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ABSTRACT

Low rank representation of binary matrix is powerful in disen-
tangling sparse individual-attribute associations, and has received
wide applications. Existing binary matrix factorization (BMF) or
co-clustering (CC) methods often assume i.i.d background noise.
However, this assumption could be easily violated in real data,
where heterogeneous row- or column-wise probability of binary
entries results in disparate element-wise background distribution,
and paralyzes the rationality of existing methods. We propose a bi-
nary data denoising framework, namely BIND, which optimizes the
detection of true patterns by estimating the row- or column-wise
mixture distribution of patterns and disparate background, and
eliminating the binary attributes that are more likely from the back-
ground. BIND is supported by thoroughly derived mathematical
property of the row- and column-wise mixture distributions. Our
experiment on synthetic and real-world data demonstrated BIND
effectively removes background noise and drastically increases the
fairness and accuracy of state-of-the arts BMF and CC methods.
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1 MOTIVATION

Binary matrix has been commonly utilized in multiple fields. Low
rank pattern in a binary matrix is defined as rank-1 sub matrices
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Figure 1: Individual bias in binary transaction records data

formed by the product of two binary bases. Comparing to continu-
ous data, recent studies demonstrated the rank-1 sub-matrices in
binarized data is more robust for mechanism interpretation or sub-
space representation [3, 4], because binary data in general bears
reduced noise than continuous data. However, variations of the
probability of 1s of rows or columns may lead to varied element-
wise probability, causing a fairness issue in low rank representation
of binary data [6].

An intuitive example is binary transaction records data (figure
1), in which 1s represent the purchase of items (each column) by
users (each row). Different items or users are with varied activities
in conducting purchasing. For example, super-users make more
purchase, which can be independent to items, and popular items are
more likely to be purchased. The transactions made between super
users and popular items unnecessarily imply good recommenda-
tions since it can be simply caused by the high purchase chance. On
the other hand, the group of items having a strong purchase prefer-
ence within a certain group of users comparing to their background
purchase rate is more valuable for recommendation. However, the
fairness issue in the low rank representation of binary data due to
varied element-wise background probability was rarely considered
in existing formulations [5].

Here, we propose BIND, a binary data denoising method via con-
sidering the data is generated from the mixture of to-be-identified
rank-1 patterns and an unknown background of element-wise prob-
ability, plus i.i.d. errors. BIND estimates the mixture distribution of
the probabilities of 1s from rank-1 patterns and background in each
row and column, by which the rows or columns that are more likely
with true rank-1 patterns are distinguished by the over-represented
1s comparing to the background.

Key contributions of this work include: (1) BIND is the first of this
kind of binary data denoising method via considering non-identical
background distribution, (2) BIND can be easily implemented with
state-of-the-arts BMF or CC methods for a fairer rank-1 pattern
detection, and (3) rigorous mathematical derivations are provided
to characterize the property of disparate background distribution.
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2 BACKGROUND
2.1 Notations

We denote matrix, vector and scalar by uppercase, bold lowercase
and lowercase character X, x, x. Superscript with X indicates di-

mensions, while subscript implies index, such as XZ’.’X” and x;’”d.

Pij 2 P(X; j = 1) denotes the element-wise probability of 1 at the
element X;;. |x| and |X| represent the /1 norm of vector and matrix,
and o represents Hadamard product.

2.2 Related work

Existing methods of binary matrix low rank representation fall into
two major categories, namely binary matrix decomposition (BMF)
and co-clustering (CC). BMF aims to decompose a binary matrix
as the product of two low rank binary matrix by maximizing its
overall fitting to the original matrix. The formulation of BMF is
thus generalized as

xmxn _ Ukakan 4+ gmxn

, where U and V are the low rank pattern matrices, and E is the
flipping error with p(1 — 0) = p(0 — 1) = py. BMF problem is NP-
hard, for which multiple heuristic algorithms have been developed.
One representative method is ASSO, which retrieves candidate
patterns by using row-/column-wise correlation [2]. More recently,
Bayesian probability measure and geometrical identification largely
improved the efficiency and accuracy of BMF [3, 4].

In contrast, the co-clustering (CC) method, also named as bi-
clustering in statistics and computational biology, maximizes the en-

richment of 1s in the detected patterns based on certain thresholds[1].

For given X™*" most CC methods aim to identify the cardinality of
indexsetI; X Jj,1 =1,....k, where [; € {1,...,m} and J; € {1, ...,n},

_ e ifijelx ]
s.t. Pjj= oo
po, if ,j & I X Jp
Noted, both BMF and CC methods assume the binary data is formed

by the sum of to-be-identified rank-1 submatrices and an i.i.d error,
where individuals bias has not been investigated.

Vi=1,..,k

2.3 Problem formulation

We consider the observed binary data with disparate element-wise
background probability that is generated by:

X = ymxkykxn X0 L E' + E (*)
Compared with the formulation of BMF, X° is the background
matrix. E’ is the pattern wise observation error that each element

from pattern [ has a probability of 1 — p; to be zero, while the
elements outside patterns will not be impacted, i.e., Pg(l —0) =
V=ppifi,j € I X Ji, PE (1= 0) = 0,if i, j ¢ [; X J, VI = 1,... k.
Under this definition, by considering X 0 are 0, current BMF and
CC described in 2.2 are special case of (x), and were designed to
handle the pattern observation error E’ and elment-wise flipping
error E. Thus, the bottleneck of a fair binary submatrix detection
lies in differentiating true patterns from the background X°. We
consider the assumption of P(X?j =1)« p?’r . p?’c that can cover
most of the binary data with disparate background, when X?. are
conditionally independent with fixed row or column index, like the
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purchase transaction data in figure 1 with items of different popular-
ity and users of different activity. We denote the row/column-wise
background probability as p™*% 0:roW and pnxL 0.column ghoried

0 X0 |
0,r 0,c 0,r ~0,r _ |X-;| 0,c ~0,c _ | i
asp™" and p>°, where p;”” « p;" = = andp;” o« p = 5,
X 11X
A,

and P(X?j = 1) can be unbiasedly estimated as X

3 BIND FRAMEWORK

Here we propose the BIND! framework to identify the rank-1
patterns (U, V) from binary data X with disparate background
X°. Denoting P(X?j = 1) as P?j, the element-wise probability
Pij £ P(Xij = 1) can be derived as:

0, 0, ..
P pyT oy i ¢ any I %y

Pii =
Y {1 — (=P =p1) = pf + A =ppr, i € I X Jy

()
Specifically, the row and column probability p} and pjc. can be esti-

mated by p} = % and p}c = % Noted, p” and p¢ are formed

by the mixture distribution of p®”, p%¢ and p;. Analogous to BMF
and CC problem, direct inference of p®”, p®€ and p; from p” and
p€ is NP-hard. As shown in Figure 2A-D, instead of computing
p%”,p%¢ and p;, BIND identifies the rows and columns that are
most likely conceiving patterns comparing to others. The elements
of the intersection of the identified rows and columns more likely
represent true rank-1 patterns (figure 2F-]). For this task, we in-
troduce the quantile_shift algorithm with thorough mathematical
proof.

Quantile_shift algorithm is designed to distinguish rows or
columns that are more likely conceiving rank-1 patterns. First, we
introduce the concept of empirical distribution of row-/column-
wise probability, denoted as F” and F¢ (figure 2A,B), which are
sampled from p” and p¢ with probability P(F" = p7) o« p! and
P(F¢ = Aj”.) o fb}c The observed probability of hits F" of any row
ip or column jo is defined by Fi-"-h = {p}c |j with Xj,; = 1} and
Fhhoio = {p]li with X;j, = 1}. Here F" and F¢ characterize the
distribution of p” and p€ of the 1s randomly drawn from p” and
P¢. Intuitively, if a row or column conceives a distinct pattern, the
quantile function Q" of F" will shift drastically from the quantile
function Q¢ of F€ or Q" of F” (figure 2C). On the other hand, o
will be similar to Q¢ or Q" if the row or column does not contain

1Code and material can be access at https://github.com/clwan/BIND
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any pattern (figure 2D). Hence the shift between Q" and Q" or Q€
can serve as a weight s to differentiate the rows or columns more
likely conceiving a pattern (figure 2E). Noted, here F” and F¢ serve
as proxy of F*" and F%¢, which are the empirical distribution of
the true background probability of p%” and p®°¢. In the following
content, we prove s approximates the pattern size within each row
or column, ie., s = [(UV+E’);.| or |(UV +E’),j| with certain bounds.

The input of Quantile_shift algorithm include a row or column
index ip/jo, and p€ or p”, by which the empirical distribution F¢
or F” will be sampled, and the probability of hit of the row or
column F” will be computed. The output is weight s of the row or
column. Without loss of generality, we illustrate the Quantile_shift
algorithm for computing the weight of row iy below, and detailed
mathematical proofs as follows:

Algorithm 1: Quantile_shift
Inputs: Row index iy, Estimated column-wise probability p¢
Outputs: Estimated weight of significance of row iy, sl.’O
Quantile_shift(ip, p°):
F¢ « sampled from p€ with probability p°
h {DS§1j with Xiy = 1}
FW — sort(F), a — length(Fh)

— [FC>b|+1
Qc(p) sup(b) s.t. W <p and W >p
for j=1..a do

. h) Jj
if £ > (L) then
tj < the column index s.t. F;.h) = f)gj & Xigr; =1
FY-0°(L)

s s+ 5
1Ptj

end

LEMMA 1. Ifp" and p¢ are unbiased estimation of p»" and p*°¢
The weight computed by quantile_shift is an unbiased estimation of
the sum of E(U™KVkXn o E7) with respect to that column or row.

ProOOF. If p” and p¢ are unbiased estimation of p*” and p%°¢,
F” or F¢ generated from p” and p¢ form unbiased empirical distri-
bution of row-/column-wise probability of 1s of X°, i.e. P(F%" =
p;") ey and P(E™® = p'‘) o< pi¢
we prove the lemma for the computation of the weight of the igth
row. Denote t = {j|Xj,; = 1} and a = length(t), by Algorithm 1
and (%),Vje{1,...,a}:

If iotj ¢ any I; X J,

. Without loss of generality,

(h) _ i Copiac |F¢ < b|
B - Q1)) = K, supl s < 1)) =
Else, iotj € Iy X J; for certain |,

) _ oIy = B 4 (1 — 8¢ Vs — [E€ <bl _J
E(F;™ = Q(2)) = E(py, + (1 - Py, )pi sup(bllength(Fc) <)
=(1- PtJ)Pl

Such that
a, F" Q( > a

(Zf

)= D Dol = [EU™RVRN 4 By

1 j=1
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[m]

0,c

LEmMA 2. For X in (%), and P?j = P(XO) p?’r - p; ¢, the

[Xi: |
n

probability estimated by p =
T Hielpilh]

andﬁ; = l Jl are bounded by

A < 1Ge])pill
|pl pz "I < nd|p}?—p?’c|gw.

Lemma 2 can be derictly derived from (%) and (x).

LEMMA 3. The weight of the igth row (or similarly joth column) is
with a bias led by the biasedly estimated p° and p”, which is bounded
max(F°)+max(\EUVEDI ) (|pe|11)

by E(s — |[(UV + E)jy:]) < min(=p) [F°]

We still use the compututaion of the ipth row to illustrate the
proof. The case for columns can be similarly derived.

PROOF. By Lemma 2, p¢ is a biased estimation of p%¢, where

. X0
f)jc = l);:{‘ > ?’c = ‘ml, j = 1,..,m. Hence F® > F&(h)
suggesting 1 — F&(") > 1 — F(") and Qc(é) > QO’C(é), by which
. c _ NO0,c
och| [y 000

1—f’(t)jc 1=py | i

vV

0,(h) 0,¢( ) (h) _
Fj _Q c(a) Fj

|[E(UV+E’).;|
—

By lemma 2, the bias of [p¢ — p{"°| is bounded by

So the max shift caused in the quantile function rr}ax){Qc(z) -
z€(0,1

IEUV+E), |

max(p©)+max( o )+max(

0%¢(2)} isbounded by e
Hence the cumulative bias is bounded by

|[E(UV+E'),;|

m - )

|E(UV+E )il

)(1p€1 + 1))

a(max(p©) + max(

min(1 - p ”)|P |

E(s—|E(UV+E")jy:|) <
o

Lemma 1 suggests |Qh—Q0| is an unbiased estimation of the ex-
pected number of 1s in the rank-1 patterns and Lemma 2-3 provide
the bound of the bias of |Qh—Q| when QU is biasedly estimated as Q.

THEOREM 1 (QUANTILE_SHIFT). For a relative sparse binary ma-
trix, the weight calculated by Quantile_shift sufficiently characterizes
the indices of the patterns with largest P;|I;| and P;|J;|.

Proor. For i0th row (or similarly for the jOth column),

e [EQUV+E);|\ /1 e
E(s - [(UV + E'i ) < a(max(p€) + mfzx(—A e Y(PC] + 1))
min(1 - p°)|p°|
_ a max(f)c) |E(UV + E’)Jl
B A I T

, suggests that when the input matrix and rank-1 patterns are rel-
atively sparse, the weight s approximates (UV + E);,., i.e. largest
values in s” and s¢ correspond to the rows and columns of the
patterns with largest P;|I;| and P;|J|. O

BIND framework is developed to implement Quantile_shift al-
gorithm with a BMF or CC method, denoted as ¥, for a fairer
rank-1 pattern identification under the formulation of (x). As illus-
trated in figure 2F-J, Quantile_shift denoises the majority of the
background signal and enables a BMF or CC method better detects
U™k and V¥ A cutoff 7 is needed to differentiated the weight
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of the rows or columns with true patterns (figure 2E). Empirically,
t could be set from 0.05 to 0.1 in BIND algorithm.

BIND is capable for one direction denoising. The Quantile_shift
algorithm is O(n) or O(m) for row or column weight computation
and the BIND algorithm is O(mn), which is smaller than most of
current BMF and CC methods. The BIND algorithm is detailed
below:

Algorithm 2: BIND

Inputs: Input data X™*", Threshold 7, BMF/CC method ¥
Outputs: Pattern matrices U™ and vk*7

BIND(X, 7, F):

Xyse — 0-X, 87 « 0™ ¢ o<1

N A ae _ 1%l
p;_TVL_1,...,mandpj-'_—m'LVj—1,---,i'1

for i=1..mdo
| s] = Quantile_shift(i, p¢)

end
for j=1..ndo

| s;f = Quantile_shift(j,p")
end

IT — I(s™ > 1), I¢ «— I(s€ > 1), Xyse «— X o (I" - 1¢T)
U,V « T{Xuses }

4 EXPERIMENT

In this section, we evaluate the performance of BIND on synthetic
and real-world data sets across different data scenarios. We demon-
strate the implementation of BIND with different BIND BMF and
CC methods can significantly improve their fairness in detecting
rank-1 pattern from binary matrix with disparate background prob-
ability. We also highlight the application of BIND framework for
better result interpretation on real-world Movielens data.

We simulate synthetic data sets X1%9%190 with fixed size by
following (%): X = Umxkykxn , pr 4 x0 4, E with different
pattern size € {10, 15, 20}, pattern number k € {1,2}, observa-
tion error p; € {0.8,0.9, 1.0}, background probability p®", p%¢,
and element-wise flipping error py € {0, 0.05}. Specifically, back-
ground probabilities were generated from uniform distribution
p%",p%¢ ~ U[0.1,p], where p € {0.5,0.6,0.7} corresponds to
different background probabilities. Altogether, we deem 108 data
scenarios from the above parameter settings and simulated 30

replicates for each scenario to form a test-bed. Jaccard index D =
IXNUV|
[XUUV]|
metric. For each data scenario, denoising performance is evaluated

by the averaged Jaccard index on the 30 replicates. We first compare
the performance with respect to different significance threshold
r = {0,0.05—1}, where r = 0 represents the data without denoising.

(X = original or denoised data) is used as the evaluation

As shown in figure 3A, the denoising process on average increased
the Jaccard index by 2.6 fold and denoising efficiency is slightly
increased with 7. Table 1 lists the denoising performance with re-
spect to different number of patterns k, background probabilityp
and observation probability py, where pattern size is set as 15 and
r=0.1.

We benchmark BIND by implementing with recently developed
BMF method LOM and CC method Biclust, which showed top
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Figure 3: Performance on simulated and Movielens data

P single pattern Multiple pattern
P 0.8 0.9 1.0 0.8 0.9 1.0
0.5 0.17/0.67 0.18/0.79 0.20/0.88 0.28/0.59 0.31/0.73 0.34/0.84
0.6 0.13/0.48 0.14/0.61 0.16/0.73 0.23/0.47 0.26/0.59 0.28/0.69
0.7 0.11/0.29 0.11/0.37 0.13/0.47 0.19/0.34 0.21/0.40 0.22/0.52

Table 1: Jaccard index before/after denoising

performance among similar state-of-the-arts methods [1, 3]. The
implementation of BIND largely increased the accuracy in detect-
ing true patterns, which results in an averaged 7.5 (LOM) and 2.6
(Biclust) fold increase of the Jaccard index (figure 3B,C) .

We also demostrate that BIND increases the interpretation and
denoising in real-world Movielens data, in which X;; = 1 represents
the interest of user i (row) in rating/watching movie j (column).
Category label of each movie is provided. Intuitively, disparate
background probablities naturally exist in this data due to different
popularity of movies and activity of users. Data is divided into
four regions by the I" and I° computed in Algorithm 2 (figure
3D,E), where (D) is the region most likely with patterns, and (2),
@ and (@) are denoised regions. Users in region (I) watched more
movies but less categories comparing to other regions (figure 3F),
suggesting potential recommendation. In addition, region (I) has
smallest dispersion of the number of rated movies with respect to
different categories, suggesting more stable rating preference of
users towards their preferred movie types in this region (figure 3G).

5 ACKNOWLEDGMENTS

This work was supported by R01 award #1R01GM131399- 01, NSF
IIS (N0.1850360), Showalter Young Investigator Award from Indiana
CTSI and Indiana University Grand Challenge Precision Health
Initiative.

REFERENCES

[1] Sebastian Kaiser and Friedrich Leisch. 2008. A toolbox for bicluster analysis in R.
(2008).

[2] Pauli Miettinen, Taneli Mielikiinen, Aristides Gionis, Gautam Das, and Heikki
Mannila. 2008. The discrete basis problem. IEEE transactions on knowledge and
data engineering 20, 10 (2008), 1348-1362.

[3] Tammo Rukat, Chris C Holmes, Michalis K Titsias, and Christopher Yau. 2017.
Bayesian boolean matrix factorisation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2969-2978.

[4] Changlin Wan, Wennan Chang, Tong Zhao, Mengya Li, Sha Cao, and Chi Zhang.
2019. Fast and efficient Boolean matrix factorization by geometric segmentation.



Denoising individual bias for a fairer binary submatrix detection CIKM 20, October 19-23, 2020, Virtual Event, Ireland

arXiv:1909.03991 (2019). [6] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based rec-
[5] SiruiYao and Bert Huang. 2017. Beyond parity: Fairness objectives for collaborative ommendation. In Proceedings of the 27th ACM CIKM. 1153-1162.
filtering. In Advances in Neural Information Processing Systems. 2921-2930.



	Abstract
	1 motivation
	2 Background
	2.1 Notations
	2.2 Related work
	2.3 Problem formulation

	3 BIND framework
	4 Experiment
	5 acknowledgments
	References

