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Abstract—Identifying relationships between molecular varia-
tions and their clinical presentations has been challenged by the
heterogeneous causes of a disease. It is imperative to unveil the
relationship between the high dimensional molecular manifesta-
tions and the clinical presentations, while taking into account the
possible heterogeneity of the study subjects. We proposed a novel
supervised clustering algorithm using penalized mixture regres-
sion model, called CSMR, to deal with the challenges in study-
ing the heterogeneous relationships between high dimensional
molecular features to a phenotype. The algorithm was adapted
from the classification expectation maximization algorithm, which
offers a novel supervised solution to the clustering problem, with
substantial improvement on both the computational efficiency
and biological interpretability. Experimental evaluation on sim-

ulated benchmark datasets demonstrated that the CSMR can
accurately identify the subspaces on which subset of features are
explanatory to the response variables, and it outperformed the
baseline methods. Application of CSMR on a drug sensitivity
dataset again demonstrated the superior performance of CSMR
over the others, where CSMR is powerful in recapitulating the
distinct subgroups hidden in the pool of cell lines with regards to
their coping mechanisms to different drugs. CSMR represents a
big data analysis tool with the potential to resolve the complexity
of translating the clinical manifestations of the disease to the
real causes underpinning it. We believe that it will bring new
understanding to the molecular basis of a disease, and could be
of special relevance in the growing field of personalized medicine.

I. INTRODUCTION

Detection and estimation of the molecular markers associ-

ated with phenotypic features is one of the most important

problems in biomedical research. Predicative models have

been extensively used to link molecular markers to a phe-

notypic trait, however, the unobserved patient heterogeneity

obfuscates the effort to build a unified model that works

for all hidden disease subtypes. It has been well understood

that various subtypes exist for many common diseases, which

vary in etiology, pathogenesis, and prognosis [1], [2], [3].

For example, the cancer cells are constantly evolving in the

tumor microenvironment, and they may acquire variations on

alternative pathways in response to treatment, which explains

why certain patients have better prognoses than others in

response to the same treatment [4]. This implies that the same

predicative model that links molecular markers to a phenotypic

trait may not be valid for every patient, and further it is unclear

to what extent the patients should be considered together [5].

Therefore, it is judicious to construct a set of heterogeneous

models, each of which corresponds to one subtype.

The fast advancement in high-throughput technology has

transformed the biomedical research ecosystem by scaling data

acquisition, providing us with unprecedented opportunity to

interrogate biology in novel and creative ways. For cancer

research, the Broad Institute Cancer Cell Line Encyclopedia

(CCLE) [6], Cancer Therapy Response Portal (CTRP) v1/v2

[7], and Genomics of Drug Sensitivity in Cancer (GDSC) [8]

datasets contain 24, 185, 481, and 261 drug compound screen-

ing data for 504, 242, 860, and 1001 cell lines respectively,

together with the multi-omic profiles of the cell lines; the

Cancer Genome Atlas (TCGA) has collected biospecimens and

matched clinical phenotypes for over 10,000 cancer patients

[9]. Consequently, for each sample, there is a tremendous

amount and variety of data: 20,000 genes expression pro-

files, 1 million single-nucleotide polymorphism genotypes,

exome and whole-genome sequences, methylation of tens of

thousands of CpG islands and the expression of microRNA.

From this plurality of data, we anticipate that exploratory

methods will serve to extract and characterize molecular

subgroups relevant to phenotypic outcomes. However, the

growing number of variables does not necessarily increase

the discriminative power in classification [10]. To identify

the most important molecular biomarkers, variable selection

is one of the most commonly used approaches. In particular,

the penalized regularization methods have received a great

deal of attention [11], [12], [13]. Despite major progress in

the research of penalized regression, heterogeneity in variable

selection of high dimensional feature spaces remains to be

challenging.

Unsupervised learning algorithms such as finite mixture

models are typically employed to deal with heterogeneity in

http://arxiv.org/abs/2007.09720v1
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Fig. 1: The motivation of CSMR. Under the same treatment, some patients acquired one mechanism to deal with the drug,

(blue), while others picked up another (pink), resulting in different prognoses to the same treatment. The motivation of CSMR

is to cluster the patients in a supervised fashion and examine what are the genes (yellow) that are selected in tumor progression

that lead to the different drug resistance subtypes of patients, and their functions (network).

subpopulations by assuming a separate distribution for each

subpopulation [14], [15], [16]. Based on the molecular sub-

types, deeper investigation into the molecular and phenotypic

distinctions within each subtype could be carried out. Although

the clustering methods may produce satisfactory classification

of subtypes, it does not select molecular markers distinctive

for each subtype, which however is essential in precision

medicine. And more importantly, without any supervision, the

defined clusters based on a sea of molecular features may not

necessarily relate to the phenotype of interest.

Hence, to study the heterogeneous relations of molecular

markers to a certain phenotypic trait, our challenges is distinct

in two ways: the variables of interest to each subgroup may

be a distinct and sparse set of the high dimensional molecular

features, and the set of patients in each subgroup is not known.

In this article, we proposed a novel and efficient supervised

clustering algorithm based on penalized mixture regression

model that synergizes with potential heterogeneity in high

dimensional regression problem. Essentially, we assume that

observations belong to unlabeled classes with class-specific

regression models relating their unique and selective molecular

markers to the phenotypic outcome.

II. PRELIMINARIES

Since first introduced in [17], finite mixture Gaussian re-

gression (FMGR) has been extensively studied and widely

used in various fields [18], [19], [20], [14], [21], [22]. Let

Y = (y1, ..., yN)T ∈ RN , X = [x1, ...,xN ]T ∈ RN×(P+1)

be a finite set of observations, and X the design matrix

with intercept and P independent variables, and Y the re-

sponse vector. Consider an FMGR model parameterized by

θ = {(πk,βk, σ
2
k)}

K
k=1, it is assumed that when the i-th

observation, (xi, yi), belongs to the k-th component, k =
1, ...,K , then yi = xT

i βk + ǫik, and ǫik ∼ N(0, σ2
k). In other

words, the conditional density of y given x is f(y|x, θ) =∑K

k=1 πkN (y;xTβk, σ
2
k), where N (y;µ, σ2) is the normal

density function with mean µ and variance σ2. And the log-

likelihood for observations {(xi, yi)}Ni=1 is

L(θ) = ΣN
i=1 log(Σ

K
k=1πkN (yi;x

T
i βk, σ

2
k)) (1)

The unknown parameters θ can be estimated by the maxi-

mum likelihood estimator (MLE), which maximizes (1). Note

that the maximizer of (1) does not have an explicit solution

and is usually solved by the EM algorithm. Basically, the

EM algorithm maximizes the complete log likelihood function,

Lc(θ), through iterative steps, which is defined by

Lc(θ) = ΣN
i=1Σ

K
k=1zik[log πk + logN (yi;x

T
i βk, σ

2
k)] (2)

where zik is a cluster indicator variable, and zik = 1 if the

i-th observation belongs to the k-th cluster, and 0 otherwise.

While mixture regression model is capable of handling the

heterogeneous relationships, it doesn’t work in the case of

high dimensional molecular features, where the total number

of parameters to be estimated is far more than the total



number of observations. In addition, with the dense linear

coefficients given by the ordinary EM algorithm, it is hard

to deduce the disease subtype specific molecular markers and

make meaningful interpretations.

Penalized mixture regression has been explored in different

settings [23], [24], [25], [26], [27] to handle the high di-

mensional mixture regression problem. The variable selection

problem in finite mixture of regression model was first studied

using regularization methods such as LASSO [11] and SCAD

[13] in [23], called FMRS. They considered the traditional

cases when the number of candidate covariates is much smaller

than the sample size, and proposed a modified expectation-

maximization (EM) algorithm to perform both estimation and

variable selection simultaneously. In [24], the authors proposed

a reparameterized mixture of regressions model, and showed

evidence for the advantage of multiple components that can

be exploited for variable selection over non-mixture linear

regression. A block-wise Minorization Maximization (MM)

algorithm was proposed in [26], where at each iteration, the

likelihood function is maximized with respect to a block of

variables while the rest of the blocks are held fixed. To solve

the population heterogeneity and feature selection problems,

an imputation-conditional consistency (ICC) algorithm was

proposed by [27], resulting in consistent estimators. While

some of the methods may produce consistent estimates of

θ under proper conditions, they tend to suffer from slow

convergence rate in high dimensional setting, especially with

smaller N or larger K , and the number of hyper-parameters for

regularization further drags down the computational efficiency

caused by the need of cross validation. We here propose

a novel algorithm based on classification EM for penalized

mixture regression to circumvent these existing challenges

in clustering high dimensional data using mixture regression,

which largely increased the computational efficiency.

The rest of the article is organized as follows: in Section 3,

we introduce our algorithm, Component-wise Sparse Mixture

Regression (CSMR); in section 4, we compare CSMR with

four state-of-the-art algorithms on synthetic datasets, in section

5, we applied all the five algorithms on 24 drug sensitivity data

in CCLE, to screen for genes that underlie the heterogeneous

drug resistance mechanisms.

III. METHODS

We assume that the samples belong to different sub-

populations, each of which is defined by a distinct relationship

between the molecular biomarkers to the phenotype of interest,

and the molecular markers are sparse subsets of the high

dimensional molecular profiles specific to each sub-population.

Figure 1 illustrated an example where the patients fall un-

der two distinct subgroups: blue for patients acquiring one

mechanism to the treatment that resulted in responsiveness,

while pink for patients acquiring another mechanism to the

same drug that resulted in non-responsiveness. The goal of our

method is to cluster the samples (blue and pink) supervised

by the patients drug sensitivity measure, and find the defining

molecular features (yellow) associated with each cluster. The

identified molecular features could be further studied to guide

targeted therapeutic designs.

A. The penalized likelihood of mixture regression

Knowing that βk is sparse means many elements in βk

will tend to be close to zero, but not exactly zero without

proper regularization in the model. To simultaneously shrink

the insignificant regression coefficients in βk and estimate θ,

we introduce penalty term to (1) and optimize the following

penalized log likelihood function;

max
θ∈Θ0

L(θ)− Pλ(θ) (3)

where L(θ) denotes the observed log likelihood, and Pλ(θ) :
RP → R is a regularizer of the regression coefficients, and the

penalty for each component is dependent on a component spe-

cific hyperparameter λk > 0. For notational convenience, we

define Lp(θ) = L(θ)− Pλ(θ). Various types of penalty were

used in mixture regression model [27], [23], but we consider

LASSO penalty form as it is convex and thus advantageous

for numerical computation [11], i.e.,

Pλ(θ) = ΣK
k=1πkΣ

P
j=1λk|βjk| (4)

Similar to the case of low dimensional mixture regression,

EM algorithm could be adopted by maximizing the penalized

complete log likelihood function

Lpc(θ) = Lc(θ)− Pλ(θ)

by iterating between the following E-step and M-step:

E-step: computing the conditional expectation of Lpc(θ) with

respect to zik given the current estimates θ(m). The conditional

expectation is

Q(θ; θ(m)) = ΣN
i=1Σ

K
k=1p

(m)
ik [log πk+logN (yi;x

T
i βk, σ

2
k)]−Pλ(θ)

(5)

Then the conditional expectation of zik is given by

p
(m)
ik =

π
(m)
k N (yi;β

(m)
k

T
xi, σ

2(m)

k )
∑K

l=1 π
(m)
l N (yi;β

(m)
l

T

xi, σ2(m)

l )

M-step: maximizing Q(θ; θ(m)) with respect to θ, i.e.,

θ(m+1) = {πm+1
k ,β

(m+1)
k , σ2(m+1)

k }Kk=1 = max
θ∈Θ0

Q(θ; θ(m))

(6)

Unlike the low-dimensional case, where

πm+1
k ,β

(m+1)
k , σ2(m+1)

k all have closed form solutions,

maximizing (6) is more complicated due to the involvement

of πk,βk in the penalty term and the non-differentiable form

of Pλ(θ) at βjk = 0.

B. The classification EM algorithm

The Classification Expection Maximization (CEM)

algrorithm is an variant of the EM algorithm. It has been

popularly used in the Finite Gaussian Mixture Model[28],

[29], and shown to be have faster convergence rate [30].

Basically, the assignments {zi}Ni=1 define a partition

C =
⋃K

k=1 Ck s.t. i ∈ Ck iff zi = k. The CEM algorithms



maximizes Lc(θ) through iterating among three steps:

E-Step: calculating conditional expectation of p
(m)
ik , similar to

the traditional EM.

C-Step: disentangle the observations into K classes, by assign-

ing C
(m+1)
k as the set of observations most likely in cluster

k, i.e., {i|k = argmax
l∈{1,...,K}

p
(m)
il , i = 1, ..., N}. Let nk denotes

the total number of observations in cluster k.

M-Step: parameter estimation within each disentangled cluster,

where π
(m+1)
k is estimated as n

(m+1)
k /N , and β

(m+1)
k , σ2(m+1)

k

are simply estimated as the ordinary least square (OLS)

estimators using observations in C
(m+1)
k only.

We show the convergence of the CEM algorithm for the

low-dimensional case in Theorem 1.

Theorem 1. For the sequence C(m), θ(m) updated as CEM,

the complete data likelihood converges to a stationary value.

Moreover, if the maximum likelihood estimates of the parame-

ters are well-defined, the sequence C(m), θ(m) also converges

to a stationary position.

The biggest advantage of the CEM algorithm is that it

disentangles the mixture into individual non-overlapping com-

ponents, such that flexible sparsity control could be easily

achievable within each component. Hence for the high dimen-

sional mixture regression problem, we could simply replace

the OLS estimator in the M step of the CEM algorithm by a

sparse estimator, i.e.,

argmax
βk,σ

2
k

∑

i∈C
(m+1)
k

logN (yi;x
T
i βk, σ

2
k)− λkπkΣ

P
j=1|βjk|

This is simply L1 regularized linear regression, for which

many efficient algorithms exist [31].

C. The CSMR algorithm

Here we proposed the CSMR algorithm to solve the high

dimensional mixture regression problem based on the CEM al-

gorithm. In CSMR, the mixture regression setting could handle

the hidden cluster problem, and the disentangled clusters under

CEM could efficiently solve the feature selection problem in

high dimensional setting. At E-step, we calculate the posterior

probability pik similar to traditional EM and ECM; at C-step,

we assign each observation to a cluster that it most likely

belongs to, similar to traditional CEM; at the M-step, for each

component, we perform regularized linear regression to obtain

a sparse set of non-zero coefficients.

A big challenge with the penalized mixture regression prob-

lem is the choice of component specific penalty parameters

λk. The λk’s are related to the amount of regularization, and

their selection is a critical issue in a penalized likelihood

approach. It is usually based on a trade-off between bias

and variance: large values of tuning parameters tend to select

a simple model whose parameters estimates have smaller

variance, whereas small values of the tuning parameters lead

to complex models, with smaller bias. Cross-validation over a

grid search is the commonly adopted method to select the

optimal combination of λk , but this becomes increasingly

prohibitive with the increase of K , especially when we don’t

have a good knowledge of the theoretical range of the λk .

Hence, instead of first performing penalized linear regres-

sion for given λk and then search the optimal combination

of λk [23], we propose to conduct the tuning of λk with

cross validation inside the ECM iterations. Specifically, under

the CEM algorithm, all the components are disentangled,

we could hence perform hyperparameter tuning inside each

iteration within each component. This is to say, at the M-

step, we not only estimate the regression coefficients, but also

find the best tuning parameter λk for the component. Hence,

at the end of the algorithm, we avoid the hyperparameter

tuning, as they have already been selected within the iteration.

We adopted efficient cross validation algorithm for selecting

the optimal regularization parameter under L1 regularized

linear regression [31]. Since we no longer need to run the

algorithm multiple times on a K-dimensional grid space of

the penalty parameters, and could hence largely reduce the

computational cost. We have shown in simulation studies that

penalty parameters selected this way empirically worked very

well.

Another adaptation on the traditional ECM algorithm of

CSMR is a model refit step following the ECM steps. To in-

crease the numerical stability and achieve faster convergence,

at the end of each iteration, we refit the mixture regression

model using flexible EM algorithm with only the selected

variables of each component. Basically, for each component,

the coefficients of the variables not selected at the M-step

will be forced to be zero. This could be easily achievable by

allowing only the selected variables of component k to enter

into the model fitting of the k-th regression parameters.

Algorithm 1 CSMR

Input: XN×P , YN×1,K
Output: θ, C =

⋃K
k=1 Ck, {β0k,βk}

K
k=1

Initialization: θ(0) = {π0
k,β

(0)
k , σ2(0)

k }Kk=1

for m=0,...,Max Iteration do
E-step: Compute the conditional expectation of zik similar

to traditional EM algorithm.

C-step: For k = 1, ...,K , assign C
(m+1)
k as the set of

observations that are mostly likely in component k.

M-step: For k = 1, ...,K , the relative cluster size is

updated by π̂
(m+1)
k =

n
(m+1)
k

N
, and the tuning parameter

λ
(m+1)
k , and regression parameters (β̂

(m+1)

k , σ̂
(m+1)
k ) are

selected and estimated using cross validation, such as the

cv.glmnet function in glmnet package.

Model refit: refit the FMGR model by allowing only

the selected variables in each component and to obtain

{π
(m+1)
k ,β

(m+1)
k , σ

(m+1)
k }Kk=1 given by this flexible mod-

eling

Stop if converged.
end



The CSMR algorithm requires the initialized values θ. Here,

we order the features based on its individual Pearson correla-

tion with the response variable, and then fit a low-dimensional

mixture regression model solved by traditional EM algorithm

using the top correlated genes. CSMR is implemented in R,

and was made available in https://github.com/zcslab/CSMR.

D. Selection of component number K

The number of clusters K is a sensible parameter because

it describes the heterogeneity of the population. For selection

of K , we could use a modified BIC criterior that minimizes

BIC(K) = −2Lpc(θ∗
K) + log(N)dK

where θ∗
K represents the parameter estimates for K , and

dK = K + (K − 1) + ΣK
k=1Σ

P
j=11{βjk 6=0} is the effective

number of parameters to be estimated, similar to [32]. Specif-

ically, there are K standard deviations, σk, associated with the

K regression lines; K − 1 component proportions, πk, since

Σkπk = 1; and all the non-zero linear regression coefficients

for all the K components.

In addition to the BIC criteria, we also offer a cross

validation algorithm for the selection of K . Take a 5-fold cross

validation as an example. For given K , at each repetition,

80% samples are used for training to obtain the regularized

parameter θ∗
K . Then, for a sample (xi, yi) drawn from the 20%

testing samples, its cluster membership, k0, is first predicted

as

k0 = max
k

π∗
k,KN (yi;x

T
i β

∗
k,K , σ2∗

k,K)

Here, π∗
k,K ,β∗

k,K , σ2∗
k,K denote the CSMR estimated param-

eters when the number of components is K . After assigning

the observation to component k0, we could make prediction

of the response based on linear regression, i.e. ŷi = xT
i β

∗
k0,K

,

as well as the associated residual, yi − ŷi. Notably, such

a prediction of the response is different from simple linear

regression, as the prediction process requires knowing the

value of the response, in order to assign it to the right cluster.

After knowing its cluster membership, a prediction of the

response could be made.

A large K will tend to overfit the data with more complex

model of higher variance, while smaller K might select a

simpler model with larger bias. Using the independent testing

data, we could decide how to balance the trade-off between

bias and variance. To evaluate how the estimated model under

K explains the testing data, we could calculate the root-

mean-square-error between yi and ŷi, or Pearson correlation

between the two. By repeating this procedure for multiple

times, a more robust and stable evaluation of the choice of K
should be derived based on the summarized RMSE or Pearson

correlations.

IV. APPLICATION TO SIMULATION DATA

A. Data generation procedure

We simulated the independent variables xi, i = 1, ..., P ,

which follows i.i.d normal distribution, i.e., xij ∼ N(0, 1).

The component proportions were made to be equal, i.e.,

πk = 1
K

. For component k, a random sample of size

M0 were taken from {1, ..., P}, denoted as Ik . And βki ∈
Unif((−b,−a)

⋃
(a, b)), if βki ∈ Ik; βki = 0, if βki 6∈ Ik.

The response variable Yk was generated by the following

two-step process:

1. Draw component zi ∈ {1, ...,K} with probability p(zi =
k|θ) = πk.

2. Draw an observation yi according to normal distribution

N(β0k + βT
k xi, σ

2
k).

Here, we fix a = 2, b = 5, P = 100. We explored

the performances of existing methods under 12 different

simulation scenarios, for each of which, 100 repetitions were

conducted:

Cases 1-3. N = 200, 300, 400, P = 100,K = 2, σ = 1,M0 =
5
Cases 4-6. N = 400, P = 100,K = 2, 3, 4, σ = 1,M0 = 5
Cases 7-9. N = 400, P = 100,K = 2, σ = 0.5, 1, 2,M0 = 5
Cases 10-12. N = 400, P = 100,K = 2, σ = 1,M0 =
5, 8, 20

B. Baseline methods

We compared CSMR with five different methods, including

L1 penalized regression, or LASSO; L2 penalized regression,

or Ridge regression (RIDGE); random forest based regression

(RF), FMRS [33] and ICC [27]. They differ in their ability to

perform prediction, clustering and variable selection, as shown

in Table 1.

TABLE I: Baseline methods

Prediction Clustering Variable selection

CSMR × × ×

LASSO × ×

RIDGE ×

RF × ×

FMRS × × ×

ICC × × ×

Among them, CSMR, ICC and FMRS are capable of doing

variable selection at the same time of sample clustering. How-

ever, FMRS can only deal with relatively lower dimensional

features.

C. Performance comparisons

We focused on four metrics for method comparisons: 1) the

average correlation between predicted and observed response;

2) the true positive rate (TPR) and 3) true negative rate (TNR)

of variable selection; 4) the rand index of sample clustering

(RI). Note that for observation i, its predicted response is

given by ΣK
k=1zik(x

T
i βk), where zik is its cluster membership

indicator. The average of the four metrics over 100 simulations

in each scenario was calculated and shown in Table 2. Here,

we assume that the true K is known.

In general, CSMR performs the best in terms of the four

evaluation metrics in the majority of the scenarios. For pre-

diction accuracy of the response using correlation, CSMR and
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Fig. 2: Time consumption of CSMR, and ICC on simulation

data for K = 2 (left) and K = 4 (right), and N = 400, σ =
1,M0 = 20 over 100 repetitions, error bars indicate standard

deviations.

ICC perform comparably well, and CSMR slightly better in

most of the cases. This is expected as LASSO, RIDGE and

RF can not deal with the sample heterogeneity, and FMRS

does not work well when the feature dimension is high. For

sensitivity and specificity of the variable selection, CSMR

performs significantly better than ICC and FMRS. Selection

of the right variables is very important as it characterizes the

unique features of each component, based on which, we could

further deduce the biological interpretation of each unique

component. ICC and FMRS suffer from very low sensitivity of

variable selection in almost all cases, and their specificity met-

rics are not desirable either. For clustering, CSMR again has

the best or close to the best performance compared with ICC

and FMRS. ICC achieved similar performance with CSMR in

some cases, but it clearly suffers when K or the number of

effective variables M0 become large. We also compared the

computational efficiency of CSMR and ICC under the param-

eter setting: N = 400, P = 100, σ = 1,M0 = 20,K =2

or 4. Figure 2 shows the computational cost and its standard

deviation for two algorithms over 100 repetitions. Clearly, the

computational efficiency of ICC drops significantly when K
increases from 2 to 4, while the time consumption for CSMR

stays approximately the same.

Hence from simulation data, we could see that CSMR

achieved the most desirable performance in terms of pre-

diction accuracy, variable selection and clustering, compared

with three non-mixture regularized models, and two mixture

models. While ICC is competitive in some cases, it severely

suffers from poor variable selection, and its computational

cost is too prohibitive compared with CSMR. The CSMR has

a built-in cross validation step within the CEM iteractions,

which could largely increase the sensitivity and specificity of

the variable selection procedure, and the flexible model refit

step following the CEM steps guarantees that the algorithm

could achieve faster convergence and more stable results.

V. APPLICATION TO CCLE DATA

A. Description of the dataset

Over the past three decades, the use of molecular data to

inform drug discovery and development pipeline has generated

huge excitement. Predicting the drug sensitivity becomes an

integral part of the precision health initiative. Although earlier

efforts successfully identified many new drug targets, the

overall clinical efficacy of the developed drugs has remained

unimpressive, owing in large part to the population hetero-

geneity, that is, different patients may have different disease

causing factors, and hence drug targets. Here, we apply CSMR

to study the patient heterogeneity in their response to different

drug treatments, and select the most key molecular features

that underlie the heterogeneous disease causes.

We collected gene expression data of 470 cell lines on 7902

genes, as well as the cell lines’ sensitivity score to all 24 drugs,

from the Cancer Cell Line Encyclopedia (CCLE) dataset [6].

The sensitivity score, or called the AUCC score, is defined

as the area above the fitted dose response curve, and it has

been shown to have better predictive accuracy of sensitivity

to targeted therapeutic strategies than other measures, such as

IC50 or EC50 [34]. We applied all five methods on the dataset,

where the drug sensitivity score was treated as response

variable and the gene expressions as independent variables.

Here, FMRS is not applicable as the feature dimension is too

high while the sample size is too small, hence it is omitted

from further analysis. Our goal is to study the biological

mechanism of possible heterogeneity in drug sensitivity, under

the hypothesis that cells exhibit subgroup characteristics by

selecting different genes that confer their different levels of

drug sensitivity.

B. Results

We compare the performances of the five methods using

cross validation. Basically, for each drug, we conduct a 5-

fold cross validation by holding 80% of the data as training,

and 20% as testing data, for each of the 100 repetitions. At

each repetition, the 20% testing data is used to independently

evaluate the performance of each method. At the training

phase, we start by fixing the hyper parameters involved in

all methods. The penalty parameters for LASSO and RIDGE

were selected by cross validation within the training samples.

For RF, the default parameters were used in the function

’randomForest’ of the package with the same name. For ICC,

we used the selected component number as in its original paper

[27]. For CSMR, to select the best K , we performed both

cross validation and the traditional BIC criteria introduced in

Methods, over a grid of K = 1, 2, 3, 4, 5, 6. We adopted the

results from cross validation, as there is a lack of rigorous

theoretical foundation for the validity of the traditional BIC

under this high dimensional setting, and the data driven selec-

tion of cross validation seems more reasonable. The selected

K for BIC and cross validation using CSMR and used K
for ICC is summarized in Supplementary Table S1. With the

hyper parameters fixed, we then conduct parameter estimations



TABLE II: Comparisons of CSMR with other five methods in various simulation settings

Metrics
Experiment σ = 1, N = 400, M0 = 5 K = 2, N = 400,M0 = 5 K = 2, σ = 1,M0 = 5 K = 2, σ = 1, N = 400

K σ N M0

Parameter 2 3 4 0.5 1 2 200 300 400 5 8 20

CSMR 0.992 0.988 0.999 0.998 0.994 0.977 0.987 0.993 0.994 0.992 0.995 0.994

ICC 0.992 0.985 0.909 0.998 0.984 0.982 0.992 0.992 0.984 0.992 0.994 0.984
Cor(y, ŷ) LASSO 0.743 0.654 0.585 0.745 0.778 0.729 0.776 0.756 0.778 0.743 0.754 0.778

RIDGE 0.784 0.697 0.639 0.783 0.789 0.772 0.834 0.802 0.789 0.784 0.782 0.789
RF 0.716 0.583 0.487 0.719 0.605 0.700 0.717 0.720 0.605 0.716 0.691 0.605

FMRS 0.780 0.676 0.568 0.780 0.706 0.769 0.727 0.797 0.706 0.780 0.780 0.706

Variable CSMR 0.999 0.950 0.538 1 0.980 1 0.956 1 0.980 0.999 0.998 0.980

Selection ICC 0.500 0.332 0.339 0.500 0.461 0.500 0.500 0.500 0.461 0.500 0.496 0.461
(TPR) FMRS 0.679 0.552 0.487 0.681 0.579 0.674 0.672 0.706 0.579 0.679 0.635 0.500

Variable CSMR 0.993 0.976 0.785 0.994 0.992 0.968 0.966 0.990 0.992 0.993 0.992 0.992
Selection ICC 0.972 0.957 0.669 0.973 0.870 0.735 0.966 0.972 0.870 0.972 0.953 0.870

(TNR) FMRS 0.499 0.680 0.758 0.504 0.512 0.500 0.502 0.506 0.512 0.499 0.515 0.500

Sample CSMR 0.893 0.833 0.624 0.943 0.917 0.787 0.852 0.886 0.917 0.893 0.908 0.917

Clustering ICC 0.887 0.838 0.549 0.941 0.879 0.787 0.878 0.881 0.879 0.887 0.903 0.879
(RI) FMRS 0.501 0.546 0.624 0.502 0.513 0.502 0.501 0.501 0.513 0.501 0.502 0.513
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Fig. 3: The distributions of the RMSE over 100 repetitions for the five methods, for the 24 drugs. The lower RMSE value, the

better performance. ‘C’,‘I’,‘A’,‘G’,‘F’ stand for ‘CSMR’,‘ICC’,‘LASSO’,‘RIDGE’,‘Random Forest’
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Fig. 4: For each drug, the Venn diagram of the selected genes for different mixing components are shown. The numbers show

the size of overlap between the gene sets.

for each of the five methods using the training samples, and

concludes the training phase.

At the testing phase, the predicted and true drug sensitiv-

ity scores were examined in terms of their correlation, and

residual mean squared error (RMSE). Note that this part of

the testing data has never been used in the hyper parameter

tuning or parameter estimation before. The distributions of

RMSE and correlations over 100 repetitions for all the 24

drugs for all the five methods were shown in Figure 3 and

Supplementary Figure S1, respectively. For 22 drugs, CSMR

had the significantly smaller average RMSE, and was very

close to the smallest RMSE for the rest of the two drugs; and

we could make the same conclusions based on the correlation

results as well. This demonstrated the consistent and robust

performance of CSMR over the others.

Among the five methods, RF had the poorest performance

on the testing data, probably caused by model overfitting.

LASSO and RIDGE worked much better than RF, probably

due to its power in model selection. However, they performed

significantly worse than ICC and CSMR in majority of the

cases, which indicates the existence of population heterogene-

ity and necessity of using mixture modeling. The performance

of ICC is much worse than CSMR in most of the cases,

which we believe is caused by the under-estimation of the

population heterogeneity by ICC. In other words, the selection

of K in ICC is too conservative. In fact, according to cross

validation, the number of distinct clusters given by CSMR

for the drugs is either 3 or 4, while for ICC, the number of

distinct clusters are determined to be less than 3 for half of

the drugs. We believe that cross validation is a data driven

approach for selection of K , and should be more reasonable

than theoretically derived criteria. In the case of CCLE data,

the samples are different types of cells from very different

experimental and genetic backgrounds, and it is expected that

they would pick up different molecular mechanisms to deal

with the attacks of the drugs. Hence, the cluster number given

by CSMR is more realistic than ICC. It is wrothy of note that

for those drugs that CSMR and ICC gave the same number

of distinct clusters, namely Irinotecan, L-685458, Lapatinib,

Paclitaxel, PD-0332991, PHA-665752 and TKI258, CSMR

exhibited much smaller RMSE than ICC.

Figure 4 demonstrated the Venn diagram of the selected

genes for different components for each drug, and all the

selected genes could be found in Supplementary Table S2.

It could be seen that for the same drug, different clusters

of cells indeed acquire different coping mechanisms, as seen



by the different set of genes selected. This again confirms

the high heterogeneous populations within the CCLE cohort.

For each drug, we pooled all the selected genes together

and conducted pathway enrichment analysis against 1,328

pathways collected in [35], and the top enriched pathways are

shown in Supplementary Figure S2. Again, it could be seen

that different responses to different drugs have been employed.

VI. CONCLUSIONS

With the recent rapid evolution in genomic technologies,

we have now entered a new phase, one in which it is possible

to comprehensively characterize the molecular profiles of

large population of subjects. Importantly, the development

of sequencing technologies has been paired with a transition

towards integrating molecular data with phenotypic data, such

as in the electronic medical records. Such a synergy has

the potential to ultimately facilitate the generation of a data

commons useful for identifying relationships between molec-

ular variations and their clinical presentations. Unfortunately,

existing big data analysis tools for mining the information rich

data commons has not been very impressive with regards to the

overall transnational or clinical efficacy, owing in large part to

the heterogeneous causes of disease. It is hence imperative to

unveil the relationship between the molecular manifestations

and the clinical presentations, while taking into account the

possible heterogeneity of the study subjects.

In this paper, we proposed a novel supervised clustering

algorithm using penalized mixture regression model, called

CSMR, to deal with the challenges in studying the hetero-

geneous relationships between high dimensional molecular

features to a phenotype. CSMR is capable of simultaneous

stratification of the sample population and sparse feature-wise

characterization of the subgroups. The algorithm was adapted

from the classification expectation maximization algorithm,

which offers a novel supervised solution to the clustering

problem, with substantial improvement on both the computa-

tional efficiency and biological interpretability. Experimental

evaluation on simulated benchmark datasets with different

settings demonstrated that the CSMR can accurately identify

the subspaces on which subset of features are explanatory

to the response variables and the feature characteristics of

the subspaces, and it outperformed the baseline methods.

Application of CSMR on the heterogeneous CCLE dataset

demonstrated the superior performance of CSMR over the oth-

ers. On the CCLE dataset, CSMR is powerful in recapitulating

the distinct subgroups hidden in the pool of cell lines with

regards to their coping mechanisms to different drugs. CSMR

also demonstrated the uniqueness of different subgroups for

the same drug, as seen by the distinctly selected genes for the

subgroups.

In summary, CSMR represents a big data analysis tool

with the potential to bridge the gap between advancements

in biotechnology and our understanding of the disease, and

resolve the complexity of translating the clinical manifesta-

tions of the disease to the real causes underpinning it. We

believe that such a tool will bring new understanding to the

molecular basis of a disease, and could be of special relevance

in the growing field of personalized medicine.
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