
Computational Tool

DeepTracer-ID: De novo protein identification from
cryo-EM maps

Luca Chang,1 Fengbin Wang,2,* Kiernan Connolly,1 Hanze Meng,3 Zhangli Su,4 Virginija Cvirkaite-Krupovic,5

Mart Krupovic,5 Edward H. Egelman,2,* and Dong Si1,*
1Division of Computing and Software Systems, University of Washington Bothell, Bothell, Washington; 2Department of Biochemistry and
Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia; 3Department of Mathematics, University of Washington,
Seattle, Washington; 4Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and 5Institut Pasteur, Universit�e
Paris Cit�e, CNRS UMR6047, Archaeal Virology Unit, Paris, France

ABSTRACT The recent revolution in cryo-electron microscopy (cryo-EM) has made it possible to determine macromolecular
structures directly from cell extracts. However, identifying the correct protein from the cryo-EM map is still challenging and often
needs additional sequence information from other techniques, such as tandem mass spectrometry and/or bioinformatics. Here,
we present DeepTracer-ID, a server-based approach to identify the candidate protein in a user-provided organism de novo from
a cryo-EM map, without the need for additional information. Our method first uses DeepTracer to generate a protein backbone
model that best represents the cryo-EMmap, and this model is then searched against the library of AlphaFold2 predictions for all
proteins in the given organism. This method is highly accurate and robust for high-resolution cryo-EM maps: in all 13 experi-
mental maps tested blindly, DeepTracer-ID identified the correct proteins as the top candidates. Eight of the maps were of known
structures, while the other five unpublished maps were validated by prior protein annotation and careful inspection of the model
refined into the map. The program also showed promising results for both homomeric and heteromeric protein complexes. This
platform is possible because of the recent breakthroughs in large-scale three-dimensional protein structure prediction.

INTRODUCTION

Over the past 9 years, there has been a resolution revolution in
cryo-electron microscopy (cryo-EM), with exponential
growth in the number of determined atomic structures per
year (1–3). Unlike X-ray crystallography or nuclearmagnetic
resonance, which often require a large amount of sample, a
high concentration, and a high degree of sample purity, using
cryo-EM it is possible to capture structures of macromolec-
ular complexes under conditions closer to the in situ environ-
ments with fewer restraints on volume, sample purity, and
concentration (4–6). With recent software developments

(7,8), cryo-EM can routinely sort out different conforma-
tional states of single macromolecules (9) and even unrelated
complexes within the same data set (10,11).When a cryo-EM
map of unknown components reaches z4.2 Å resolution or
better where b-sheets are well resolved, one can typically
trace the Ca backbone directly from the map. The remaining
challenge is identifying the correct protein sequence from the
organism’s proteome.

A typical workflow that has been used to address this
problem is first to detect which proteins are present in the
sample by tandem mass spectrometry (MS/MS), then
threading the sequences of detected proteins into the cryo-
EM map to identify the best match (12–14). However, this
approach first relies on the target protein being detected
by MS/MS, which is sometimes not the case due to, for
example, the lack of digestion sites (15) or a high degree
of post-translational modifications (16). Thousands of
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SIGNIFICANCE While it has now become routine for cryo-EM maps of proteins to reach a near-atomic resolution,
potentially allowing for reliable atomic models to be built, there is a growing number of instances where the protein identity
may not be known. Without knowing the protein sequence, it is almost impossible to build an atomic model. DeepTracer-ID
is a server-based approach to surmount this problem by identifying the proteins in a given organism that are found in the
cryo-EM map. A free web service for global academic access is provided.
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proteins can be detected if the target of interest has been
imaged directly from cell extracts. Under such circum-
stances, possible sequence targets have to be selected based
on the structural features of the map. Each sequence must
then be built into the map to identify the best match by trial
and error.

A second approach is using model-building tools, such as
DeepTracer (17), to perform protein sequence prediction
based on an input cryo-EM map. The predicted sequence
is then used for BLAST analysis to identify potential hits
in the selected organism (18). This approach is greatly
limited by the accuracy of the backbone trace and the qual-
ity of side-chain densities of the input cryo-EM map. In
addition, three-dimensional (3D) structural information is
not used in this type of search, and the BLAST results
may be very difficult to interpret.

Another approach to identifying unknown proteins is to
trace the backbone from the cryo-EM map and then find
the best matches against the experimentally determined
structures in the Protein Data Bank (PDB). One example
of this approach is FindMySequence (19). However, this
method is likely to be limited to detecting proteins of known
structure or proteins that are structurally similar to the
known structures. Fortunately, with recent breakthroughs
in protein 3D structure prediction by AlphaFold2, it is
possible to obtain accurate protein structure predictions
even when no homologous structure is available (20).

Here, we describe a de novo protein identification
approach, DeepTracer-ID, for cryo-EM maps with better
than 4.2 Å resolution. Our program first automatically gen-
erates a backbone tracing of the cryo-EM map using
DeepTracer. The AlphaFold2 predicted models are then
aligned to the DeepTracer backbone using three different al-
gorithms, PyMOL-align (21), PyMOL-cealign (22) and
FATCAT (23). The version of PyMOL being used is open-
source 2.6.0a0. On a benchmark set of 11 experimental
segmented cryo-EM maps, including three previously un-
solved structures, we show that our program, DeepTracer-
ID, can identify the correct protein and their closely related
homologs in a pool of AlphaFold2 predicted models.
Furthermore, we show that DeepTracer-ID can detect the
correct protein from maps of homomeric protein complexes
and also identify the largest components within maps of
massive heteromeric complexes.

MATERIALS AND METHODS

Pipeline inputs of DeepTracer-ID

Two inputs are needed to use the pipeline: 1) a cryo-EM map, segmented to

correspond to a single protein subunit, which is preferred but not necessary;

and 2) a pre-calculated AlphaFold2 protein library to search against

(Fig. 1). The input cryo-EM map is used to generate a 3D model trace by

DeepTracer (17). In a rare case when the cryo-EM map does not contain

a single a-helix, there is an ambiguity in the absolute hand of the cryo-

EM map (24). In this case, the users are encouraged to mirror the input

map and run DeepTracer-ID twice (for the original and mirrored map)

for the best results. The proteomes from a number of model organisms

and pathogens important to global health, such as Homo sapiens, Escheri-

chia coli, Arabidopsis thaliana, Caenorhabditis elegans, Campylobacter

jejuni, and Streptococcus pneumoniae, have already been pre-calculated

(25), and for those organisms an AlphaFold2 protein library is saved on

the DeepTracer-ID server and is thus not required from the user side. For

other organisms, the user can either generate their AlphaFold2 library

locally or use an online service such as ColabFold (26).

The next question will be how many AlphaFold2 models to generate for

the screening library. The answer depends on how well the user can esti-

mate the length of the target protein. For a segmented map generated by

an experienced EM person, the user may have a very reasonable estimate

of the total length of the protein. Therefore, a user-defined search range

(e.g., 150–250 residues in a given organism) will significantly speed up

the calculations. Otherwise, it is also possible to search against the

AlphaFold2 predictions of the entire organism’s proteome, which takes a

longer time of course.

3D alignment of AlphaFold2 predictions to map-
traced model

We use three different approaches, PyMOL-align (21), PyMOL-cealign (22),

and FATCAT (23), to align the AlphaFold2 predicted structures to the back-

bone model traced directly from the cryo-EM map (Fig. 1). The aligned

AlphaFold2 predictions are saved separately for subsequent root-mean-

squared deviation (RMSD) analysis. Three different alignment algorithms

are used, as we expect they have different advantages and disadvantages de-

pending on the input cryo-EMmap. PyMOL-align considers both similarities

in sequence and structure, and this is the default alignment option because of

its overall most robust performance (see below). Specifically, PyMOL-align

performsa sequence alignment first followedby a structural superposition, af-

ter which the alignment is refined in more cycles to reject structural outliers

found during the fit. PyMOL-cealign aligns two proteins using the combina-

tional extension algorithm (22). It has been reported as helpful for proteins

with little to no sequence similarity. Therefore, PyMOL-cealign may be

more useful when the protein side-chain densities are not well resolved in

the cryo-EMmap. FATCAT is an approach for flexible protein structure com-

parison. It achieves two features during the structure alignment: both opti-

mizing the alignment and minimizing the number of rigid-body movements

around pivot points introduced in the reference structure. Using FATCAT

could help minimize some errors introduced by the AlphaFold2 predictions,

and itmaybemore useful for smaller proteins or proteins that rely on the local

environment to form an ordered 3D structure.

Protein identification scoring matrix

Each AlphaFold2 prediction is scored with two factors: 1) the RMSD to the

DeepTracer model and 2) the percentage of residues in the DeepTracer

model that can be aligned to the corresponding AlphaFold2 prediction

(Eq. 1). The RMSD calculation between the AlphaFold2 prediction and

the DeepTracer model is carried out using the methods previously imple-

mented in DeepTracer (17). The length of the DeepTracer model is lDT ,

and the length of matching residues in the superposed AlphaFold2 predic-

tion is laligned . The AlphaFold2 predictions are then listed from lowest to

highest based on this score, and the correct protein is expected to be de-

tected within the AlphaFold2 predictions with lowest score:

score ¼ RMSD � lDT
laligned

: (1)

Using this approach, we expect to not only detect the correct protein but

also other isoforms or homologs that are structurally similar to the correct
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protein. Therefore, after scoring all AlphaFold2 predictions, we use the

DaliLite v5 (27) to perform an all-to-all analysis on the top hits.

RESULTS

Protein identification from segmented cryo-EM
maps

We tested our method on a benchmark set of eight
segmented cryo-EM maps from published literature, where
we assumed the authors assigned the correct protein se-
quences to the EM maps. These proteins range in length
from 224 to 838 residues, and the maps have a resolution
ranging from 2.6 to 3.9 Å. Initially, five cryo-EM maps
were selected as test sets to optimize our approach. The se-
lection criteria considered the most likely pitfalls for this
approach, and we tried to include cases where: 1) the map
lacks secondary structure and has multiple ligands bound;
2) only a portion of the map reaches high resolution; 3)
the corresponding protein has multiple domains, and their
relative orientation is unlikely to be accurately predicted
by AlphaFold2. In all five cases, despite these existing
possible pitfalls, DeepTracer-ID was able to identify the
correct protein as the top hit based on score (Eq. 1 and

Fig. 2). We then moved on to test three more EM maps
from eukaryotes with larger genomes, two from H. sapiens
and one from A. thaliana. DeepTracer-ID could also iden-
tify the correct protein as the top hit, except for one case
(a7 nAChR fromH. sapiens). In that case the correct protein
was ranked third, while the top 32 hits are all structurally
related homologs (Figs. 2 and 3).

Among the proteins in the benchmark set, OmcS (14) has
six hemes as ligands, and TFIIH (28) has a bound double-
stranded DNA. Interestingly, our method detected the cor-
rect protein using cryo-EM maps in the presence or absence
of ligand/DNA densities (Fig. S1), suggesting that a small
portion of non-protein density does not diminish the
accuracy of our method. Importantly, although OmcS lacks
pronounced secondary structure elements, DeepTracer
correctly placed Ca atoms into the 3.7 Å map. In fact, the
backbone tracing of DeepTracer is normally robust when
the map is better than 4.2 Å. Therefore, when the map is
4.2 Å or better, a successful DeepTracer-ID protein identifi-
cation will then primarily rely on the accuracy of
AlphaFold2 predictions.

The 4.2 Å resolution is normally the cutoff when b-sheets
can be clearly resolved in cryo-EM map and strands can be
traced unambiguously. Of course, DeepTracer-ID may still

FIGURE 1 DeepTracer-ID: De novo protein identification from cryo-EM density maps. Starting with a cryo-EM map and a given organism, DeepTracer-

ID identifies the protein in three steps: 1) the initial model is generated from the cryo-EM map using deep learning based DeepTracer; 2) the AlphaFold2

prediction library (user-provided or server pre-calculated) is aligned to the initial model; 3) each aligned AlphaFold2 prediction is scored and the top hits

subsequently analyzed. To see this figure in color, go online.

Chang et al.
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work satisfactorily for a helix-rich map at even lower reso-
lution. To obtain a better idea of the resolution required for a
successful protein identification, we low-pass filtered the ex-
isting 2.6 ÅTRVP1 volume shown in Fig. 2 to 3.4 Å, 4.2 Å,
5.0 Å, 5.8 Å, and 6.6 Å, then ran them through DeepTracer-
ID (Fig. S2). Interestingly, at 4.2 Å the correct protein and
its homologs can be detected as well as in the 2.6 Å map.
At 5.0 Å, the correct protein still has the best score using
the PyMOL-align method while its homologs start to fall
off the radar. This suggests that the quality of DeepTracer
backbone tracing decreases when the resolution worsens,
leading to poor subsequent alignments with the
AlphaFold2 predictions.

Closely related structural homologs of the correct
protein

If the correct protein has structural homologs/isoforms, we
expect both the correct protein and its homologs/isoforms
to be detected using our method. This is inevitable because
the correct protein and its homologs/isoforms are structur-
ally similar. In addition, model errors are expected in both
Ca tracing in DeepTracer and AlphaFold2 prediction. As
a result, the correct protein and its homologs might not be
distinguished at this step. Therefore, a subsequent full-

length model building for all top hits is required to deter-
mine which protein best fits into the cryo-EM map. This is
now a routine protocol for de novo model building of an un-
known protein (14,15,29). To visualize similarity among
possible structural homologs of the top hits, we imple-
mented DALI all-to-all analysis (27) into this pipeline.
DALI outputs a protein all-to-all matrix. This additional
DALI analysis will not only detect potential sequence ambi-
guity, it will also reveal possible biologically interesting
similarities that were not apparent from scores (Eq. 1). As
expected, in several cases our method detected a number
of structural homologs of the correct protein (Fig. 3). These
can be confidently distinguished by subsequent full-length
modeling without the need for additional sequence
information.

De novo protein identification from cryo-EMmaps
of unknown proteins

As a proof of principle, we then applied our method to three
segmented cryo-EM maps with moderate resolutions from
3.4 to 3.9 Å of unknown proteins. The first protein is an
archaeal flagellin from Aeropyrum pernix, with a long N-ter-
minal helix and a C-terminal globular domain (30). Without
additional information on how this flagellin packs into a

FIGURE 2 Protein identification from eight benchmark cryo-EM maps. Top: cryo-EM maps used for de novo protein identification. Their reported res-

olution is labeled. Middle: the Ca backbone of the model generated by DeepTracer, from the maps on top. Bottom: the scores of corresponding AF2 pre-

dictions are displayed in scatterplots. The results from all three different alignment algorithms are shown. The correct protein is shown as a red dot, the

proteins with significant structural similarity to the correct protein are shown in blue dots, and the rest of the AF2 predictions are shown as gray dots.

The size of the AF2 library and the corresponding organism for the eight benchmark data sets are OmcS (Geobacter sulfurreducens PCA, N ¼ 226),

MsbA (E. coli BL21-DE3, N¼ 65), TRPV1 (Rattus norvegicus, N¼ 3679), CRP (H. sapiens, N¼ 1419), GroEL (E. coli K12, N¼ 413), SULTR (A. thaliana,

N ¼ 3850), a7 nAChR (H. sapiens, N ¼ 2847), and TFIIH (H. sapiens, N ¼ 1347). To see this figure in color, go online.
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filament, it is challenging for AlphaFold2 to accurately pre-
dict how the two domains are oriented with respect to each
other. The other two proteins are the two major capsid pro-
teins (MCP) of Acidianus filamentous virus 6 (AFV6), a vi-
rus infecting a hyperthermophilic and acidophilic archaeon
(31). Similar to Sulfolobus islandicus filamentous virus
(SIFV) (32), the two capsid proteins form a heterodimer
that wraps around A-form DNA. Without the information
about both the helical packing and protein-DNA interac-
tions, AlphaFold2 might not be able to predict the entire
structure accurately. Also, archaeal and archaeal virus ge-
nomes are generally much more sparsely sampled than those
from bacteria and eukaryotes and the viruses that infect
them. Therefore, fewer homologous sequences are available
for AlphaFold2 to use in the prediction.

With all those potential pitfalls, our method still success-
fully determined the correct sequences (Fig. 4). In all three
cases, only 45%–71% of the AlphaFold2 predicted models
could be satisfactorily aligned to the backbone traced
from the cryo-EM maps. Nevertheless, such coverage is suf-
ficient for our method to detect the correct protein. We then
validated those results with prior information. The detected
MCPs in AFV6 are consistent with the annotations, as they
are close homologs of MCPs in SIFV. For A. pernix flagellar
filaments, proteins that are putative flagellins are easily nar-
rowed down by bioinformatic approaches, and the detected
protein is the best fit to the map among all those putative fla-

gellins. The full-length models were subsequently built by
DeepTracer and real-space refined by PHENIX (33). The
statistics of the deposited models are listed in Table S1.

Structural knowledge mined from large and
complicated maps

The next question was whether the approach could extract
useful information from a more complicated map, such as
multimeric protein complexes. We arbitrarily created two
tiers for the maps based on their complexity: the ‘‘easy’’
tier contains maps of homomeric protein complexes; the
‘‘difficult’’ tier contains maps of heteromeric protein com-
plexes. We tested our method with two very different
maps in the easy tier: the dimeric map of human thyroglob-
ulin with two protein copies and the filament map of an A.
pernix flagellum containing z50 flagellin subunits. Our
method successfully determined the correct protein in both
cases (Fig. 5), suggesting that DeepTracer-ID also works
for maps of homomeric protein complexes. Interestingly,
the gap between the correct protein and the protein with
the second best score is comparable with the results from
segmented maps. This is presumably because the alignment
between AlphaFold2 predictions and DeepTracer models is
insensitive to the number of protein copies present in the
cryo-EM map. In addition, DeepTracer assigns residues to
every corner of the map, thus the subsequent alignment is

FIGURE 3 DALI all-to-all analysis of top 40 scoring AF2 predictions. Top: DALI all-to-all analysis of four representative benchmark data sets shown in

Fig. 2. The matrix is based on the pairwise Z-score comparisons calculated using the DALI server. The color scale on the right indicates the corresponding Z

scores. Bottom: the structures clustered (indicated by black line) in the top matrix are shown. The correct protein is colored red. The remaining proteins are

colored transparent cyan and aligned to the correct protein. To see this figure in color, go online.

Chang et al.
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not affected much by whether the backbone corresponding
to a single subunit is successfully traced or not. In such
cases, the only benefit of map segmentation is speeding up
the calculation process.

Next, we were curious as to whether DeepTracer-ID
could extract any useful information from complicated
cryo-EM maps of heteromeric protein complexes. To this

end, we tested two maps (Fig. 5). The first map is that of
the filamentous virus AFV6, with z50 copies of
MCP1, z50 copies of MCP2, and z600 bp of double-
stranded A-form DNA. Interestingly, our method could still
detect one of the capsid proteins, MCP2. However, the other
capsid protein did not rank high using the default PyMOL-
align algorithm. It ranked third using PyMOL-cealign,

FIGURE 4 Protein identification from A. pernix and archaeal virus AFV6. Far left: cryo-EM maps used for de novo protein identification. Left: the scores

of corresponding AF2 predictions are displayed in scatterplots. The correct protein is shown as a red dot and the remaining AF2 predictions are shown as gray

dots. The size of the AF2 library and the corresponding organism for the three unpublished data sets are A. pernix flagellin (N¼ 104), AFV6MCP1 (N¼ 28),

and AFV6 MCP2 (N ¼ 28). Right: the alignment between DeepTracer model (green) and AF2 prediction of the correct protein (red). The alignment RMSD

and percentage of aligned area are also labeled. Far right: the final model after DeepTracer full-length modeling and PHENIX real-space refinement. To see

this figure in color, go online.

DeepTracer-ID: Protein identification

Biophysical Journal 121, 2840–2848, August 2, 2022 2845



suggesting that sequence information may not be helpful in
a highly complicated map. The second map tested is the tri-
snRNP part of the spliceosome complex composed of z30
different components. Not surprisingly, our method detected

the largest four proteins in the complex, as they are expected
to have a higher laligned in Eq. 1, leading to a better score.
This suggests that DeepTracer-ID can identify the major
components from large complex maps, thereby rendering

FIGURE 5 Protein identification from protein

complex maps. Left: cryo-EM maps used for de

novo protein identification. Middle: the scores of

corresponding AF2 predictions are displayed in

scatterplots. The correct protein is shown as

colored dots and the remaining AF2 predictions

as gray dots. The size of the AF2 library and the

corresponding organism for the four data sets are

H. sapiens thyroglobulin (N ¼ 22,742), A. pernix

flagellin (N ¼ 104), archaeal virus AFV6 (N ¼
28), and H. sapiens tri-snRNP complex (N ¼
23,391). Right: the identified protein(s) are colored

the same as in the scheme shown in the middle; the

rest of the complex is colored gray. To see this

figure in color, go online.

Chang et al.
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the subsequent map segmentation and smaller protein iden-
tification much easier. For the smaller components, on the
other hand, map segmentation will be required prior to
DeepTracer-ID protein identification.

DISCUSSION

We present here a server-based pipeline, DeepTracer-ID,
which can robustly identify the protein components
directly from cryo-EM maps of a given organism without
the need for other experimental data. Of course, the de-
tected protein has to be fully modeled into the cryo-EM
map and compared thoroughly against its homologs to be
confident of the best fit. Furthermore, this approach does
not require very high accuracy from AlphaFold2 predicted
libraries. As long as z45% of the AlphaFold2 prediction
reasonably matches the cryo-EM structure, this pipeline
can identify the correct protein. As a proof of principle,
we successfully identified three proteins within large fila-
mentous complexes directly isolated from natural sources
using this pipeline.

The remaining challenge for this pipeline is working with
a map of tiny protein that reaches to 4.2 Å or better resolu-
tion. Owing to the extremely high signal/noise level in cryo-
EM, it is currently almost impossible to reach a near-atomic
resolution for a small monomeric protein (<100 amino
acids). However, such small proteins frequently exist in
larger complexes, such as conjugation pili (34,35) and
ciliary doublets (29). In such cases, the DeepTracer model
can probably be structurally aligned to many different
AlphaFold2 predictions reasonably well. At the same
time, sequence information may no longer be beneficial
because of the limited length. For example, we tested a virus
capsid protein with only z90 amino acids in a segmented
cryo-EM map (36) (Fig. S3). The protein has the
N-terminal z60 residues cleaved, a helix-turn-helix struc-
ture, glycosylation in the middle, and no cleavage site for
trypsin. As a result, we found that this set of features
rendered the initial sequence-based alignment method unre-
liable, while the structure-based PyMOL-cealign remained
valid. FATCAT can increase the score of the correct protein
by enabling flexible fitting, but it improves the scores for all
other proteins at the same time. We will consider intro-
ducing other initial alignment methods in the future, such
as Chimera matchmaker (37), TM-align (38), DALI (27),
or different flexible fitting algorithms.

This approach could be broadly applicable to many sce-
narios other than identifying an unknown protein in a
cryo-EM map resulting from contaminants. Using this
method, it is possible to investigate large complexes en-
riched in a cell extract. The protein of interest can be
directly identified when the resolution is better than 4.2 Å,
regardless of post-translational modifications and the lack
of proteomics data. It may also be utilized to perform a
cryo-EM ‘‘pull-down’’ assay where, instead of a long list

of candidates from mass spectrometry, the outputs now are
protein 3D structures fitted to the maps.

DATA AVAILABILITY

The DeepTracer-ID described here is free for academic use, available at

https://deeptracer.uw.edu/home. The DeepTracer-ID is not open-source

software at the moment. The atomic models and cryo-EM volumes have

been deposited in the PDB and the Electron Microscopy Data Bank (A. per-

nix flagellum, PDB: 7TXI and EMD: 26158; AFV6, PDB: 7TXJ and EMD:

26159). The raw cryo-EMmicrographs of AFV6 have been deposited to the

Electron Microscopy Public Image Archive (EMPIAR: 11040). Other data

are available from the corresponding authors upon reasonable request.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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