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Abstract—In this paper, we show that: 1) if the Krasovskii
regularization of a hybrid system 7 has complete and discrete
solutions, then 7 has solutions with arbitrarily small separa-
tion between jumps under the influence of admissible state
perturbations; 2) if 7 is nominally well-posed and does not
have complete discrete solutions, then it does not have solutions
with vanishing time between jumps (such as Zeno solutions);
3) if, in addition, there exists a compact set A such that all
maximal solutions to # from .4 are complete, discrete and
remain in A, then all solutions converging to .A have vanishing
time between jumps. The results in this paper demonstrate that
a good practice to avoid solutions with arbitrarily fast sampling
in Event-Triggered Control (ETC) is to ensure that the closed-
loop system is nominally well-posed and that it does not have
complete discrete solutions.

I. INTRODUCTION

Event-Triggered Control (ETC) refers to a feedback strat-
egy in which sensors and actuators are sampled “only if
needed”. The main goal of this approach is to improve
the efficiency of control tasks by reducing the average
sampling frequency with respect to standard periodic sam-
pling approaches. Crucially, one loses direct control over
the sampling frequency, thus there is a lingering possibility
that the minimum time between samples — the minimum
intersampling time — does not satisfy hardware requirements.
For this reason, the design of event-triggered controllers
must demonstrate that such requirements are satisfied. In this
paper, we study the existence of solutions to ETC systems
that have arbitrarily fast sampling and, for that reason, cannot
meet any hardware requirements.

A. Hybrid Dynamical Systems

A large part of ETC has been developed within a model
of dynamical systems with impulsive dynamics that describes
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the behavior of dynamical systems using discontinuous func-
tions of continuous-time (see e.g. [1]-[10]).

On the other hand, the framework of hybrid dynamical
systems presented in [11] describes dynamical systems with
impulsive dynamics as solutions to systems H of the form:
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where £ € RP is the state, the set C C RP and the set-
valued map F' : RP % RP describe the continuous-time
dynamics and are therefore called the flow set and the flow
map, respectively, whereas the set D C RP and the set-valued
map G : RP? = RP describe the discrete-time dynamics and
are called the jump set and the jump map, respectively.! For
any given initial condition ¢ in C, solutions can be extended
in continuous-time if there is any vector in F'(§) that is
tangent to C. If, on the other hand, £ belongs to D then
it may be extended in discrete-time by jumping. Solutions
to hybrid dynamical systems are therefore described using a
combination of continuous-time and discrete-time domains:
the hybrid time domain, which is defined below.

ey

Definition 1. A subset & C R, x N is a compact hybrid
time domain if -

J—1

E=J s tinl,d)

§=0
for some finite sequence of times 0 =ty <t; < ... <t;. It
is a hybrid time domain if for all (7, J) € E,EN([0,T] x
{0,1,...,J} is a compact hybrid time domain.

Hybrid systems are able to represent any combination
of continuous and discrete time solutions, including purely
discrete solutions (which are characterized by having a hybrid
time domain that is a subset of {0} x N). For example, Zeno
solutions are solutions with infinite amount of discontinuities
(jumps) in finite continuous-time and they can be represented
either in continuous-time or in hybrid time. When described
on a hybrid time domain, the slice of the hybrid time domain
at the tail end of a Zeno solution is converging to {0} x N,
i.e., the same hybrid time domain of a complete discrete
solution. Suppose that we consider a sequence of solutions to
the hybrid system that is obtained from the tail end of a Zeno
solution in a way that the sequence converges. It depends on
the data of H whether the sequence converges to a solution of
‘H or not but, if H is nominally well-posed, then all bounded

A set-valued map M : R? = RP maps points in RP to subsets of RP.
The fact that the flow and jump dynamics of a hybrid dynamical system are
presented in this way is done for greater generality, but in many cases these
are just differential and difference equations, respectively.



sequences of convergent solutions to H tend to a solution of
‘H, and, in that case, we can say that the sequence we just
constructed out of a Zeno solution converges to a complete
discrete solution to . This is an intuitive explanation of the
results presented in Section III. The implication of this result
is that, if the hybrid system is nominally well-posed and it
does not have complete discrete solutions, then its bounded
solutions are not Zeno solutions. More generally, we can say
that it does not have solutions with time domain converging to
{0} x N, which we call solutions with vanishing time between
jumps.

Remark. Since it is fairly cumbersome to check nominal
well-posedness of a hybrid system through the convergence
of sequences of solutions, it is often preferable to check that
the hybrid system satisfies the so-called hAybrid basic condi-
tions given in [11, Assumption 6.5], which imply nominal
well-posedness (c.f. [11, Theorem 6.8]).

B. ETC Systems as Hybrid Systems

It is instructive to look at existing ETC systems and
classify them according to the existence of discrete solutions.
In this direction, we borrow the definition of an ETC system
that is given in [12], where £ := (x,e,n) is a state variable
comprised of the state of the plant z, the sampling error e
and an auxiliary variable 1. The flow and jump maps are
given by
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for each & € RP. Under the assumption that /' and G
are continuous and that C' and D are closed, the ETC
system (2) is nominally well-posed. The paper [12] presents
five different ETC strategies that are encompassed by the
hybrid system (2). Each of the five ETC systems in [12] has a
semiglobal uniform positive lower bound to the intersampling
time outside of the attractor .4, but in three of the five ETC
systems presented in [12] this property does not extend to
solutions from .4, due to the existence of complete discrete
solutions from .A. Another work that addresses the inter-event
separation properties in ETC systems is [13], and it considers
ETC systems of the form (2) without the auxiliary variable
1 and with C' and D given by:

C:={£ R pi(le]) <olz] + 5}
D:={{ €R”: pi(le]) = o || + B}

where p; is a class-K function, o € [0,1) and 8 > 0. It is
possible to verify that when § > 0,
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thus there are no complete discrete solutions to (2). This im-
plies that there is a positive lower bound to the intersampling
time and that this property is robust to arbitrarily small noise,
which constitutes one of the main results in [13]. A thorough
analysis of (4) and its implications in the design of event-
triggered controllers is also provided in [14, Proposition 3].

Condition (4) provides an easy way to check that there
are no complete discrete solutions to (1). In fact, when a
nominally well-posed hybrid system satisfies condition (4),

each of its bounded solutions has a positive lower bound
to the intersampling time, as proved in [15, Lemma 2.7].
There are a few strategies to ensure that (4) is satisfied in
ETC: state-space regularization (see e.g. [12, Proposition 2])
and temporal regularization (see e.g. [14, Section 3.5]).
However, these strategies often sacrifice asymptotic stability
for practical stability. A notable exception is the case of [16],
which provides a set of assumptions on the system data
that allow for a explicit computation of the intersampling
time, thus enabling the use of temporal regularization to
remove solutions with vanishing time between jumps without
sacrificing asymptotic stability. Due to this advantage, the
approach in [16] has become a pivotal tool in the design
of ETC systems as evidenced by the recent contributions
in [17], [18], and [19], for example.

However, the condition (4) is fairly restrictive and not
necessary to show that there are no solutions to (1) with
vanishing time between jumps.

C. When removing complete discrete solutions is not a good
idea

A common approach to circumvent the existence of com-
plete discrete solutions to (2) consists in removing 4 from
the jump set (c.f. [1], [6]). However, this breaks nominal
well-posedness of the hybrid system.

In Section IV, we show that if a hybrid system has a
Krasovskii solution that is complete and discrete, then it
has arbitrarily small separation between jumps under the
influence of admissible state perturbations. Therefore, we
prescribe the following procedure in order to check if inter-
event separation properties are robust to small perturbations:
1) apply a Krasovskii regularization to the ETC system;
2) verify that the regularized system has no complete discrete
solutions. Unlike [13, Theorem IV], our result applies to
hybrid systems in general, so it is not tied to any particular
ETC system.

In Section V, we show that there is a particularly pathologi-
cal case of nonrobustness of inter-event separation properties:
if there are forward invariant sets from which all solutions are
discrete, then solutions with vanishing time between jumps
are unavoidable.

D. Summary of Contributions and Organization of the Paper

The remainder of the paper is devoted to making precise
the points that have been highlighted before. Section II
presents the definition of solution to a hybrid system (1)
and of solutions with vanishing time between jumps. Sec-
tion III presents the formal definition of nominal well-
posedness and follows that definition with a result on the
necessity of complete discrete solutions to nominally well-
posed hybrid systems in the presence of bounded solutions
with vanishing time between jumps. In Section IV, we show
that the existence of complete discrete Krasovskii solutions
to (1) implies that there exist admissible state perturbations
that induce arbitrarily small separation between jumps. In
Section V, we show that if there exists a set from which
all maximal solutions to (1) are complete and discrete, then
arbitrarily small separation between jumps is unavoidable.



Each of the contributions in this paper is accompanied by
an illustrative numerical example. In Section VI, we present
some concluding remarks.

Notation. Given a topological space S, cl(S), int(S) and
co(S) denote the closure, the interior and the convex hull
of S, respectively. The symbols N and R, denote the set
of natural numbers and zero and the set of nonnegative real
numbers, respectively. Given £ € RP, |£] := \/(&, £), where
(a,b) denotes the inner product between a € R? and b € RP.
The unitary ball in R? is given by B := {{ € RP : |{| < 1}
and ¢+ 0B := {{ € RP : | —¢| < 4}. Given S C RP
and a set-valued map M : S = RF, its domain is given by
domM := {£ € RP : M(£) # 0} and its graph is given
by gph M = {(£,y) € RP x RF : y € M(€)}. A function
a:R.; — R, is said to be class-XC, denoted by a € K, if
it is continuous, strictly increasing and zero at zero.

II. SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS

In this section, we introduce various kinds of solutions to
the hybrid dynamical system H defined in (1) which are of
interest to the developments of this paper. With the exception
of solutions with vanishing time between jumps, most of the
concepts presented in this paper are directly taken from [11].

A function ¢ : E — RP? is a hybrid arc if F is a hybrid
time domain and if for each j € N, the function ¢t — ¢(¢, j)
is locally absolutely continuous on the interval I/ := {t €
R, : (t,4) € E}. A solution ¢ to H is a hybrid arc that
satisfies ¢(0,0) € cl(C) U D, ¢(t,j) € C for all ¢ € int I7,
o(t,j) € F(¢(t,j)) for almost all t € I7, ¢(t,5) € D and
o(t,7 +1) € G(é(t,7)) for all (¢,57) € dom¢ such that
(t,7+ 1) € dom ¢.

A solution ¢ to a hybrid system is said to be nontrivial if
it has at least two points, maximal if it cannot be extended by
flowing nor jumping, complete if its domain is unbounded,
discrete if it is nontrivial and dom ¢ C {0} x N, Zeno if it
is complete and

sup ¢ dom ¢ := sup{t € Ry : Jjen(t,j) € domg} < +oo,

eventually discrete if sup,dom ¢ =T < 400 and dom ¢ N
{T'} x N contains at least two points. Given S C RP?, the set
of maximal solutions to H satisfying ¢(0,0) € S is denoted

Next, we formally introduce the concept of solutions with
vanishing time between jumps. Given a solution ¢ to (1),
let to = 0 and, for each j € N\{0}, t; € R is such that
(tj,j —1) and (t;,7) belong to dom ¢. We say that ¢ has
vanishing time between jumps if: 1) for each 7 € N, there
exists t € R, such that (¢,j) € dom¢, and; 2) for each
T > 0, there exists J € N such that ¢;4; —t; < 7 for
all 7 > J. Roughly speaking, solutions with vanishing time
between jumps have an infinite amount of jumps and the time
between jumps tends to zero. Examples of solutions that have
vanishing time between jumps include: 1) eventually discrete
solutions, where the time between jumps becomes zero;
2) Zeno solutions, which have a infinite amount of jumps
in finite continuous time, but also; 3) solutions where the
time between jumps converges to 0 and sup ; dom ¢ = +o0.
For example, £ = [J;Z[tj+1,t5] x {j} with to = 0 and
tjt+1 =t;+1/j for each j € N\{0} is a hybrid time domain

where, for each 7 > 0, there exists J such that ¢; 1 —1; <7
for all j > J, and supFE = +o0.

To understand why solutions with vanishing time between
jumps are important, let ¢ denote a solution to (1) with ¢; €
R satisfying (¢;,i—1), (¢;,4) € dom ¢ for each ¢ € N\ {0},
and let

for each i € N with dom ¢; = {(¢,5) € Ry xN: (t+1;, 5+
i) € dom ¢}. In other words, for each i € N, the hybrid arc
¢; is a solution to (1) that is extracted from the tail end of ¢.
Vanishing time between jumps is a necessary and sufficient
condition for the convergence of {dom ¢;}5°, to {0} x N,
as shown next.

Lemma 1. Given a complete solution ¢ to (1), {dom ¢, }°,
(with ¢; given in (5)) converges to {0} x N if and only if ¢
has vanishing time between jumps.

Proof. Suppose that ¢ is a solution to (1) with vanishing
time between jumps. Defining ¢; as in (5), we have that
lim;, y .o dom ¢; = {0} x N if and only if, for each J € N,
dom¢; N (R, x {J}) converges to {0} x {J} (c.f. [11,
Example 5.3]). Let ¢; denote the continuous-time associated
with the jump k£ of ¢ for each k € N, i, ¢y := 0 by
definition and (tx, k — 1), (tx, k) € dom ¢. Since

dom ¢; N (Rxg x {J}) = [tsri — tistyvivr — ] x {J},

for each ¢ € N, it follows that dom¢; N (R., x {J})
converges to {0} x {J} if and only if ¢;4;+1 — ; converges
to 0 as 4 tends to oco. Since ¢ has vanishing time between
jumps, we have that, for each 7 > 0, there exists iy € N such
that ¢;.1 — t; < 7 for each ¢ > 4y. For each € > 0, selecting
T = 6/(J+ 1) ylelds tytit1—ti = Zj:O thrfL'Jrl _thri <€,
allowing us to conclude that {dom¢;}$2, converges to
{0} x N.

If {dom ¢;}5°, converges to {0} x N, then, for each J €
N, dom¢; N (Ry, x {J}) converges to {0} x {J}. This
implies that, for each ¢ > 0, there exists iy € N such that
tj+it1 —t; < € for all ¢ > 4. Selecting 7 = € and J = 0
we conclude that ;1 —t; < 7 for each ¢ > 19, thus ¢ has
vanishing time between jumps. O

Furthermore, if there are no complete solutions with van-
ishing time between jumps then the continuous time can be
extended indefinitely, as shown in the following lemma.

Lemma 2. If (1) does not have solutions with vanishing time
between jumps, then each complete solution ¢ to (1) satisfies
sup ; dom ¢ = +o0.

Proof. Proceeding by contradiction, suppose that H does
not have solutions with vanishing time between jumps and
that there exists a complete solution to H such that t; :=
sup;dom ¢ < 4oc0. If ¢ has a finite number of jumps then
it follows from completeness of ¢ that sup;dom¢ = +oo
which contradicts the assumption. It follows that ¢ must
have an infinite number of jumps, and lim;_,., t; = t; with
(tj,j) € dom¢ satisfying (t;,j — 1), (t;,7) € dom¢ for
each j € N\{0}. Since t;;1 —t; <ty —t; for each j € N,
it follows that, for each 7 > 0, there exists J € N such that
tj11 —t; <7 forall j > J. However, this is a contradiction



because we assumed that there were no solutions to H with
vanishing time between jumps. O

ITI. A NECESSARY CONDITION FOR SOLUTIONS WITH
VANISHING TIME BETWEEN JUMPS

One of the most important properties of hybrid systems
is that of nominal well-posedness, since it has important
implications in the robustness of stability of a compact
set for a hybrid system as discussed in [11, Chapter 6].
To understand nominal well-posedness, we introduce the
following preliminary definitions.

A sequence {¢}2°, of hybrid arcs ¢; : dom ¢, — RP
converges graphically if the sequence of sets {gpha;}5°,
converges and its limit ¢ is ¢ := gph-lim, . ¢;. A se-
quence of hybrid arcs {¢;}5°, is locally eventually bounded
if, for any m > 0, there exists 7o > 0 and a compact set
K C RP such that, for all i > iy, (t,j) € dom¢; with
t+j<m, (bl(t,j) eK.

The study of nominally well-posed hybrid dynamical sys-
tems has one major advantage over other system models with
impulsive dynamics: locally eventually bounded convergent
sequences of solutions to nominally well-posed hybrid sys-
tems converge to solutions of the hybrid system.

Definition 2. A hybrid system is called nominally well-
posed if the following property holds: for every graph-
ically convergent sequence {¢;}52, of solutions to (1)
with lim; o ¢;(0,0) = ¢ for some & € RP, 1) if
the sequence {¢;}:2, is locally eventually bounded then
the sequence {length(dom¢;)}° := {sup,dome¢; +
sup jdom¢;}$2, is either convergent or properly di-
vergent to oo and ¢ = gph-lim, , ¢; is a solu-
tion to (1) with ¢(0,0) = ¢ and length(dom¢) =
lim;_, o length(dome;); 2) if the sequence is not locally
eventually bounded, then there exists a number m > 0 for
which there exist (t;,7;) € dome¢;, i € N\{0} such that
11m1/%00 |¢z(tz,jz)| = oo and gf) = gph—hmz_)oo ¢i|t+j<m
is a maximal solution to (1) with length(dom¢) = m and
Hmt—)suptdomqﬁ |¢(t,sup J dom ¢)| = +o00.

Using the previous definitions, we are able to state the
main result of this section.

Theorem 1. If (1) is nominally well-posed and if there exists
a bounded solution ¢ to (1) with vanishing time between
jumps, then there exists a complete discrete solution to (1).

Proof. Let ¢; be given by (5) for each < € N. Note that, for
each ¢ € N, ¢; is a solution to (1), since it is a tail of the
solution ¢. Moreover, {¢;}52, is locally eventually bounded
because ¢ is bounded and it has a subsequence {¢;, }72
that is graphically convergent because it does not escape to
the horizon (c.f. [11, Theorem 5.7]). Since there exists a
subsequence of {¢;}5°, that is locally eventually bounded
and graphically convergent, it follows from nominal well-
posedness of (1) that its limit is a solution to (1).

Since ¢ has vanishing time between jumps, it follows from
Lemma 1 that dom ¢;, converges to {0} x N as k tends to
o0, which concludes the proof. O

If a hybrid system (1) does not have complete discrete
solutions, but it is not nominally well-posed, then the im-

plication that it does not have solutions with vanishing time
between jumps cannot be drawn from Theorem 1. In that
case, one should look for Krasovskii solutions to (1) that are
complete and discrete, as demonstrated in the next section.

Example 1. In this example, we illustrate the usefulness of
Theorem 1 in the design of an event-triggered controller.
Consider an LTI plant with the following state-space descrip-
tion:

&= Ax + Bu, y=_Cuz,

where z € R”, u € R™, and y € R* denote the plant state,
control input, and measured output, respectively. Further-
more, the matrices A € R"*", B € R**™_ and C' € Rk*"
are known and the pair (A, C) is observable.

The design of the finite-time observer of [20] requires two
parallel Luenberger observers with hybrid dynamics

T, = A%y + Bu+ Li(y — C%y)

57\'2 = AEQ + Bu + Lg(y — 057\2) 5 S C'1 (63)
T=1
fC\;r = H\71 + Hxs
57\;_ = Hl’:z?l + HQEQ 5 € Dy (6b)
TH =0

where ¢ = (z,71,%2,2.,7) € Z := R x [0,7] is the

full state, 71,72, € R™ are observer states, C; := 2, Dq :=
{£€Z:7 =7}, 7 €[0,7] is a timer state that triggers
updates of Z; and @, with period 7 > 0, L1, Ly € R"**
are observer gains, Hi, Hy € R"*™ are given by H,; :=
(I—efiTe=t3-i)=1 with F; := A—L;C foreachi € {1,2},
and z. € R" is a memory variable that stores the information
on 77 and is updated at events according to the dynamics:

. =0 56022={§€EZ|/$\1—$C|§5} (7a)
,Tj:&:\l fEDQ = {§€E:|§1—xc| 25} (7b)

In order to guarantee that the finite-time observer works
as intended, the parameters L, Lo € R™"*k and 7 > 0 are
chosen such that F} and F» are Hurwitz and I — e 7e—F27
is invertible. In order for the observer (6) to achieve finite-
time estimation, it requires at most two updates of Z; and Z»,
thus, for each solution ¢ = (x,Z1,Za, 2., 7) to the closed-
loop system, there must be (¢,j) € dom¢ such that ¢ >
27 — 7(0,0). Note that the jump set and jump map of the
closed-loop systems are given by D := D1UDs and G(§) :=
G1(€) U G2(&) for each € € D with

G1(§) = (z, HiZ1 + HaoZo, H1T1 + HaZ2,2.,0) V€ € Dy
G2(§) = (z,71,72,71,7) VE € Dy

hence the condition G(D) N D = {) is not verified, because
for £ € D1 N Dy we have G2(§) C D;. However, since there
are no complete discrete solutions and the closed-loop system
satisfies [11, Assumption 6.5], it follows from Theorem 1 that
there are no bounded solutions with vanishing time between
jumps (c.f. Remark I-A). It follows from Lemma 2 that
all bounded complete solutions to the closed-loop system
satisfy sup;dom ¢ = +o0o > 27 — 7(0,0), thus by proving
that all solutions are bounded (using Lyapunov analysis, for
example), one is able to prove that there are no solutions
with vanishing time between jumps.



IV. COMPLETE DISCRETE SOLUTIONS IMPLY
ARBITRARILY SMALL SEPARATION BETWEEN JUMPS
By definition, Krasovskii solutions to a hybrid system

H := (C,F,D,G) are solutions of the Krasovskii _regular-
ization of H, which is a hybrid system H := (C,F,D,G)
given by

EeF&) = ﬂ cd(coF((z +B)NC)) £e€C (8a)

6>0
£€G€)=()cl(G((z+dB)ND)) £€D (8h)
>0
where the flow and jump sets are given by C := cl(C)

and D := cl(D), respectively. The regularized system (8) is
nominally well-posed and, if it does have complete discrete
solutions, then arbitrarily small perturbations of H induce
arbitrarily small separation between jumps.

To be more precise, the perturbation of H is defined as
follows:

Ee F(E+n) E+neC (9a)
£t eGE+n) £E4+neD, (9b)

where n is an admissible state perturbation, i.e., domn
is a hybrid time domain and the function ¢ — n(t,j) is
measurable on domnN (R~ x{j}) for each j € N. The next
result follows directly from the equivalence between solutions
to (9) and solutions to (8).

Theorem 2. Given a hybrid system H := (C,F,D,G) as
in (1), suppose that F and G are locally bounded. If there is
a Krasovskii solution ¢, to (1) that is complete and discrete,
then, for each ¢ > 0 and each J € N\{0}, there exists an
admissible state perturbation n and a solution ¢,, to (9) such
that t; —tj_1 < € for each j € {1,...,J}, where t; € Ry
satisfies (tj,j—1), (t;,7) € dom ¢y, foreach j € {1,...,J}.
Moreover,

sup |n(t,5)] =0

(t,j)eE

as € = 0, where E := dom¢,, N (R-, x {0,...,J}) is a
compact hybrid time domain.

(10)

Proof. Since ¢, is a Krasovskii solution to (1), then it is also
a Hermes solution to (1) (c.f. [11, Theorem 4.17]). For each
J € N\{0}, the restriction of ¢, to

dom ¢, N (Rsg x {0,...,J}) (11)

is a compact Hermes solution to (1) as in [11, Defini-
tion 4.12]. Hence, there exists a sequence {¢; };cn of hybrid
arcs and a sequence {n; };cn of admissible state perturbations
such that ¢; is a solution to (9) with admissible state pertur-
bation n; for each 7 € N. Furthermore, for each € > 0, there
exists ig € N, such that, for each ¢ > i¢, ¢; is e-close to the
restriction of ¢, to (11). From the definition of e-closeness
in [11, Definition 4.11], it follows that sup ; dom ¢; < € for
each ¢ > 4o, thus t; —t;_1 < € for each j € {1,...,J}.
The desired result follows from the fact that (10) hold by
deifinition of a compact Hermes solution and because we
can choose ¢,, = ¢; and n = n; with ¢ > 7. [l

It is often the case that ETC systems verify G(D)ND = ()
(see e.g. [1] and [6]), which precludes the existence of

complete discrete solutions. However, Theorem 2 demon-
strates that, if such ETC systems have Krasovskii solutions
that are complete and discrete, then there are admissible
state perturbations that induce arbitrarily fast sampling in
the presence of arbitrarily small state perturbations. This is
illustrated in the following example.

Example 2. Let us consider the stabilization of the integrator
+ = u with state z € R and input v € R following the
approach of [1]. In this direction, we define the nominal
feedback law k(z) = —ax for each x € R and use it to
define the following event-triggered controller:

u=0 (z,0) € C:= {(z,u) € R? : y(x,u) < 0}
ut =k(x) (2,0) € D :={(z,0) € R*: y(z,u) > 0}

with y(z,@) := |u— k(z)| — o|z| and o € (0,1). Let us
consider a solution ¢,, = (z,Z) to the perturbed closed-loop
system with initial condition ¢,,(0,0) = (x¢, —z0) satisfying
xo # 0 under the influence of an admissible state perturbation
n = (n1,ng) satisfying na(¢,5) = 0 and

ni(t,j) == =2 = Da(ty, j)(t — t;) (12)

for each (t,j) € dome,. It is possible to show that the
intersampling time is given by ¢;11 — t; = 1;%# for
all j € N and that the magnitude of the noise signal is
Ini(t,5)] = (2771 — 1) (ﬁ 1%’2%, for each (t,j) €
dom ¢,,. We conclude that the jumps of the perturbed solution
accumulate at ¢y := Z;;Og tj+1 —t; = 155 while the noise
signal (12) converges to 0. In particular, this implies that there
does not exist a positive lower bound to the inter-sampling

time in the presence of arbitrarily small noise.

A similar result to Theorem 2 is given in [13, Theo-
rem IV.1], the main differences between the two being that:
the latter applies solely to linear event-triggered systems
while the former applies to hybrid systems in general, and;
admissible state perturbations constitute a broader class of
perturbations than those that are considered in [13, Theo-
rem IV.1].

V. WHEN SOLUTIONS WITH VANISHING TIME BETWEEN
JUMPS ARE UNAVOIDABLE

The final result that we present in this paper reveals
a particularly pathological case that may happen in ETC
systems (see e.g. [21]).

Theorem 3. Suppose that H in (1) is nominally well-
posed and that there exists a compact subset A of RP
such that each maximal solution ¢g to H from A is com-
plete, discrete, and satisfies rge ¢g = {do(t,j) : (t,7) €
dom ¢} C A. Then each complete solution ¢ to H satisfying
limy 4 j 00 [6(t, )| 4 = O has vanishing time between jumps.

Proof. Similarly to the proof of Theorem 1, consider the
sequence {¢;}2, defined in (5). Since ¢ converges to
A by assumption, it follows from compactness of A that
{$:i}2, is locally eventually bounded, hence it has a
convergent subsequence that converges graphically. Since
lim; o0 [¢4(0,0)] , = 0, it follows from nominal well-
posedness that {¢;}52, converges to a solution to H from
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Fig. 1. Representation of the time between jumps for a simulation of the

system in Example 3.

A. Since all maximal solutions to A from .4 are complete
and discrete, we have that {dom ¢, }3°, converges to {0} xN.
It follows from Lemma 1 that ¢ has vanishing time between
jumps. O

It follows directly from Theorem 3, that, if A is attrac-
tive for H, then complete solutions converging to A have
vanishing time between jumps, necessarily. We illustrate this
phenomenon in an ETC system in the next example.

Example 3. Let us consider the single integrator system of
Example 2, but instead of stabilizing the origin, suppose
that we wish to track a reference ¢ — xz4(t) generated by
the system (&4,0q4) = (vq,—zq) With (zg,v4) € S =
{(z4,vq) € R?:|(xq,v4)| = 1}. Using the feedback law

K(zd,vq,x) := —(x —xq) + vg  V(Tq,vq,2) €S X R,
the closed-loop system is given by (1) with data

F(€) := (va, —4,1,0) véeC
G(&) := (%a, va, 2, K(d,va, 7)) Vée D

and state has state £ := (z4,v4,2,0) € E := S x R X
R, and flow set and jump set given by C := {& €
= |u—k(zg,ve,7)| < olx—x4|}, D = {£ € = :
|t — k(xq,vq,z)| > 0|z — xq]}. It is possible to verify that
A ={£ € 22 = 2q,u = k(zg,v4,2)} is globally
asymptotically stable. However, each maximal solution from
A is complete and discrete, thus all solutions have vanishing
time between jumps (c.f. Fig. 1).

VI. CONCLUSION

Motivated by applications in Event-Triggered Control
(ETC), we analysed conditions for the existence of solutions
to hybrid dynamical systems with arbitrarily small separation
between jumps. In particular, we introduced the concept of
solutions with vanishing time between jumps — which are
solutions whose time between jumps converges to zero, —
and we demonstrated that, if a nominally well-posed hybrid
system does not have complete discrete solutions then it does
not have solutions with vanishing time between jumps. We
also demonstrated that the existence of Krasovskii solutions
to a hybrid system that are complete and discrete implies that
there are admissible state perturbations that generate arbitrar-
ily small separation between jumps. Finally, we proved that
hybrid systems with a compact set from which all solutions
are complete and discrete, the existence of solutions with
vanishing time between jumps might be unavoidable. These
results were illustrated with applications in ETC.
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