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Abstract— We present a hybrid systems framework for multi-
agent optimization in which agents execute computations in
continuous time and communicate in discrete time. The opti-
mization algorithm is a hybrid version of parallelized coordi-
nate descent. Agents implement a sample-and-hold strategy in
which gradients are computed at communication times and
held constant during flows between communications. Com-
pleteness of maximal solutions under these hybrid dynamics
is established. Under assumptions of smoothness and strong
convexity, we show that this system exponentially converges
to the minimizer of an objective function. Simulation results
illustrate this convergence rate.

I. INTRODUCTION

Convex optimization problems arise in many areas of

engineering, including machine learning [1], communica-

tions [2], robotics [3], and others. Fundamentally, regardless

of the application area, the goal is to design an algorithm

that will converge to a minimum of an objective function,

possibly under some constraints. Recently, there has been

increased interest in studying optimization algorithms in

continuous time using tools from dynamical systems to

establish convergence to minimizers; see [4]–[6].

In this paper, we develop a hybrid optimization algorithm

for the analysis of multi-agent systems with continuous-time

updates and intermittent discrete-time communication events.

This is motivated by two factors. First, we wish to leverage

the large collection of tools from dynamical systems to

analyze multi-agent optimization. Second, there exist many

multi-agent controllers that operate in continuous time to

minimize some objective function, e.g., in consensus [7] and

coverage control [8], and our analyses will apply to such

systems. However, while individual agents’ computations

occur in continuous time, communication between them

inherently occur in discrete time because communicated

information arrives at isolated time instants. This mixture

of continuous- and discrete-time elements naturally leads us

to a hybrid system model.
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The algorithm we propose is essentially a hybrid version

of parallelized block coordinate descent [9], in which each

agent updates only a small subset of all decision variables in

continuous time, and agents communicate these updates to

others in discrete time. In the proposed model, communica-

tion between agents occurs when a decreasing timer reaches

zero, at which point the timer is reset to some value within

a specified range. Agents use a sample-and-hold strategy in

which gradients are computed at the communication times

and then held constant and used continuously until the next

communication event. This approach is inspired by recent

work [10] that has successfully applied it to synchronization

problems. We consider objective functions that satisfy typ-

ical, mild assumptions for distributed optimization, namely

strongly convex objective functions with Lipschitz gradients.

We leverage the theory of hybrid systems to prove that the

proposed hybrid algorithm has several desirable properties.

First, we define a hybrid system model for this algorithm

and show that, under these hybrid dynamics, every maxi-

mal solution is complete, with domain allowing arbitrarily

large ordinary time. As a result, there are no theoretical

obstructions to running this algorithm for arbitrarily long

periods of time. Second, we use Lyapunov analysis to

show that, even under intermittent information sharing, the

hybrid optimization algorithm exponentially converges to the

minimizer of an objective function. Furthermore, we derive

an explicit convergence rate in terms of system parameters.

The developments in this paper can be regarded as

continuous-time counterparts to “classical” discrete-time al-

gorithms in multi-agent optimization [9]. Related research

in multi-agent continuous-time optimization includes [5],

[11], [12], though those works all use a consensus-based

update law that executes computations and communications

both in continuous time. However, we avoid continuous-time

communications to account for cases in which they are not

possible or simply undesirable, e.g., over long distances or

when power is limited.

The most similar works are [10], [13], which also study

continuous-time optimization with discrete-time communica-

tion. However, those works also use consensus-based opti-

mization algorithms in which each agent updates all decision

variables. In contrast, we consider agents with a common

objective function and require that each agent update only

a small subset of decision variables. This has the advantage

that an individual agent’s computational burden can be small,

even when solving high-dimensional problems.

The rest of the paper is organized as follows. Section II

includes our problem statement, assumptions, and algorithm.



Section III provides background on hybrid systems. We

present our hybrid system model in Section IV and establish

the existence of complete solutions. Section V proves that

the hybrid multi-agent update law exponentially converges to

the minimizer of an objective function. We include numerical

results as validation in Section VI.

II. PROBLEM STATEMENT AND ALGORITHM OVERVIEW

In this section, we state the class of problems that we

consider and give an overview of the proposed hybrid

optimization algorithm.

A. Problem Formulation

We consider a group of N agents jointly solving an

optimization problem of the following form:

Problem 1. Given an objective function L : Rn → R,

minimize L(x), x ∈ R
n

using N distributed agents while requiring that (i) only one

agent updates any entry of the decision variable x, and (ii)

agents require only intermittent information sharing from

others.

Each agent executes computations locally and then shares

the results of those computations. Criterion (i) is there for

scalability, only a single agent will update each decision

variable. This reduces the computation load on agents and

removes duplicated efforts. Criterion (ii) ensures that the

algorithm performs even in environments where communica-

tions may be limited. In many practical settings, we expect

bandwidth to be limited and/or agents to have limited on-

board power available, which means communications should

not be constant.

We assume the following about the objective function L.

Assumption 1. The function L is twice continuously differ-

entiable, β-strongly convex for some β > 0, and K-smooth

(namely, ∇L is K-Lipschitz). 4

Assumption 1 allows a large number of convex problems

to be considered, such as strongly convex quadratic pro-

grams. It is a standard assumption in multi-agent optimiza-

tion [9]. It implies that K ≥ β.

We solve Problem 1 by applying gradient descent in

continuous time using data received intermittently in dis-

crete time. The proposed hybrid optimization algorithm

uses jumps to characterize the discrete-time communication

events and flows to represent the continuous-time dynamics.

Analogously to past research that has developed distributed

versions of the discrete-time gradient descent law, our update

law during flows is based on the following (centralized) first-

order dynamical system:

ẋ+∇L(x) = 0. (1)

This is motivated by the use of gradient-based controllers

in multi-agent systems, e.g., in consensus [7], as well as

the simplicity of distributing gradient-based updates and the

robustness to asynchrony that results from doing so [9]. Next,

we distribute this across a team of agents.

B. Algorithmic Framework

We seek to distribute (1) across a team of agents in accor-

dance with the parallelization requirement in Problem 1. We

consider N agents indexed over i ∈ [N ] := {1, . . . , N} and

divide x ∈ R
n into N blocks. Then agent i is responsible for

updating and communicating values of the i-th block, xi ∈
R

ni , where ni ∈ N and
∑

i∈[N ] ni = n. Thus, the variable x

may be written as the vertical concatenation of all agents’

blocks. Each agent performs gradient descent on their own

block during flows but does not update any others.

Agents’ updates occur in continuous time while commu-

nication of these updates occurs in discrete time. Commu-

nications are coordinated using a decreasing timer, τ , that

is shared by all agents. When the timer reaches zero, all

agents communicate their current values to all of the other

agents and the timer resets to a value within a specified

interval [τmin, τmax]. We assume that communicated data are

received at the same time they are sent. These communicated

blocks are gathered into the vector η ∈ R
n with the

current value of xi being assigned to ηi at communication

events. The value of η is used in each agent’s continuous-

time computations in a sample-and-hold manner between

communication events. That is, each agent uses the previ-

ously communicated data in their updates rather than the

continuously evolving values of the other agents. Formally,

we write ∇iL = ∂L
∂xi

, and during flows agent i executes

ẋi = −∇iL(η).

This sample-and-hold method is common in the litera-

ture [10] and is used to demonstrate the feasibility of the

hybrid approach in multi-agent optimization.

The complete algorithm is summarized in Algorithm 1.

Algorithm 1: Distributed Hybrid Gradient Descent

Initialization: set xo, ηo ∈ R
n and τo ∈ [0, τmax];

while τ ≥ 0 do

ẋi = −∇iL(η), for all i ∈ {1, . . . , N};

τ̇ = −1;

if τ = 0 then

reset ηi to xi, for all i ∈ {1, . . . , N};

reset τ to a value in [τmin, τmax];
end

end

The next section provides the tools that will be used to

analyze Algorithm 1.

III. HYBRID SYSTEM PRELIMINARIES

In this section, we recount the background material nec-

essary for the hybrid system modeling and analysis in the

remainder of the paper.



A. Preliminaries on Hybrid Systems

For the purposes of this paper, a hybrid system H has

data (C, f,D,G) that takes the general form

H =

{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D
, (2)

where x ∈ R
n is the system’s state, and f defines the flow

map and continuous dynamics for which C is the flow set.

The set-valued jump map G captures the system’s discrete

behavior for the jump set D. More information on this

definition and hybrid systems can be found in [14].

Definition 1 (Hybrid Basic Conditions, [14]). A hybrid

system H as in (2) with data (C, f,D,G) satisfies the hybrid

basic conditions if

• C and D are closed subsets of Rn;

• f is a continuous function from R
n → R

n;

• G : R
n ⇒ R

n is outer semicontinuous and locally

bounded relative to D, and D ⊂ dom G.

If a hybrid system meets the hybrid basic conditions, then

we say that the system is well-posed (Theorem 6.30, [14]).

We denote solutions to H by φ, which we parameterize

by (t, j) ∈ R≥0 × N, where t denotes the ordinary (con-

tinuous) time, and j denotes the jump (discrete) time. Per

Definition 2.3 in [14], dom φ ⊂ R≥0 × N is a hybrid time

domain if for all (T, J) ∈ dom φ, the dom φ ∩ ([0, T ] ×
{0, 1, . . . , J} can be written as

⋃J−1
j=0 ([tj , tj+1], j) for some

finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . We say that

a solution φ is complete if dom φ is unbounded. A solution φ

to H is called maximal if it cannot be extended further.

IV. HYBRID SYSTEM MODEL

In this section, we define a hybrid system model that

encompasses all agents’ current states and their most recently

communicated state values. Towards defining this model, we

first formally define the timer that governs communication

events. This allows us to define the hybrid subsystems that

are distributed across the agents. Building on this, we present

a definition of the hybrid system modelling the N agents,

their algorithm, and the mechanism governing the commu-

nication events. Finally, we show the existence of solutions

and conclude that all maximal solutions are complete.

A. Mechanism Governing the Communication Events

We seek to account for intermittent communication events

that occur only at some time instances tj , for j ∈ N, that are

not known a priori. We assume that the sequence {tj}
∞
j=1

is strictly increasing and unbounded. Between consecutive

time events, some amount of time elapses which we upper

and lower bound with positive scalars τmin and τmax:

0 < τmin ≤ tj+1 − tj ≤ τmax ∀j ∈ N \ {0}. (3)

The upper bound τmax prevents infinitely long commu-

nication delays and ensures convergence, while the lower

bound τmin rules out Zeno behavior.

To generate events at times tj satisfying (3), let τ be the

timer that governs when agents exchange data, where τ is

defined by

τ̇ = −1 τ ∈ [0, τmax],

τ+ ∈ [τmin, τmax] τ = 0,

for τmin, τmax ∈ R>0. The timer τ steadily decreases

until it reaches zero. At this point, it is reset to a value

within [τmin, τmax].

There is indeterminacy built into the timer in that the reset

map is only confined to a compact interval, [τmin, τmax],
where τmin and τmax are both positive real numbers.

B. Hybrid Subsystems

Recall that agent i stores and updates its own state vari-

able xi ∈ R
ni , and the variable x is the vertical concatenation

of all agents’ states. Data from all agents are collectively

stored in η ∈ R
n at communication events. We define the

state of agent i’s hybrid system as ξi = (xi, η, τ), where xi

is agent i’s state (the one it is responsible for updating), η is

the memory state storing the states of the agents measured at

communication events, and τ is defined as above. This leads

to the hybrid subsystem given by

ξ̇i =





−∇iL(η)
0
−1



 ξi ∈ R
ni × R

n × [0, τmax]

ξ+i ∈





xi

x

[τmin, τmax]



 ξi ∈ R
ni × R

n × {0},

where x = (xT
1 , . . . , x

T
N )T .

C. Combined Hybrid System

We are now ready to combine the distributed subsystems

into one hybrid system for analysis. First, we define a

variable z = (z1, z2) ∈ R
n × R

n such that

z1 = col(x1, . . . , xN )

z2 = η,

where col(x1, . . . , xN ) = (xT
1 , . . . , x

T
N )T .

We define the state of the combined hybrid system as ξ =
(z1, z2, τ) ∈ X , where z1, z2, and τ are defined as above,

and X := R
n × R

n × [0, τmax]. This leads to the combined

hybrid system H = (C, f,D,G) given by

ξ̇ =





−∇L(z2)
0
−1



 := f(ξ) ξ ∈ C, (4)

ξ+ ∈





z1
z1

[τmin, τmax]



 := G(ξ) ξ ∈ D, (5)

where C := X and D := R
n × R

n × {0}.



D. Hybrid Basic Conditions

We now demonstrate that H meets the hybrid basic

conditions and is well-posed.

Lemma 1. Let L satisfy Assumption 1. Then, the hybrid

system given by H with data (C, f,D,G) defined in (4)–(5)

satisfies the hybrid basic conditions from Definition 1 and is

nominally well-posed as a result.

Proof: See [15]. �

E. Existence of Solutions

In addition to being well-posed, there exists a nontrivial

solution to H from each point in C∪D, and all maximal so-

lutions are complete and not Zeno under mild conditions on

problem parameters. Complete solutions cannot be extended

further and their domains are unbounded. Practically, this

means that the proposed algorithm may run for an arbitrarily

long period of time and does not reach a point where it can

neither flow nor jump.

Lemma 2 (Existence of Solutions). Let Assumption 1 hold.

Let τmin and τmax be such that 0 < τmin ≤ τmax < β2

3K3 ,

where β is the strong convexity constant of L and K is

the Lipschitz constant of ∇L. Then there exists a nontrivial

solution to H = (C, f,D,G) from every initial point in C ∪
D. Additionally, every maximal solution φ to the hybrid

system H is complete and not Zeno.

Proof: See [15]. �

V. CONVERGENCE ANALYSIS

In this section, we define the set for solutions to converge

to and present some useful properties of the hybrid system H
in Lemmas 3 and 4. We then propose a Lyapunov function

in Lemma 5. As an interim result, we show that for a

solution φ = (φz1 , φz2 , φτ ) to H in (4)–(5), if φz1(0, 0) =
φz2(0, 0), we are able to bound the distance from the

minimizer of L for all (t, j) ∈ dom φ. Finally, we present

our main result, exponential convergence to the minimizer

of L, in Theorem 1.

A. Convergence Set

Let 0n be the vector of zeros in R
n; similarly, let 0ni

be the vector of zeros in R
ni . Convergence using gradient

descent occurs when the gradient of L is 0n. Given a

complete solution φ = (φz1 , φz2 , φτ ) to the hybrid system H,

we seek to assure that limt+j→∞ ∇iL(φz2(t, j)) = 0ni
,

for i = 1, . . . , N . This is equivalent to a set convergence

problem where the set to converge to for the hybrid system H
is given by

A := {ξ = (z1, z2, τ) ∈ X :

∇L(z2) = 0n, z2 = z1, τ ∈ [0, τmax]}

= {x∗} × {x∗} × [0, τmax], (6)

where x∗ is the unique fixed point of ∇L. Equivalence of

the expression for A stems from Assumption 1: because L is

strongly convex, it has a unique minimum (denoted by x∗)

and this unique minimum is the unique stationary point

of ∇L. Given a vector ξ = (z1, z2, τ) ∈ X , the squared

distance from A is given by |ξ|2A := ‖z − z∗‖2 = ‖z1 −
x∗‖2 + ‖z2 − x∗‖2, where ‖ · ‖ denotes the Euclidean norm

throughout this paper.

B. Useful Properties of H

Combining gradient descent with a bound on τmax allows

us to establish relationships that prove useful during Lya-

punov analysis.

Lemma 3. Let Assumption 1 hold. Consider the hybrid

system given by H with data (C, f,D,G) defined in (4)–(5).

Let τmin and τmax be such that 0 < τmin ≤ τmax < β2

3K3 ,

where β is the strong convexity constant of L and K is

the Lipschitz constant of ∇L. Denote the unique fixed point

of ∇L by x∗. Pick a solution φ = (φz1 , φz2 , φτ ) to H such

that φz1(0, 0) = φz2(0, 0). For each Ij := {t : (t, j) ∈
dom φ} with nonempty interior and with tj+1 > tj such

that [tj , tj+1] = Ij , we have

φz1(t, j) = φz2(tj , j)− (t− tj)∇L(φz2(tj , j))

φz2(t, j) = φz2(tj , j),

for all t ∈ (tj , tj+1). Additionally, for all (t, j) ∈ dom φ,

the following are satisfied:

‖φz1(t, j)− x∗‖2 ≤ q(t, tj)‖φz2(tj , j)− x∗‖2;

‖φz1(t, j)− φz2(t, j)‖ ≤ τmax‖∇L(φz2(tj , j))‖;

‖φz1(t, j)− x∗‖2 ≥ B‖φz2(tj , j)− x∗‖2;

where q(t, tj) := (1 − 2(t − tj)β + (t − tj)
2K2) ∈ (0, 1)

and B := (1− 2τmaxK) ∈ (0, 1).

Proof: See [15]. �

In preparation for establishing the convergence properties

of H, we also show that the angle between the gradient

of the current state and the gradient of the previously

communicated state is never greater than 90 degrees as a

result of the bound on τmax. This is formally stated in

Lemma 4.

Lemma 4. Let Assumption 1 hold. Consider the hybrid

system given by H with data (C, f,D,G) defined in (4)–(5).

Let τmin and τmax be such that 0 < τmin ≤ τmax < β2

3K3 ,

where β is the strong convexity constant of L and K is

the Lipschitz constant of ∇L. Denote the unique fixed point

of ∇L by x∗. Pick a solution φ such that φz1(0, 0) =
φz2(0, 0). For each Ij := {t : (t, j) ∈ dom φ} with

nonempty interior and with tj+1 > tj such that [tj , tj+1] =
Ij , we have

∇L(φz1(t, j))
T∇L(φz2(t, j)) ≥ A‖φz2(tj , j)− x∗‖2,

for all t ∈ (tj , tj+1), where A := β2(1 − 2τmaxK) −
τmaxK

3 > 0.

Proof: See [15]. �





0 1 2 3 4 5 6 7 8 9 10

Time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

D
is

ta
n

c
e

 B
e

tw
e

e
n

 I
te

ra
ti
o

n
s

Effect of Network Size on Convergence Rate

5 Agents

100 Agents

500 Agents

1000 Agents

5000 Agents

Fig. 2. Effect of network size on convergence. Convergence results still
hold even for very large network sizes, demonstrating the scalability of our
algorithm.

initialization scenario: when φz1(0, 0) = (2, 2, 2, 2, 2)T is

some distance from the optimum but φz2(0, 0) = x∗,

resulting in an increase in the distance from the minimizer

of L before the first jump. We consider β = K = 5 and

set τmax = β2

3K3+1 and τmin = 1
2τmax. Figure 1 shows the

distance from optimum through the first twenty jumps for

both trials. There is a consistent decrease in the distance to

the minimizer, even at jumps, for the first trial. In contrast,

when initial values for φz1 and φz2 are not equal, there

is an increase in distance to the minimizer after the first

jump in the second trial. However, as expected, distance

to the optimum decreases exponentially thereafter, with the

difference between the two trials decreasing over time.

We then examined the effects of varying the network size

from 5 agents to 100, 500, 1000, and 5000 agents. We

set β = 2 and K = 4 and chose to initialize φz1 and φz2

with vectors of twos in R
n. For each network size, the

matrix Q and vector b were randomly generated. As shown

in Figure 2, drastically expanding the network size does not

have a significant impact on convergence. This demonstrates

our algorithm’s scalability and convergence results that hold

regardless of network size.

VII. CONCLUSION

This paper presented a hybrid systems framework for

analyzing continuous-time multi-agent optimization with

discrete-time communications. Using this framework, we

established that every maximal solution is complete, as well

as the exponential convergence of a block coordinate descent

law to the minimizer of a strongly convex and smooth

objective function. Future work in this area includes the use

of heterogeneous timers and exploration of other update laws,

as well as constrained problems.
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