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Abstract— We propose a local observer design for hybrid
systems with linear flow, jump, and output maps, whose jump
times are not known/detected. Assuming the solutions of interest
admit a dwell-time, evolve in a compact set, and the pair of
flow/output maps is observable allows us to use a sufficiently
fast linear observer during flow and trigger the observer jumps
when its estimate reaches the jump set. However, since, as we
show, using the plant output around the jump times is actually
counterproductive, we propose to “disconnect” the correction
term of the observer around the jump times and let the estimate
flow in open-loop with the plant flow map. Local attractivity
of an appropriate zero-error set is then shown for the obtained
observer and illustrated in simulations.

I. INTRODUCTION

The problem of designing observers for general hy-

brid systems presenting both continuous-time behavior and

discrete-time behavior is still largely unsolved, mainly due to

the fact that the plant jump times, that is, the times at which

discrete events occur in the plant solution generally depend

on its initial condition, which is unknown in the context of

observer design. When the plant jump times are known or

can be detected, it is natural to design an observer that is

synchronized with the plant, i.e., whose jumps are triggered

at the same time as those of the plant. Such an approach has

been pursued under assumptions on the time elapsed between

successive jumps (reverse/average dwell-time for instance)

in a large variety of contexts, including impulsive (possibly

switched) systems [1], [13], [20], sampled-data systems [16],

[7], [19], and general hybrid systems [6], [17], [5], among

others. Because the observer jumps at the same time as the

plant, both observer and plant solutions are defined on the

same (hybrid) time domain, which facilitates the analysis of

the estimation error and the design of an observer.

Unfortunately, exact synchronization between the plant

and the observer is usually difficult to achieve in practice,

due to noisy/delayed jump detection. Robustness with respect

to delays in triggering the observer jumps has been studied

in [5], but only practical stability outside the delay intervals

may be expected. Besides, in other contexts, it may even
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be impossible to detect the jumps of the plant via the mea-

surements. Motivated by these shortcomings, we investigate

in this paper the possibility of achieving – at least local –

asymptotic stability of the estimation error without relying

on the detection of the plant jumps.

When the observer jumps are not triggered at the same

time as those of the plant, the mismatch of time domains

between the plant and the observer solutions makes the

formulation of observability and, in turn, observer design

very challenging [3]. In the particular context of switched

systems, numerous results are available for the design of

observers able to estimate the switching signal; see [2],

[15], [21] among many others. On the other hand, very

few observer results exist for general hybrid systems [10]

when the plant jump times are unknown. Exceptions are

[14], [11], where the existence of a change of coordinates

transforming the jump map into the identity map is studied,

thus allowing the use of a continuous-time observer in

those new coordinates. Also in [8], an observer with non

synchronized jumps is designed for billiard-type systems,

but the knowledge of the plant jump times is still needed

to trigger the observer jumps.

In this paper, we consider a general class of hybrid systems

[10] with linear flow, jump, and output maps, whose solutions

of interest admit a dwell-time, evolve in a compact set and

whose pair of flow/output maps is observable. Our goal is

to design an observer that does not require the knowledge

or detection of the plant jump times. While it is tempting

to use a sufficiently fast linear observer during flow and

trigger the jumps when its estimate reaches the jump set,

we remark that using the plant output around the jump

times is counterproductive. Indeed, unlike standard output

disturbances like noise or delays whose nominal behavior

is to be small or absent, arbitrarily small asynchronism of

the plant and observer jump times typically leads to large

errors due to discontinuity in the solutions at the jumps,

even in the ideal context where the output is noise-free.

Hence, under some appropriate assumptions on the behavior

of solutions around the jump set, we propose to “disconnect”

the correction term of the observer around the jump times and

let the estimate flow in open-loop with the plant flow map

until it naturally reaches the jump set. Local attractivity of

an appropriate zero-error set is then shown for the obtained

observer and the performance compared to a more standard

synchronous observer with delayed jump detection in an

example.



A. Notation and Preliminaries

We denote R (resp. N) the set of real numbers (resp.

integers) and R≥0 := [0,+∞). For x ∈ R
n and A ⊆ R

n,

|x|A denotes the distance from x to A. For a matrix P ,

eig(P ) denotes the set of its eigenvalues, and λ(P ) (resp.

λ(P )) stands for its smallest (resp. largest) singular value.

For a set S ⊂ R
n and a matrix M ∈ R

n×n, MS denotes the

set {Mx : x ∈ S}. We consider hybrid dynamical systems as

in [10], whose solutions are defined on hybrid time-domains.

A subset E of R≥0 ×N is a compact hybrid time-domain if

E =
⋃jm−1

j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ . . . ≤ tjm , and it is a hybrid time domain

if for any (tm, jm) ∈ E, E ∩ [0, tm] × {0, . . . , jm} is a

compact hybrid time domain. For a solution (t, j) 7→ x(t, j)
(see [10, Definition 2.6]), we denote domx its domain,

domt x (resp.domj x) its projection on the ordinary time

(resp. jump) component. We say that x is t-complete if

domt x is unbounded and that it has a dwell-time τm > 0
if it flows at least τm units of time in between consecutive

jumps.

II. PROBLEM STATEMENT

A. Framework

We consider a hybrid plant of the form [10]

H

{

ẋ = Ac x x ∈ C
x+ = Ad x x ∈ D

, y = H x (1)

with state x ∈ R
dx and output y ∈ R

dy , matrices Ac, Ad ∈
R

dx×dx , H ∈ R
dy×dx , and flow and jump sets C and D. For

this class of hybrid systems, we are interested in estimating

the state of H when its solutions are initialized in a subset

X0 ⊂ C∪D. We denote SH(X0) the set of maximal solutions

of H with initial condition in X0.

As in [6], [17], if the plant jump times were known or

detected, one could implement an observer for (1) of the

form

Ĥ

{

˙̂x = Acx̂− Lc(Hx̂− y) when H flows

x̂+ = Adx̂− Ld(Hx̂− y) when H jumps
(2)

that is synchronized with the plant, for some gains Lc, Ld ∈
R

dx×dy to be chosen such that x̂ asymptotically reconstructs

the plant state x. The advantage of such a setting is that

the dynamics of the extended state (x, x̂) are easy to write,

which facilitates the analysis of the estimation error.

Unfortunately, as mentioned above, exact synchronization

between the plant and the observer is difficult to achieve in

practice and we investigate here the possibility of building

an – at least local – observer whose jumps are triggered

based on its own estimate of the plant state, rather than an

exogenous signal.

The following assumption describes the class of hybrid

systems considered in this study.

Assumption 2.1: Given H = (C,Ac, D,Ad) and X0 ⊂
C ∪ D, there exist τm > 0 and a compact subset X of

C ∪D such that any solution x ∈ SH(X0)

• is t-complete with dwell-time τm; and

• remains in X at all times.

In addition, the output matrix H is such that the pair (Ac, H)
observable.

The uniform dwell-time assumption enables our design to

rely on an observer of the flow dynamics that can be made

arbitrarily fast. Under well-posedness, the existence of such a

dwell-time is guaranteed if g(D)∩D = ∅ using [18, Lemma

2.7] and the fact that all the solutions from X0 evolve in the

compact set X .

B. Arbitrarily Fast Linear Observer for the Flow

Since the pair (Ac, H) is observable, it admits a linear

observer, whose eigenvalues can be assigned arbitrarily fast.

For that, we define a change of coordinates V ∈ R
dx×dx

transforming (Ac, H) into a block-diagonal observable form,

namely such that

VAcV
−1 = A+DH , HV−1 = H

with

A := blkdiag(A1, . . . , Ady
) , D := blkdiag(D1, . . . , Ddy

)

H := blkdiag(H1, . . . , Hdy
)

,

Ai =















0 0 . . . 0
1 0
...

. . .
. . .

0 1 0 0
0 . . . 0 1 0















∈ R
di×di

Hi =
(

0 . . . 0 1
)

∈ R
1×di ,

Di ∈ R
di×1, and di integers such that

∑dy

i=1 di = dy . Con-

sider vectors Ki such that Ai −KiHi is Hurwitz, and for a

positive scalar `, define Li(`) := diag(`di−1, . . . , `, 1). Then,

a linear high-gain observer during flow can be designed as

˙̂x = F`(x̂, y)

with

F`(x̂, y) := Acx̂− V−1(D + `L(`)K)(Hx̂− y) (3)

where

K := blkdiag(K1, . . . ,Kdy
) , L := blkdiag(L1, . . . ,Ldy

).

We thus have eig(Ac−LcHc) = ` eig(A−KH), so that ` is

a high-gain parameter enabling to accelerate the convergence

of the observer.

It is shown in [5] that when the jump times of the plant are

known or immediately detected, a possible observer consists

of Ĥ defined in (2), with Lc defined as in (3) during flow

and Ld = 0. Indeed, for ` sufficiently large compared to Ad

and the dwell-time τm, one can show that the (exponential)

decrease of the estimation error during flow wins over its

(polynomial) increase at jumps and the estimation error thus

asymptotically converges to zero.

Still relying on the dwell-time and the available high-gain

observer of the flow dynamics, the construction of a local





The proposed observation strategy is captured by the

following hybrid observer, denoted Ĥ:





˙̂x
τ̇
q̇



 =































































F`(x̂, y)
0
0



 if (x̂, τ, q) ∈ C2





Ac x̂
0
0



 if (x̂, τ, q) ∈ C1





Ac x̂
1
0



 if (x̂, τ, q) ∈ C0

(6a)





x̂+

τ+

q+



 =































































Π(x̂)
0
1



 if (x̂, τ, q) ∈ D2





Ad x̂
0
0



 if (x̂, τ, q) ∈ D1





x̂
0
2



 if (x̂, τ, q) ∈ D0

(6b)

with F` defined in (3), the (disjoint) flow sets defined by

C2 =
{

x̂ ∈ R
dx : Π(x̂) ∈ cl(Rdx \Dδ1)

}

× {0} × {2}

C1 = Dδ0 × {0} × {1}

C0 = R
dx × [0,∆]× {0}

and (disjoint) jump sets by

D2 =
{

x̂ ∈ R
dx : Π(x̂) ∈ Dδ1

}

× {0} × {2}

D1 = D × {0} × {1}

D0 =
{

x̂ ∈ R
dx : Π(x̂) ∈ cl(Rdx \Dδ0)

}

× {∆} × {0}

Of course, the plant H evolves in parallel with the ob-

server, with jumps that are not necessarily synchronized with

those of the observer. However, as long as the estimation

error x̂− x is sufficiently small, the following hold:

a) When the observer flows in mode q = 2, |Π(x̂)|D ≥ δ1
so x /∈ D and the plant is also flowing, with y evolving

continuously;

b) When the observer enters mode q = 1, |Π(x̂)|D = δ1, so

x ∈ Dδ0 and from (P1)-(P2), x jumps in a near future,

some time during the phase where q ∈ {1, 0};

c) Once x has jumped, the observer has time to finish the

phase q ∈ {1, 0} and flow again in mode q = 2 with

the high-gain observer, before x reenters Dδ0 according

to (P3) and the fact that ∆ < τ0m/2.

The latter item ensures the estimation error has time to

decrease with output-injection before another open-loop se-

quence starts.

C. Main result

Let us define A = Aeq ∪ A1 ∪ A0, where

Aeq = {(x, x̂, q) ∈ R
dx × R

dx × {0, 1, 2} : x̂ = x}

A1 = {(x, x̂, q) ∈ AdD ×D × {1} : x = Adx̂}

A0 = {(x, x̂, q) ∈ D ×AdD × {0} : x̂ = Adx}

The set Aeq corresponds to a zero estimation error, while the

sets A1 and A0 correspond to x̂ being one jump right ahead

or behind of x. Including A1 and A0 cannot be avoided in an

asymptotic analysis of a hybrid observer, since such errors

are inevitable arbitrarily close to the jump times (peaking

phenomenon), unless exact synchronization of the plant and

observer jump times is achieved.

The following theorem shows that for ` sufficiently large,

A is locally attractive for the interconnection of H and Ĥ.

Because the plant and observer solutions are not defined on

the same (hybrid) time domain, we use the notion of j-

reparametrization introduced in [4]. More precisely, given

a hybrid arc x, xr is a full j-reparametrization of x if

there exists a map ρ : N → N verifying ρ(0) = 0,

ρ(j +1)− ρ(j) ∈ {0, 1}, and such that xr(t, j) = x(t, ρ(j))
for all (t, j) ∈ domxr with domx =

⋃

(t,j)∈dom xr(t, ρ(j)).

Theorem 3.2: Suppose Assumptions 2.1 and 3.1 hold.

Then, there exists `∗ > 0 such that for all ` ≥ `∗, there

exist ε` > 0 such that for any x ∈ SH(X0), any maximal

solution φ := (x̂, τ, q) to Ĥ defined by (6) with input y = Hx
and initialized in C2 ∪ (Dδ1 × {0} × {1}) such that

|(x, x̂, q)(0, 0)|A < ε` (7)

is t-complete and there exist full j-reparametrizations xr and

φr of x and φ, respectively, such that domxr = domφr and

lim
t+j→∞

|(xr, x̂r, qr)(t, j)|A = 0 . (8)

In other words, by definition of A, x̂ asymptotically

converges to x (modeled by Aeq), except around the jump

times where x̂ may be a jump ahead/behind x (modeled

by A1 and A0). However, thanks to T being Lipschitz, the

length of those time mismatches asymptotically goes to zero.

The analysis of the estimation error heavily relies on items

a)-b)-c) described above and thus necessitates a sufficiently

small initial error, guaranteeing that x̂ is only one jump

ahead/behind x. One may proceed with initialization as

follows. If we believe that at the initial time, x is not about

to jump or has not just jumped (i.e., x(0, 0) is not close to

either D or AdD), one may initialize (x̂, τ, q) to q(0, 0) = 2,

τ(0, 0) = 0 and x̂(0, 0) /∈ Dδ1 such that the estimation

error x̂(0, 0) − x(0, 0) is sufficiently small to satisfy (7).

On the other hand, if x(0, 0) ∈ Dδ0 or is close to AdD,

one should initialize (x̂, τ, q) to q(0, 0) = 1, τ(0, 0) = 0
and x̂(0, 0) ∈ Dδ1 such that either x̂(0, 0) − x(0, 0) or

Adx̂(0, 0)− x(0, 0) is sufficiently small according to (7).

IV. SKETCH OF PROOF OF THEOREM 3.2

Consider a positive definite matrix P ∈ R
dx×dx such that

(A−KH)>P + P (A−KH) ≤ −λP

for some λ > 0. Then, the Lyapunov function

V`(x, x̂) = (x− x̂)>V>
L(`)−1PL(`)−1V (x− x̂)

verifies for all (x, x̂) ∈ R
dx × R

dx

c(`)|x̂− x|2 ≤ V`(x, z) ≤ c(`)|x̂− x|2 (9a)



〈∇V`(x, x̂),F`(x, x̂)〉 ≤ −`λ V`(x, x̂) (9b)

with c(`) = λ(V>PV)
`2(d−1) , c(`) = λ(V>PV), d = max di,

F`(x, x̂) = (f(x), F`(x̂, Hx)) and F` defined in (3).

Consider ε < min{δ1, δ0−δ1}. For all (x, x̂) ∈ R
dx×R

dx ,

(a) If x ∈ D and |x− x̂| ≤ ε, then |x̂|D < δ1.

(b) If |x̂|D ≤ δ1 and |x− x̂| ≤ ε, then |x|D ≤ δ0.

Let v` := c(`)
(

ε
ap

)2

. Then, from (9a), (4), items (a)-(b)

hold when V`(x, x̂) ≤ v` also for x̂ replaced by Π(x̂).

A. t-Completeness of Observer Solutions

Assume q(0, 0) = 2. When (x̂, τ, q) ∈ C2, since

Π(x̂) ∈ cl(C ∪ D), we have |Π(x̂)|D ≥ δ1, so as long

as V (x, x̂) ≤ v`, by item (a), x /∈ D, and both the plant

and the observer flow with y continuous. If at some point

|Π(x̂)|D = δ1, a jump is possible in the observer from D2,

in which case x̂+ = Π(x̂) ∈ Dδ1 \ D and q+ = 1, so that

(x̂+, τ+, q+) ∈ C1 \ D1 and the observer can only flow.

Then, while the observer flows in C1, it is in open-loop.

Since x̂ starts from inside Dδ0 and flows with Ac, we know

by (P1) that x̂ remains in Dδ0 and reaches D in finite-time.

Besides, no jump can happen in the observer before x̂ has

reached D by definition of D1. When x̂ reaches D, using

(P2) and (x̂, τ, q) ∈ D1, the observer jumps with x̂+ = Adx̂
and q+ = 0. From there, (x̂, τ, q) ∈ C0 \D0, with τ = 0 and

x̂ ∈ AdD, and the observer should flow as long as τ ≤ ∆,

i.e., during ∆ units of time. Since ∆ < τ0m, x̂ can indeed flow

with Ac during that time and with Π(x̂) /∈ Dδ0 according to

(P3). Thus, when τ reaches ∆, we have Π(x̂) /∈ Dδ0 , i.e.,

(x̂, τ, q) ∈ D0 and since no flow is possible in C0 when

τ = ∆, a jump occurs with τ+ = 0 and q+ = 2. Since

x̂+ = x̂ and Dδ1 ⊂ Dδ0 , (x̂, τ+, q+) ∈ C2 and we are back

to where the argument started.

On the other hand, if q(0, 0) = 1, by assumption x̂(0, 0) ∈
Dδ1 so the same reasoning holds, starting from the third item.

Therefore, as long as V`(x, z) ≤ v` during the phases with

q = 2, solutions are t-complete, alternating between modes

2 → 1 → 0 → 2.

B. Evolution of Estimation Error through each Cycle

When q = 2, from (9b), V` decreases exponentially at

rate `λ. Let 0 < v1 < v`. Starting from V`(x, x̂) ≤ v1 with

q = 2, we follow the estimation error through a succession

of modes q = 1 and q = 0, until q switches back to 2. By

exploiting the Lipschitzness of Π and T, one shows that i) the

time mismatch ∆τ between the plant and observer jumps is

bounded by aτap
√

v1
c(`) and ii) if ∆τ < ∆, V` grows by less

than a c(`)
c(`) , with a > 0 independent from `. Then, throughout

the following phase with q = 2, V` exponentially decreases

again. Still using Assumption 3.1, one shows that this phase

lasts τ ′m ≥ τ0m − 2∆ > 0. Therefore, after a full cycle, V`

decreases by at least µ` := ae−`λτ ′

m
c(`)
c(`) .

C. Iterating Cycles

Exploiting exponential growth over polynomial growth,

let us pick ` sufficiently large such that µ` < 1 and v1
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Fig. 2. Estimation error for plant (10) with observer (2) where F = F`

with ` = 5 and K = (1, 1)>, x(0, 0) = (4,−2), x̂(0, 0) = (6, 0), and
delay in the jump detection of 0.1 units of time.

sufficiently small to have v1 < c(`)
a2
p
min

{

∆2

a2
τ
, 1

a

c(`)
c(`)ε

2
}

.

Then, choosing the initial error sufficiently small ensures that

V` < v1 before each transition q = 2 → 1, and V` < v` at all

times. Hence, φ is t-complete and, denoting vk the value of

V` before each transition q = 2 → 1, we have vk ≤ µk−1
` v1.

The rest of the proof is purely technical and shows (8) via

appropriate j-reparametrizations.

V. EXAMPLE

Consider a bouncing ball modeled by H with state

(x1, x2) ∈ R
2 and

Ac = ( 0 1
0 0 ) , Bc =

(

0
−g

)

, Ad =
(

−1 0
0 −1

)

, H = (1, 0)

C = {(x1, x2) ∈ R
2 : x1 ≥ 0} (10)

D = {(x1, x2) ∈ R
2 : x1 = 0 , x2 ≤ 0}

where x1 is the position of the ball, x2 its velocity and the

flow map is given by ẋ = Acx+Bc instead of1 ẋ = Acx in

(1). Solutions initialized in a compact subset X0 ⊂ R
2\{0, 0}

are bounded and have a (uniform) dwell-time. Besides, the

pair (Ac, H) is observable so that Assumption 2.1 holds.

Since the jump times can be detected from the output y = x1

going through 0, it is proposed in [6] to use an observer of the

type (2), with Lc given by (3), Ld = 0, and jumps triggered

at the same time as those of the plant. However, slight delays

in the jump detection prevent the estimate convergence, as

illustrated in Figure 2.

Instead, we would like to implement observer (6), which

automatically synchronizes its jumps with those of the plant.

Unfortunately, (P3) of Assumption 3.1 does not hold directly

with D defined in (10) because (0, 0) ∈ D allows a discrete

solution. But from the definition of X0, we know there exists

m > 0 such that the plant solution remains outside of the

open ball Bm. Therefore, the solutions of interest are solution

to H with D replaced by

Dm := D \ Bm = {(x1, x2) ∈ R
2 : x1 = 0 , x2 ≤ −m}

1A constant term added to the flow/jump maps of H does not change the
analysis as long as it is also added in the observer dynamics (2) and (6).
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Fig. 3. Estimation error for plant (10) with observer (6) where F = F`

with ` = 5 and K = (1, 1)>, δ0 = 1, δ1 = 0.5, ∆ = 0.5, and initial
conditions x(0, 0) = (4,−2), x̂(0, 0) = (6, 0), and q(0, 0) = 2.

and (P3) now holds with Dm for δ0 < m and τ0m smaller

than the minimal time needed for a solution to flow from

AdDm to Dm,δ0 . Since the solutions remain in C∪Dm, this

minimal time is achieved for solutions flowing from (0,m)
to either (δ0, x2) with x2 < δ0 − m, or (x1, δ0 − m) with

0 < x1 < δ0. Besides, the lipschitzness of T in (P1) is proved

by observing that for x ∈ Dm,δ0 , T is characterized by

$(Ψ(x,T(x))) = 0, where $(x) = x1 on R
2 and Ψ(x, τ)

denotes the solution of ẋ = Acx+Bc at time τ initialized at

x. Since d$
dx (x)(Acx+ Bc) < 0 for x ∈ Dm, the map T is

indeed continuously differentiable by the Implicit Function

Theorem. Therefore, (P1) holds. Finally, (P2) clearly holds

since no flow is possible from Dm into C ∪Dm, and thus

Assumption 3.1 holds. On the other hand, cl(C ∪Dm) = C
being closed and convex, the map Π can be chosen as the

orthogonal projection on C, which verifies (4) with ap = 1.

Figure 3 shows the results of a simulation of observer

(6) with the same initial conditions and same gain Lc as

above. The estimation error asymptotically converges to 0,

except at the jump times where x̂ is either one jump ahead

or behind x. We actually recover similar performance as in

[11], where an (invertible) gluing function is computed to

transform the hybrid dynamics into a continuous-time system

where a continuous-time observer can be designed. The

design of [11] has the advantage of being global, but there

is no general method to build such a gluing function. On the

other hand, the design of this paper is local but systematic.

Indeed, unlike in [11], any other observable pair (Ac, H) and

any jump matrix Ad could have been considered, as long as

Assumptions 2.1 and 3.1 hold.

VI. CONCLUSION

We have proposed a local observer for linear hybrid

dynamical systems whose jump times are unknown and

whose pair of flow/output maps is observable. The observer

relies on a sufficiently fast linear observer of the flow and

jumps triggered based on the plant state estimate, in a way

that “disconnects” the correction term around the jump times.

Compared to designs in [6], [17], [5] where the observer

jumps are synchronized with those of the plant, this novel

observer avoids the problems of delayed/noisy detection of

the plant jump times. Unfortunately, the convergence is only

local, but further work includes combining both methodolo-

gies to ensure both globality and asymptotic convergence.
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