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Abstract— We present a hybrid systems framework for multi-
agent optimization in which agents execute computations in
continuous time and communicate in discrete time. The opti-
mization algorithm is a hybrid version of parallelized coordi-
nate descent. Agents implement a sample-and-hold strategy in
which gradients are computed at communication times and
held constant during flows between communications. Com-
pleteness of maximal solutions under these hybrid dynamics
is established. Under assumptions of smoothness and strong
convexity, we show that this system exponentially converges
to the minimizer of an objective function. Simulation results
illustrate this convergence rate.

I. INTRODUCTION

Convex optimization problems arise in many areas of
engineering, including machine learning [1], communica-
tions [2], robotics [3], and others. Fundamentally, regardless
of the application area, the goal is to design an algorithm
that will converge to a minimum of an objective function,
possibly under some constraints. Recently, there has been
increased interest in studying optimization algorithms in
continuous time using tools from dynamical systems to
establish convergence to minimizers; see [4]—[6].

In this paper, we develop a hybrid optimization algorithm
for the analysis of multi-agent systems with continuous-time
updates and intermittent discrete-time communication events.
This is motivated by two factors. First, we wish to leverage
the large collection of tools from dynamical systems to
analyze multi-agent optimization. Second, there exist many
multi-agent controllers that operate in continuous time to
minimize some objective function, e.g., in consensus [7] and
coverage control [8], and our analyses will apply to such
systems. However, while individual agents’ computations
occur in continuous time, communication between them
inherently occur in discrete time because communicated
information arrives at isolated time instants. This mixture
of continuous- and discrete-time elements naturally leads us
to a hybrid system model.
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The algorithm we propose is essentially a hybrid version
of parallelized block coordinate descent [9], in which each
agent updates only a small subset of all decision variables in
continuous time, and agents communicate these updates to
others in discrete time. In the proposed model, communica-
tion between agents occurs when a decreasing timer reaches
zero, at which point the timer is reset to some value within
a specified range. Agents use a sample-and-hold strategy in
which gradients are computed at the communication times
and then held constant and used continuously until the next
communication event. This approach is inspired by recent
work [10] that has successfully applied it to synchronization
problems. We consider objective functions that satisfy typ-
ical, mild assumptions for distributed optimization, namely
strongly convex objective functions with Lipschitz gradients.

We leverage the theory of hybrid systems to prove that the
proposed hybrid algorithm has several desirable properties.
First, we define a hybrid system model for this algorithm
and show that, under these hybrid dynamics, every maxi-
mal solution is complete, with domain allowing arbitrarily
large ordinary time. As a result, there are no theoretical
obstructions to running this algorithm for arbitrarily long
periods of time. Second, we use Lyapunov analysis to
show that, even under intermittent information sharing, the
hybrid optimization algorithm exponentially converges to the
minimizer of an objective function. Furthermore, we derive
an explicit convergence rate in terms of system parameters.

The developments in this paper can be regarded as
continuous-time counterparts to “classical” discrete-time al-
gorithms in multi-agent optimization [9]. Related research
in multi-agent continuous-time optimization includes [5],
[11], [12], though those works all use a consensus-based
update law that executes computations and communications
both in continuous time. However, we avoid continuous-time
communications to account for cases in which they are not
possible or simply undesirable, e.g., over long distances or
when power is limited.

The most similar works are [10], [13], which also study
continuous-time optimization with discrete-time communica-
tion. However, those works also use consensus-based opti-
mization algorithms in which each agent updates all decision
variables. In contrast, we consider agents with a common
objective function and require that each agent update only
a small subset of decision variables. This has the advantage
that an individual agent’s computational burden can be small,
even when solving high-dimensional problems.

The rest of the paper is organized as follows. Section II
includes our problem statement, assumptions, and algorithm.



Section III provides background on hybrid systems. We
present our hybrid system model in Section IV and establish
the existence of complete solutions. Section V proves that
the hybrid multi-agent update law exponentially converges to
the minimizer of an objective function. We include numerical
results as validation in Section VI.

II. PROBLEM STATEMENT AND ALGORITHM OVERVIEW

In this section, we state the class of problems that we
consider and give an overview of the proposed hybrid
optimization algorithm.

A. Problem Formulation

We consider a group of N agents jointly solving an
optimization problem of the following form:

Problem 1. Given an objective function L : R™ — R,

minimize L(x), z € R"”

using N distributed agents while requiring that (i) only one
agent updates any entry of the decision variable x, and (ii)
agents require only intermittent information sharing from
others.

Each agent executes computations locally and then shares
the results of those computations. Criterion (i) is there for
scalability, only a single agent will update each decision
variable. This reduces the computation load on agents and
removes duplicated efforts. Criterion (ii) ensures that the
algorithm performs even in environments where communica-
tions may be limited. In many practical settings, we expect
bandwidth to be limited and/or agents to have limited on-
board power available, which means communications should
not be constant.

We assume the following about the objective function L.

Assumption 1. The function L is twice continuously differ-
entiable, B-strongly convex for some > 0, and K-smooth
(namely, VL is K-Lipschitz). A

Assumption 1 allows a large number of convex problems
to be considered, such as strongly convex quadratic pro-
grams. It is a standard assumption in multi-agent optimiza-
tion [9]. It implies that K > f.

We solve Problem 1 by applying gradient descent in
continuous time using data received intermittently in dis-
crete time. The proposed hybrid optimization algorithm
uses jumps to characterize the discrete-time communication
events and flows to represent the continuous-time dynamics.
Analogously to past research that has developed distributed
versions of the discrete-time gradient descent law, our update
law during flows is based on the following (centralized) first-
order dynamical system:

i+ VL(z) = 0. (1)

This is motivated by the use of gradient-based controllers
in multi-agent systems, e.g., in consensus [7], as well as
the simplicity of distributing gradient-based updates and the
robustness to asynchrony that results from doing so [9]. Next,
we distribute this across a team of agents.

B. Algorithmic Framework

We seek to distribute (1) across a team of agents in accor-
dance with the parallelization requirement in Problem 1. We
consider N agents indexed over ¢ € [N] := {1,..., N} and
divide = € R™ into N blocks. Then agent 1 is responsible for
updating and communicating values of the i-th block, x; €
R™, where n; € N and Ziem n; = n. Thus, the variable x
may be written as the vertical concatenation of all agents’
blocks. Each agent performs gradient descent on their own
block during flows but does not update any others.

Agents’ updates occur in continuous time while commu-
nication of these updates occurs in discrete time. Commu-
nications are coordinated using a decreasing timer, 7, that
is shared by all agents. When the timer reaches zero, all
agents communicate their current values to all of the other
agents and the timer resets to a value within a specified
interval [Tyin, Tmaz]. We assume that communicated data are
received at the same time they are sent. These communicated
blocks are gathered into the vector n € R™ with the
current value of z; being assigned to 7; at communication
events. The value of 7 is used in each agent’s continuous-
time computations in a sample-and-hold manner between
communication events. That is, each agent uses the previ-
ously communicated data in their updates rather than the
continuously evolving values of the other agents. Formally,
we write V,;L = g—fi, and during flows agent ¢ executes

Ll'?Z' = —VZL(H)

This sample-and-hold method is common in the litera-
ture [10] and is used to demonstrate the feasibility of the
hybrid approach in multi-agent optimization.

The complete algorithm is summarized in Algorithm 1.

Algorithm 1: Distributed Hybrid Gradient Descent

Initialization: set x,,7, € R™ and 7, € [0, Timaz);
while 7 > 0 do
; = —=V;L(n), foralli e {1,...,N};
T=-1
if 7 =0 then
reset 1); to x;, for all i € {1,...,N};
reset 7 to a value in [Tyin, Tmaz)s
end

end

The next section provides the tools that will be used to
analyze Algorithm 1.

III. HYBRID SYSTEM PRELIMINARIES

In this section, we recount the background material nec-
essary for the hybrid system modeling and analysis in the
remainder of the paper.



A. Preliminaries on Hybrid Systems

For the purposes of this paper, a hybrid system 7 has
data (C, f, D, G) that takes the general form

2 [i= 1@
zt € G(x)
where x € R™ is the system’s state, and f defines the flow
map and continuous dynamics for which C' is the flow set.
The set-valued jump map G captures the system’s discrete

behavior for the jump set D. More information on this
definition and hybrid systems can be found in [14].

Definition 1 (Hybrid Basic Conditions, [14]). A hybrid
system H as in (2) with data (C, f, D, G) satisfies the hybrid
basic conditions if
e C and D are closed subsets of R";
o f is a continuous function from R™ — R";
e G : R"™ == R™ is outer semicontinuous and locally
bounded relative to D, and D C dom G.

rel

zeD’ @

If a hybrid system meets the hybrid basic conditions, then
we say that the system is well-posed (Theorem 6.30, [14]).

We denote solutions to # by ¢, which we parameterize
by (£,7) € R>o x N, where ¢ denotes the ordinary (con-
tinuous) time, and j denotes the jump (discrete) time. Per
Definition 2.3 in [14], dom ¢ C R x N is a hybrid time
domain if for all (T,J) € dom ¢, the dom ¢ N ([0,T] x
{0,1,...,J} can be written as Uj;&([tj,tj.:,.l],j) for some
finite sequence of times 0 =ty < t; < --- < t;. We say that
a solution ¢ is complete if dom ¢ is unbounded. A solution ¢
to H is called maximal if it cannot be extended further.

IV. HYBRID SYSTEM MODEL

In this section, we define a hybrid system model that
encompasses all agents’ current states and their most recently
communicated state values. Towards defining this model, we
first formally define the timer that governs communication
events. This allows us to define the hybrid subsystems that
are distributed across the agents. Building on this, we present
a definition of the hybrid system modelling the N agents,
their algorithm, and the mechanism governing the commu-
nication events. Finally, we show the existence of solutions
and conclude that all maximal solutions are complete.

A. Mechanism Governing the Communication Events

We seek to account for intermittent communication events
that occur only at some time instances t;, for j € N, that are
not known a priori. We assume that the sequence {#;}72,
is strictly increasing and unbounded. Between consecutive
time events, some amount of time elapses which we upper
and lower bound with positive scalars 7,,;, and T,qz:

0 < Tmin <tjt1 —t) < Tmaae V5 €N\ {0}.  (3)

The upper bound 7,,,, prevents infinitely long commu-
nication delays and ensures convergence, while the lower
bound 7,,,;, rules out Zeno behavior.

To generate events at times t; satisfying (3), let 7 be the
timer that governs when agents exchange data, where 7 is
defined by

F=-1 7 € [0, Trmaz)s
T+ € [Tmin; Tmaw] T =0,
for Toin, Tmaz € Rso. The timer 7 steadily decreases
until it reaches zero. At this point, it is reset to a value
within [Tmin, Tmaz)-

There is indeterminacy built into the timer in that the reset
map is only confined to a compact interval, [Tpin, Tmaz)s
where T,,;n, and 7,4, are both positive real numbers.

B. Hybrid Subsystems

Recall that agent ¢ stores and updates its own state vari-
able ; € R™, and the variable z is the vertical concatenation
of all agents’ states. Data from all agents are collectively
stored in 7 € R™ at communication events. We define the
state of agent ¢’s hybrid system as & = (z;,7, T), where z;
is agent 7’s state (the one it is responsible for updating), 7 is
the memory state storing the states of the agents measured at
communication events, and 7 is defined as above. This leads
to the hybrid subsystem given by

. —V;L(n)
&= 0 & € R™ x R™ x [OaTmam]
-1
Zq
ge| & € R™ xR x {0},
[Tmina Tmam}
where z = (27, ... 21)7T.

C. Combined Hybrid System

We are now ready to combine the distributed subsystems
into one hybrid system for analysis. First, we define a
variable z = (21, 22) € R™ x R™ such that

z1 = col(x1,...,xN)
Z2 =1,
where col(zy,...,zy) = (zT,...,2%)7T.

We define the state of the combined hybrid system as £ =
(21,22,7) € X, where z1, 22, and 7 are defined as above,
and X := R™ x R™ X [0, Typqz)- This leads to the combined
hybrid system H = (C, f, D, G) given by

_VL(ZQ)
£= 0 = f(©) EeC, &
—1
z1
£t e 21 =G(¢) ¢eD, (5

[Tm'm7 Tma:c]

where C' := X and D := R" x R" x {0}.



D. Hybrid Basic Conditions

We now demonstrate that H meets the hybrid basic
conditions and is well-posed.

Lemma 1. Let L satisfy Assumption 1. Then, the hybrid
system given by H with data (C, f, D, G) defined in (4)—(5)
satisfies the hybrid basic conditions from Definition 1 and is
nominally well-posed as a result.

Proof: See [15]. [ |

E. Existence of Solutions

In addition to being well-posed, there exists a nontrivial
solution to H from each point in C'U D, and all maximal so-
lutions are complete and not Zeno under mild conditions on
problem parameters. Complete solutions cannot be extended
further and their domains are unbounded. Practically, this
means that the proposed algorithm may run for an arbitrarily
long period of time and does not reach a point where it can
neither flow nor jump.

Lemma 2 (Existence of Solutions). Let Assumption 1 hold.
Let Tpyin and Tpae be such that 0 < Toin < Tmaz < Bﬁ%,
where 3 is the strong convexity constant of L and K is
the Lipschitz constant of V L. Then there exists a nontrivial
solution to H = (C, f, D, G) from every initial point in C'U
D. Additionally, every maximal solution ¢ to the hybrid
system H is complete and not Zeno.

Proof: See [15]. |

V. CONVERGENCE ANALYSIS

In this section, we define the set for solutions to converge
to and present some useful properties of the hybrid system H
in Lemmas 3 and 4. We then propose a Lyapunov function
in Lemma 5. As an interim result, we show that for a
solution ¢ = (¢, by, 1) to H in (H(5), if ¢.,(0,0) =
¢:,(0,0), we are able to bound the distance from the
minimizer of L for all (¢,j) € dom ¢. Finally, we present
our main result, exponential convergence to the minimizer
of L, in Theorem 1.

A. Convergence Set

Let 0,, be the vector of zeros in R"™; similarly, let 0,
be the vector of zeros in R™. Convergence using gradient
descent occurs when the gradient of L is 0,. Given a
complete solution ¢ = (¢, , ¢.,, ¢, ) to the hybrid system H,
we seek to assure that limyi; oo V;L(¢,, (£, 7)) = Oy,
for + = 1,...,N. This is equivalent to a set convergence
problem where the set to converge to for the hybrid system
is given by

A:={=(z1,20,7) € X:
VIL(z2) =0p,20 = 21,7 € [0, Tonaz] }
= {z*} x {z"} x [0, Trmaz), (6)
where x* is the unique fixed point of VL. Equivalence of

the expression for A stems from Assumption 1: because L is
strongly convex, it has a unique minimum (denoted by z*)

and this unique minimum is the unique stationary point
of VL. Given a vector § = (z1,22,7) € X, the squared
distance from A is given by ||% = ||z — 2*[]* = |21 —
x*||2 + |22 — z*||?, where || - || denotes the Euclidean norm
throughout this paper.

B. Useful Properties of H

Combining gradient descent with a bound on 7,5 allows
us to establish relationships that prove useful during Lya-
punov analysis.

Lemma 3. Let Assumption 1 hold. Consider the hybrid
system given by H with data (C, f, D, Q) defined in (4)—(;).
Let Tpin and Tpar be such that 0 < Toin < Tmaz < :f?
where [ is the strong convexity constant of L and K is
the Lipschitz constant of VL. Denote the unique fixed point
of VL by x*. Pick a solution ¢ = (¢,,, ¢.,,d:) to H such
that ¢.,(0,0) = ¢,,(0,0). For each I’ := {t : (t,j) €
dom ¢} with nonempty interior and with tj 1 > t; such
that [t;,tj11] = I’, we have

¢21(t’j) = ¢Z2(tj7j) - (t - tj)VL((bZz(tj?j))
¢22(t7j) = ¢22<tj7j)7

for all t € (t;,t;11). Additionally, for all (t,j) € dom ¢,
the following are satisfied:

[z (2, 5) = a™|* < alt, )19, (1, 5) — ™|
||¢z1 (ta]) - ¢22 (t7.])|| S TTVLGOUHVL((Z)Zz (tj7.]))||a
12, (t,5) = 2*|I* = Bllg, (t7,5) — ™ [1%

where q(t,t;) = (1 —2(t —t;)B + (t — t;)?K?) € (0,1)
and B := (1 — 274.K) € (0,1).

Proof: See [15]. |

In preparation for establishing the convergence properties
of H, we also show that the angle between the gradient
of the current state and the gradient of the previously
communicated state is never greater than 90 degrees as a
result of the bound on 7,,4,. This is formally stated in
Lemma 4.

Lemma 4. Let Assumption 1 hold. Consider the hybrid
system given by H with data (C, f, D, G) defined in (4)—(5).
Let Tpin and Tpqe be such that 0 < Thin < Tmaz < 3’%23
where [ is the strong convexity constant of L and K is
the Lipschitz constant of V L. Denote the unique fixed point
of VL by z*. Pick a solution ¢ such that ¢,,(0,0) =
$.,(0,0). For each I’ = {t : (t,j) € dom ¢} with
nonempty interior and with t; 41 > t; such that [t;,t;11] =
I, we have

VL(¢2 (8,4))TVL(92,(t, 7)) = Allp, (5. 5) — "%,

for all t € (tj,tjr1), where A == B%*(1 — 270 K) —
Tmaz K2 > 0.

Proof: See [15]. [ |



C. Bound on the Lyapunov Function

Central to proving our main result is a Lyapunov func-
tion that is bounded above and below by K., comparison
functions o, e given in Lemma 5.

Lemma 5. Let Assumption 1 holqzi. Let Tyin and Tpyq. be
such that 0 < Trin < Tmaz < fW’ where (3 is the strong
convexity constant of L and K is the Lipschitz constant
of VL. Let V : X — Rxq be a Lyapunov function candidate
for the hybrid system H = (C, f, D, G) defined in (4)—(5),

given by
V(&) = (L(z1) — L(z"))* + (L(22) — L(z%))?,
for all & (21,22, 7) € X, where L is the objective

Sfunction and x* is the unique fixed point of VL. Then there
exist oy, o € Koo such that

a1([€la) S V(E) < az([€]a)

forall £ € CUDUG(D). In particular, oy and oy may be
given by, for each s > 0,

2 KZ

ay(s) = fﬁs‘l and  ao(s) = -

Proof: See [15]. |

4

D. Exponential Convergence

Using Lemmas 3, 4, and 5, we are able to bound the
distance to the minimizer of L over time for a class of initial
conditions in Proposition 1. This result will then be expanded
to include all possible solutions and initial conditions in
Theorem 1, thus showing exponential convergence to the
minimizer of L.

Proposition 1. Let Assumption 1 hold and consider the
hybrid system H defined in (4)-(5). Let A be as defined in (6)
ang’ let Tpin and T be such that 0 < Toin < Tmaz <
35?, where (3 is the strong convexity constant of L and K
is the Lipschitz constant of VL. For each solution ¢ to H
such that ¢,,(0,0) = ¢,,(0,0), for all (t,5) € dom ¢, the
following is satisfied:

t]|A<\/7\/_

216001,

where A = B?(1 — 2TaeK) — TmaeK® > 0 and B =
(1 = 2TmaaK) € (0,1).
Proof: See [15]. |

In practice, this preliminary result is useful when agreeing
on initial values is easy to implement. However, it does not
show our desired result, namely, exponential convergence to
the minimizer of L, regardless of initialization. By examining
all possible scenarios at the first jump, we show in Theorem 1
below that exponential convergence to the minimizer of L
still applies after the first jump.

Theorem 1 (Exponential Convergence). Let Assumption I
hold and consider the hybrid system H defined in (4)-(5).

Let A be as defined in (6) and choose Ty,in and Tpae such
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Fig. 1. Effect of initial values on convergence for two trials, where flows
are denoted with solid lines and jumps with stars and dashed lines. Trial 1
sets ¢z, (0,0) = ¢, (0,0), while Trial 2 sets ¢, (0,0) = «* instead. The
first jump does not increase the distance from the minimizer in Trial 1 but
does increase this distance in Trial 2. However, after the first jump, progress
continues toward the optimum and differences between trials diminish.

that 0 < Tmin < Tmae < Bﬂ% where B is the strong
convexity constant of L and K is the Lipschitz constant
of VL. For each solution ¢ and for all (t,7) € dom ¢ such
that j > 1, the following is satisfied:

. 8.~ K BAB
< - S ekt .
9(t,9)1a < 3V2 Fexp (— Gzt 16(0,0) L,
where A = B?(1 — 2TaeK) — TmaeK® > 0 and B =
(1 = 27TmaaK) € (0,1).

Proof: See [15]. ||

VI. NUMERICAL VALIDATION

We consider N = n agents for various values of n. Each
agent updates a scalar and they minimize

1
L(z) = §xTQ.Z‘ + o'z,

where x € R”, () is a n X n symmetric, positive definite
matrix, and b € R™. To form Q, we decompose a random 7 X
7 matrix into an unitary orthogonal matrix U and a matrix D
that contains only our desired eigenvalues on the diagonal.
We use these two resulting matrices to set Q = UT DU.
Our choice of eigenvalues varies by trial (discussed below)
with the minimum eigenvalue corresponding to S and the
maximum eigenvalue corresponding to K. The entries of b
are set to random values between 1 and 5. Simulations used
the HyEq Toolbox (Version 2.04) [16]'.

We first compare convergence results for different ini-
tial values of ¢,, and ¢,, for five agents. For the first
trial, we consider the case where ¢, (0,0) = ¢,,(0,0) =
(2,2,2,2,2)T. In Trial 2, we consider the “worst-case”

'Simulation code for this section may be found at

www.github.com/kathendrickson/DistrHybridGD.



A Effect of Network Size on Convergence Rate
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Fig. 2. Effect of network size on convergence. Convergence results still
hold even for very large network sizes, demonstrating the scalability of our
algorithm.

initialization scenario: when ¢, (0,0) = (2,2,2,2,2)T is
some distance from the optimum but ¢,,(0,0) = =z*,
resulting in an increase in the distance from the minimizer
of L before the first jump. We consider 5§ = K = 5 and
set Toaz = % and 7, = %Tmm Figure 1 shows the
distance from optimum through the first twenty jumps for
both trials. There is a consistent decrease in the distance to
the minimizer, even at jumps, for the first trial. In contrast,
when initial values for ¢,, and ¢,, are not equal, there
is an increase in distance to the minimizer after the first
jump in the second trial. However, as expected, distance
to the optimum decreases exponentially thereafter, with the
difference between the two trials decreasing over time.

We then examined the effects of varying the network size
from 5 agents to 100, 500, 1000, and 5000 agents. We
set S =2 and K = 4 and chose to initialize ¢,, and ¢,
with vectors of twos in R™. For each network size, the
matrix () and vector b were randomly generated. As shown
in Figure 2, drastically expanding the network size does not
have a significant impact on convergence. This demonstrates
our algorithm’s scalability and convergence results that hold
regardless of network size.

VII. CONCLUSION

This paper presented a hybrid systems framework for
analyzing continuous-time multi-agent optimization with
discrete-time communications. Using this framework, we

established that every maximal solution is complete, as well
as the exponential convergence of a block coordinate descent
law to the minimizer of a strongly convex and smooth
objective function. Future work in this area includes the use
of heterogeneous timers and exploration of other update laws,
as well as constrained problems.

REFERENCES

[11 S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine

Learning. MIT Press, 2012.
[2] Z. Luo and W. Yu, “An introduction to convex optimization for

communications and signal processing,” IEEE Journal on Selected

Areas in Communications, vol. 24, no. 8, pp. 1426-1438, 2006.

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and

M. Diehl, “Time-optimal path tracking for robots: A convex opti-

mization approach,” IEEE Transactions on Automatic Control, vol. 54,

no. 10, pp. 2318-2327, 2009.

[4] W. Su, S. Boyd, and E. J. Candes, “A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights,” Journal
of Machine Learning Research, vol. 17, no. 153, pp. 1-43, 2016.
[Online]. Available: http://jmlr.org/papers/v17/15-084.html

[5] S. Rahili and W. Ren, “Distributed continuous-time convex opti-
mization with time-varying cost functions,” I[EEE Transactions on
Automatic Control, vol. 62, no. 4, pp. 1590-1605, 2017.

[6] K. Garg and D. Panagou, “Fixed-time stable gradient flows: Ap-
plications to continuous-time optimization,” /EEE Transactions on
Automatic Control, 2020.

[71 R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

[8] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243-255, 2004.

[9]1 D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. USA: Prentice-Hall, Inc., 1989.

[10] S. Phillips and R. G. Sanfelice, “Robust distributed synchronization of
networked linear systems with intermittent information,” Automatica,
vol. 105, pp. 323-333, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109819301414

[11] B. Gharesifard and J. Cortés, “Distributed continuous-time convex
optimization on weight-balanced digraphs,” IEEE Transactions on
Automatic Control, vol. 59, no. 3, pp. 781-786, 2014.

[12] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed
convex optimization: The continuous-time case,” IEEE Transactions
on Automatic Control, vol. 57, no. 9, pp. 2348-2354, 2012.

[13] S. S. Kia, J. Cortés, and S. Martinez, “Distributed convex
optimization via continuous-time coordination algorithms with
discrete-time communication,” Automatica, vol. 55, pp. 254-264,
2015. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0005109815001053

[14] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton University
Press, Princeton (NJ), 2012.

[15] K. Hendrickson, D. Hustig-Schultz, M. Hale, and R. G. Sanfelice, “Ex-
ponentially converging distributed gradient descent with intermittent
communication via hybrid methods,” 2021, arXiv:2104.10113.

[16] R. G. Sanfelice, D. Copp, and P. Nanez, “A toolbox for simulation
of hybrid systems in Matlab/Simulink: Hybrid equations (HyEQ)
toolbox,” in Proceedings of the 16th International Conference on
Hybrid Systems: Computation and Control, 2013. [Online]. Available:
https://doi.org/10.1145/2461328.2461346

[3

[t}



