! 52.0 49.5+1.0

�1.2 39.8 ! 52.1

sin
2 ✓13 0.02220+0.00068

�0.00062 0.02034 ! 0.02430 0.02238+0.00064
�0.00062 0.02053 ! 0.02434

✓13/
�

8.57+0.13
�0.12 8.20 ! 8.97 8.60+0.12

�0.12 8.24 ! 8.98

�CP/
�

194
+52
�25 105 ! 405 287

+27
�32 192 ! 361

�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.515+0.028

�0.028 +2.431 ! +2.599 �2.498+0.028
�0.029 �2.584 ! �2.413
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Normal Ordering (best fit) Inverted Ordering (��2
= 7.0)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.304+0.012

�0.012 0.269 ! 0.343 0.304+0.013
�0.012 0.269 ! 0.343

✓12/
�

33.45+0.77
�0.75 31.27 ! 35.87 33.45+0.78

�0.75 31.27 ! 35.87

sin
2 ✓23 0.450+0.019

�0.016 0.408 ! 0.603 0.570+0.016
�0.022 0.410 ! 0.613

✓23/
�

42.1+1.1
�0.9 39.7 ! 50.9 49.0+0.9

�1.3 39.8 ! 51.6

sin
2 ✓13 0.02246+0.00062

�0.00062 0.02060 ! 0.02435 0.02241+0.00074
�0.00062 0.02055 ! 0.02457

✓13/
�

8.62+0.12
�0.12 8.25 ! 8.98 8.61+0.14

�0.12 8.24 ! 9.02

�CP/
�

230
+36
�25 144 ! 350 278

+22
�30 194 ! 345

�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.510+0.027

�0.027 +2.430 ! +2.593 �2.490+0.026
�0.028 �2.574 ! �2.410

Table 2.1: Current best–fit values of the leptonic mixing parameters. Taken from [11,12].

neutrino mass generation is. In the case of Majorana neutrinos, there are two more parameters, the so–called
Majorana phases, about which we do not have any experimental information.

According to the review paper [25], 0⌫�� decay experiments done by KamLAND–Zen and cosmological
observations done by Planck space observatory set a limit to the absolute neutrino mass. In the next gener-
ation experiments, the lower scale 0⌫�� experiments, the ECHo experiments, tritium � decay experiments,
and the Cosmic Neutrino Background (C⌫B) experiments will be likely to determine the absolute neutrino
mass scale [26–29]. They can reach the sensitivity in the sub–eV region, and in particular, the tritium �

decay can reach ⇠ 0.04 eV. The PTOLEMY project is proposed to develop a C⌫B detector to search for
cosmic neutrinos with a sensitivity dependent on the absolute neutrino mass scale [28].

The anomalies arising in various experiments, e.g., LSND, T2K and NOvA, also hint at the possible
existence of new physics. There are several popular phenomenological frameworks that go beyond the
standard framework with three neutrino flavors, including scenarios with non–standard interactions (NSI),
with dark or sterile neutrinos, and with additional light scalars or light vectors (such as light Z

0 or dark
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Figure 2.1: Current and expected precision of measurements for leptonic parameters in three–neutrino flavor frame-
work [20]. Courtesy of Shirley Li.

photons). NSI assume that neutrinos can be coupled to the charged leptons of di↵erent flavors. The sterile
neutrino framework, on the other hand, introduce new neutrino species that are not coupled through the
weak interactions. Both the NSI and sterile neutrinos scenarios are often utilized as a solution to explain
the experimental anomalies [30]. Neutrino scattering experiments such as the Dresden–II reactor and the
COHERENT experiments can probe new physics scenarios [31], such as the dark photon, light scalar, or
light vector framework.

Having reviewed the current experimental status and the expected sensitivity of future experiments, we
will next turn the theoretical description of neutrino mass terms in Section 3.

3 Neutrino mass generation

As we have seen in Section 2, neutrino masses are quite di↵erent from the masses of the other fermions in
the SM. In particular,

1. neutrinos are substantially lighter than even the lightest charged fermions, and

2. leptonic mixing angles are generally much larger than their counterparts in the quark sector.

As mentioned previously, we do not know at present what operators in the Lagrange density are responsible
for neutrino mass generation. Given that neutrinos are the only neutral fermions in the SM, there are more
ways for neutrinos to acquire masses than for charged leptons.

In the following we will briefly summarize some aspects of various mechanisms that have been proposed
for neutrino mass generation. Depending on whether neutrinos are Majorana or Dirac fermions, these
mass generation mechanisms based on a variety of new physics frameworks di↵er in the new particles and
symmetries introduced, the scales at which the mechanisms take place, and thus the ways neutrino masses
are suppressed. In this Section we focus on the question why neutrino masses are suppressed, leaving the
flavor aspects mainly to Sections 4 and 5.
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3.1 Mass generation for neutrinos as Majorana fermions

A particularly compelling scheme to address the smallness of neutrino masses is the seesaw mechanism
[32–40]. In its simplest form [32–35, 37, 38], right–handed neutrinos are introduced. The existence of such
right–handed neutrinos is motivated by the scheme of Grand Unified Theorys (GUTs), in particular the
SO(10) model [41], where right–handed neutrinos are unavoidably predicted. Integrating them out leads to
the Weinberg operator

L =
1

4
gf `

C,gh `fh+ h.c. , (3.1)

where `
f denote the left–handed lepton doublets of the SM, h the Higgs doublet, and g and f are the

family indices. (3.1) is the unique dimension–five operator consistent with the symmetries of the SM. In the
canonical seesaw mechanism, gf scales like the inverse of the masses of the right–handed neutrinos M , and
the smallness of the active neutrino mass eigenvalues m⌫ is explained via the famous seesaw formula

m⌫ '
(mDirac

⌫ )2

M
. (3.2)

Here, the Dirac neutrino mass, mDirac
⌫ , is given by the product of the Dirac neutrino Yukawa matrix Y⌫ and

the Higgs vacuum expectation value (VEV). Of course, (3.2) is to be understood as a shorthand for a matrix
equation. There are variations of the canonical seesaw, known as type II [36–38] and type III [39, 40], in
which heavy SU(2)L triplets get exchanged. The di↵erent variants are depicted in Figure 3.1.

N

`

h

`

h

(a) Type I.

�

`

h

`

h

(b) Type II.

⌃

`

h

`

h

(c) Type III.

Figure 3.1: Seesaw diagrams. The canonical seesaw mechanism is also referred to as type I. Here N is a right–handed
neutrino whereas � and ⌃ are scalar and fermionic SU(2)L triplets, respectively.

3.2 Radiative neutrino masses

The underlying idea of the so–called radiative neutrino mass models (see e.g. [42] for a review) is that
neutrino masses, which are absent at the tree level, may get induced via loops, thus addressing the smallness
of neutrino masses. This option was pioneered by Zee [43].

⌘ ⌘

h h

N N

` `

Figure 3.2: One–loop diagram inducing neu-
trino masses. Recreated from [42, Section 5.3].

Here we will use the so–called scotogenic model [44] to review
some of the relevant facts. A nice overview for this model can be
found in [42, Section 5.3]. This model contains the SM fermions,
three singlet fermions Nf as well as an extra doublet ⌘ which has
the same SM quantum numbers as the SM Higgs doublet h but
is distinguished by an extra Z2 symmetry. In more detail, both
the N

f as well as ⌘ are odd under this Z2 whereas the usual SM
fields are even. This Z2 forbids Yukawa couplings between `, h
and N but allows for couplings between `, ⌘ and N . However,
there are interactions between h and ⌘ via a scalar potential, and
these interactions give rise to a loop diagram (cf. Figure 3.2) which
induces an e↵ective Weinberg operator, and thus neutrino masses.

Note that this diagram requires a coupling Re(h†
⌘)2. As explained in [42, Section 5.3], this term breaks

a “generalized lepton number” symmetry that the Lagrange density would otherwise have, which forbids
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(Majorana) neutrino masses. A point that will be relevant for our later discussion in Sections 4 and 5 is that
this model does, in the presence of the above–mentioned quartic coupling, not have a symmetry that forbids
the Weinberg operator. So one could a priori just add it to the model. However, all the terms required for
the model to work are renormalizable. Therefore, even if a tree–level Weinberg operator exists, for a large
enough cut–o↵ scale ⇤ its contribution to the light neutrino masses can be suppressed against the loop term.
In this sense, the neutrino masses are generated by loops even though other contributions are not completely
forbidden.

Thus, this renormalizable model can provide us with robust relations between the model parameters and
neutrino data. Later, in Sections 4 and 5 we will see that extra contributions cannot always be su�ciently
suppressed in constructions which rely on higher–dimensional operators without explicit UV completion.

3.3 Dirac neutrino masses

The charged SM fermions get their masses from Dirac mass terms, which combine two di↵erent Weyl spinors.
This option is also valid for neutrinos, for which these mass terms then originate from the Yukawa terms

L Dirac
⌫ = Y

gf
⌫ `fhN

g + h.c. , (3.3)

where Ng denotes the right–handed neutrinos. While small fermion masses are said to be technically natural,
the required Yukawa couplings |Y gf

⌫ | . 10�12 beg for an explanation. Rather compelling mechanisms have
been put forward in the past. Many of these mechanisms rely on ingredients in new physics scenarios that aim
at solving the gauge hierarchy problem. These include supersymmetry [45], radiative mechanisms [46, 47],
warped extra dimensions [48,49], and more recently the clockwork mechanism [50–52]. Dirac neutrino masses
may also just arise at higher orders [53]. While these possibilities can be argued to deserve more attention,
in the following, we restrict our focus on seesaw scenarios for Majorana neutrinos.

3.4 Neutrino masses in explicit string models

A long–standing question is what string theory says about neutrino masses [54]. The answer is model–
dependent. It has been proposed that the smallness of neutrino masses may be due to their origin from
instantons [55]. However, an explicit SM–like model featuring this scenario has yet to be found. On the
other hand, the heterotic string provides us with an abundance of explicit SM–like models with seesaw–
suppressed neutrino masses [56]. Importantly, in string models the spectrum is fixed, and one can simply
count the number of right–handed neutrinos. It turns out that, unlike in bottom–up models, their number
is of the order N⌫ = O(10 . . . 100). This means that the Weinberg operator (3.1) receives contributions from
many neutrinos,

`

h

h

`

 =
N⌫X

f=1
`

h

h

`

N
f

+

`

h

h

`

N
f . (3.4)

This e↵ectively lowers the seesaw scale, i.e. even if the individual right–handed neutrino mass eigenvalues
are of the order of the GUT scale O(1016)GeV, realistic active neutrino masses can emerge. It has further
been found in [57] that the contribution of many neutrinos can mimic the anarchy scenario [58–60], in which
large mixing angles are statistically favored.

On the other hand, in string models one cannot only count the right–handed neutrinos, one can, at least in
principle, compute the couplings. These couplings are often constrained by “traditional” flavor symmetries,
which we will study in Section 4. Moreover, additional constraints arise from modular symmetries, which
are intrinsic to string theory; we will discuss these symmetries, their origin and their role in phenomenology
in Section 5. That is, in what follows, we will concentrate on an alternate, i.e. non–anarchic, approach to
understand the origin of flavor. Specifically, we will discuss how the observed large mixing angles may arise
from the dynamics of certain underlying fundamental symmetries.
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4 Traditional flavor symmetries

A curious feature of the SM is the repetition of families, i.e. the fact that SM matter appears in three copies
of particles transforming in identical representations under the SM gauge group,

GSM = SU(3)C ⇥ SU(2)L ⇥U(1)Y . (4.1)

This repetition may be the consequence of a so–called horizontal or flavor symmetry. Continuous flavor
symmetries often su↵er from anomalies and/or unrealistic Goldstone modes, so a lot of attention has been
given to non–Abelian finite groups [5] (see e.g. [61] for a review). These symmetries are less challenged by
Goldstone modes.1 Imposing such flavor symmetries can help to reduce number of free parameters, and
lead to nontrivial predictions. It is not the purpose of this paper to survey all flavor models (for reviews
and references see e.g. [61, 70]). Rather, in what follows we will illustrate some of the main prospects and
challenges using a concrete example.

4.1 Example: A4

4.1.1 Explicit model

One particularly popular example of a finite flavor symmetry for the lepton sector of the SM is the alternating
group of order 4, A4 [71–74]. An explicit A4–based example assumes low–energy supersymmetry (SUSY),
and the relevant superpotential terms are given by [74]

W⌫ =
�1

⇤⇤⌫
{[(LHu)⌦ (LHu)]3 ⌦ �⌫}1 +

�2

⇤⇤⌫
[(LHu)⌦ (LHu)]1 ⇠ , (4.2a)

We =
he

⇤
(�e ⌦ L)1 Hd eR +

hµ

⇤
(�e ⌦ L)10 Hd µR +

h⌧

⇤
(�e ⌦ L)100 Hd ⌧R . (4.2b)

Here, L, eR, µR, ⌧R, Hu, Hd, respectively, denote the lepton doublets, charged leptons, u–type Higgs, d–
type Higgs of the (minimal) supersymmetric SM. The lepton doublets, L = (Le, Lµ, L⌧ )T , are assumed
to transform as an A4 3–plet. The right–handed charged lepton fields, µR and ⌧R transform in the one–
dimensional representations 100 and 10 of A4, respectively. The Higgs doublets and eR are trivial A4 singlets.
The fields �⌫ , �e and ⇠ are so–called flavons, and assumed to transform as 3, 3 and 1, respectively. ⇤
denotes the cut–o↵ and ⇤⌫ the seesaw scale. The subscripts 1, 3 and so on denote contractions to a 1–plet,
3–plet, etc.

GF = A4

Ge = Z2 G⌫ = Z3

h�ei h�⌫i

Figure 4.1: Approximate partial breaking of A4.

The flavons are assumed to attain certain VEVs,

h�⌫i = (v, v, v) , (4.3a)

h�ei = (v0, 0, 0) , (4.3b)

h⇠i = w , (4.3c)

where v, v0 and w are some dimensionful parameters that are
to be explained through a suitable mechanism that aligns the
VEVs, a point that we will expand on below in Section 4.1.3.
To first approximations, these VEVs break A4 down to Ge =
Z2 in the charged lepton sector and to G⌫ = Z3 in the neutrino
sector, cf. Figure 4.1. These approximate symmetries fix the
neutrino superpotential to be given by [74]

W⌫ = (Le Hu, Lµ Hu, L⌧ Hu)

0

B@
a+ 2d �d �d

�d 2d a� d

�d a� d 2d

1

CA

0

B@
Le Hu

Lµ Hu

L⌧ Hu

1

CA (4.4)

1The anomalies of finite groups can readily be determined [62–67], yet their implications have not been worked in great detail
so far in the context of (bottom–up) model building. Discrete matching [68] of these anomalies as well as outer automorphism
anomalies [69] may provide us with crucial insights on how bottom–up and top–down models are related.

7



up to corrections that we will discuss below in Section 4.1.2. The entries of the mass matrix in Equation (4.4)
depend, at leading order, only on the parameters a = 2�1 �2

w
⇤

1
⇤⌫

and d = �1
3

v
⇤

1
⇤⌫

. At the same time, the
charged lepton superpotential leads to diagonal Yukawa couplings,

We = (Le, Lµ, L⌧ )

0

B@
ye 0 0

0 yµ 0

0 0 y⌧

1

CA

0

B@
eR

µR

⌧R

1

CAHd , (4.5)

where ye, µ, ⌧ = he, µ, ⌧
v0

⇤ . As a result, the mixing is of the so–called tribimaximal form [75], i.e. the PMNS [8]
matrix is given by

U
TBM
PMNS =

0

BB@

q
2
3

1p
3

0

�
1p
6

1p
3

�
1p
2

�
1p
6

1p
3

1p
2

1

CCA . (4.6)

This corresponds to the leptonic mixing angles

✓12 ' 35� , ✓13 = 0 and ✓23 = 45� . (4.7)

Even though these very angles are no longer consistent with data, they could be regarded as a step towards
a realistic mixing model.

The main point to make in the context of this model is that non–Abelian flavor symmetries may provide
us with predictions of the mixing angles that are, to some approximation, independent of the continuous
parameters of the model.

However, given the shear number of models which appear to describe observation one may wonder how
robust the predictions really are. In other words, if many di↵erent symmetries are consistent with the data
we have, to which extent do these symmetries really predict the observed pattern of masses and mixings? In
what follows we shall review some of the limitations shared by many models based on finite groups.

4.1.2 Corrections and limitations

As we have seen in Section 2, specifically Table 2.1 and Figure 2.1, our experimental community has de-
termined the neutrino parameters with an impressive accuracy, which will even be dramatically improved
further in the near future. It is, therefore, natural to ask what the error bars in the predictions from the
models are. It turns out that often the error bars do not get specified. However, in the (bottom–up) models
there are often substantial uncertainties. It is rather easy to see why this is. These models are usually e↵ec-
tive field theorys (EFTs), i.e. defined by the symmetries and particle content, and endowed with a cut–o↵,
⇤, as is the case in our example in (4.2). The symmetries get spontaneously broken by some flavon VEVs,
and one finds rather modest hierarchies in explicit flavor models, often the ratio of a typical flavon VEV over
the cut–o↵ scale is of the order of the Cabbibo angle, " := h�i/⇤ ⇠ 0.2. The best one can do in an EFT
framework is to perform an expansion in ", and these qualitative arguments suggest that there are order
20% corrections to predictions.

However, qualitative arguments do not always lead to the correct conclusions, so one may wonder if
these corrections arise, and if so, how. It turns out that in supersymmetric theories higher order terms in
the superpotential can often be forbidden by some carefully crafted R and non–R symmetries. Likewise,
quantum corrections from the renormalization group equations (RGEs) have been worked out analytically
(cf. e.g. [76]) and, while there is still room for relevant corrections in the minimal supersymmetric standard
model (MSSM) with large Higgs VEV ratio tan�, typically their impact is limited (see e.g. [77] for a
comprehensive analysis).

On the other hand, it is known that, in many models, corrections to the kinetic terms have a significant
impact on the predicted values of observables [78,79]. The main problem is that, in a pure bottom–up EFT
approach, one cannot forbid higher–order terms in the Kähler potential that couple the flavons to the matter
fields, nor the analogous terms in non–supersymmetric models. Those terms can induce the O(") corrections
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Figure 4.2: Change of ✓13 due to the Kähler correction coming from the term (L⌦ �⌫)
†
3a

⌦ (L⌦ �⌫)3s + h.c.. Here
m1 is the smallest neutrino mass in NO, the coe�cient of this term has been taken to be 1, and the ratio of VEV
over cuto↵ is 0.2. The continuous line shows the result when using a linear approximation, while the dashed line
shows the result of a numerical computation. See Equation (3.8) and Figure 2 of [80]. Similar plots are obtained for
the other mixing angles.

which one expects to find from the above qualitative argument. Specifically, for the A4 model it has been
shown that the Kähler corrections are often far larger than the experimental uncertainties in the mixing
parameters [80,81]. In particular, there are additional free, i.e. not predicted by the model, parameters that
allow one to adjust the predictions at will. We show an example in Figure 4.2. As one can see, even under
rather conservative assumptions the corrections to the prediction exceed the experimental error bars by far.
In particular, including these terms, as one should, can render the A4 model from completely ruled out to
perfectly consistent. Likewise, these terms, which cannot be controlled in the bottom–up approach, can also
change consistent models to ruled–out constructions.

4.1.3 VEV alignment

Another subtle aspect of the model is the VEV alignment. That is, rather than postulating the VEVs (4.3),
there should be a dynamical reason why they assume these values. It turns out that one can sometimes
construct models in which the desired VEVs emerge by minimizing a flavon potential, and this is more
straightforward if those VEVs respect certain residual symmetries, as is the case in the A4 model [74,82–85].
However, in practice, this often comes at the expense of introducing ad hoc symmetries and extra fields.
Some of these extra fields are frequently referred to as “driving fields” but they really should be regarded as
Lagrange multipliers used to impose additional conditions on the VEVs that sometimes appear to be ad hoc,
i.e. have no other purpose than creating the desired VEVs. Furthermore, these driving fields can introduce
more parameters to the theory which, in turn, reduce the predictive power of the theory. Adding these
driving fields introduces new “free” parameters, which may or may not have a direct impact on the relevant
predictions. Note also that the corrections described in Section 4.1.2 can also a↵ect the VEV alignment. It
has also been shown in [86] that one may also achieve VEV alignment by imposing boundary conditions of
scalar fields in extra dimensions.

4.2 CP violation from finite groups

Let us briefly comment on another curious property of finite groups. It turns out that finite groups may,
unlike continuous (or Lie) groups, clash with CP [87, 88]. This means that some groups do not comply
with a physical CP transformation. Notice that there is sometimes some confusion in the literature. CP

transformations can be generalized [89, 90]. However, some of the transformations that have been dubbed
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“generalized CP transformations” do not warrant CP conservation, and may be more appropriately be
referred to as CP–like transformations [88, 91]. On the other hand, some groups do not admit proper CP

transformations [88], and thus clash with CP. It turns out that these CP–violating groups are not at all
exotic, for instance, all odd–order finite groups are of this type. Yet there are also even order groups of this
type, such as �(54), which is the traditional flavor symmetry [92] of some of the earliest string models [93],
where CP violation is tied to the presence of winding modes [94], i.e. the very modes that are instrumental
for the UV completion of the model. This leaves us with the remarkable picture that flavor symmetries can
very well be the reason why CP is violated, which also fits nicely to the observation that all of CP violation
in Nature found so far resides in the flavor sector. One may thus hope to obtain new solutions to the strong
CP problem [95]. However, so far a concrete realization of this idea has been hindered by the limitations
discussed in Section 4.1.2. Yet the new ideas which we shall review in Section 5 may provide us with the
mileage required to construct a concrete model.

4.3 Origin of flavor symmetries

While one can obviously impose flavor symmetries in a bottom–up approach, one may wonder if they have a
top–down motivation. The answer to this question is a�rmative. It has been shown that such symmetries can
emerge in various string models, such as heterotic orbifolds [92], intersecting D–branes [96] and F–theory [97].

4.4 Where to go from here?

As we have seen, non–Abelian discrete flavor symmetries may motivate the repetition of families, and provide
us with a interpretation of the observed mixing parameters. However, as discussed above, there are also
limitations. One major obstacle is VEV alignment. As we shall see in the following section, modular flavor
symmetries evade some of the complications, and have an arguably more direct connection to UV completions
of the SM.

5 Modular flavor symmetries

A few years ago, Feruglio put forward a rather minimal and very successful model [4] based on a modular
version of the A4 discussed in Section 4.1. This model has received significant attention (cf. e.g. [77,98–112])
because it largely avoids the complications of VEV alignment, and is, at some level, able to make a large
number of nontrivial predictions. This type of models use the so–called modular flavor symmetries, which
we shall review in what follows.

5.1 Modular transformations

Let us first recall what modular transformations are. They can be thought of as transformations that map a
given torus on an equivalent torus. A 2–torus T2 emerges as the quotient C/Z2. That is, two points in the
complex plane are identified if they di↵er by a lattice vector n1 e1 + n2 e2 with the e↵ 2 C denoting linearly
independent basis vectors and the n↵ 2 Z for ↵ 2 {1, 2}. However, one can change the basis vectors without
changing the lattice. The allowed transformations are (cf. e.g. [113])

 
e2

e1

!
�

7��!

 
e
0
2

e
0
1

!
=

 
a b

c d

! 
e2

e1

!
=: �

 
e2

e1

!
. (5.1)

Here, � is a SL(2,Z) matrix, i.e.

a, b, c, d 2 Z and a d� b c = 1 . (5.2)

As is well known, the shape of a given torus is parametrized by the so–called half period ratio ⌧ := e2/e1.
Without loss of generality one can demand that Im ⌧ > 0. Furthermore, under (5.1) ⌧ undergoes the modular
transformations

⌧
�

7��!
a ⌧ + b

c ⌧ + d
. (5.3)
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5.2 Modular forms

Holomorphic functions of ⌧ complying with (5.3) are known to be rather constrained. We will be specifically
interested in so–called modular forms, which transform under � (cf. Equation (5.3)) as

f(⌧)
�

7��! f
�
�(⌧)

�
= f

✓
a ⌧ + b

c ⌧ + d

◆
= (c ⌧ + d)k f(⌧) . (5.4)

Here, k is the so–called modular weight, which is sometimes taken to be an integer, but in top–down models
often happens to be a rational number.2 In order to understand how this story is related to finite groups,
the perhaps most direct way is to consider the theory of vector–valued modular forms [114]. The latter
transform under (5.3) as

Y (⌧)
�

7��! Y
�
�(⌧)

�
= Y

✓
a ⌧ + b

c ⌧ + d

◆
= (c ⌧ + d)k ⇢(�)Y (⌧) . (5.5)

Here, Y (⌧) =
�
Y1(⌧), . . . , Yd(⌧)

�
is a d–plet, and ⇢(�) is a representation matrix of a finite modular group that

arises from the quotient of SL(2,Z) (or one of its multiple covers) divided by any of its normal subgroups.

5.3 Modular flavor symmetries in the bottom-up approach

In order to see how the modular flavor symmetries allow us to avoid the subtleties of VEV alignment to
large degree, let us review some aspects of the Feruglio model [4]. Rather than a “traditional” A4 as in
Section 4.1, this model is based on a “modular” A4. This allows us to replace the �⌫ flavon by a triplet of
known functions of ⌧ ,

�⌫ =

0

B@
(�⌫)1
(�⌫)2
(�⌫)3

1

CA �!

0

B@
Y1(⌧)

Y2(⌧)

Y3(⌧)

1

CA . (5.6)

That it, the crucial feature pointed out in [4] is that the three complex components of the flavon �⌫ can be
replaced by three functions Yi(⌧), which turn out to be modular forms building a triplet and transforming
according to Equation (5.5), where ⇢(�) is the triplet representation of the finite modular symmetry A4

⇠= �3.
Importantly, these functions Yi(⌧) can be explicitly constructed. Consequently, rather than aligning multiple
VEVs comprising 6 real degrees of freedom, one now faces the much more manageable challenge of fixing
⌧ , which has two real degrees of freedom. As is well known for quite some time, for largish Im ⌧ these
couplings are exponentially suppressed [115–117], which is why they appear at first sight more suitable to
accommodate the Yukawa couplings of the quarks and charged leptons. However, Feruglio’s fit [4] wants ⌧

to be close to the so–called self–dual point ⌧ = i. Fixing ⌧ is part of what is called moduli stabilization in
string phenomenology, see e.g. [118, 119] for early references on this topic. Remarkably, in these examples
⌧ gets fixed at or close to the self–dual point, i.e. where neutrino data wants it to be. See also [120] for
a discussion of moduli fixing and [121–123] for an analysis of hierarchies around ⌧ = i in the context of
bottom–up modular flavor symmetries. In this modular model there is no need for the ⇠ flavon which is
instrumental in the model discussed in Section 4.1.1 based on a traditional A4 symmetry. Assuming diagonal
charged lepton Yukawa couplings, this model then derives 9 predictions from 3 input parameters:

seesaw scale ⇤⌫

Re ⌧

Im ⌧

9
>=

>;
�!

8
>>><

>>>:

3 neutrino masses mi

3 mixing angles ✓ij
2 Majorana phases 'i

1 CP phase �CP

This system is overconstrained as we already know 5 observables, the two mass squared di↵erences and 3
mixing angles. It turns out that this model can nonetheless fit observation surprisingly well. Furthermore,

2For noninteger k we are technically no longer dealing with modular transformations, a point that we will get back to in
Section 5.4.
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when introducing an extra parameter, called '3, which changes the charged lepton Yukawa matrix to a non–
diagonal one, it is possible to get fit with ��

2 = 0.4 for inverted ordering and ��
2 = 9.9 for normal ordering

(see Tables 4 and 5 of [77], respectively). Here, ��
2 is obtained by comparing the model predictions

to the current best–fit values of the mixing angles, charged lepton Yukawa couplings and neutrino mass
di↵erences. [77] also find that the corrections from SUSY breaking and RGE corrections are relatively small
in their model. This model then makes testable predictions on the CP phases as well as the neutrino mass
scale. This is a remarkable result.

It turns out that, similarly to what we already discussed in Section 4.1.2, there are extra terms in this
model which are not fixed by the symmetries, and thus introduce additional free parameters [124]. In some
ways, this problem is even worse than in the “traditional” case discussed in Section 4.1.2 since modular
flavor symmetries are nonlinearly realized and thus provide us with less expansion control.

A
traditional
4

canonical
kinetic terms

�3

modular forms

⇥

�diagonal
3

modular forms
+

canonical kinetic terms

h�i = �diag

Figure 5.1: “Quasi–eclectic” symmetries. Taken
from [125].

One can nonetheless show that, by borrowing inputs from
the “eclectic” scheme which we will discuss in Section 5.5, one
can limit the impact of these extra terms to be smaller than the
current experimental uncertainties of the observables [125]. In
this variation of the Feruglio model [4], a non–modular finite
symmetry is added, and the full flavor symmetry is a prod-
uct of a modular and a traditional symmetry. This product
is then broken to a diagonal subgroup (cf. Figure 5.1) which
coincides with the modular A4 of the Feruglio model [4]. There
are still corrections of the order h�i/⇤, where � denotes the
flavon accomplishing the diagonal breaking, but this ratio can
be as small as the ⌧ Yukawa coupling, which is of the order
10�2 unless tan� is large. Therefore, the uncertainties of the
predictions can be made comparable to the experimental error
bars. While this proof–of–principle example has been carefully
crafted to obtain su�cient control over the kinetic terms, the fact that it utilizes ingredients first discussed in
the top–down approach may be taken as an indication that a combination of both approaches will ultimately
provide us with constructions which are both elegant, predictive and realistic.

5.4 Metaplectic flavor symmetries

As we have argued in the introduction, the modular flavor symmetries are of particular interest as they hint
at top–down physics. A bit more practically, one may want to have an interpretation, say, of the modular
weight k in Equations (5.4) and (5.5), as well as of the origin of the flavor symmetries. Magnetized tori [126],
which are dual to certain D–brane models [127], turn out to be an appropriate playground to answer some
of these questions [113, 128–137]. In particular, the modular weights k reflect the localization properties of
matter fields in the extra dimensions. This is because the Kähler metric, which depends on ⌧ (as well as
other moduli) determines the normalization of the matter fields. Half–integer modular weights then imply
that the fields are something in between a bulk field and a brane field. This is reflected by the profiles of
the relevant zero modes [126]. We depict the projection of some sample wavefunctions in Figure 5.2. This
picture also o↵ers an intuitive understanding of the well–known exponential suppression of the couplings in
the large Im ⌧ limit [115–117].

Since modular weights are half–integers, the flavor symmetry is metaplectic rather than modular [135].
These metaplectic flavor symmetries had been discussed in the bottom–up approach [109, 111], and the
expressions for the Yukawa couplings coincide with those obtained from magnetized tori [135]. That is,
Yukawa couplings can be computed in two ways, either in a bottom–up approach by postulating metaplectic
flavor symmetries and determining the corresponding modular forms, or in a top–down way by computing the
overlaps of wavefunctions on magnetized tori, and the results agree. Although the successful models obtained
in the bottom–up approach [109,111] can give predictions within the experimental 1� range (see e.g. Section
4.2 of [109]), these have not yet been derived from the top–down approach. This is because one cannot
dial the data like modular weights and representations at will. Yet one may take the phenomenologically
successful constructions as a guide to choose geometrical data of the top–down models to come closer to the
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fundamental
domain

a

Figure 5.2: Overlap of two wavefunctions with separation a on a torus. The overlap of a given, say red, curve is not
just the overlap with one blue curve but with infinitely many of them due to the periodic nature of the torus. A
representative space of the torus lattice is called the fundamental domain. Taken from [135].

real world. In this sense, current and ongoing neutrino experiment data may provide us with crucial insights
in a possible UV completion of the SM.

5.5 Eclectic flavor symmetries

Modular symmetries and modular forms appear quite naturally in top–down scenarios based on a class of
string compactifications known as heterotic orbifolds [138,139]. In these models, beyond the 3+1 dimensions
of our spacetime, the six extra dimensions of a string theory assume the form of complex tori divided by
discrete symmetries (see e.g. [140–142] for an introduction to these constructions). This procedure yields an
UV complete 3 + 1–dimensional e↵ective field theory endowed with various continuous and discrete global
and gauge symmetries, which are fully determined by the shape of the compact dimensions. Furthermore,
the matter spectrum together with their transformation properties under the available symmetries are also
fixed by the compactification. In this kind of models, it has been shown that the exact matter spectrum of
the SM can be achieved, including quarks and leptons and their mixings [143–146].

Among the symmetries of these string models, one identifies their discrete flavor symmetries (which
technically correspond to the outer automorphisms of the Narain space group associated with the orbifold).
The origin and properties of these flavor symmetries have been explored in a series of papers [147–151]. The
resulting symmetries lead to the so–called “eclectic” picture, which unifies the traditional flavor symmetries
of Section 4 with the modular groups as in Section 5.3. Roughly speaking, the eclectic flavor symmetry is
given by

Geclectic = Gtraditional [Gmodular , (5.7)

where “[” is to be understood as the multiplicative closure. The eclectic symmetries include

• traditional flavor symmetries,

• modular flavor symmetries,

• R symmetries (including non–Abelian discrete R symmetries), and

• CP symmetries and CP–like transformations (see Section 4.2 for the distinction).

Interestingly, both R and CP (and CP–like) symmetries are linked to modular transformations, arising from
SL(2,Z) or even Sp(2g,Z) [151]. (The latter has also been explored in the bottom–up approach [110].)
Further, all charges of matter fields, including their modular weights k 2 Q and representations ⇢(�) are
fully fixed by the string construction. Whereas the modular weights of matter are fractional in general, it
turns out that the couplings among them are governed by integer positive modular weights, and are thus
modular forms.

This eclectic picture provides a nontrivial mixture of symmetries, which constrains not only the super-
potential but also the Kähler potential; i.e. models with eclectic flavor symmetries are more restricted that
bottom–up constructions. In fact, these constraints solve the challenges on predictability that bottom–up
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models endowed with flavor modular symmetries face [124]. This advantage is partly due to the large num-
ber of elements of eclectic flavor symmetries (e.g. the eclectic flavor group of a T2

/Z2 heterotic orbifold
sector has 4608 elements [151]), but it actually follows from the natural appearance of a traditional flavor
subgroup within eclectic symmetries. This feature has been exploited e.g. in the bottom–up quasi–eclectic
scenario [125] discussed in Section 5.3.

Reproducing data requires the breakdown of the eclectic flavor symmetry. This is done in two steps: (1) ⌧
is stabilized at a point in modular space, breaking the modular subgroup, and (2) one or more flavons develop
VEVs, breaking the remaining traditional flavor symmetry. This leads to a rich variety of flavor symmetry
patterns [152], which can in some cases match the mass and mixing textures of quarks and charged leptons
observed in nature, and yield predictions for the neutrino sector [153], where all corrections are under control.
Even though the flavon VEVs can, in principle, be fixed by demanding that supersymmetry is preserved at
low energies in these string models, it is fair to say that finding a principle that dynamically fixes both the
modulus and flavon VEVs at the right values for phenomenology is still an open question. Moreover, not all
possible models based on eclectic flavor symmetries from strings have been phenomenologically investigated.
In anticipation of the upcoming neutrino data, it is important to pursue this task now or in the near future.

One can generalize this top–down framework to arrive at bottom–up models endowed with eclectic
flavor symmetries. To achieve this goal one must stress two important features of these symmetries in
string constructions. First, it turns out that Gmodular is always a subgroup of the outer automorphisms of
Gtraditional. Secondly, for a subgroup G of Gtraditional Equation (5.7) takes the form

Geclectic = GoGmodular , G ⇢ Gtraditional , (5.8)

which means in particular that Gmodular and G do not commute. It has been found that these observations
hold also in models based on magnetized tori [132]. Using these observations and the definitions of finite
modular groups, a large class of bottom–up eclectic flavor symmetries has been constructed [154]. A rel-
evant pending question is what kind of neutrino phenomenology can be obtained from these symmetries.
Further, it is clear now that more general eclectic flavor symmetries can be constructed, especially including
vector–valued modular forms [114], which might open new avenues of relating neutrino data to possible UV
completions of the SM.

5.6 Nonsupersymmetric modular flavor symmetries

In our discussion so far we always assumed low–energy SUSY, which, however, we are far from certain that
it is realized in Nature. It has been argued in [126, 135] that low–energy SUSY may, in principle, not be
required for the Yukawa couplings to be of the metaplectic form. Further, large classes of explicit string
models similar to those presented in Section 5.5 with the exact spectrum of the SM and no SUSY have been
built [155–158]. However, much more e↵ort has to be devoted to better understand their details, including
the stability of these models [157, 159], the versions of discrete (traditional and modular) flavor symmetries
that they exhibit, and hence the phenomenology they yield.

6 Summary and Outlook

Our main summary is contained in the Executive Summary. We have argued that, given the expected wealth
of neutrino data, i.e. experimental knowledge of the flavor sector of the SM, it is now the time to sharpen
our theoretical understanding of the matter. While measurements become more precise, a fully convincing
interpretation of the data has remained elusive so far. The so–called modular flavor symmetries have a clear
top–down motivation and, at the same time, arguably provide us with some the most compelling models of
flavor. We have outlined how a successful unification of bottom–up and top–down ideas and techniques may
guide us towards a new era of precision flavor model building in which future experimental results can give
us crucial insights in the UV completion of the SM.
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