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Abstract—Identifying relationships between molecular varia-
tions and their clinical presentations has been challenged by the
heterogeneous causes of a disease. It is imperative to unveil the
relationship between the high dimensional molecular manifesta-
tions and the clinical presentations, while taking into account the
possible heterogeneity of the study subjects. We proposed a novel
supervised clustering algorithm using penalized mixture regres-
sion model, called CSMR, to deal with the challenges in study-
ing the heterogeneous relationships between high dimensional
molecular features to a phenotype. The algorithm was adapted
from the classification expectation maximization algorithm, which
offers a novel supervised solution to the clustering problem, with
substantial improvement on both the computational efficiency
and biological interpretability. Experimental evaluation on sim-
ulated benchmark datasets demonstrated that the CSMR can
accurately identify the subspaces on which subset of features are
explanatory to the response variables, and it outperformed the
baseline methods. Application of CSMR on a drug sensitivity
dataset again demonstrated the superior performance of CSMR
over the others, where CSMR is powerful in recapitulating the
distinct subgroups hidden in the pool of cell lines with regards to
their coping mechanisms to different drugs. CSMR represents a
big data analysis tool with the potential to resolve the complexity
of translating the clinical manifestations of the disease to the
real causes underpinning it. We believe that it will bring new
understanding to the molecular basis of a disease, and could be
of special relevance in the growing field of personalized medicine.

I. INTRODUCTION

Detection and estimation of the molecular markers associ-
ated with phenotypic features is one of the most important
problems in biomedical research. Predicative models have
been extensively used to link molecular markers to a phe-
notypic trait, however, the unobserved patient heterogeneity
obfuscates the effort to build a unified model that works
for all hidden disease subtypes. It has been well understood
that various subtypes exist for many common diseases, which
vary in etiology, pathogenesis, and prognosis [1], [2], [3].
For example, the cancer cells are constantly evolving in the
tumor microenvironment, and they may acquire variations on
alternative pathways in response to treatment, which explains
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why certain patients have better prognoses than others in
response to the same treatment [4]. This implies that the same
predicative model that links molecular markers to a phenotypic
trait may not be valid for every patient, and further it is unclear
to what extent the patients should be considered together [5].
Therefore, it is judicious to construct a set of heterogeneous
models, each of which corresponds to one subtype.

The fast advancement in high-throughput technology has
transformed the biomedical research ecosystem by scaling data
acquisition, providing us with unprecedented opportunity to
interrogate biology in novel and creative ways. For cancer
research, the Broad Institute Cancer Cell Line Encyclopedia
(CCLE) [6], Cancer Therapy Response Portal (CTRP) v1/v2
[7], and Genomics of Drug Sensitivity in Cancer (GDSC) [8]
datasets contain 24, 185, 481, and 261 drug compound screen-
ing data for 504, 242, 860, and 1001 cell lines respectively,
together with the multi-omic profiles of the cell lines; the
Cancer Genome Atlas (TCGA) has collected biospecimens and
matched clinical phenotypes for over 10,000 cancer patients
[9]. Consequently, for each sample, there is a tremendous
amount and variety of data: 20,000 genes expression pro-
files, 1 million single-nucleotide polymorphism genotypes,
exome and whole-genome sequences, methylation of tens of
thousands of CpG islands and the expression of microRNA.
From this plurality of data, we anticipate that exploratory
methods will serve to extract and characterize molecular
subgroups relevant to phenotypic outcomes. However, the
growing number of variables does not necessarily increase
the discriminative power in classification [10]. To identify
the most important molecular biomarkers, variable selection
is one of the most commonly used approaches. In particular,
the penalized regularization methods have received a great
deal of attention [11], [12], [13]. Despite major progress in
the research of penalized regression, heterogeneity in variable
selection of high dimensional feature spaces remains to be
challenging.

Unsupervised learning algorithms such as finite mixture
models are typically employed to deal with heterogeneity in
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Fig. 1: The motivation of CSMR. Under the same treatment, some patients acquired one mechanism to deal with the drug,
(blue), while others picked up another (pink), resulting in different prognoses to the same treatment. The motivation of CSMR
is to cluster the patients in a supervised fashion and examine what are the genes (yellow) that are selected in tumor progression
that lead to the different drug resistance subtypes of patients, and their functions (network).

subpopulations by assuming a separate distribution for each
subpopulation [14], [15], [16]. Based on the molecular sub-
types, deeper investigation into the molecular and phenotypic
distinctions within each subtype could be carried out. Although
the clustering methods may produce satisfactory classification
of subtypes, it does not select molecular markers distinctive
for each subtype, which however is essential in precision
medicine. And more importantly, without any supervision, the
defined clusters based on a sea of molecular features may not
necessarily relate to the phenotype of interest.

Hence, to study the heterogeneous relations of molecular
markers to a certain phenotypic trait, our challenges is distinct
in two ways: the variables of interest to each subgroup may
be a distinct and sparse set of the high dimensional molecular
features, and the set of patients in each subgroup is not known.
In this article, we proposed a novel and efficient supervised
clustering algorithm based on penalized mixture regression
model that synergizes with potential heterogeneity in high
dimensional regression problem. Essentially, we assume that
observations belong to unlabeled classes with class-specific
regression models relating their unique and selective molecular
markers to the phenotypic outcome.

II. PRELIMINARIES

Since first introduced in [17], finite mixture Gaussian re-
gression (FMGR) has been extensively studied and widely
used in various fields [18], [19], [20], [14], [21], [22]. Let

Y = (y1,yn)T € RY, X =[xy, ..., zn]T € RVX(PHD
be a finite set of observations, and X the design matrix
with intercept and P independent variables, and Y the re-
sponse vector. Consider an FMGR model parameterized by
0 = {(m,By,0%)H |, it is assumed that when the i-th
observation, (x;,y;), belongs to the k-th component, k =
1,..., K, then y; = T B;, + €ir, and €; ~ N(0,02). In other
words, the conditional density of y given x is f(y|x,0) =
Zszl 1N (y; 2T B, 02), where N (y;p,0?) is the normal
density function with mean y and variance 0. And the log-
likelihood for observations {(x;,y;)}Y ; is

£(8) = X, log(Si meN (yis ] By, 7)) (1)

The unknown parameters 6 can be estimated by the maxi-
mum likelihood estimator (MLE), which maximizes (1). Note
that the maximizer of (1) does not have an explicit solution
and is usually solved by the EM algorithm. Basically, the
EM algorithm maximizes the complete log likelihood function,
L¢(0), through iterative steps, which is defined by

L6(0) =S 55 zilog T + log N (ys; @] By, 07)] ()

where z;. 1S a cluster indicator variable, and z;;, = 1 if the
i-th observation belongs to the k-th cluster, and O otherwise.

While mixture regression model is capable of handling the
heterogeneous relationships, it doesn’t work in the case of
high dimensional molecular features, where the total number
of parameters to be estimated is far more than the total



number of observations. In addition, with the dense linear
coefficients given by the ordinary EM algorithm, it is hard
to deduce the disease subtype specific molecular markers and
make meaningful interpretations.

Penalized mixture regression has been explored in different
settings [23], [24], [25], [26], [27] to handle the high di-
mensional mixture regression problem. The variable selection
problem in finite mixture of regression model was first studied
using regularization methods such as LASSO [11] and SCAD
[13] in [23], called FMRS. They considered the traditional
cases when the number of candidate covariates is much smaller
than the sample size, and proposed a modified expectation-
maximization (EM) algorithm to perform both estimation and
variable selection simultaneously. In [24], the authors proposed
a reparameterized mixture of regressions model, and showed
evidence for the advantage of multiple components that can
be exploited for variable selection over non-mixture linear
regression. A block-wise Minorization Maximization (MM)
algorithm was proposed in [26], where at each iteration, the
likelihood function is maximized with respect to a block of
variables while the rest of the blocks are held fixed. To solve
the population heterogeneity and feature selection problems,
an imputation-conditional consistency (ICC) algorithm was
proposed by [27], resulting in consistent estimators. While
some of the methods may produce consistent estimates of
6 under proper conditions, they tend to suffer from slow
convergence rate in high dimensional setting, especially with
smaller IV or larger K, and the number of hyper-parameters for
regularization further drags down the computational efficiency
caused by the need of cross validation. We here propose
a novel algorithm based on classification EM for penalized
mixture regression to circumvent these existing challenges
in clustering high dimensional data using mixture regression,
which largely increased the computational efficiency.

The rest of the article is organized as follows: in Section 3,
we introduce our algorithm, Component-wise Sparse Mixture
Regression (CSMR); in section 4, we compare CSMR with
four state-of-the-art algorithms on synthetic datasets, in section
5, we applied all the five algorithms on 24 drug sensitivity data
in CCLE, to screen for genes that underlie the heterogeneous
drug resistance mechanisms.

III. METHODS

We assume that the samples belong to different sub-
populations, each of which is defined by a distinct relationship
between the molecular biomarkers to the phenotype of interest,
and the molecular markers are sparse subsets of the high
dimensional molecular profiles specific to each sub-population.
Figure 1 illustrated an example where the patients fall un-
der two distinct subgroups: blue for patients acquiring one
mechanism to the treatment that resulted in responsiveness,
while pink for patients acquiring another mechanism to the
same drug that resulted in non-responsiveness. The goal of our
method is to cluster the samples (blue and pink) supervised
by the patients drug sensitivity measure, and find the defining
molecular features (yellow) associated with each cluster. The

identified molecular features could be further studied to guide
targeted therapeutic designs.

A. The penalized likelihood of mixture regression

Knowing that 3, is sparse means many elements in 3,
will tend to be close to zero, but not exactly zero without
proper regularization in the model. To simultaneously shrink
the insignificant regression coefficients in 3, and estimate 6,
we introduce penalty term to (1) and optimize the following
penalized log likelihood function;

max £(6) — Px(9) A3)
where £(0) denotes the observed log likelihood, and Py (0) :
REY — R is aregularizer of the regression coefficients, and the
penalty for each component is dependent on a component spe-
cific hyperparameter A, > 0. For notational convenience, we
define LP(0) = L(0) — Px(0). Various types of penalty were
used in mixture regression model [27], [23], but we consider
LASSO penalty form as it is convex and thus advantageous
for numerical computation [11], i.e.,

PA(6) = S5 755 Akl Bk “)

Similar to the case of low dimensional mixture regression,
EM algorithm could be adopted by maximizing the penalized
complete log likelihood function

L£P°(0) = L£°(8) — PA(8)

by iterating between the following E-step and M-step:
E-step: computing the conditional expectation of £P¢(6) with
respect to z;;, given the current estimates 6™ The conditional
expectation is

Q(0;0™) = SN K pllog m+log N (yi; 2T By, 07)]— Pa(6)

)

Then the conditional expectation of z;; is given by
m m)T (m)
) N B w0l
Pik = "k m) m)T (m)
Yimm N B L, 012 )

M-step: maximizing Q(6;0™)) with respect to 6, i.c.,

p(m+1) — {w;”“, ](€m+1)70]%<m+1>}§:1 — max Q(G;G(m))
60c®g

(6)

Unlike the ( l)ow-dimensional case, where
m—+1 .

R ,(Cmﬂ),a,% all have closed form solutions,

maximizing (6) is more complicated due to the involvement
of my, B3, in the penalty term and the non-differentiable form
of P)‘(G) at ﬁjk =0.

B. The classification EM algorithm

The Classification Expection Maximization (CEM)
algrorithm is an variant of the EM algorithm. It has been
popularly used in the Finite Gaussian Mixture Model[28],
[29], and shown to be have faster convergence rate [30].
Basically, the assignments {z;}Y, define a partition
C = Ui, Ck st. i € Cy iff z; = k. The CEM algorithms



maximizes £°(0) through iterating among three steps:
E-Step: calculating conditional expectation of pl(.zl)
the traditional EM.

C- Step dlsentangle the observations into K classes, by assign-
ing C as the set of observations most likely in cluster
k. ie. {i|k = argmax p(™,i=1,..,N}. Let ny denotes

e{1,....K
the total number of observations in cluster k.

M-Step: parameter estimation within each disentangled cluster,
(p (m+1) (m+1) <m+1>
where 7, ) is estimated as n, /N, and 3, ,T
are s1mp1y estimated as the ordinary least square (OLS)
. . . . (m+1)
estimators using observations in C’]C only.
We show the convergence of the CEM algorithm for the
low-dimensional case in Theorem 1.

, similar to

Theorem 1. For the sequence C(™), o™ updated as CEM,
the complete data likelihood converges to a stationary value.
Moreover, if the maximum likelihood estimates of the parame-
ters are well-defined, the sequence C(™), 0™ also converges
to a stationary position.

The biggest advantage of the CEM algorithm is that it
disentangles the mixture into individual non-overlapping com-
ponents, such that flexible sparsity control could be easily
achievable within each component. Hence for the high dimen-
sional mixture regression problem, we could simply replace
the OLS estimator in the M step of the CEM algorithm by a
sparse estimator, i.e.,

argmax Z log N (yi; ] By, o) — Meme 31| Bj]
ﬁk €C£7n+l)

This is simply L; regularized linear regression, for which
many efficient algorithms exist [31].

C. The CSMR algorithm

Here we proposed the CSMR algorithm to solve the high
dimensional mixture regression problem based on the CEM al-
gorithm. In CSMR, the mixture regression setting could handle
the hidden cluster problem, and the disentangled clusters under
CEM could efficiently solve the feature selection problem in
high dimensional setting. At E-step, we calculate the posterior
probability p; similar to traditional EM and ECM; at C-step,
we assign each observation to a cluster that it most likely
belongs to, similar to traditional CEM; at the M-step, for each
component, we perform regularized linear regression to obtain
a sparse set of non-zero coefficients.

A big challenge with the penalized mixture regression prob-
lem is the choice of component specific penalty parameters
Ak. The Ag’s are related to the amount of regularization, and
their selection is a critical issue in a penalized likelihood
approach. It is usually based on a trade-off between bias
and variance: large values of tuning parameters tend to select
a simple model whose parameters estimates have smaller
variance, whereas small values of the tuning parameters lead
to complex models, with smaller bias. Cross-validation over a

grid search is the commonly adopted method to select the
optimal combination of )\, but this becomes increasingly
prohibitive with the increase of K, especially when we don’t
have a good knowledge of the theoretical range of the \j.

Hence, instead of first performing penalized linear regres-
sion for given ), and then search the optimal combination
of A\, [23], we propose to conduct the tuning of A with
cross validation inside the ECM iterations. Specifically, under
the CEM algorithm, all the components are disentangled,
we could hence perform hyperparameter tuning inside each
iteration within each component. This is to say, at the M-
step, we not only estimate the regression coefficients, but also
find the best tuning parameter )\, for the component. Hence,
at the end of the algorithm, we avoid the hyperparameter
tuning, as they have already been selected within the iteration.
We adopted efficient cross validation algorithm for selecting
the optimal regularization parameter under L, regularized
linear regression [31]. Since we no longer need to run the
algorithm multiple times on a K-dimensional grid space of
the penalty parameters, and could hence largely reduce the
computational cost. We have shown in simulation studies that
penalty parameters selected this way empirically worked very
well.

Another adaptation on the traditional ECM algorithm of
CSMR is a model refit step following the ECM steps. To in-
crease the numerical stability and achieve faster convergence,
at the end of each iteration, we refit the mixture regression
model using flexible EM algorithm with only the selected
variables of each component. Basically, for each component,
the coefficients of the variables not selected at the M-step
will be forced to be zero. This could be easily achievable by
allowing only the selected variables of component k to enter
into the model fitting of the k-th regression parameters.

Algorithm 1 CSMR

Input: XNXP,YNxhK

Output: 0,C = Uk 1Ck7{ﬁ()kaﬁk}k 1
Initialization: 0(©) = {r k,ﬁk N 20 S

for m=0,...,Max Iteration do

E-step: Compute the conditional expectation of z;;, similar
to traditional EM algorithm.

C-step: For k = 1,..., K, assign C} as the set of
observations that are mostly likely in component k.
M-step: For k = 1,..., K, the relative cluster size is

( +1)
~(m+1) "km
N

(m+1)

updated by 7,
)\I(Cm+1)

, and the tuning parameter

m+1)
, and regression parameters (,Bk , (m+1)) are

selected and estimated using cross validation, such as the
cv.glmnet function in glmnet package.

Model refit: refit the FMGR model by allowing only
the selected variables in each component and to obtain

w,(gmﬂ), ;Cmﬂ), o mH)}k 1 given by this flexible mod-
eling

Stop if converged.
end




The CSMR algorithm requires the initialized values 6. Here,
we order the features based on its individual Pearson correla-
tion with the response variable, and then fit a low-dimensional
mixture regression model solved by traditional EM algorithm
using the top correlated genes. CSMR is implemented in R,
and was made available in https://github.com/zcslab/CSMR.

D. Selection of component number K

The number of clusters K is a sensible parameter because
it describes the heterogeneity of the population. For selection
of K, we could use a modified BIC criterior that minimizes

BIC(K) = —2LP(07%) + log(N)d

where 07} represents the parameter estimates for K, and
dg = K+ (K —1) + EleElel{ﬂjkﬂ} is the effective
number of parameters to be estimated, similar to [32]. Specif-
ically, there are K standard deviations, oy, associated with the
K regression lines; K — 1 component proportions, 7y, since
Y, = 1; and all the non-zero linear regression coefficients
for all the K components.

In addition to the BIC criteria, we also offer a cross
validation algorithm for the selection of K. Take a 5-fold cross
validation as an example. For given K, at each repetition,
80% samples are used for training to obtain the regularized
parameter 07 . Then, for a sample (x;, y;) drawn from the 20%
testing samples, its cluster membership, kg, is first predicted
as

T 2
ko = m]§X7TZ,KN(yi; T; 52,}{7 UkTK)

Here, 7}, f, ﬁ; K> a%j‘K denote the CSMR estimated param-
eters when the number of components is K. After assigning
the observation to component ky, we could make prediction
of the response based on linear regression, i.e. §; = miTBZO7K,
as well as the associated residual, y; — y;. Notably, such
a prediction of the response is different from simple linear
regression, as the prediction process requires knowing the
value of the response, in order to assign it to the right cluster.
After knowing its cluster membership, a prediction of the
response could be made.

A large K will tend to overfit the data with more complex
model of higher variance, while smaller K might select a
simpler model with larger bias. Using the independent testing
data, we could decide how to balance the trade-off between
bias and variance. To evaluate how the estimated model under
K explains the testing data, we could calculate the root-
mean-square-error between y; and y;, or Pearson correlation
between the two. By repeating this procedure for multiple
times, a more robust and stable evaluation of the choice of K
should be derived based on the summarized RMSE or Pearson
correlations.

IV. APPLICATION TO SIMULATION DATA

A. Data generation procedure

We simulated the independent variables z;,¢ = 1,..., P,
which follows ii.d normal distribution, i.e., z;; ~ N(0,1).

The component proportions were made to be equal, i.e.,

T = % For component k, a random sample of size

My were taken from {1,..., P}, denoted as I. And Bj; €

Unif((=b, —a)U(a,b)), if Bri € Ix; Bri = 0, if Brs & Ix.
The response variable Y; was generated by the following

two-step process:

1. Draw component z; € {1,..., K} with probability p(z; =

/{|9) = Tk.

2. Draw an observation y; according to normal distribution

N(Bok + BE @i, 07).

Here, we fix a = 2,b = 5, P = 100. We explored
the performances of existing methods under 12 different
simulation scenarios, for each of which, 100 repetitions were
conducted:

Cases 1-3. N =200, 300,400, P =100, K = 2,0 =1, My =
5

Cases 4-6. N =400, P =100, K =2,3,4,0=1,My =5
Cases 7-9. N =400,P =100, K = 2,0 =0.5,1,2, My =
Cases 10-12. N = 400,P = 100,K = 2,0 = 1,M,
5,8,20

5

B. Baseline methods

We compared CSMR with five different methods, including
L1 penalized regression, or LASSO; Lo penalized regression,
or Ridge regression (RIDGE); random forest based regression
(RF), FMRS [33] and ICC [27]. They differ in their ability to
perform prediction, clustering and variable selection, as shown
in Table 1.

TABLE I: Baseline methods

Prediction | Clustering | Variable selection
CSMR X X X
LASSO X X
RIDGE X
RF X X
FMRS X X X
ICC X X X

Among them, CSMR, ICC and FMRS are capable of doing
variable selection at the same time of sample clustering. How-
ever, FMRS can only deal with relatively lower dimensional
features.

C. Performance comparisons

We focused on four metrics for method comparisons: 1) the
average correlation between predicted and observed response;
2) the true positive rate (TPR) and 3) true negative rate (TNR)
of variable selection; 4) the rand index of sample clustering
(RI). Note that for observation ¢, its predicted response is
given by Eszlzik (xI'B,), where 2y, is its cluster membership
indicator. The average of the four metrics over 100 simulations
in each scenario was calculated and shown in Table 2. Here,
we assume that the true K is known.

In general, CSMR performs the best in terms of the four
evaluation metrics in the majority of the scenarios. For pre-
diction accuracy of the response using correlation, CSMR and
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Fig. 2: Time consumption of CSMR, and ICC on simulation
data for K = 2 (left) and K = 4 (right), and N = 400,0 =
1, My = 20 over 100 repetitions, error bars indicate standard
deviations.

ICC perform comparably well, and CSMR slightly better in
most of the cases. This is expected as LASSO, RIDGE and
RF can not deal with the sample heterogeneity, and FMRS
does not work well when the feature dimension is high. For
sensitivity and specificity of the variable selection, CSMR
performs significantly better than ICC and FMRS. Selection
of the right variables is very important as it characterizes the
unique features of each component, based on which, we could
further deduce the biological interpretation of each unique
component. ICC and FMRS suffer from very low sensitivity of
variable selection in almost all cases, and their specificity met-
rics are not desirable either. For clustering, CSMR again has
the best or close to the best performance compared with ICC
and FMRS. ICC achieved similar performance with CSMR in
some cases, but it clearly suffers when K or the number of
effective variables M, become large. We also compared the
computational efficiency of CSMR and ICC under the param-
eter setting: N = 400,P = 100,60 = 1,My = 20, K =2
or 4. Figure 2 shows the computational cost and its standard
deviation for two algorithms over 100 repetitions. Clearly, the
computational efficiency of ICC drops significantly when K
increases from 2 to 4, while the time consumption for CSMR
stays approximately the same.

Hence from simulation data, we could see that CSMR
achieved the most desirable performance in terms of pre-
diction accuracy, variable selection and clustering, compared
with three non-mixture regularized models, and two mixture
models. While ICC is competitive in some cases, it severely
suffers from poor variable selection, and its computational
cost is too prohibitive compared with CSMR. The CSMR has
a built-in cross validation step within the CEM iteractions,
which could largely increase the sensitivity and specificity of
the variable selection procedure, and the flexible model refit
step following the CEM steps guarantees that the algorithm
could achieve faster convergence and more stable results.

V. APPLICATION TO CCLE DATA
A. Description of the dataset

Over the past three decades, the use of molecular data to
inform drug discovery and development pipeline has generated
huge excitement. Predicting the drug sensitivity becomes an
integral part of the precision health initiative. Although earlier
efforts successfully identified many new drug targets, the
overall clinical efficacy of the developed drugs has remained
unimpressive, owing in large part to the population hetero-
geneity, that is, different patients may have different disease
causing factors, and hence drug targets. Here, we apply CSMR
to study the patient heterogeneity in their response to different
drug treatments, and select the most key molecular features
that underlie the heterogeneous disease causes.

We collected gene expression data of 470 cell lines on 7902
genes, as well as the cell lines’ sensitivity score to all 24 drugs,
from the Cancer Cell Line Encyclopedia (CCLE) dataset [6].
The sensitivity score, or called the AUCC score, is defined
as the area above the fitted dose response curve, and it has
been shown to have better predictive accuracy of sensitivity
to targeted therapeutic strategies than other measures, such as
IC50 or EC50 [34]. We applied all five methods on the dataset,
where the drug sensitivity score was treated as response
variable and the gene expressions as independent variables.
Here, FMRS is not applicable as the feature dimension is too
high while the sample size is too small, hence it is omitted
from further analysis. Our goal is to study the biological
mechanism of possible heterogeneity in drug sensitivity, under
the hypothesis that cells exhibit subgroup characteristics by
selecting different genes that confer their different levels of
drug sensitivity.

B. Results

We compare the performances of the five methods using
cross validation. Basically, for each drug, we conduct a 5-
fold cross validation by holding 80% of the data as training,
and 20% as testing data, for each of the 100 repetitions. At
each repetition, the 20% testing data is used to independently
evaluate the performance of each method. At the training
phase, we start by fixing the hyper parameters involved in
all methods. The penalty parameters for LASSO and RIDGE
were selected by cross validation within the training samples.
For RF, the default parameters were used in the function
‘randomForest’ of the package with the same name. For ICC,
we used the selected component number as in its original paper
[27]. For CSMR, to select the best K, we performed both
cross validation and the traditional BIC criteria introduced in
Methods, over a grid of K = 1,2,3,4,5,6. We adopted the
results from cross validation, as there is a lack of rigorous
theoretical foundation for the validity of the traditional BIC
under this high dimensional setting, and the data driven selec-
tion of cross validation seems more reasonable. The selected
K for BIC and cross validation using CSMR and used K
for ICC is summarized in Supplementary Table S1. With the
hyper parameters fixed, we then conduct parameter estimations



TABLE II: Comparisons of CSMR with other five methods in various simulation settings

Experiment o =1,N =400,Mo=5 | K=2,N=400,My=5 | K=2,0=1,My=5 | K=2,0=1,N = 400
Metrics K o N My
Parameter 2 3 4 | 0.5 1 2 | 200 300 400 | 5 8 20
CSMR 0.992  0.988 0.999 0.998 0.994 0.977 0987 0993 0994 | 0992 0.995 0.994
ICC 0.992  0.985 0.909 0.998 0.984 0.982 0992 0992 0984 | 0992 0.994 0.984
Cor(y,9) LASSO 0.743  0.654 0.585 0.745  0.778 0.729 0.776 ~ 0.756  0.778 | 0.743  0.754 0.778
RIDGE 0.784  0.697 0.639 0.783  0.789 0.772 0.834 0.802 0.789 | 0.784 0.782 0.789
RF 0.716  0.583 0.487 0.719  0.605 0.700 0.717 0.720 0.605 | 0.716  0.691 0.605
FMRS 0.780 0.676 0.568 0.780  0.706 0.769 0.727 0.797 0.706 | 0.780  0.780 0.706
Variable CSMR 0.999 0.950 0.538 1 0.980 1 0.956 1 0.980 | 0.999 0.998 0.980
Selection ICC 0.500 0.332 0.339 0.500 0.461 0.500 0.500 0.500 0.461 | 0.500 0.496 0.461
(TPR) FMRS 0.679  0.552 0.487 0.681 0.579 0.674 0.672 0.706  0.579 | 0.679  0.635 0.500
Variable CSMR 0.993 0.976 0.785 0.994 0.992 0.968 0.966 0990 0992 | 0.993 0.992 0.992
Selection ICC 0972  0.957 0.669 0.973 0.870 0.735 0.966 0972 0.870 | 0.972 0.953 0.870
(TNR) FMRS 0.499  0.680 0.758 0.504 0.512 0.500 0.502 0.506 0.512 | 0499 0.515 0.500
Sample CSMR 0.893 0.833 0.624 0.943 0917 0.787 0.852 0.886 0917 | 0.893 0.908 0.917
Clustering ICC 0.887  0.838 0.549 0.941 0.879 0.787 0.878 0.881 0.879 | 0.887 0.903 0.879
(RD FMRS 0.501  0.546 0.624 0.502 0.513 0.502 0.501 0501 0513 | 0501  0.502 0.513
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Fig. 3: The distributions of the RMSE over 100 repetitions for the five methods, for the 24 drugs. The lower RMSE value, the
better performance. ‘C’,’T’,'A’,‘G’,‘F’ stand for ‘CSMR’,‘ICC’,'LASSO’,‘RIDGE’,‘Random Forest’
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Fig. 4: For each drug, the Venn diagram of the selected genes for different mixing components are shown. The numbers show

the size of overlap between the gene sets.

for each of the five methods using the training samples, and
concludes the training phase.

At the testing phase, the predicted and true drug sensitiv-
ity scores were examined in terms of their correlation, and
residual mean squared error (RMSE). Note that this part of
the testing data has never been used in the hyper parameter
tuning or parameter estimation before. The distributions of
RMSE and correlations over 100 repetitions for all the 24
drugs for all the five methods were shown in Figure 3 and
Supplementary Figure S1, respectively. For 22 drugs, CSMR
had the significantly smaller average RMSE, and was very
close to the smallest RMSE for the rest of the two drugs; and
we could make the same conclusions based on the correlation
results as well. This demonstrated the consistent and robust
performance of CSMR over the others.

Among the five methods, RF had the poorest performance
on the testing data, probably caused by model overfitting.
LASSO and RIDGE worked much better than RF, probably
due to its power in model selection. However, they performed
significantly worse than ICC and CSMR in majority of the
cases, which indicates the existence of population heterogene-
ity and necessity of using mixture modeling. The performance
of ICC is much worse than CSMR in most of the cases,

which we believe is caused by the under-estimation of the
population heterogeneity by ICC. In other words, the selection
of K in ICC is too conservative. In fact, according to cross
validation, the number of distinct clusters given by CSMR
for the drugs is either 3 or 4, while for ICC, the number of
distinct clusters are determined to be less than 3 for half of
the drugs. We believe that cross validation is a data driven
approach for selection of K, and should be more reasonable
than theoretically derived criteria. In the case of CCLE data,
the samples are different types of cells from very different
experimental and genetic backgrounds, and it is expected that
they would pick up different molecular mechanisms to deal
with the attacks of the drugs. Hence, the cluster number given
by CSMR is more realistic than ICC. It is wrothy of note that
for those drugs that CSMR and ICC gave the same number
of distinct clusters, namely Irinotecan, L-685458, Lapatinib,
Paclitaxel, PD-0332991, PHA-665752 and TKI258, CSMR
exhibited much smaller RMSE than ICC.

Figure 4 demonstrated the Venn diagram of the selected
genes for different components for each drug, and all the
selected genes could be found in Supplementary Table S2.
It could be seen that for the same drug, different clusters
of cells indeed acquire different coping mechanisms, as seen



by the different set of genes selected. This again confirms
the high heterogeneous populations within the CCLE cohort.
For each drug, we pooled all the selected genes together
and conducted pathway enrichment analysis against 1,328
pathways collected in [35], and the top enriched pathways are
shown in Supplementary Figure S2. Again, it could be seen
that different responses to different drugs have been employed.

VI. CONCLUSIONS

With the recent rapid evolution in genomic technologies,
we have now entered a new phase, one in which it is possible
to comprehensively characterize the molecular profiles of
large population of subjects. Importantly, the development
of sequencing technologies has been paired with a transition
towards integrating molecular data with phenotypic data, such
as in the electronic medical records. Such a synergy has
the potential to ultimately facilitate the generation of a data
commons useful for identifying relationships between molec-
ular variations and their clinical presentations. Unfortunately,
existing big data analysis tools for mining the information rich
data commons has not been very impressive with regards to the
overall transnational or clinical efficacy, owing in large part to
the heterogeneous causes of disease. It is hence imperative to
unveil the relationship between the molecular manifestations
and the clinical presentations, while taking into account the
possible heterogeneity of the study subjects.

In this paper, we proposed a novel supervised clustering
algorithm using penalized mixture regression model, called
CSMR, to deal with the challenges in studying the hetero-
geneous relationships between high dimensional molecular
features to a phenotype. CSMR is capable of simultaneous
stratification of the sample population and sparse feature-wise
characterization of the subgroups. The algorithm was adapted
from the classification expectation maximization algorithm,
which offers a novel supervised solution to the clustering
problem, with substantial improvement on both the computa-
tional efficiency and biological interpretability. Experimental
evaluation on simulated benchmark datasets with different
settings demonstrated that the CSMR can accurately identify
the subspaces on which subset of features are explanatory
to the response variables and the feature characteristics of
the subspaces, and it outperformed the baseline methods.
Application of CSMR on the heterogeneous CCLE dataset
demonstrated the superior performance of CSMR over the oth-
ers. On the CCLE dataset, CSMR is powerful in recapitulating
the distinct subgroups hidden in the pool of cell lines with
regards to their coping mechanisms to different drugs. CSMR
also demonstrated the uniqueness of different subgroups for
the same drug, as seen by the distinctly selected genes for the
subgroups.

In summary, CSMR represents a big data analysis tool
with the potential to bridge the gap between advancements
in biotechnology and our understanding of the disease, and
resolve the complexity of translating the clinical manifesta-
tions of the disease to the real causes underpinning it. We
believe that such a tool will bring new understanding to the

molecular basis of a disease, and could be of special relevance
in the growing field of personalized medicine.
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