
On the Robustness of Nominally Well-Posed
Event-Triggered Controllers

P. Casau, R. G. Sanfelice and C. Silvestre

Abstract—In this paper, we show that: 1) if the Krasovskii
regularization of a hybrid system H has complete and discrete
solutions, then H has solutions with arbitrarily small separa-
tion between jumps under the influence of admissible state
perturbations; 2) if H is nominally well-posed and does not
have complete discrete solutions, then it does not have solutions
with vanishing time between jumps (such as Zeno solutions);
3) if, in addition, there exists a compact set A such that all
maximal solutions to H from A are complete, discrete and
remain in A, then all solutions converging to A have vanishing
time between jumps. The results in this paper demonstrate that
a good practice to avoid solutions with arbitrarily fast sampling
in Event-Triggered Control (ETC) is to ensure that the closed-
loop system is nominally well-posed and that it does not have
complete discrete solutions.

I. INTRODUCTION

Event-Triggered Control (ETC) refers to a feedback strat-

egy in which sensors and actuators are sampled “only if

needed”. The main goal of this approach is to improve

the efficiency of control tasks by reducing the average

sampling frequency with respect to standard periodic sam-

pling approaches. Crucially, one loses direct control over

the sampling frequency, thus there is a lingering possibility

that the minimum time between samples – the minimum

intersampling time – does not satisfy hardware requirements.

For this reason, the design of event-triggered controllers

must demonstrate that such requirements are satisfied. In this

paper, we study the existence of solutions to ETC systems

that have arbitrarily fast sampling and, for that reason, cannot

meet any hardware requirements.

A. Hybrid Dynamical Systems

A large part of ETC has been developed within a model

of dynamical systems with impulsive dynamics that describes
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the behavior of dynamical systems using discontinuous func-

tions of continuous-time (see e.g. [1]–[10]).

On the other hand, the framework of hybrid dynamical

systems presented in [11] describes dynamical systems with

impulsive dynamics as solutions to systems H of the form:

ξ̇ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
(1)

where ξ ∈ R
p is the state, the set C ⊂ R

p and the set-

valued map F : Rp
⇒ Rp describe the continuous-time

dynamics and are therefore called the flow set and the flow

map, respectively, whereas the set D ⊂ Rp and the set-valued

map G : Rp
⇒ Rp describe the discrete-time dynamics and

are called the jump set and the jump map, respectively.1 For

any given initial condition ξ in C, solutions can be extended

in continuous-time if there is any vector in F (ξ) that is

tangent to C. If, on the other hand, ξ belongs to D then

it may be extended in discrete-time by jumping. Solutions

to hybrid dynamical systems are therefore described using a

combination of continuous-time and discrete-time domains:

the hybrid time domain, which is defined below.

Definition 1. A subset E ⊂ R≥0 × N is a compact hybrid

time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ . It

is a hybrid time domain if for all (T, J) ∈ E,E ∩ ([0, T ]×
{0, 1, . . . , J} is a compact hybrid time domain.

Hybrid systems are able to represent any combination

of continuous and discrete time solutions, including purely

discrete solutions (which are characterized by having a hybrid

time domain that is a subset of {0}×N). For example, Zeno

solutions are solutions with infinite amount of discontinuities

(jumps) in finite continuous-time and they can be represented

either in continuous-time or in hybrid time. When described

on a hybrid time domain, the slice of the hybrid time domain

at the tail end of a Zeno solution is converging to {0} × N,

i.e., the same hybrid time domain of a complete discrete

solution. Suppose that we consider a sequence of solutions to

the hybrid system that is obtained from the tail end of a Zeno

solution in a way that the sequence converges. It depends on

the data of H whether the sequence converges to a solution of

H or not but, if H is nominally well-posed, then all bounded

1A set-valued map M : Rp
⇒ Rp maps points in Rp to subsets of Rp.

The fact that the flow and jump dynamics of a hybrid dynamical system are
presented in this way is done for greater generality, but in many cases these
are just differential and difference equations, respectively.



sequences of convergent solutions to H tend to a solution of

H, and, in that case, we can say that the sequence we just

constructed out of a Zeno solution converges to a complete

discrete solution to H. This is an intuitive explanation of the

results presented in Section III. The implication of this result

is that, if the hybrid system is nominally well-posed and it

does not have complete discrete solutions, then its bounded

solutions are not Zeno solutions. More generally, we can say

that it does not have solutions with time domain converging to

{0}×N, which we call solutions with vanishing time between

jumps.

Remark. Since it is fairly cumbersome to check nominal

well-posedness of a hybrid system through the convergence

of sequences of solutions, it is often preferable to check that

the hybrid system satisfies the so-called hybrid basic condi-

tions given in [11, Assumption 6.5], which imply nominal

well-posedness (c.f. [11, Theorem 6.8]).

B. ETC Systems as Hybrid Systems

It is instructive to look at existing ETC systems and

classify them according to the existence of discrete solutions.

In this direction, we borrow the definition of an ETC system

that is given in [12], where ξ := (x, e, η) is a state variable

comprised of the state of the plant x, the sampling error e
and an auxiliary variable η. The flow and jump maps are

given by

F (ξ) :=




f(x, e)
g(x, e)

h(x, e, η)


 G(ξ) :=




x
0

ℓ(x, e, η)


 (2)

for each ξ ∈ R
p. Under the assumption that F and G

are continuous and that C and D are closed, the ETC

system (2) is nominally well-posed. The paper [12] presents

five different ETC strategies that are encompassed by the

hybrid system (2). Each of the five ETC systems in [12] has a

semiglobal uniform positive lower bound to the intersampling

time outside of the attractor A, but in three of the five ETC

systems presented in [12] this property does not extend to

solutions from A, due to the existence of complete discrete

solutions from A. Another work that addresses the inter-event

separation properties in ETC systems is [13], and it considers

ETC systems of the form (2) without the auxiliary variable

η and with C and D given by:

C := {ξ ∈ R
p : ρ1(|e|) ≤ σ |x| + β}

D := {ξ ∈ R
p : ρ1(|e|) ≥ σ |x| + β}

where ρ1 is a class-K function, σ ∈ [0, 1) and β ≥ 0. It is

possible to verify that when β > 0,

G(D) ∩D = ∅ (4)

thus there are no complete discrete solutions to (2). This im-

plies that there is a positive lower bound to the intersampling

time and that this property is robust to arbitrarily small noise,

which constitutes one of the main results in [13]. A thorough

analysis of (4) and its implications in the design of event-

triggered controllers is also provided in [14, Proposition 3].

Condition (4) provides an easy way to check that there

are no complete discrete solutions to (1). In fact, when a

nominally well-posed hybrid system satisfies condition (4),

each of its bounded solutions has a positive lower bound

to the intersampling time, as proved in [15, Lemma 2.7].

There are a few strategies to ensure that (4) is satisfied in

ETC: state-space regularization (see e.g. [12, Proposition 2])

and temporal regularization (see e.g. [14, Section 3.5]).

However, these strategies often sacrifice asymptotic stability

for practical stability. A notable exception is the case of [16],

which provides a set of assumptions on the system data

that allow for a explicit computation of the intersampling

time, thus enabling the use of temporal regularization to

remove solutions with vanishing time between jumps without

sacrificing asymptotic stability. Due to this advantage, the

approach in [16] has become a pivotal tool in the design

of ETC systems as evidenced by the recent contributions

in [17], [18], and [19], for example.

However, the condition (4) is fairly restrictive and not

necessary to show that there are no solutions to (1) with

vanishing time between jumps.

C. When removing complete discrete solutions is not a good

idea

A common approach to circumvent the existence of com-

plete discrete solutions to (2) consists in removing A from

the jump set (c.f. [1], [6]). However, this breaks nominal

well-posedness of the hybrid system.

In Section IV, we show that if a hybrid system has a

Krasovskii solution that is complete and discrete, then it

has arbitrarily small separation between jumps under the

influence of admissible state perturbations. Therefore, we

prescribe the following procedure in order to check if inter-

event separation properties are robust to small perturbations:

1) apply a Krasovskii regularization to the ETC system;

2) verify that the regularized system has no complete discrete

solutions. Unlike [13, Theorem IV], our result applies to

hybrid systems in general, so it is not tied to any particular

ETC system.

In Section V, we show that there is a particularly pathologi-

cal case of nonrobustness of inter-event separation properties:

if there are forward invariant sets from which all solutions are

discrete, then solutions with vanishing time between jumps

are unavoidable.

D. Summary of Contributions and Organization of the Paper

The remainder of the paper is devoted to making precise

the points that have been highlighted before. Section II

presents the definition of solution to a hybrid system (1)

and of solutions with vanishing time between jumps. Sec-

tion III presents the formal definition of nominal well-

posedness and follows that definition with a result on the

necessity of complete discrete solutions to nominally well-

posed hybrid systems in the presence of bounded solutions

with vanishing time between jumps. In Section IV, we show

that the existence of complete discrete Krasovskii solutions

to (1) implies that there exist admissible state perturbations

that induce arbitrarily small separation between jumps. In

Section V, we show that if there exists a set from which

all maximal solutions to (1) are complete and discrete, then

arbitrarily small separation between jumps is unavoidable.



Each of the contributions in this paper is accompanied by

an illustrative numerical example. In Section VI, we present

some concluding remarks.

Notation. Given a topological space S, cl(S), int(S) and

co(S) denote the closure, the interior and the convex hull

of S, respectively. The symbols N and R≥0 denote the set

of natural numbers and zero and the set of nonnegative real

numbers, respectively. Given ξ ∈ Rp, |ξ| :=
√
〈ξ, ξ〉, where

〈a, b〉 denotes the inner product between a ∈ Rp and b ∈ Rp.

The unitary ball in Rp is given by B := {ξ ∈ Rp : |ξ| ≤ 1}
and c + δB := {ξ ∈ Rp : |ξ − c| ≤ δ}. Given S ⊂ Rp

and a set-valued map M : S ⇒ Rk, its domain is given by

domM := {ξ ∈ Rp : M(ξ) 6= ∅} and its graph is given

by gphM := {(ξ, y) ∈ Rp × Rk : y ∈ M(ξ)}. A function

α : R≥0 → R≥0 is said to be class-K, denoted by α ∈ K, if

it is continuous, strictly increasing and zero at zero.

II. SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS

In this section, we introduce various kinds of solutions to

the hybrid dynamical system H defined in (1) which are of

interest to the developments of this paper. With the exception

of solutions with vanishing time between jumps, most of the

concepts presented in this paper are directly taken from [11].

A function φ : E → Rp is a hybrid arc if E is a hybrid

time domain and if for each j ∈ N, the function t 7→ φ(t, j)
is locally absolutely continuous on the interval Ij := {t ∈
R≥0 : (t, j) ∈ E}. A solution φ to H is a hybrid arc that

satisfies φ(0, 0) ∈ cl(C) ∪D, φ(t, j) ∈ C for all t ∈ int Ij ,

φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij , φ(t, j) ∈ D and

φ(t, j + 1) ∈ G(φ(t, j)) for all (t, j) ∈ domφ such that

(t, j + 1) ∈ domφ.

A solution φ to a hybrid system is said to be nontrivial if

it has at least two points, maximal if it cannot be extended by

flowing nor jumping, complete if its domain is unbounded,

discrete if it is nontrivial and domφ ⊂ {0} × N, Zeno if it

is complete and

sup t domφ := sup{t ∈ R≥0 : ∃j∈N(t, j) ∈ domφ} < +∞,

eventually discrete if sup t domφ = T < +∞ and domφ ∩
{T }×N contains at least two points. Given S ⊂ Rp, the set

of maximal solutions to H satisfying φ(0, 0) ∈ S is denoted

by SH(S).
Next, we formally introduce the concept of solutions with

vanishing time between jumps. Given a solution φ to (1),

let t0 = 0 and, for each j ∈ N\{0}, tj ∈ R≥0 is such that

(tj , j − 1) and (tj , j) belong to domφ. We say that φ has

vanishing time between jumps if: 1) for each j ∈ N, there

exists t ∈ R≥0 such that (t, j) ∈ domφ, and; 2) for each

τ > 0, there exists J ∈ N such that tj+1 − tj < τ for

all j ≥ J . Roughly speaking, solutions with vanishing time

between jumps have an infinite amount of jumps and the time

between jumps tends to zero. Examples of solutions that have

vanishing time between jumps include: 1) eventually discrete

solutions, where the time between jumps becomes zero;

2) Zeno solutions, which have a infinite amount of jumps

in finite continuous time, but also; 3) solutions where the

time between jumps converges to 0 and sup t domφ = +∞.

For example, E =
⋃∞

j=0[tj+1, tj ] × {j} with t0 = 0 and

tj+1 = tj +1/j for each j ∈ N\{0} is a hybrid time domain

where, for each τ > 0, there exists J such that tj+1− tj < τ
for all j ≥ J , and sup tE = +∞.

To understand why solutions with vanishing time between

jumps are important, let φ denote a solution to (1) with ti ∈
R≥0 satisfying (ti, i−1), (ti, i) ∈ domφ for each i ∈ N\{0},

and let

φi(t, j) := φ(t+ ti, j + i) ∀(t, j) ∈ domφi (5)

for each i ∈ N with domφi = {(t, j) ∈ R≥0×N : (t+ti, j+
i) ∈ domφ}. In other words, for each i ∈ N, the hybrid arc

φi is a solution to (1) that is extracted from the tail end of φ.

Vanishing time between jumps is a necessary and sufficient

condition for the convergence of {domφi}∞i=0 to {0} × N,

as shown next.

Lemma 1. Given a complete solution φ to (1), {domφi}∞i=0

(with φi given in (5)) converges to {0} ×N if and only if φ
has vanishing time between jumps.

Proof. Suppose that φ is a solution to (1) with vanishing

time between jumps. Defining φi as in (5), we have that

limi→+∞ domφi = {0}×N if and only if, for each J ∈ N,

domφi ∩ (R≥0 × {J}) converges to {0} × {J} (c.f. [11,

Example 5.3]). Let tk denote the continuous-time associated

with the jump k of φ for each k ∈ N, i.e., t0 := 0 by

definition and (tk, k − 1), (tk, k) ∈ domφ. Since

domφi ∩ (R≥0 × {J}) = [tJ+i − ti, tJ+i+1 − ti]× {J},

for each i ∈ N, it follows that domφi ∩ (R≥0 × {J})
converges to {0}× {J} if and only if tJ+i+1 − ti converges

to 0 as i tends to ∞. Since φ has vanishing time between

jumps, we have that, for each τ > 0, there exists i0 ∈ N such

that ti+1 − ti < τ for each i ≥ i0. For each ǫ > 0, selecting

τ = ǫ/(J+1) yields tJ+i+1− ti =
∑J

j=0 tj+i+1− tj+i < ǫ,
allowing us to conclude that {domφi}∞i=0 converges to

{0} × N.

If {domφi}∞i=0 converges to {0} ×N, then, for each J ∈
N, domφi ∩ (R≥0 × {J}) converges to {0} × {J}. This

implies that, for each ǫ > 0, there exists i0 ∈ N such that

tJ+i+1 − ti < ǫ for all i ≥ i0. Selecting τ = ǫ and J = 0
we conclude that ti+1 − ti < τ for each i ≥ i0, thus φ has

vanishing time between jumps.

Furthermore, if there are no complete solutions with van-

ishing time between jumps then the continuous time can be

extended indefinitely, as shown in the following lemma.

Lemma 2. If (1) does not have solutions with vanishing time

between jumps, then each complete solution φ to (1) satisfies

sup t domφ = +∞.

Proof. Proceeding by contradiction, suppose that H does

not have solutions with vanishing time between jumps and

that there exists a complete solution to H such that tf :=
sup t domφ < +∞. If φ has a finite number of jumps then

it follows from completeness of φ that sup t domφ = +∞
which contradicts the assumption. It follows that φ must

have an infinite number of jumps, and limj→∞ tj = tf with

(tj , j) ∈ domφ satisfying (tj , j − 1), (tj , j) ∈ domφ for

each j ∈ N\{0}. Since tj+1 − tj ≤ tf − tj for each j ∈ N,

it follows that, for each τ > 0, there exists J ∈ N such that

tj+1 − tj < τ for all j ≥ J . However, this is a contradiction



because we assumed that there were no solutions to H with

vanishing time between jumps.

III. A NECESSARY CONDITION FOR SOLUTIONS WITH

VANISHING TIME BETWEEN JUMPS

One of the most important properties of hybrid systems

is that of nominal well-posedness, since it has important

implications in the robustness of stability of a compact

set for a hybrid system as discussed in [11, Chapter 6].

To understand nominal well-posedness, we introduce the

following preliminary definitions.
A sequence {φ}∞i=1 of hybrid arcs φi : domφi → Rp

converges graphically if the sequence of sets {gphφi}
∞
i=1

converges and its limit φ is φ := gph - limi→∞ φi. A se-

quence of hybrid arcs {φi}∞i=1 is locally eventually bounded

if, for any m > 0, there exists i0 > 0 and a compact set

K ⊂ Rp such that, for all i > i0, (t, j) ∈ domφi with

t+ j < m, φi(t, j) ∈ K .
The study of nominally well-posed hybrid dynamical sys-

tems has one major advantage over other system models with

impulsive dynamics: locally eventually bounded convergent

sequences of solutions to nominally well-posed hybrid sys-

tems converge to solutions of the hybrid system.

Definition 2. A hybrid system is called nominally well-

posed if the following property holds: for every graph-

ically convergent sequence {φi}∞i=1 of solutions to (1)

with limi→∞ φi(0, 0) = ξ for some ξ ∈ Rp, 1) if

the sequence {φi}∞i=1 is locally eventually bounded then

the sequence {length(domφi)}∞i := {sup t domφi +
sup j domφi}

∞
i=1 is either convergent or properly di-

vergent to ∞ and φ = gph - limi→∞ φi is a solu-

tion to (1) with φ(0, 0) = ξ and length(domφ) =
limi→∞ length(domφi); 2) if the sequence is not locally

eventually bounded, then there exists a number m > 0 for

which there exist (ti, ji) ∈ domφi, i ∈ N\{0} such that

limi→∞ |φi(ti, ji)| = ∞ and φ = gph - limi→∞ φi|t+j<m

is a maximal solution to (1) with length(domφ) = m and

limt→sup t domφ |φ(t, sup j domφ)| = +∞.

Using the previous definitions, we are able to state the

main result of this section.

Theorem 1. If (1) is nominally well-posed and if there exists

a bounded solution φ to (1) with vanishing time between

jumps, then there exists a complete discrete solution to (1).

Proof. Let φi be given by (5) for each i ∈ N. Note that, for

each i ∈ N, φi is a solution to (1), since it is a tail of the

solution φ. Moreover, {φi}
∞
i=0 is locally eventually bounded

because φ is bounded and it has a subsequence {φik}
∞
k=0

that is graphically convergent because it does not escape to

the horizon (c.f. [11, Theorem 5.7]). Since there exists a

subsequence of {φi}∞i=0 that is locally eventually bounded

and graphically convergent, it follows from nominal well-

posedness of (1) that its limit is a solution to (1).
Since φ has vanishing time between jumps, it follows from

Lemma 1 that domφik converges to {0} × N as k tends to

∞, which concludes the proof.

If a hybrid system (1) does not have complete discrete

solutions, but it is not nominally well-posed, then the im-

plication that it does not have solutions with vanishing time

between jumps cannot be drawn from Theorem 1. In that

case, one should look for Krasovskii solutions to (1) that are

complete and discrete, as demonstrated in the next section.

Example 1. In this example, we illustrate the usefulness of

Theorem 1 in the design of an event-triggered controller.

Consider an LTI plant with the following state-space descrip-

tion:
ẋ = Ax+Bu, y = Cx,

where x ∈ Rn, u ∈ Rm, and y ∈ Rk denote the plant state,

control input, and measured output, respectively. Further-

more, the matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rk×n

are known and the pair (A,C) is observable.

The design of the finite-time observer of [20] requires two

parallel Luenberger observers with hybrid dynamics

˙̂x1 = Ax̂1 +Bu+ L1(y − Cx̂1)

˙̂x2 = Ax̂2 +Bu+ L2(y − Cx̂2)

τ̇ = 1





ξ ∈ C1 (6a)

x̂+
1 = H1x̂1 +H2x̂2

x̂+
2 = H1x̂1 +H2x̂2

τ+ = 0





ξ ∈ D1 (6b)

where ξ := (x, x̂1, x̂2, xc, τ) ∈ Ξ := R4n × [0, τ̄ ] is the

full state, x̂1, x̂2,∈ Rn are observer states, C1 := Ξ, D1 :=
{ξ ∈ Ξ : τ = τ̄}, τ ∈ [0, τ̄ ] is a timer state that triggers

updates of x̂1 and x̂2 with period τ̄ > 0, L1, L2 ∈ Rn×k

are observer gains, H1, H2 ∈ Rn×n are given by Hi :=
(I−eFiτ̄e−F3−iτ̄ )−1 with Fi := A−LiC for each i ∈ {1, 2},

and xc ∈ Rn is a memory variable that stores the information

on x̂1 and is updated at events according to the dynamics:

ẋc = 0 ξ ∈ C2 := {ξ ∈ Ξ : |x̂1 − xc| ≤ δ} (7a)

x+
c = x̂1 ξ ∈ D2 := {ξ ∈ Ξ : |x̂1 − xc| ≥ δ}. (7b)

In order to guarantee that the finite-time observer works

as intended, the parameters L1, L2 ∈ Rn×k and τ̄ > 0 are

chosen such that F1 and F2 are Hurwitz and I − eF1 τ̄e−F2τ̄

is invertible. In order for the observer (6) to achieve finite-

time estimation, it requires at most two updates of x̂1 and x̂2,

thus, for each solution φ = (x, x̂1, x̂2, xc, τ) to the closed-

loop system, there must be (t, j) ∈ domφ such that t ≥
2τ̄ − τ(0, 0). Note that the jump set and jump map of the

closed-loop systems are given by D := D1∪D2 and G(ξ) :=
G1(ξ) ∪G2(ξ) for each ξ ∈ D with

G1(ξ) := (x,H1x̂1 +H2x̂2, H1x̂1 +H2x̂2, xc, 0) ∀ξ ∈ D1,

G2(ξ) := (x, x̂1, x̂2, x̂1, τ) ∀ξ ∈ D2,

hence the condition G(D) ∩D = ∅ is not verified, because

for ξ ∈ D1∩D2 we have G2(ξ) ⊂ D1. However, since there

are no complete discrete solutions and the closed-loop system

satisfies [11, Assumption 6.5], it follows from Theorem 1 that

there are no bounded solutions with vanishing time between

jumps (c.f. Remark I-A). It follows from Lemma 2 that

all bounded complete solutions to the closed-loop system

satisfy sup t domφ = +∞ > 2τ̄ − τ(0, 0), thus by proving

that all solutions are bounded (using Lyapunov analysis, for

example), one is able to prove that there are no solutions

with vanishing time between jumps.



IV. COMPLETE DISCRETE SOLUTIONS IMPLY

ARBITRARILY SMALL SEPARATION BETWEEN JUMPS

By definition, Krasovskii solutions to a hybrid system

H := (C,F,D,G) are solutions of the Krasovskii regular-

ization of H, which is a hybrid system Ĥ := (Ĉ, F̂ , D̂, Ĝ)
given by

ξ̇ ∈ F̂ (ξ) :=
⋂

δ>0

cl (coF ((x + δB) ∩ C)) ξ ∈ Ĉ (8a)

ξ ∈ Ĝ(ξ) :=
⋂

δ>0

cl (G((x + δB) ∩D)) ξ ∈ D̂ (8b)

where the flow and jump sets are given by Ĉ := cl(C)
and D̂ := cl(D), respectively. The regularized system (8) is

nominally well-posed and, if it does have complete discrete

solutions, then arbitrarily small perturbations of H induce

arbitrarily small separation between jumps.

To be more precise, the perturbation of H is defined as

follows:

ξ̇ ∈ F (ξ + n) ξ + n ∈ C (9a)

ξ+ ∈ G(ξ + n) ξ + n ∈ D, (9b)

where n is an admissible state perturbation, i.e., domn
is a hybrid time domain and the function t 7→ n(t, j) is

measurable on domn∩(R≥0×{j}) for each j ∈ N. The next

result follows directly from the equivalence between solutions

to (9) and solutions to (8).

Theorem 2. Given a hybrid system H := (C,F,D,G) as

in (1), suppose that F and G are locally bounded. If there is

a Krasovskii solution φz to (1) that is complete and discrete,

then, for each ǫ > 0 and each J ∈ N\{0}, there exists an

admissible state perturbation n and a solution φn to (9) such

that tj − tj−1 < ǫ for each j ∈ {1, . . . , J}, where tj ∈ R≥0

satisfies (tj , j−1), (tj, j) ∈ domφn for each j ∈ {1, . . . , J}.

Moreover,

sup
(t,j)∈E

|n(t, j)| → 0 (10)

as ǫ → 0, where E := domφn ∩ (R≥0 × {0, . . . , J}) is a

compact hybrid time domain.

Proof. Since φz is a Krasovskii solution to (1), then it is also

a Hermes solution to (1) (c.f. [11, Theorem 4.17]). For each

J ∈ N\{0}, the restriction of φz to

domφz ∩
(
R≥0 × {0, . . . , J}

)
(11)

is a compact Hermes solution to (1) as in [11, Defini-

tion 4.12]. Hence, there exists a sequence {φi}i∈N of hybrid

arcs and a sequence {ni}i∈N of admissible state perturbations

such that φi is a solution to (9) with admissible state pertur-

bation ni for each i ∈ N. Furthermore, for each ǫ > 0, there

exists i0 ∈ N, such that, for each i > i0, φi is ǫ-close to the

restriction of φz to (11). From the definition of ǫ-closeness

in [11, Definition 4.11], it follows that sup t domφi < ǫ for

each i > i0, thus tj − tj−1 < ǫ for each j ∈ {1, . . . , J}.

The desired result follows from the fact that (10) hold by

deifinition of a compact Hermes solution and because we

can choose φn = φi and n = ni with i > i0.

It is often the case that ETC systems verify G(D)∩D = ∅
(see e.g. [1] and [6]), which precludes the existence of

complete discrete solutions. However, Theorem 2 demon-

strates that, if such ETC systems have Krasovskii solutions

that are complete and discrete, then there are admissible

state perturbations that induce arbitrarily fast sampling in

the presence of arbitrarily small state perturbations. This is

illustrated in the following example.

Example 2. Let us consider the stabilization of the integrator

ẋ = u with state x ∈ R and input u ∈ R following the

approach of [1]. In this direction, we define the nominal

feedback law κ(x) = −x for each x ∈ R and use it to

define the following event-triggered controller:

˙̂u = 0 (x, û) ∈ C := {(x, û) ∈ R
2 : γ(x, û) ≤ 0}

û+ = κ(x) (x, û) ∈ D := {(x, û) ∈ R
2 : γ(x, û) ≥ 0}

with γ(x, û) := |û− κ(x)| − σ |x| and σ ∈ (0, 1). Let us

consider a solution φn = (x, x̂) to the perturbed closed-loop

system with initial condition φn(0, 0) = (x0,−x0) satisfying

x0 6= 0 under the influence of an admissible state perturbation

n = (n1, n2) satisfying n2(t, j) = 0 and

n1(t, j) := −(2j+1 − 1)x(tj , j)(t− tj) (12)

for each (t, j) ∈ domφn. It is possible to show that the

intersampling time is given by tj+1 − tj = σ
1+σ

1
2j+1 for

all j ∈ N and that the magnitude of the noise signal is

|n1(t, j)| = (2j+1 − 1)
(

σ
2(1+σ)

)j
σ

1+σ
1
2j , for each (t, j) ∈

domφn. We conclude that the jumps of the perturbed solution

accumulate at tf :=
∑+∞

j=0 tj+1 − tj =
σ

1+σ
while the noise

signal (12) converges to 0. In particular, this implies that there

does not exist a positive lower bound to the inter-sampling

time in the presence of arbitrarily small noise.

A similar result to Theorem 2 is given in [13, Theo-

rem IV.1], the main differences between the two being that:

the latter applies solely to linear event-triggered systems

while the former applies to hybrid systems in general, and;

admissible state perturbations constitute a broader class of

perturbations than those that are considered in [13, Theo-

rem IV.1].

V. WHEN SOLUTIONS WITH VANISHING TIME BETWEEN

JUMPS ARE UNAVOIDABLE

The final result that we present in this paper reveals

a particularly pathological case that may happen in ETC

systems (see e.g. [21]).

Theorem 3. Suppose that H in (1) is nominally well-

posed and that there exists a compact subset A of Rp

such that each maximal solution φ0 to H from A is com-

plete, discrete, and satisfies rgeφ0 := {φ0(t, j) : (t, j) ∈
domφ0} ⊂ A. Then each complete solution φ to H satisfying

limt+j→∞ |φ(t, j)|A = 0 has vanishing time between jumps.

Proof. Similarly to the proof of Theorem 1, consider the

sequence {φi}∞i=0 defined in (5). Since φ converges to

A by assumption, it follows from compactness of A that

{φi}∞i=0 is locally eventually bounded, hence it has a

convergent subsequence that converges graphically. Since

limi→∞ |φi(0, 0)|A = 0, it follows from nominal well-

posedness that {φi}∞i=0 converges to a solution to H from
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Fig. 1. Representation of the time between jumps for a simulation of the
system in Example 3.

A. Since all maximal solutions to H from A are complete

and discrete, we have that {domφi}∞i=0 converges to {0}×N.

It follows from Lemma 1 that φ has vanishing time between

jumps.

It follows directly from Theorem 3, that, if A is attrac-

tive for H, then complete solutions converging to A have

vanishing time between jumps, necessarily. We illustrate this

phenomenon in an ETC system in the next example.

Example 3. Let us consider the single integrator system of

Example 2, but instead of stabilizing the origin, suppose

that we wish to track a reference t 7→ xd(t) generated by

the system (ẋd, v̇d) = (vd,−xd) with (xd, vd) ∈ S :=
{(xd, vd) ∈ R2 : |(xd, vd)| = 1}. Using the feedback law

κ(xd, vd, x) := −(x− xd) + vd ∀(xd, vd, x) ∈ S× R,

the closed-loop system is given by (1) with data

F (ξ) :=
(
vd,−xd, û, 0

)
∀ξ ∈ C

G(ξ) :=
(
xd, vd, x, κ(xd, vd, x)

)
∀ξ ∈ D

and state has state ξ := (xd, vd, x, û) ∈ Ξ := S × R ×
R, and flow set and jump set given by C := {ξ ∈
Ξ : |û− κ(xd, vd, x)| ≤ σ |x− xd|}, D := {ξ ∈ Ξ :
|û− κ(xd, vd, x)| ≥ σ |x− xd|}. It is possible to verify that

A := {ξ ∈ Ξ : x = xd, û = κ(xd, vd, x)} is globally

asymptotically stable. However, each maximal solution from

A is complete and discrete, thus all solutions have vanishing

time between jumps (c.f. Fig. 1).

VI. CONCLUSION

Motivated by applications in Event-Triggered Control

(ETC), we analysed conditions for the existence of solutions

to hybrid dynamical systems with arbitrarily small separation

between jumps. In particular, we introduced the concept of

solutions with vanishing time between jumps – which are

solutions whose time between jumps converges to zero, –

and we demonstrated that, if a nominally well-posed hybrid

system does not have complete discrete solutions then it does

not have solutions with vanishing time between jumps. We

also demonstrated that the existence of Krasovskii solutions

to a hybrid system that are complete and discrete implies that

there are admissible state perturbations that generate arbitrar-

ily small separation between jumps. Finally, we proved that

hybrid systems with a compact set from which all solutions

are complete and discrete, the existence of solutions with

vanishing time between jumps might be unavoidable. These

results were illustrated with applications in ETC.
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