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Abstract— We study solution concepts and their proper-
ties for hybrid systems that can flow and jump, affected
by continuous-time inputs. While the solution concepts, the
existence of solutions and (forward) completeness properties
are extensively discussed in the absence of (external) inputs,
there are surprisingly few results when inputs are present,
certainly in the case where the flow and jump sets depend on
the inputs. Given the relevance of this class of hybrid systems
for many applications such as hybrid or networked control
for plants subject to disturbances or measurement noise, we
discuss in this paper notions of solutions in the presence of
inputs and show through various examples the subtleties that
can occur. Moreover, we provide tools to guarantee the existence
of solutions and results to establish completeness properties.

I. INTRODUCTION

In this paper we are interested in the class of hybrid
systems as advocated in, e.g., [1]-[3]. As such, we consider
systems H = (C, F, D, G, W) of the form

& € F(z,w),
zt € Gz,w),

(x,w) € C,

(x,w) € D, M

where x denotes the state taking values in R"=, and w the
(disturbance) input taking values in W C R™~. Moreover,
C CR™ x R™ is the flow set, D C R"* x R™» the jump
set, F/ : R? x R™ = R™ the flow map and G : R x
R™» = R"= the jump map, where F' and G are possibly set-
valued. For general hybrid systems, the question of definition
of solutions, as well as their existence and properties has
been an intriguing and important matter. It received ample
attention for various classes of systems, see, e.g., [4]-[6]. For
the class of systems (1), these questions were also extensively
discussed in [1] in the absence of external inputs, i.e., without
w in (1). Moreover, the existence of (nontrivial) solutions and
completeness of so-called maximal solutions were studied in
detail, see, in particular, [1, Prop. 2.10, Prop. 6.10].
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Works on hybrid systems of the type (1) with inputs are
available in the literature, considering the case where either

I) combinations of input and state trajectories (solution
pairs) are sought and hence, the input is ‘free’, see,
e.g., [2], [7]; or,

I) the input is ‘given’ a priori and we search for a state
trajectory only [8].

To elaborate, in [2], [7] the input signals are considered as
hybrid signals, meaning that they are defined on hybrid time
domains involving both real time ¢ € Ry( and jump counter
7 € N, see also Definition 1 below. Between jumps, the input
is Lebesgue measurable and locally essentially bounded. In
[2], [7], it is enforced that the domain of the input is the
same as the domain of the solution itself. In certain cases
this may be unnatural from a modelling perspective, as often
the input is a priori given and the domain of the solution is a
consequence of the hybrid dynamics and possibly the hybrid
time domain of the input, but not a priori taken equal. In [7],
a basic existence result of solution pairs is presented and the
properties of maximal solutions (maximal in the sense that
they cannot be prolonged) are characterised. Interestingly, as
the domains of input and state have to be a priori the same,
the existence result is, loosely speaking, stated as: “given an
initial state, there is a combination of an input signal and
a state signal (on the same hybrid time domain) that form
together a solution pair”’. We are not aware of any result
regarding the existence of solutions when the input signal is
specified a priori.

In [8], perspective II) is taken in which a hybrid input
is given a priori, however, without results regarding the
existence of (nontrivial) solutions or an analysis of (forward)
completeness properties of solutions. To be more precise,
in [8] the hybrid time domains of inputs and states do not
have to match, but the domain of the state is a consequence
of that of the input, and, of course, the hybrid dynamics.
Motivated by interconnections of hybrid systems, in [8] the
inputs are considered to be hybrid arcs, which imposes that
between jumps the input is locally absolutely continuous,
and not just Lebesgue measurable as in [2], [7]. Another
interesting difference between [2] on the one hand and [7],
[8] on the other hand is that [7], [8] require the solution
during flow phases to satisfy the flow constraint (z,w) € C
at all times (except the beginning and the end of the flow
— to be able to ‘flow’ from the boundary of C into C),
while in [2] the flow constraint (x,w) € C has only to be
satisfied ‘almost everywhere’ (a.e.) during flow. Hence, in
[7], [8] the set C is seen as a hard constraint, which should



always be satisfied except at the beginning and end of flows,
while in [2] the constraint may be violated on a measure
zero set during flow, which is sufficient in order to study and
guarantee (input-to-state) stability properties using Lyapunov
theory. Interestingly, under closure of C' and without inputs,
both solutions reduce to the same concept, the one as used
in [1], due to continuity of the state trajectory during flow
phases.

Motivated by the gap in the literature regarding the study
of existence and completeness properties of solutions to (1)
given an input and the importance of this question in many
application settings including hybrid control [9]-[12], net-
worked control [13], [14] and event-triggered control [15]—
[17] for plants subject to disturbances and/or measurement
noise, we study in this paper the scenario where the input
in (1) is fixed a priori and is a continuous-time measurable
input defined on the nonnegative real line R3(. Indeed,
for these applications, it would be welcome to have such
existence and completeness results, as they are often needed
to guarantee that the designed controllers are well-posed in
presence of external disturbance and noise signals. To fill
this gap, we start by discussing definitions of a solution to
‘H with continuous-time measurable inputs and indicate the
subtleties and consequences of using each possible variant of
solution concepts. Moreover, we provide tools to guarantee
the existence of (nontrivial) solutions (given an initial state
and an input signal) and their (forward) completeness prop-
erties. Herein we will differentiate between the variations
in the solution concepts and the conditions imposed on the
external input signal.

This paper is further organized as follows. After introduc-
ing some notational conventions, in Section II we discuss
possible solution concepts for the case where the input w is a
continuous-time measurable function. In Section III we pro-
vide results on the existence and completeness of solutions
given an input. In Section IV we show how less stringent
conditions for existence and completeness of solutions can
be obtained if the continuous-time input is of a piecewise
continuous nature. Conclusions close the paper in Section V.
Notation: The sets of all nonnegative and positive integers
are denoted N and N, and the set of rational numbers by
Q. The sets of reals and nonnegative reals are indicated by R
and R>¢. By |-| we denote the Euclidean norm. For z € R
and » > 0 we denote by B(x,r) the closed ball of radius
r around z, ie., B(z,r) = {x € R" | |z — 2| < r}. The
interior of a set A C R™ is denoted by int A and its closure
by A. We denote the complement D¢ of a set D C R” as
D¢:={zx eR" |z ¢ D}.

II. SOLUTION CONCEPT FOR MEASURABLE INPUTS

To formally introduce the solution concept, we need the
following definitions, which are taken from [1], [2], [7].

Definition 1. A subset E C R>o x N is a compact hybrid
time domain, if £ = Uj:_ol ([tj,tjs1],J) for some finite
sequence of times 0 = tg < t1 <ty < ... < ty. Itis ahybrid

time domain, if for all (T, J) € E, EN([0,T]x0,1,...,J)is

a compact hybrid time domain. A hybrid signal is a function
defined on a hybrid time domain.

For a hybrid time domain F, sup,FE =
sup {t € Ry : 3j € Nsuch that (¢,j) € E}, sup, £ =
sup{j € N: 3t € Ry such that (¢,j) € E} and supE :=
(sup, E,sup; E).

Definition 2. A hybrid signal ¢ is called a hybrid arc, if
&(+,7) is locally absolutely continuous for each j.

Definition 3. /1], [2] For W C R"™ and n,, € Nsq, we
define the class of inputs Ly as all functions w : Ryo —
W' that are Lebesgue measurable and locally essentially
bounded.

As stated in the introduction, we consider inputs that are
defined on Ry, which may model disturbance signals or
measurement noise acting on hybrid, networked, and event-
triggered controlled systems. Throughout this paper, we have
the following standing assumption.

Standing Assumption. The sets C and W are closed.

Inspired by [2], [7], we introduce two solution concepts.

Definition 4. A hybrid arc ¢ is an e-solution to ‘H for input
w € Ly, if

(Sl-e) for all j € N such that I’ := {t : (t,j) € dom ¢}
has nonempty interior, it holds that ¢(t,j) €
F(o(t,§),w(t)) for almost all t € intIl’ and
(6(t,§),w(t)) € C forall t € int I7;

(S2) for all (t,j) € dom¢ such that (t,j + 1) €
dom¢, (é(t,5),w(t)) € D and ¢(t,j + 1) €
G(o(t,4), w(t)).

It is an ae-solution for input w, if (S2) holds together with

(Sl-ae) for all j € N such that I’ := {t : (t,j) € dom ¢}
has nonempty interior, $(t,7) € F(é(t,7),w(t))
and (¢(t,7),w(t)) € C hold for almost all t € I’.

A few comments are in order. First of all, observe that
an e-solution is also an ae-solution. Secondly, note that the
ae-solution concept is in line with [2, Section 2], where the
flow constraint is satisfied almost everywhere during flow
intervals — though, as a difference to [2, Section 2], an ae-
solution is here defined for a given continuous-time input
w. In contrast, in e-solutions, the flow constraint (z,w) € C
has to hold “everywhere” in the interior of flow intervals (but
not necessarily at the boundaries of the flow interval). The
e-solutions are closer in nature to [7], [8] (although note that
in [2], [3], [7], [8] hybrid inputs on hybrid time domains are
used instead of continuous-time functions defined on R3).
Thirdly, in [8], (S1-e) was used in the notion of solution,
but given the fact that during flow the input is required to
be locally absolutely continuous, (S1-e) and (S1-ae) coincide
in their setting. Moreover, generally we can state that if the
input w is continuous, then both solution concepts coincide
as C is closed (standing assumption). In fact, in the special
case of no inputs, ae-solutions are e-solutions due to local
absolute continuity of hybrid arcs during flow intervals, and
we recover the solution concept in [1]. However, in a general



setting where the input w models a possibly discontinuous
noise/disturbance, both definitions do not coincide as will be
illustrated below. One may choose to use one or the other
depending on the context and the intended purposes. In any
case, we are interested in this paper to study the existence and
completeness properties for both e-solutions and ae-solutions
given an input. We will start doing this in the next section,
after providing some useful terminology and two examples.

Definition 5. An (e or ae-)solution ¢ to H for a given input
w € Ly is called nontrivial, if dom ¢ contains at least
two points. It is said to be maximal, if there does not exist
another solution 1 to H for the same input w such that
dom ¢ is a proper subset of dom and ¢(t,j) = (¢, J)
Sor all (t,j) € dom ¢. We denote the set of all maximal e-
solutions and ae-solutions to H for input w by S5,(w) and
S5 (w), respectively. We say that the solution is complete,
if dom ¢ is unbounded, and we say that it is t-complete, if
sup, dom ¢ = oo.

The next two examples show how changes to inputs
on a set of measure zero of their domain can affect the
corresponding solutions thereby also highlighting subtle dif-
ferences between e- and ae-solutions. Moreover, the exam-
ples also demonstrate subtleties and problems regarding the
existence of nontrivial solutions and the completeness of
maximal solutions.

Example 1 (Activating jumps by measure zero changes to
inputs). Consider the hybrid model

=0 x4+w=0, sF=z+1 z4+w<0, Q)

where we take three different input signals w;, i € {1,2,3}:
wl(t) =1, t€ R;O

wa(t) := {1_’1.5 b€ R0\ {1},

t=1. 3)
1,
walt) = {—1.5

t € (Rxo\ Q) U{0},
teQ)\{0}.

Here, the signals w;, i € {1,2,3} are essentially equivalent
in the “L” sense, ie., |w; — wjllc = 0 for all i,j €
{1,2,3}, however, the solutions corresponding to these in-
puts can be significantly different. Let us consider the initial
state $1(0,0) = & = 0. For ws, there is a unique maximal
ae-solution ¢1(t,j) = 0 on domain dom ¢1 = Rsg x {0},
without any jumps, which is also an e-solution.

For input ws, we obtain three maximal ae-solutions ¢5,
{=0,1,2 (¢ indicating the number of jumps at time t = 1):

P5(t,5) =0, (t,4) €[0,00) x {0} 4)
N 0, (t,j)e[O,l]x{O},

as%(m){L () € [Loo) x {1} (5)
0, (t,7)€l0,1] x {0},

P5(t,4) =<1, (t.5) = {1} x {1} (6)

2, () € [1,00) x {2}.

Note that ¢3 is not an e-solution, but ¢} and ¢3 are.

Finally, for ws and again the same initial state £ = 0, we
have that ¢y and ¢5, £ = 0,1,2 are also ae-solutions, but
there are more solutions as jumps may occur at any rational
time. Hence, there are infinitely many ae-solutions. Since
only two jumps are possible due to the data of (2), all those
maximal solutions will be t-complete. On the other hand,
observe that for ws, system (2) does not admit a nontrivial
e-solution.

In the above example, a measure zero change in the input
had the effect of activating jump possibilities. On the other
hand, the following example shows how measure zero change
to the input signal can instead disable jumps and thereby
prohibit the existence of a complete solution [1, Chapter 4].

Example 2 (Disabling jumps by measure zero changes to
inputs). Consider the system

x4+ w € [0,1], =0, z+well,2] ()

and take ¢(0,0) = 0, and w(t) = 0, t € Rxq, which leads to
a sawtooth ae- and e-solution that is t-complete. However,
if we apply a zero measure change to this input and have
w(t) = 0fort # 1 and w(l) = 3, then the jump is ‘disabled’
at t = 1, causing a deadlock in the sense that the maximal
ae- and e-solution has domain [0,1] x {0}. Hence, in this
case the set of all solutions is smaller than with the original
input.

i=1,

The above examples motivate the development of tools to
guarantee existence and completeness of e- and ae-solutions.

III. EXISTENCE AND COMPLETENESS OF SOLUTIONS

In this section we start by providing conditions for the
existence of nontrivial solutions and their properties for
hybrid systems of the form (1), thereby extending the results
in [1, Proposition 2.10] without (external) inputs and in [7,
Proposition 3.4] for a hybrid input to the case of continuous-
time measurable inputs. After that we provide examples
illustrating the results.

The following set will play an important role below:

Cp = {50 c R | Jwg € W s.t. (§o,w0) € C} (8)

Indeed, if a point £ & Cp and (§,w(0)) ¢ D, then the set
of (nontrivial) solutions ¢ with ¢(0,0) = £ and input w is
empty, see also Lemma 7 below.

Proposition 6. Consider
(C,F,D,G,W).
(i) There exists a nontrivial e-solution ¢ to H for input w €
Lw with $(0,0) = & € R™ if and only if (§,w(0)) €
D or
(VC-e): there exist ¢ > 0 and an absolutely con-
tinuous function z : [0,¢] — R™ such that
z2(0) = & 2(t) € F(z2(t),w(t)) for almost
all t € [0,¢] and (2(t),w(t)) € C for all
t € (0,e).
(ii) If condition (VC-e) holds for all £ € Cy and all w €
Ly with (£, w(0)) & D, then for all © € Ly, every

the hybrid system H =



maximal e-solution ¢ € S5,(W) satisfies exactly one of
the following properties:

(a) ¢ is complete;

(b) ¢ is not complete and ‘ends with flow’: dom ¢ is
bounded and the interval 17 := {t : (t,J) € dom ¢}
with J = sup; dom ¢ is open to the right, and there does
not exist an absolutely continuous function z : I7 —
R satisfying #(t) € F(z(t),w(t)) for almost all t € I”
and (z(t),w(t)) € C for all t € intI’, and such that
2(t) = ¢(t,J) forall t € T7;

(c) ¢ is not complete and ‘ends with a jump’: dom ¢ is
bounded with (T, J) := supdom ¢ € dom ¢, I7 = {T'},
(@(T,J),w(T)) & D and ¢(T,J) & Co.

When (VC-e) is replaced by

(VC-ae): there exist € > 0 and an absolutely continuous
function z : [0,¢e] — R™ such that z(0) = &,
2(t) € F(z(t),w(t)) and (2(t),w(t)) € C for
almost all t € [0, €],

then all the above statements apply to ae-solutions, where in
(b) the phrase “(z(t),w(t)) € C for all t € I'” is replaced
by “(z(t),w(t)) € C for almost all t € I7.”

An important observation is that (VC-ae) and (VC-e)
are independent of the value of w(0). We will see some
consequences of this fact in the examples below.

Note that for the hypothesis in (ii), namely (VC-e) (or
(VC-ae)) to hold for all £ € Cy and w € Ly with
(§,w(0)) & D, it is equivalent to require that (VC-e) (resp.,
(VC-ae)) holds for all £ € C, and all w € Ly, where

Co={£€Cy| ' €W st (&) & D},

since w € Ly implies also that w defined by w(0) = w’ and
w(t) = w(t), t > 0, satisfies w € Lyy. In fact, generally we
can replace “for every { € Cp and w € Ly with (§,w(0)) &
D” by “for every £ € Cy and any w € Ly.”

Note also that having existence and completeness of an
e-solution for a given input does not mean much when the
input is changed, even if the change is at an isolated time in
the interior of a flow interval.

Next, let us explain the role of Cy a bit more via the
following property enabled by the standing assumption.

Lemma 7. Let an absolutely continuous function z, w € Ly
and € > 0 be such that (VC-ae) holds for some & € R"=.
Then, z(t) € Cy for all t € [0,€].

The interest of this lemma is that it shows that for (VC-ae)
or (VC-e) to hold, we have to consider an initial state in Cj,
and that during flow the state will not leave Cjy. So, even a
discontinuity in w at ¢t = € cannot get the state outside Cj.

Let us illustrate the use of Proposition 6 in an example.

Example 3. Consider a controlled system in which the state
is aimed to be kept inside the set [—1.7,1.7) by resetting
it based on noisy measurements. The measurement noise
satisfies w(t) € W = [-0.2,0.2] for any t € Ry and

the controlled system is given by

=z
{gﬁ € [-0.1,0.1] ©)
To apply Proposition 6, note that Co = [—1.7,1.7]. In case
&€ Cyand we W with (§,w(0)) & D, the latter implies
that |€] < 1.2 as [€+w(0)| < 1 and |w(0)| < 0.2. Given the
definition of the flow set C = {(z,w) | |z + w| < 1.5}, we
see that as long as |x| < 1.3 the inequality |z + w| < 1.5
is guaranteed. This shows that (VC-e) and (VC-ae) are both
satisfied as it takes some positive time for the solution to
T = x to grow from an absolute value below 1.2 to an
absolute value larger or equal than 1.3. Hence, the existence
of nontrivial ae- and e-solutions is guaranteed and any
maximal solution satisfies only one of the properties (a)-(c)
in Proposition 6. In fact, it can be deduced that only (a)
can hold and thus all maximal (e- or ae-) solutions to H
for input w are complete — in fact, t-complete. This property
holds for any w € Lyy.

Note that for any w € Ly, each (e- and ae-) solution ¢
remains indeed in [—1.7,1.7], so forward invariance of this
set is guaranteed despite the presence of measurement noise.

There are some subtleties with Proposition 6 due to the
use of merely measurable inputs, as will be demonstrated
with the next reworked example, where the overlap between
C and D is smaller than in Example 3.

Example 4. We modify Example 3 by restricting the flow set
to obtain

T=2x 1,
{x+ € [-0.1,0.1] 1 (10
and still adopt W :=[—0.2,0.2]. In this case, for $(0,0) =
E=1land w(t) = -02ift =0 and w(t) = 0.2 if t > 0,
no jump and no flow are possible: a jump is not possible
as the jump condition |$(0,0) + w(0)| > 1 is not satisfied
and both (VC-ae) and (VC-e) are not satisfied, as, loosely
speaking, |x + w| < 1 cannot be satisfied on a nontrivial
flow interval. Essentially, the problematic issue for existence
of nontrivial solutions is that the possibility of a jump at
t = 0 depends on w(0) (i.e, (§,w(0)) € D is needed) and
the value of w(0) does not affect the satisfaction of (VC-ae)
or (VC-e). Informally, the information (£, w(0)) € D does
not restrict £ sufficiently (as in Example 3) to conclude that
Sflow is possible for w(t), t > 0.

Similar problems arise for

’ (1)

T=ux | <c
zt €[-0.1,0.1] |z4+w|>1.

as long as ¢ < 1.4. Indeed, take c = 1.4—n for small positive
n and consider ¢(0,0) = 1.2 — 3 and w as above. No flow
is possible ((VC-e) and (VC-ae) are both not satisfied) and
a jump is not possible either.

In fact, if there are no restrictions on w, i.e., W = R in
the example above, then Cy = R and (VC-ae) or (VC-e)



have to hold for all £ € R\ D, which is not satisfied for
this example and typically also for many other systems. So,
a tighter choice of W, namely precise information about the
range of the inputs (or their regularity, see Section IV), is
typically needed to guarantee the existence of nontrivial e-
or ae-solutions for all w € Ly . Otherwise, there is often not
much one can guarantee.

IV. RESTRICTING THE INPUT SPACE TO CADLAG
FUNCTIONS

As we have seen in Example 4 and as illustrated on another
example below, the existence of nontrivial solutions for all
Lebesgue measurable inputs, taking values in W, is often
hard to guarantee apart from rather particular cases, such as
Example 3, where the bounds on w and the ‘margin’ between
C and D allow to guarantee existence of nontrivial solutions
for all w € Lyy. We will show in this section that under an
additional regularity assumption on the input, namely that it
is cadlag (see Definition 8 below), the existence of nontrivial
solutions can be more easily guaranteed.

Example 5. Consider the system

=0 x4+w =0, 2T =0 z4+w<0 (12)

with x € R and W = R. Interestingly, CUD = R? and both
C and D are closed. However, maybe counter-intuitively, it
is not the case that nontrivial (e- or ae-)solutions exist for all
initial states and Lebesgue measurable input functions. Let
us take a closer look. Clearly, Cy = R. Take $(0,0) =& =1,
and select an input function with w(0) such that E+w(0) > 0
implying that a jump is not possible at the initial time.
Moreover, take w(t) = —2 on (0,00). For the existence of
a nontrivial ae-solution, (VC-ae) has to be satisfied, which,
unfortunately, is not the case for the given input. In fact,
the class of Lebesgue measurable inputs is too large here to
guarantee existence of nontrivial solutions for all states in
Co and all inputs in Lyy, since (VC-ae) cannot always be
satisfied (in fact, it has to be satisfied for all £ € Cy = R and
all w € Lyy in this case). This issue is actually related to the
fact that w(0) is totally ‘decoupled’ from w(t), t > 0. As we
will see in Example 6, if we impose a piecewise continuity
property (cadlag) on the inputs, instead of measurability
only, the existence of nontrivial solutions in (12) can be
guaranteed for all considered inputs.

The issues in the above example are due to the use of the
very rich class of Lebesgue measurable inputs for which the
value of w(0) (important for jumps) is not related in any way
to the function values w(t) for times ¢ > 0 (important for
flow, i.e., for the satisfaction of (VC-ae) or (VC-e)). In par-
ticular, the fact that a jump is not possible at (¢(0,0),w(0))
normally gives information, i.e., (¢(0,0),w(0)) ¢ D, which
forms a restriction on the initial conditions for which (VC-
ae) or (VC-e) has to hold (in order to obtain existence
results). Indeed, (VC-ae) or (VC-e) would be needed for all
(¢(0,0),w(0)) € C'\ D and thus ¢(0,0) € Cy to obtain
existence of nontrivial solutions, which relates to sets that
are not ‘small enough’. Only in examples such as Example 3,

in which sufficient “margin exists between D¢ and int C”,
do the existence and completeness results apply for all w €
Lw and all £ € Cy. However, the required conditions for
existence and completeness of (maximal) solutions change
significantly when we consider cadlag inputs, which is still
a rather rich class of inputs.

Definition 8. A function w : Ryg — R"™ is said to be
cadlag (“continue a droite, limite a gauche”), denoted by
w € PC, when there exists a sequence {t;}ien With t;11 >
ti >to =0 forall i € N and t; — oo when i — 0o such
that w is continuous on (t;,t;11) where limyy, w(t) exists
for all i € Nyg and limy s, w(t) exists for all i € N with
limy ¢, w(t) = w(t;), i.e, w is piecewise continuous, right
continuous and left limits exist for each t;, © € N<. Given a
set W C R™, then we denote by PCyy the set of functions
{w e PC|w(t)eW forall t € Ry}

Note that continuous functions are contained in PC as
{t; }ien can then be chosen arbitrarily. In the next proposition
we provide conditions for the existence of nontrivial solu-
tions for hybrid system (1), with the PC restriction on inputs.
Interestingly, note that checking (VC-ae) or (VC-e) for a
w € PC, is equivalent to checking it for a continuous input as
the restriction of w to a small enough interval is continuous.
Hence, since we consider closed sets C, this causes (VC-¢)
and (VC-ae) to coincide, and, therefore, we will have only
one viability condition, (VC). Similarly, we show that in this
context, e- and ae-solutions actually coincide.

Proposition 9. Consider

(C,F,D,G,W).

(i) Any ae-solution to H with input w € PCy is also an
e-solution, hereafter called “solution”.

(ii) There exists a nontrivial solution ¢ to H for input w €
PCw with ¢(0,0) = £ € R"™ if and only if (£, w(0)) €
D or

(VCO): there exist € > 0 and an absolutely continuous
Sunction z : [0,€] — R™ such that z(0) = &,
2(t) € F(z(t),w(t)) for almost all t € [0, €]
and (z(t), w(t)) € C for all t € [0, €].

(iii) If condition (VC) holds for all £ € R™ and all w €
PCw with (£,w(0)) € C\ D, then for all w € PCy
every maximal solution ¢ € S5,(w) satisfies exactly one
of the following properties:

the hybrid system H =

(a) ¢ is complete;

(b) ¢ is not complete and ‘ends with flow’: dom ¢ is
bounded and the interval 17 := {t : (t,J) € dom¢}
with J = sup,; dom ¢ is open to the right, and there does
not exist an absolutely continuous function z : 17 —
R satisfying #(t) € F(2(t),w(t)) for almost all t € I”
and (z(t),w(t)) € C for all t € int I’, and such that
2(t)=o¢(t,J) forall t € T7;

(c) ¢ is not complete and ‘ends with a jump’ or a ‘dis-
continuity’ of w: dom ¢ is bounded with (T,J) :=
supdom ¢ € dom ¢, (¢(T,J), w(T)) ¢ CUD.

As discussed before the theorem, note that we only have



to verify (VC) over an interval [0, €] of continuity of w.

As stated in (i) of Proposition 9, ae- and e- solutions
coincide because, by closedness of C' and right-continuity of
the considered input functions, solutions remain in C' during
flow, except possibly at the end of a flow interval. Such an
event necessarily corresponds to a discontinuity in the input
w. If the value of the state/input pair after the discontinuity
of w is not in C'U D, then the solution can neither flow nor
jump and necessarily stops (case (c) in Proposition 9). See
Example 7.

To illustrate the rationale behind our choice for cadlag in-
puts, let us reconsider Example 5 demonstrating that impos-
ing somewhat more regularity on the inputs leads to existence
of nontrivial solutions as well as completeness of maximal
solutions, while this was not the case for measurable inputs.

Example 6. Let us revisit Example 5 with the only difference
that input signals are in PCyy instead of in Ly,. With this
restriction, we would like to show that existence of nontrivial
solutions is now guaranteed for all initial states and all
inputs in PCyw based on Proposition 9. If we compute C'\ D
we obtain C'\ D = {({,w) € R? | £ +w > 0}. As for any
w € PCw there is an € > 0 such that w is continuous
on [0,€] and the solution to & = 0 is (locally absolutely)
continuous too, we see that for every £ € R™ and w € PCyw
with (£, w(0)) € C\D, (VC) holds due to the strict inequality
in the expression for C' \ D. It takes some positive time
for the continuous function t — (z(t),w(t)) to leave C.
Hence, the existence of nontrivial (ae- and e-)solutions is
guaranteed and, moreover, in this case we can even show
that each maximal solution is complete. Clearly, in contrast
to Lebesgue measurable inputs in which these existence and
completeness properties did not hold for the same hybrid
system, they do hold when restricting inputs to PCyy.

Note that a similar conclusion can be drawn for system
(10). For (10), existence of nontrivial solutions for all initial
states and inputs in PCy,, as well as the t-completeness of
maximal solutions is guaranteed, while this was not possible
for all measurable inputs in Ly as observed in Example 4.

Remark 1. Extra care is required regarding item (c) of
Proposition 9, if compared to the noninput case. In hybrid
systems without inputs, it would be sufficient to prove that
G(D) c CUD to exclude (c). However, when dealing with
discontinuous inputs as defined above, discontinuities in w
could also result in (c) occurring. See Example 7 for an
illustration of this phenomenon.

Example 7. Consider system

r=—-zr—w z4+w<l,

(13)
—2<rx+w<L2

xt = —w

Take W = R. It can be shown using Proposition 9 that for
every initial state £ and every w € PCy with (£, w(0)) €
C U D a nontrivial solution exists. However, not all max-
imal solutions are complete due to case (c) mentioned in
Proposition 9 occurring due to discontinuities in w. Indeed,

take $(0,0) = £ = 1 and w(t) = =1 if t € [0,1) and
w(t) = 2 if t > 1. For this choice, a maximal (e- and ae-
)solution is given by ¢(t,0) = 1, t € [0,1] on the hybrid
time domain [0,1] x {0}. The discontinuity in w at time 1
leads to (¢(1,0),w(1)) ¢ CUD. Note that jumps according
to the jump map cannot lead to case (c) for this example.

V. CONCLUSIONS

Motivated by hybrid, networked, and event-triggered con-
trollers for (physical) plants that are subject to disturbances,
we studied hybrid systems with continuous-time measurable
inputs that are given a priori. We presented two solution
concepts, called ae- and e-solutions, and indicated subtle
differences between them via various examples. Moreover,
we provided tools to guarantee the existence of (nontrivial)
ae- and e-solutions and completeness properties. Finally, by
imposing additional “cadlag ” regularity on the continuous-
time inputs, we obtained less stringent conditions for estab-
lishing basic existence and completeness results.
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