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Abstract— We study solution concepts and their proper-
ties for hybrid systems that can flow and jump, affected
by continuous-time inputs. While the solution concepts, the
existence of solutions and (forward) completeness properties
are extensively discussed in the absence of (external) inputs,
there are surprisingly few results when inputs are present,
certainly in the case where the flow and jump sets depend on
the inputs. Given the relevance of this class of hybrid systems
for many applications such as hybrid or networked control
for plants subject to disturbances or measurement noise, we
discuss in this paper notions of solutions in the presence of
inputs and show through various examples the subtleties that
can occur. Moreover, we provide tools to guarantee the existence
of solutions and results to establish completeness properties.

I. INTRODUCTION

In this paper we are interested in the class of hybrid

systems as advocated in, e.g., [1]–[3]. As such, we consider

systems H = (C,F,D,G,W ) of the form
{
ẋ ∈ F (x,w), (x,w) ∈ C,

x+ ∈ G(x,w), (x,w) ∈ D,
(1)

where x denotes the state taking values in Rnx , and w the

(disturbance) input taking values in W ⊆ Rnw . Moreover,

C ⊆ Rnx × Rnw is the flow set, D ⊆ Rnx × Rnw the jump

set, F : Rnx × Rnw ⇒ Rnx the flow map and G : Rnx ×
Rnw ⇒ Rnx the jump map, where F and G are possibly set-

valued. For general hybrid systems, the question of definition

of solutions, as well as their existence and properties has

been an intriguing and important matter. It received ample

attention for various classes of systems, see, e.g., [4]–[6]. For

the class of systems (1), these questions were also extensively

discussed in [1] in the absence of external inputs, i.e., without

w in (1). Moreover, the existence of (nontrivial) solutions and

completeness of so-called maximal solutions were studied in

detail, see, in particular, [1, Prop. 2.10, Prop. 6.10].
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Works on hybrid systems of the type (1) with inputs are

available in the literature, considering the case where either

I) combinations of input and state trajectories (solution

pairs) are sought and hence, the input is ‘free’, see,

e.g., [2], [7]; or,

II) the input is ‘given’ a priori and we search for a state

trajectory only [8].

To elaborate, in [2], [7] the input signals are considered as

hybrid signals, meaning that they are defined on hybrid time

domains involving both real time t ∈ R>0 and jump counter

j ∈ N, see also Definition 1 below. Between jumps, the input

is Lebesgue measurable and locally essentially bounded. In

[2], [7], it is enforced that the domain of the input is the

same as the domain of the solution itself. In certain cases

this may be unnatural from a modelling perspective, as often

the input is a priori given and the domain of the solution is a

consequence of the hybrid dynamics and possibly the hybrid

time domain of the input, but not a priori taken equal. In [7],

a basic existence result of solution pairs is presented and the

properties of maximal solutions (maximal in the sense that

they cannot be prolonged) are characterised. Interestingly, as

the domains of input and state have to be a priori the same,

the existence result is, loosely speaking, stated as: “given an

initial state, there is a combination of an input signal and

a state signal (on the same hybrid time domain) that form

together a solution pair”. We are not aware of any result

regarding the existence of solutions when the input signal is

specified a priori.

In [8], perspective II) is taken in which a hybrid input

is given a priori, however, without results regarding the

existence of (nontrivial) solutions or an analysis of (forward)

completeness properties of solutions. To be more precise,

in [8] the hybrid time domains of inputs and states do not

have to match, but the domain of the state is a consequence

of that of the input, and, of course, the hybrid dynamics.

Motivated by interconnections of hybrid systems, in [8] the

inputs are considered to be hybrid arcs, which imposes that

between jumps the input is locally absolutely continuous,

and not just Lebesgue measurable as in [2], [7]. Another

interesting difference between [2] on the one hand and [7],

[8] on the other hand is that [7], [8] require the solution

during flow phases to satisfy the flow constraint (x,w) ∈ C

at all times (except the beginning and the end of the flow

– to be able to ‘flow’ from the boundary of C into C),

while in [2] the flow constraint (x,w) ∈ C has only to be

satisfied ‘almost everywhere’ (a.e.) during flow. Hence, in

[7], [8] the set C is seen as a hard constraint, which should



always be satisfied except at the beginning and end of flows,

while in [2] the constraint may be violated on a measure

zero set during flow, which is sufficient in order to study and

guarantee (input-to-state) stability properties using Lyapunov

theory. Interestingly, under closure of C and without inputs,

both solutions reduce to the same concept, the one as used

in [1], due to continuity of the state trajectory during flow

phases.

Motivated by the gap in the literature regarding the study

of existence and completeness properties of solutions to (1)

given an input and the importance of this question in many

application settings including hybrid control [9]–[12], net-

worked control [13], [14] and event-triggered control [15]–

[17] for plants subject to disturbances and/or measurement

noise, we study in this paper the scenario where the input

in (1) is fixed a priori and is a continuous-time measurable

input defined on the nonnegative real line R>0. Indeed,

for these applications, it would be welcome to have such

existence and completeness results, as they are often needed

to guarantee that the designed controllers are well-posed in

presence of external disturbance and noise signals. To fill

this gap, we start by discussing definitions of a solution to

H with continuous-time measurable inputs and indicate the

subtleties and consequences of using each possible variant of

solution concepts. Moreover, we provide tools to guarantee

the existence of (nontrivial) solutions (given an initial state

and an input signal) and their (forward) completeness prop-

erties. Herein we will differentiate between the variations

in the solution concepts and the conditions imposed on the

external input signal.

This paper is further organized as follows. After introduc-

ing some notational conventions, in Section II we discuss

possible solution concepts for the case where the input w is a

continuous-time measurable function. In Section III we pro-

vide results on the existence and completeness of solutions

given an input. In Section IV we show how less stringent

conditions for existence and completeness of solutions can

be obtained if the continuous-time input is of a piecewise

continuous nature. Conclusions close the paper in Section V.

Notation: The sets of all nonnegative and positive integers

are denoted N and N>0, and the set of rational numbers by

Q. The sets of reals and nonnegative reals are indicated by R

and R>0. By | · | we denote the Euclidean norm. For z ∈ Rn

and r > 0 we denote by B(x, r) the closed ball of radius

r around z, i.e., B(z, r) = {x ∈ Rn | |x − z| 6 r}. The

interior of a set A ⊆ Rn is denoted by intA and its closure

by A. We denote the complement Dc of a set D ⊆ Rn as

Dc := {x ∈ Rn | x 6∈ D}.

II. SOLUTION CONCEPT FOR MEASURABLE INPUTS

To formally introduce the solution concept, we need the

following definitions, which are taken from [1], [2], [7].

Definition 1. A subset E ⊂ R>0 × N is a compact hybrid

time domain, if E =
⋃J−1

j=0
([tj , tj+1], j) for some finite

sequence of times 0 = t0 6 t1 6 t2 6 . . . 6 tJ . It is a hybrid

time domain, if for all (T, J) ∈ E, E∩([0, T ]×0, 1, . . . , J) is

a compact hybrid time domain. A hybrid signal is a function

defined on a hybrid time domain.

For a hybrid time domain E, suptE :=
sup {t ∈ R>0 : ∃j ∈ N such that (t, j) ∈ E}, supj E :=
sup {j ∈ N : ∃t ∈ R>0 such that (t, j) ∈ E} and supE :=
(suptE, supj E).

Definition 2. A hybrid signal φ is called a hybrid arc, if

φ(·, j) is locally absolutely continuous for each j.

Definition 3. [1], [2] For W ⊆ Rnw and nw ∈ N>0, we

define the class of inputs LW as all functions w : R>0 →
W that are Lebesgue measurable and locally essentially

bounded.

As stated in the introduction, we consider inputs that are

defined on R>0, which may model disturbance signals or

measurement noise acting on hybrid, networked, and event-

triggered controlled systems. Throughout this paper, we have

the following standing assumption.

Standing Assumption. The sets C and W are closed.

Inspired by [2], [7], we introduce two solution concepts.

Definition 4. A hybrid arc φ is an e-solution to H for input

w ∈ LW , if

(S1-e) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}
has nonempty interior, it holds that φ̇(t, j) ∈
F (φ(t, j), w(t)) for almost all t ∈ int Ij and

(φ(t, j), w(t)) ∈ C for all t ∈ int Ij;

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈
domφ, (φ(t, j), w(t)) ∈ D and φ(t, j + 1) ∈
G(φ(t, j), w(t)).

It is an ae-solution for input w, if (S2) holds together with

(S1-ae) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}
has nonempty interior, φ̇(t, j) ∈ F (φ(t, j), w(t))
and (φ(t, j), w(t)) ∈ C hold for almost all t ∈ Ij .

A few comments are in order. First of all, observe that

an e-solution is also an ae-solution. Secondly, note that the

ae-solution concept is in line with [2, Section 2], where the

flow constraint is satisfied almost everywhere during flow

intervals – though, as a difference to [2, Section 2], an ae-

solution is here defined for a given continuous-time input

w. In contrast, in e-solutions, the flow constraint (x,w) ∈ C

has to hold “everywhere” in the interior of flow intervals (but

not necessarily at the boundaries of the flow interval). The

e-solutions are closer in nature to [7], [8] (although note that

in [2], [3], [7], [8] hybrid inputs on hybrid time domains are

used instead of continuous-time functions defined on R>0).

Thirdly, in [8], (S1-e) was used in the notion of solution,

but given the fact that during flow the input is required to

be locally absolutely continuous, (S1-e) and (S1-ae) coincide

in their setting. Moreover, generally we can state that if the

input w is continuous, then both solution concepts coincide

as C is closed (standing assumption). In fact, in the special

case of no inputs, ae-solutions are e-solutions due to local

absolute continuity of hybrid arcs during flow intervals, and

we recover the solution concept in [1]. However, in a general



setting where the input w models a possibly discontinuous

noise/disturbance, both definitions do not coincide as will be

illustrated below. One may choose to use one or the other

depending on the context and the intended purposes. In any

case, we are interested in this paper to study the existence and

completeness properties for both e-solutions and ae-solutions

given an input. We will start doing this in the next section,

after providing some useful terminology and two examples.

Definition 5. An (e or ae-)solution φ to H for a given input

w ∈ LW is called nontrivial, if domφ contains at least

two points. It is said to be maximal, if there does not exist

another solution ψ to H for the same input w such that

domφ is a proper subset of domψ and φ(t, j) = ψ(t, j)
for all (t, j) ∈ domφ. We denote the set of all maximal e-

solutions and ae-solutions to H for input w by Se
H(w) and

Sae
H (w), respectively. We say that the solution is complete,

if domφ is unbounded, and we say that it is t-complete, if

supt domφ = ∞.

The next two examples show how changes to inputs

on a set of measure zero of their domain can affect the

corresponding solutions thereby also highlighting subtle dif-

ferences between e- and ae-solutions. Moreover, the exam-

ples also demonstrate subtleties and problems regarding the

existence of nontrivial solutions and the completeness of

maximal solutions.

Example 1 (Activating jumps by measure zero changes to

inputs). Consider the hybrid model

ẋ = 0 x+ w > 0, x+ = x+ 1 x+ w 6 0, (2)

where we take three different input signals wi, i ∈ {1, 2, 3}:

w1(t) := 1, t ∈ R>0

w2(t) :=

{
1, t ∈ R>0 \ {1},

−1.5, t = 1.

w3(t) :=

{
1, t ∈ (R>0 \Q) ∪ {0},

−1.5, t ∈ Q \ {0}.

(3)

Here, the signals wi, i ∈ {1, 2, 3} are essentially equivalent

in the “L∞” sense, i.e., ‖wi − wj‖∞ = 0 for all i, j ∈
{1, 2, 3}, however, the solutions corresponding to these in-

puts can be significantly different. Let us consider the initial

state φ1(0, 0) = ξ = 0. For w1, there is a unique maximal

ae-solution φ1(t, j) = 0 on domain domφ1 = R>0 × {0},

without any jumps, which is also an e-solution.

For input w2, we obtain three maximal ae-solutions φ`2,

` = 0, 1, 2 (` indicating the number of jumps at time t = 1):

φ02(t, j) = 0, (t, j) ∈ [0,∞)× {0} (4)

φ12(t, j) =

{
0, (t, j) ∈ [0, 1]× {0},

1, (t, j) ∈ [1,∞)× {1}
(5)

φ22(t, j) =





0, (t, j) ∈ [0, 1]× {0},

1, (t, j) = {1} × {1}

2, (t, j) ∈ [1,∞)× {2}.

(6)

Note that φ02 is not an e-solution, but φ12 and φ22 are.

Finally, for w3 and again the same initial state ξ = 0, we

have that φ1 and φ`2, ` = 0, 1, 2 are also ae-solutions, but

there are more solutions as jumps may occur at any rational

time. Hence, there are infinitely many ae-solutions. Since

only two jumps are possible due to the data of (2), all those

maximal solutions will be t-complete. On the other hand,

observe that for w3, system (2) does not admit a nontrivial

e-solution.

In the above example, a measure zero change in the input

had the effect of activating jump possibilities. On the other

hand, the following example shows how measure zero change

to the input signal can instead disable jumps and thereby

prohibit the existence of a complete solution [1, Chapter 4].

Example 2 (Disabling jumps by measure zero changes to

inputs). Consider the system

ẋ = 1, x+ w ∈ [0, 1], x+ = 0, x+ w ∈ [1, 2] (7)

and take φ(0, 0) = 0, and w(t) = 0, t ∈ R>0, which leads to

a sawtooth ae- and e-solution that is t-complete. However,

if we apply a zero measure change to this input and have

w(t) = 0 for t 6= 1 and w(1) = 3, then the jump is ‘disabled’

at t = 1, causing a deadlock in the sense that the maximal

ae- and e-solution has domain [0, 1] × {0}. Hence, in this

case the set of all solutions is smaller than with the original

input.

The above examples motivate the development of tools to

guarantee existence and completeness of e- and ae-solutions.

III. EXISTENCE AND COMPLETENESS OF SOLUTIONS

In this section we start by providing conditions for the

existence of nontrivial solutions and their properties for

hybrid systems of the form (1), thereby extending the results

in [1, Proposition 2.10] without (external) inputs and in [7,

Proposition 3.4] for a hybrid input to the case of continuous-

time measurable inputs. After that we provide examples

illustrating the results.

The following set will play an important role below:

C0 := {ξ0 ∈ Rnx | ∃w0 ∈W s.t. (ξ0, w0) ∈ C}. (8)

Indeed, if a point ξ 6∈ C0 and (ξ, w(0)) 6∈ D, then the set

of (nontrivial) solutions φ with φ(0, 0) = ξ and input w is

empty, see also Lemma 7 below.

Proposition 6. Consider the hybrid system H =
(C,F,D,G,W ).

(i) There exists a nontrivial e-solution φ to H for input w ∈
LW with φ(0, 0) = ξ ∈ Rnx if and only if (ξ, w(0)) ∈
D or

(VC-e): there exist ε > 0 and an absolutely con-

tinuous function z : [0, ε] → Rnx such that

z(0) = ξ, ż(t) ∈ F (z(t), w(t)) for almost

all t ∈ [0, ε] and (z(t), w(t)) ∈ C for all

t ∈ (0, ε).

(ii) If condition (VC-e) holds for all ξ ∈ C0 and all w ∈
LW with (ξ, w(0)) 6∈ D, then for all w̄ ∈ LW every



maximal e-solution φ ∈ Se
H(w̄) satisfies exactly one of

the following properties:

(a) φ is complete;

(b) φ is not complete and ‘ends with flow’: domφ is

bounded and the interval IJ := {t : (t, J) ∈ domφ}
with J = supj domφ is open to the right, and there does

not exist an absolutely continuous function z : IJ →
Rnx satisfying ż(t) ∈ F (z(t), w̄(t)) for almost all t ∈ IJ

and (z(t), w̄(t)) ∈ C for all t ∈ int IJ , and such that

z(t) = φ(t, J) for all t ∈ IJ ;

(c) φ is not complete and ‘ends with a jump’: domφ is

bounded with (T, J) := sup domφ ∈ domφ, IJ = {T},

(φ(T, J), w̄(T )) 6∈ D and φ(T, J) 6∈ C0.

When (VC-e) is replaced by

(VC-ae): there exist ε > 0 and an absolutely continuous

function z : [0, ε] → Rnx such that z(0) = ξ,

ż(t) ∈ F (z(t), w(t)) and (z(t), w(t)) ∈ C for

almost all t ∈ [0, ε],

then all the above statements apply to ae-solutions, where in

(b) the phrase “(z(t), w̄(t)) ∈ C for all t ∈ IJ” is replaced

by “(z(t), w̄(t)) ∈ C for almost all t ∈ IJ .”

An important observation is that (VC-ae) and (VC-e)

are independent of the value of w(0). We will see some

consequences of this fact in the examples below.

Note that for the hypothesis in (ii), namely (VC-e) (or

(VC-ae)) to hold for all ξ ∈ C0 and w ∈ LW with

(ξ, w(0)) 6∈ D, it is equivalent to require that (VC-e) (resp.,

(VC-ae)) holds for all ξ ∈ C̃0, and all w ∈ LW , where

C̃0 = {ξ ∈ C0 | ∃w′ ∈W s.t. (ξ, w′) 6∈ D},

since w ∈ LW implies also that w̃ defined by w̃(0) = w′ and

w̃(t) = w(t), t > 0, satisfies w̃ ∈ LW . In fact, generally we

can replace “for every ξ ∈ C0 and w ∈ LW with (ξ, w(0)) 6∈
D” by “for every ξ ∈ C̃0 and any w ∈ LW .”

Note also that having existence and completeness of an

e-solution for a given input does not mean much when the

input is changed, even if the change is at an isolated time in

the interior of a flow interval.

Next, let us explain the role of C0 a bit more via the

following property enabled by the standing assumption.

Lemma 7. Let an absolutely continuous function z, w ∈ LW

and ε > 0 be such that (VC-ae) holds for some ξ ∈ Rnx .

Then, z(t) ∈ C0 for all t ∈ [0, ε].

The interest of this lemma is that it shows that for (VC-ae)

or (VC-e) to hold, we have to consider an initial state in C0,

and that during flow the state will not leave C0. So, even a

discontinuity in w at t = ε cannot get the state outside C0.

Let us illustrate the use of Proposition 6 in an example.

Example 3. Consider a controlled system in which the state

is aimed to be kept inside the set [−1.7, 1.7] by resetting

it based on noisy measurements. The measurement noise

satisfies w(t) ∈ W := [−0.2, 0.2] for any t ∈ R>0 and

the controlled system is given by
{
ẋ = x |x+ w| 6 1.5,

x+ ∈ [−0.1, 0.1] |x+ w| > 1.
(9)

To apply Proposition 6, note that C0 = [−1.7, 1.7]. In case

ξ ∈ C0 and w ∈ W with (ξ, w(0)) 6∈ D, the latter implies

that |ξ| < 1.2 as |ξ+w(0)| < 1 and |w(0)| 6 0.2. Given the

definition of the flow set C = {(x,w) | |x + w| 6 1.5}, we

see that as long as |x| 6 1.3 the inequality |x + w| 6 1.5
is guaranteed. This shows that (VC-e) and (VC-ae) are both

satisfied as it takes some positive time for the solution to

ẋ = x to grow from an absolute value below 1.2 to an

absolute value larger or equal than 1.3. Hence, the existence

of nontrivial ae- and e-solutions is guaranteed and any

maximal solution satisfies only one of the properties (a)-(c)

in Proposition 6. In fact, it can be deduced that only (a)

can hold and thus all maximal (e- or ae-) solutions to H
for input w are complete – in fact, t-complete. This property

holds for any w ∈ LW .

Note that for any w ∈ LW , each (e- and ae-) solution φ

remains indeed in [−1.7, 1.7], so forward invariance of this

set is guaranteed despite the presence of measurement noise.

There are some subtleties with Proposition 6 due to the

use of merely measurable inputs, as will be demonstrated

with the next reworked example, where the overlap between

C and D is smaller than in Example 3.

Example 4. We modify Example 3 by restricting the flow set

to obtain
{
ẋ = x |x+ w| 6 1,

x+ ∈ [−0.1, 0.1] |x+ w| > 1
(10)

and still adopt W := [−0.2, 0.2]. In this case, for φ(0, 0) =
ξ = 1 and w(t) = −0.2 if t = 0 and w(t) = 0.2 if t > 0,

no jump and no flow are possible: a jump is not possible

as the jump condition |φ(0, 0) + w(0)| > 1 is not satisfied

and both (VC-ae) and (VC-e) are not satisfied, as, loosely

speaking, |x + w| 6 1 cannot be satisfied on a nontrivial

flow interval. Essentially, the problematic issue for existence

of nontrivial solutions is that the possibility of a jump at

t = 0 depends on w(0) (i.e, (ξ, w(0)) ∈ D is needed) and

the value of w(0) does not affect the satisfaction of (VC-ae)

or (VC-e). Informally, the information (ξ, w(0)) 6∈ D does

not restrict ξ sufficiently (as in Example 3) to conclude that

flow is possible for w(t), t > 0.

Similar problems arise for
{
ẋ = x |x+ w| 6 c,

x+ ∈ [−0.1, 0.1] |x+ w| > 1.
(11)

as long as c < 1.4. Indeed, take c = 1.4−η for small positive

η and consider φ(0, 0) = 1.2− η
2

and w as above. No flow

is possible ((VC-e) and (VC-ae) are both not satisfied) and

a jump is not possible either.

In fact, if there are no restrictions on w, i.e., W = R in

the example above, then C0 = R and (VC-ae) or (VC-e)



have to hold for all ξ ∈ R \ D, which is not satisfied for

this example and typically also for many other systems. So,

a tighter choice of W , namely precise information about the

range of the inputs (or their regularity, see Section IV), is

typically needed to guarantee the existence of nontrivial e-

or ae-solutions for all w ∈ LW . Otherwise, there is often not

much one can guarantee.

IV. RESTRICTING THE INPUT SPACE TO CÀDLÀG

FUNCTIONS

As we have seen in Example 4 and as illustrated on another

example below, the existence of nontrivial solutions for all

Lebesgue measurable inputs, taking values in W , is often

hard to guarantee apart from rather particular cases, such as

Example 3, where the bounds on w and the ‘margin’ between

C and D allow to guarantee existence of nontrivial solutions

for all w ∈ LW . We will show in this section that under an

additional regularity assumption on the input, namely that it

is càdlàg (see Definition 8 below), the existence of nontrivial

solutions can be more easily guaranteed.

Example 5. Consider the system

ẋ = 0 x+ w > 0, x+ = 0 x+ w 6 0 (12)

with x ∈ R and W = R. Interestingly, C∪D = R2 and both

C and D are closed. However, maybe counter-intuitively, it

is not the case that nontrivial (e- or ae-)solutions exist for all

initial states and Lebesgue measurable input functions. Let

us take a closer look. Clearly, C0 = R. Take φ(0, 0) = ξ = 1,

and select an input function with w(0) such that ξ+w(0) > 0
implying that a jump is not possible at the initial time.

Moreover, take w(t) = −2 on (0,∞). For the existence of

a nontrivial ae-solution, (VC-ae) has to be satisfied, which,

unfortunately, is not the case for the given input. In fact,

the class of Lebesgue measurable inputs is too large here to

guarantee existence of nontrivial solutions for all states in

C0 and all inputs in LW , since (VC-ae) cannot always be

satisfied (in fact, it has to be satisfied for all ξ ∈ C̃0 = R and

all w ∈ LW in this case). This issue is actually related to the

fact that w(0) is totally ‘decoupled’ from w(t), t > 0. As we

will see in Example 6, if we impose a piecewise continuity

property (càdlàg) on the inputs, instead of measurability

only, the existence of nontrivial solutions in (12) can be

guaranteed for all considered inputs.

The issues in the above example are due to the use of the

very rich class of Lebesgue measurable inputs for which the

value of w(0) (important for jumps) is not related in any way

to the function values w(t) for times t > 0 (important for

flow, i.e., for the satisfaction of (VC-ae) or (VC-e)). In par-

ticular, the fact that a jump is not possible at (φ(0, 0), w(0))
normally gives information, i.e., (φ(0, 0), w(0)) 6∈ D, which

forms a restriction on the initial conditions for which (VC-

ae) or (VC-e) has to hold (in order to obtain existence

results). Indeed, (VC-ae) or (VC-e) would be needed for all

(φ(0, 0), w(0)) ∈ C \ D and thus φ(0, 0) ∈ C̃0 to obtain

existence of nontrivial solutions, which relates to sets that

are not ‘small enough’. Only in examples such as Example 3,

in which sufficient “margin exists between Dc and intC”,

do the existence and completeness results apply for all w ∈
LW and all ξ ∈ C0. However, the required conditions for

existence and completeness of (maximal) solutions change

significantly when we consider càdlàg inputs, which is still

a rather rich class of inputs.

Definition 8. A function w : R>0 → Rnw is said to be

càdlàg (“continue à droite, limite à gauche”), denoted by

w ∈ PC, when there exists a sequence {ti}i∈N with ti+1 >

ti > t0 = 0 for all i ∈ N and ti → ∞ when i → ∞ such

that w is continuous on (ti, ti+1) where limt↑ti w(t) exists

for all i ∈ N>0 and limt↓ti w(t) exists for all i ∈ N with

limt↓ti w(t) = w(ti), i.e., w is piecewise continuous, right

continuous and left limits exist for each ti, i ∈ N>0. Given a

set W ⊆ Rnw , then we denote by PCW the set of functions

{w ∈ PC | w(t) ∈W for all t ∈ R>0}.

Note that continuous functions are contained in PC as

{ti}i∈N can then be chosen arbitrarily. In the next proposition

we provide conditions for the existence of nontrivial solu-

tions for hybrid system (1), with the PC restriction on inputs.

Interestingly, note that checking (VC-ae) or (VC-e) for a

w ∈ PC, is equivalent to checking it for a continuous input as

the restriction of w to a small enough interval is continuous.

Hence, since we consider closed sets C, this causes (VC-e)

and (VC-ae) to coincide, and, therefore, we will have only

one viability condition, (VC). Similarly, we show that in this

context, e- and ae-solutions actually coincide.

Proposition 9. Consider the hybrid system H =
(C,F,D,G,W ).

(i) Any ae-solution to H with input w ∈ PCW is also an

e-solution, hereafter called “solution”.

(ii) There exists a nontrivial solution φ to H for input w ∈
PCW with φ(0, 0) = ξ ∈ Rnx if and only if (ξ, w(0)) ∈
D or

(VC): there exist ε > 0 and an absolutely continuous

function z : [0, ε] → Rnx such that z(0) = ξ,

ż(t) ∈ F (z(t), w(t)) for almost all t ∈ [0, ε]
and (z(t), w(t)) ∈ C for all t ∈ [0, ε].

(iii) If condition (VC) holds for all ξ ∈ Rnx and all w ∈
PCW with (ξ, w(0)) ∈ C \D, then for all w̄ ∈ PCW

every maximal solution φ ∈ Se
H(w̄) satisfies exactly one

of the following properties:

(a) φ is complete;

(b) φ is not complete and ‘ends with flow’: domφ is

bounded and the interval IJ := {t : (t, J) ∈ domφ}
with J = supj domφ is open to the right, and there does

not exist an absolutely continuous function z : IJ →
Rnx satisfying ż(t) ∈ F (z(t), w̄(t)) for almost all t ∈ IJ

and (z(t), w̄(t)) ∈ C for all t ∈ int IJ , and such that

z(t) = φ(t, J) for all t ∈ IJ ;

(c) φ is not complete and ‘ends with a jump’ or a ‘dis-

continuity’ of w̄: domφ is bounded with (T, J) :=
sup domφ ∈ domφ, (φ(T, J), w̄(T )) 6∈ C ∪D.

As discussed before the theorem, note that we only have



to verify (VC) over an interval [0, ε] of continuity of w.

As stated in (i) of Proposition 9, ae- and e- solutions

coincide because, by closedness of C and right-continuity of

the considered input functions, solutions remain in C during

flow, except possibly at the end of a flow interval. Such an

event necessarily corresponds to a discontinuity in the input

w̄. If the value of the state/input pair after the discontinuity

of w̄ is not in C ∪D, then the solution can neither flow nor

jump and necessarily stops (case (c) in Proposition 9). See

Example 7.

To illustrate the rationale behind our choice for càdlàg in-

puts, let us reconsider Example 5 demonstrating that impos-

ing somewhat more regularity on the inputs leads to existence

of nontrivial solutions as well as completeness of maximal

solutions, while this was not the case for measurable inputs.

Example 6. Let us revisit Example 5 with the only difference

that input signals are in PCW instead of in LW . With this

restriction, we would like to show that existence of nontrivial

solutions is now guaranteed for all initial states and all

inputs in PCW based on Proposition 9. If we compute C \D
we obtain C \D = {(ξ, w) ∈ R2 | ξ + w > 0}. As for any

w ∈ PCW there is an ε > 0 such that w is continuous

on [0, ε] and the solution to ẋ = 0 is (locally absolutely)

continuous too, we see that for every ξ ∈ Rnx and w ∈ PCW

with (ξ, w(0)) ∈ C\D, (VC) holds due to the strict inequality

in the expression for C \ D. It takes some positive time

for the continuous function t 7→ (z(t), w(t)) to leave C.

Hence, the existence of nontrivial (ae- and e-)solutions is

guaranteed and, moreover, in this case we can even show

that each maximal solution is complete. Clearly, in contrast

to Lebesgue measurable inputs in which these existence and

completeness properties did not hold for the same hybrid

system, they do hold when restricting inputs to PCW .

Note that a similar conclusion can be drawn for system

(10). For (10), existence of nontrivial solutions for all initial

states and inputs in PCW , as well as the t-completeness of

maximal solutions is guaranteed, while this was not possible

for all measurable inputs in LW as observed in Example 4.

Remark 1. Extra care is required regarding item (c) of

Proposition 9, if compared to the noninput case. In hybrid

systems without inputs, it would be sufficient to prove that

G(D) ⊂ C ∪D to exclude (c). However, when dealing with

discontinuous inputs as defined above, discontinuities in w

could also result in (c) occurring. See Example 7 for an

illustration of this phenomenon.

Example 7. Consider system

{
ẋ = −x− w x+ w 6 1,

x+ = −w −2 6 x+ w 6 2.
(13)

Take W = R. It can be shown using Proposition 9 that for

every initial state ξ and every w ∈ PCW with (ξ, w(0)) ∈
C ∪ D a nontrivial solution exists. However, not all max-

imal solutions are complete due to case (c) mentioned in

Proposition 9 occurring due to discontinuities in w. Indeed,

take φ(0, 0) = ξ = 1 and w(t) = −1 if t ∈ [0, 1) and

w(t) = 2 if t > 1. For this choice, a maximal (e- and ae-

)solution is given by φ(t, 0) = 1, t ∈ [0, 1] on the hybrid

time domain [0, 1] × {0}. The discontinuity in w at time 1
leads to (φ(1, 0), w(1)) 6∈ C∪D. Note that jumps according

to the jump map cannot lead to case (c) for this example.

V. CONCLUSIONS

Motivated by hybrid, networked, and event-triggered con-

trollers for (physical) plants that are subject to disturbances,

we studied hybrid systems with continuous-time measurable

inputs that are given a priori. We presented two solution

concepts, called ae- and e-solutions, and indicated subtle

differences between them via various examples. Moreover,

we provided tools to guarantee the existence of (nontrivial)

ae- and e-solutions and completeness properties. Finally, by

imposing additional “càdlàg ” regularity on the continuous-

time inputs, we obtained less stringent conditions for estab-

lishing basic existence and completeness results.
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[10] D. Nešić, L. Zaccarian, and A. R. Teel, “Stability properties of reset
systems,” Automatica, vol. 44, no. 8, pp. 2019–2026, 2008.

[11] C. Prieur, S. Tarbouriech, and L. Zaccarian, “Lyapunov-based hybrid
loops for stability and performance of continuous-time control sys-
tems,” Automatica, vol. 49, no. 2, pp. 577–584, 2013.

[12] C. Prieur and A. Teel, “Uniting local and global output feedback
controllers,” IEEE Trans. Aut. Contr., vol. 56, no. 7, pp. 1636–1649,
2011.

[13] W. Heemels, A. Teel, N. van de Wouw, and D. Nesic, “Networked
control systems with communication constraints: Tradeoffs between
transmission intervals, delays and performance,” IEEE Trans. Aut.

Contr., vol. 55, pp. 1781–1796, 2010.
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