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Abstract— Model predictive control (MPC) is a valuable tool
to deal with systems that require optimal solutions and con-
straint satisfaction. In the case of systems with uncertainty, the
formulation of predictive controllers requires models which are
capable to capture system dynamics, constraints and also system
uncertainty. In this work we present a formulation for a set-
valued model predictive control (SVMPC) where uncertainty
is represented in terms of sets. The approach presented here
considers a model where the state is set-valued and dynamics
are defined by a set-valued map. The cost function associated
to the proposed MPC associates a real-valued cost to each
set valued (or tube-based) trajectory. For this formulation, we
study conditions that can yield the constrained optimal control
problem associated to the set-valued MPC formulation feasible
and stable, thus extending existing stability results from classic
MPC to a set-based approach. Examples illustrate the results
along the paper.

I. INTRODUCTION

Model predictive control (MPC) represents a valuable tool

to deal with systems that are required to satisfy physical con-

straints and to optimize a criterion, such as position error or

fuel consumption. Applications with these requirements are

common in the area of cyber-physical systems, in particular

in autonomous vehicles, where a timely response is often

also a requirement. An additional challenge associated to

the implementation of autonomous systems control is the

presence of uncertainty, which arises often from model error,

and sensor or process uncertainty. To properly deal with this

uncertainty, predictive controls require models which are able

to capture system dynamics, constraints, and also uncertainty.

The problem of developing predictive controllers which

can satisfy state and control constraints for all realizations

of uncertainty, or Robust MPC (RMPC), has been studied

extensively in the literature [1], [2], where main challenges

are associated to accounting for the propagation of possible

trajectories generated by uncertainty. To take into account

uncertainty effects, often set-theoretical methods are em-

ployed [3], [4]. Although several approaches currently exist

in the literature, representations based on tubes are the most

common [4]. These Tube-based MPC (TMPC) approaches

consider in general a setting with dynamics given by set-

valued maps. However, a nominal (singleton) trajectory is

considered, for which the predictive controller defines a

strategy that keeps the state within a sequence of invariant
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sets or tubes [5] [6]. The cost is then characterized as a

function with the nominal trajectory as argument.

In this work we propose a model predictive control struc-

ture which incorporates a set-based approach building on

the works in [7], [8] and [9]. The systems considered for

our MPC formulation have set-valued states which evolve

in discrete time, with (possibly nonlinear) dynamics defined

by set-valued maps. This leads to solutions being described

as sequences of sets, or tubes, as in TMPC, but that are not

necessarily associated to a nominal trajectory. This represen-

tation is useful since it allows to capture system variability

and system constraints in a common framework. In this work

we formalize the approach in [9] and provide a framework

for set-based predictive control. In our proposed setting,

since the state trajectory is set-valued, the cost functional

uses set-to-points maps to characterize the cost associated to

each (set valued) trajectory. For this formulation, we study

conditions that can yield the constrained optimal control

problem associated to the set-based MPC formulation feasi-

ble and stable, thus extending existing stability results from

classic MPC formulations into a set-based approach.

This paper is structured as follows. Section II presents a

framework for the set dynamical systems considered in this

paper. Section III presents the formulation for proposed the

set-valued predictive controller. Basic assumptions associated

to this set valued MPC are presented in Section IV, which are

later used in Section V to establish conditions for feasibility

and stability of the optimal control problem. Section VI

describes implementation options for the proposed controller.

General conclusions and future works associated are pre-

sented in Section VII.

II. PRELIMINARIES

A. Notation

The following notation is used throughout this paper. The

set of natural numbers including 0 is denoted as N, i.e., N =
{0, 1, . . .}. The set of real numbers is referred as R; R≥0

denotes the nonnegative real numbers and the n-dimensional

Euclidean space is denoted as R
n. Given a vector x ∈ R

n,

|x|σ denotes the σ-norm, with σ ∈ [1,∞]. Given a closed

set A ⊂ R
n and x ∈ R

n, we define the distance |x|A :=
infy∈A |x − y|. Given a map V its domain of definition is

denoted as domV . A function α : R≥0 → R≥0 belongs to

class-K if it is continuous, strictly increasing, and α(0) = 0.

If α is also unbounded then it is said to be of class-K∞. For

a given pair of sets S1, S2, the notation S1 ⊂ S2 indicates

that S1 is a subset of S2. We will refer to sets of subsets of

R
n as collections (of sets). Given a set S, the notation P(S)

denotes the collection all of nonempty subsets of S, namely



P(S) = {S1, S2, . . . }, where for each i, Si is a nonempty

subset of S. The collection of all nonempty compact subsets

of S is denoted as PC(S). For a given pair of collections of

sets C1, C2, the notation C1 ⊂ C2 indicates that C1 is a subset

of the collection C2, namely, it indicates that every element

of C1 is an element of C2. We denote the intersection between

C1 and C2 as C1∩C2 which corresponds to a collection. Given

a set C and a collection of sets C, notation C ∈ C indicates

that C is an element in the collection C. In general we refer

to collections of sets simply as collections. For a variable x
evolving in discrete-time, we denote by x+ the value of x
after a discrete-time step. Discrete time is also denoted by

j ∈ N and for a given function j → x(j) of discrete time

j ∈ N, we use the notation xj to represent x(j).

B. Basic Definitions

Definition 2.1 (Hausdorff distance): Given two closed

sets A1, A2 ⊂ R
n the Hausdorff distance is given by

dH(A1,A2) = max

{

supx∈A1
|x|A2

, supz∈A2
|z|A1

}

.

Given sets A1, A2 and dH as in Definition 2.1,

dH(A1,A2) = 0 if and only if A1 = A2.

Definition 2.2 (distance from a set to a collection):

Given a set X ∈ PC(R
n) and a collection

A ⊂ PC(R
n), the distance from X to A is given by

d(X,A) = infA⊂A dH(X,A).
The definition of d above extends the notion of distance

from a point x to a set A, which is denoted |x|A in Section

II-A, to the case when the point x is replaced by a set X
and the set A is replaced by a collection. Note also that the

distance between a set X and a collection A is only equal to

zero in the case where the set X coincides with an element

of the collection A, i.e., if X ∈ A.

Definition 2.3 (Set-valued maps): [7] Let G be a set-

valued map, mapping sets in P(Rn) × P(Rm) to sets in

P(Rn). Given sets X ∈ PC(R
n), and U ∈ PC(R

m),
G(X,U) is defined as

G(X,U) =
⋃

x∈X,u∈U

G(x, u)

:= {(x′, u′) ∈ G(x, u) : x ∈ X,u ∈ U}
Definition 2.4 (inner and outer limit): [10] For a se-

quence of sets {Ti}
∞
i=0 in R

n:

• The inner limit of the sequence {Ti}
∞
i=0, denoted

lim infi→∞ Ti, is the set of all x ∈ R
n for which there

exist points xi ∈ Ti, i ∈ N, such that limi→∞ xi = x.

• The outer limit of the sequence {Ti}
∞
i=0, denoted

lim supi→∞ Ti, is the set of all x ∈ R
n for which there

exist a subsequence {Tik}
∞
k=0 of {Ti}

∞
i=0 and points

xk ∈ Tik , k ∈ N, such that limk→∞ xk = x.

The limit of the sequence exists if the outer and the inner

limit sets are equal, namely limi→∞ Ti = lim infi→∞ Ti =
lim supi→∞ Ti

The inner and outer limit of a sequence of sets always

exist and are closed, although the limit itself might not exist.

When the limit of the sequence {Ti}
∞
i=0 exists in the sense

of Definition 2.4, and is equal to T , the sequence of sets

{Ti}
∞
i=0 is said to converge to the set T . In the remaining

of this work we denote sequences of sets with boldface

to distinguish them from the notation used to refer to a

single set in the sequence. Hence, the sequence {Ti}
∞
i=0 is

represented as T, and a set within this sequence is denoted

by Ti.

Definition 2.5 (continuity of a set-valued map): [10] A

set-valued map S : Rn
⇒ R

m is outer semicontinuous at

x̄ if limx→x̄ supS(x) ⊂ S(x̄), and inner semicontinuous at

x̄ if limx→x̄ supS(x) ⊃ S(x̄). It is continuous at x̄ if it is

both outer semicontinuous and inner semicontinuous at x̄.

C. Set dynamical systems

In this work, we propose a set-based predictive control

scheme for discrete-time systems with solutions given by

sequences of sets. This framework follows the ideas in [7],

[8], and [11] where the evolution of the state of a system is

represented by a sequence of sets

X0, X1, X2, . . . Xj , . . . ⊂ R
n (1)

where j ∈ {0, 1, 2, . . .} and X0 is the initial set. The

sequence of sets in (1) defines a state trajectory (or tube-

based trajectory). Such a trajectory defines the sequence of

sets X, indexed by j ∈ [0, J ], J ∈ N. These solutions can

be generated when incorporating uncertainty and the effects

of several possible inputs in a “classical” dynamical system

given by x+ = g(x, u), with x ∈ R
n and u ∈ R

m. We refer

to these systems as set dynamical systems.

We consider set dynamical systems defined by

X+ = G(X,U)

(X,U) ∈ D
(2)

where X is the set-valued state and U is the set-valued input,

G : P(Rn)×P(Rm) ⇒ P(Rn) is a set-valued map defining

the evolution of the set-valued state, and the collection D =
D1 ×D2, with collections D1 ⊂ P(Rn) and D2 ⊂ P(Rm),
defines constraints that the state and the inputs must satisfy.

The collection D can be useful for instance to specify safety

constraints, which can define regions in the state space where

the system is safe to operate.

The next definition formalizes the notion of solution pairs,

which will be used when defining sequences of set-valued

states generated by a sequence of inputs.

Definition 2.6 (Solution pair to a set dynamical system):

[11] A solution pair for the set dynamical system in (2) is

given by a sequence of compact nonempty sets X defining

the state trajectory, and a sequence of closed nonempty sets

U representing the input. The first entry of the solution,

X0, is the initial set for the state. The sequence (X,U) is

a solution to (2) if

Xj+1 = G(Xj ,Uj)

(Xj ,Uj) ∈ D

for all j ∈ dom(X,U), where the domain of definition of the

solution dom(X,U) is given by the set {0, 1, 2, . . . , J} ∩N

with J ∈ N ∪ {∞}. A solution pair that has J = 0 is said



Fig. 1. Variables and parameters in Dubin’s representation in Example 2.1

to be trivial. If the solution pair has J > 0 is nontrivial,

and if it has J = ∞, it is complete. Given an initial set

X0 ∈ D1 ⊂ PC(R
n), Ŝ(X0) denotes the set of all possible

solution pairs (X,U) with initial set X0.

Note that depending on the input sequence U we can have

different solutions X from the same X0. The idea of a control

input set can be useful when analyzing reachability for a

given set of possible inputs.

Example 2.1: Consider a ground vehicle represented by

the Dubins model. An exact discretization for this system

with step size T is given in [9] by

x+ = g(x, u) =





q1 + u1
2 cos(θ+u2) sin(u2)

ω

q2 + u1
2 sin(θ+u2) sin(u2)

ω

θ + 2u2



 (3)

where the state is given by x := (q1, q2, θ)
>, with (q1, q2)

being the vehicle Cartesian coordinates, θ is the heading

angle, angular velocity associated to heading given by ω = θ̇,

and u = (u1, u2)
> = (v, Tω/2)> is the input, where v

represents the speed. A diagram with the associated variables

is presented in Figure 1. For this system, consider the case

where there is uncertainty in the vehicle position (q1, q2).
We capture such uncertainty by defining the initial set X0 as

the set of all possible vehicle positions for the initial time.

We can represent the dynamics of this system by defining a

system such as (2), where G(X,U) =
⋃

x∈X,u∈U g(x, u),

D = P(R3) × P(R2). For a given input u ∈ U , the

state trajectory for this system is given by a sequence of

sets X. The state trajectory for of this system from X0 =
{(q1, q2, θ) ∈ P(R3) : σmin

1 ≤ q1 ≤ σmax
1 , σmin

2 ≤ q2 ≤
σmax
2 , θ = 0}, with an applied singleton input sequence U is

depicted in Figure 2 up to time J = 9.

D. Set dynamical systems under Static State-Feedback

Given the map κ : PC(R
n) ⇒ P(Rm), let

X+ = Gκ(X) = G(X,κ(X)) (4)

(X,κ(X)) ∈ D

A solution pair (X,U) = (X, κ(X)) is said to be generated

by the feedback κ. For the system in (4), we define the

following notion of invariance

Fig. 2. Set-valued trajectory for the system in Example 2.1 from X0 =
{(q1, q2, θ) ∈ P(R3) : 0 ≤ q1 ≤ 0.4, 0 ≤ q2 ≤ 0.25, θ = 0}

Definition 2.7 (forward and backward invariance for (4)):

A collection M ⊂ P(Rn) is said to be forward invariant

for (4) if for every set T ∈ M∩D1, we have Gκ(T ) ∈ M
with T such that Gκ(T ) is nonempty and it satisfies the

constraints in (4). A collection M ⊂ P(Rn) is said to be

backward invariant for (4) if for every set T ′ ∈ M∩D1 for

which there exists a set T with the property T ′ = Gκ(T ),
we have T ∈ M for every such set T . A collection

M ⊂ P(Rn) is said to be invariant if it is both forward and

backward invariant.

III. SET-VALUED MODEL PREDICTIVE CONTROL

In this section we propose a set-valued model predictive

control (MPC) scheme for discrete-time systems with solu-

tions given by sequences of sets. Given a dynamical system

where variability can be captured by the representation in

(2), the predictive controller is implemented by measuring

the set-valued state of the plant in (4) and finding a solution

pair which minimizes a cost functional, subject to constraints.

As with classic moving horizon implementation for MPC,

at each measurement instant, the algorithm computes an

optimal control sequence of sets, from which commands are

applied to the plant until the next measurement is available.

Unlike other formulations for robust MPC, such as tube-

based approaches [2], where the optimal control problem is

designed to constraint singleton trajectories to sequences of

sets or tubes, but cost is evaluated in terms of a nominal

(classic) state trajectory, the cost function considered here

assigns a real-valued cost to each set-valued solution pair.

Next, we describe the formulation of set-valued MPC,

where, as in the case of classic MPC strategies, the controller

considers a prediction horizon N ≥ 1, a control horizon

1 ≤ M ≤ N , a terminal constraint collection of sets

XV ⊂ PC(R
n), a stage cost `, and a terminal cost Vf .

A. Finite Horizon Set-valued Optimal Control

In this section we present the main elements in the

formulation of the proposed set-valued predictive controller.



1) The Cost Functional: Given a solution pair (X,U) of

(4) with terminal time N , a stage cost `, and a terminal cost

Vf , we define the cost J associated to the solution pair as

J (X,U) =

N−1
∑

j=0

`(Xj ,Uj) + Vf (XN ) (5)

where ` : PC(R
n) × P(Rm) → R≥0 and Vf : PC(R

n) →
R≥0. Note that the maps ` and Vf assign a cost to every

nonempty closed subset in PC(R
n)×P(Rm) and PC(R

n),
respectively.

2) The Constrained Optimal Control Problem: The opti-

mal control problem to be solved is defined next.

Problem 1: Given the prediction horizon N ≥ 1, stage

cost `, terminal cost Vf , terminal constraint collection XV ,

constraints defined by the collection of sets D, dynamics

described by the map G, and initial state X0

min
(X,U)∈Ŝ(X0)

J (X,U) (6)

subject to XN ∈ XV

For this problem the optimization is performed over solution

pairs of (2), with initial condition X0, and terminal state XN

belonging to the terminal constraint collection XV . Note that

the decision variables are the input sequences, which are sets.

State-input constraints associated to (2) along with typical

MPC constraints can be captured by D. Note that the system

dynamics is also a constraint in Problem 1.

A solution pair is said to be feasible if it satisfies the

constraints of (6) for some X0. We also refer to a given

sequence of inputs U as feasible if along with its associated

state trajectory X, they correspond to a feasible pair. We

define the feasible collection X as the collection of all sets

X0 such that there exists a feasible pair (X,U) ∈ Ŝ(X0).
The value function J ∗ : X → R≥0 is defined as

J ∗(X0) := inf
(X,U)∈Ŝ(X0)

XN∈XV

J (X,U) ∀X0 ∈ X (7)

If the infimum is attained by a feasible (X,U) ∈ Ŝ(X0),
then the pair (X,U) is said to be optimal and it is denoted

(X∗,U∗). Note that in general, solutions to this problem

may not always exist and may not be simple to compute

numerically. We focus first on the properties of the resulting

predictive control algorithm, and we discuss later possible

computationally feasible implementations for this controller.

B. Set-valued MPC algorithm

Given a prediction horizon N and a control horizon M ,

the set-valued MPC algorithm operates by measuring the

initial state, solving the optimal control problem described

in Problem 1 to find a solution pair (X∗,U∗). The optimal

control sequence U
∗ = {U∗

0 ,U
∗
1 , . . . ,U

∗
M−1} is then applied

to the system in (4) until time step M at which point the

process in repeated for a new initial condition given by

the current state measure. Note that this process defines an

implicit control law given as a function of the initial state

X0. This process is summarized in Algorithm 1. Note that

in Algorithm 1 i tracks time and j is associated to the

application of the optimal control. Additionally, in line 10,

the state X corresponds to the state which was used as a

starting point of the optimization.

Note that by the execution of Algorithm 1, the resulting

trajectories generated by the set-valued MPC correspond to

concatenations of truncated optimal solutions. This notion is

formalized in the next definition.

Definition 3.1 (solution pair generated by SVMPC): A

solution pair (X,U) is said to be generated by the set-valued

MPC algorithm if it is the concatenation of a sequence

of solution pairs (X̃, Ũ) where for each j ∈ dom(X̃, Ũ),
(X̃, Ũ) in the sequence of sets is the truncation of an

optimal solution pair (X∗,U∗).

Algorithm 1 Set-valued predictive control

1: Obtain initial state X
2: Set X0 = X , i = 0, N, M.

3: while True do

4: Solve Problem 1, obtain (X∗,U∗)
5: Set j = 0
6: for j ≤ M − 1 do

7: Xi+1 = X∗
j+1 = G(X∗

j , U
∗
j )

8: i = i+ 1, j = j + 1
9: end for

10: Set X0 = X∗
M

11: end while

IV. BASIC ASSUMPTIONS FOR SET-VALUED MPC

In this section we present assumptions associated to

Problem 1 to ensure feasibility and stability properties.

These assumptions resemble the stabilizing conditions for

constrained problems in classic MPC formulations, such as

the ones summarized in [12].

Assumption 4.1: For each X0 ∈ X , there exists an optimal

solution pair (X∗,U∗) ∈ Ŝ(X0).
Assumption 4.2: Given a collection A ⊂ XV ⊂ PC(R

n),
and a stage cost ` : PC(R

n)× P(Rm) → R≥0, there exists

a class-K∞ function α such that `(X,U) ≥ α(d(X,A)) for

every (X,U) ∈ D.

Assumption 4.3: Given a terminal cost Vf , there exists

ε > 0 such that the following hold:

(B0) There exist class-K∞ functions α1 and α2 such that

α1(d(X,A)) ≤ Vf (X) ≤ α2(d(X,A)) for all X ∈
XV ∩Aε, where the collection Aε is defined as Aε :=
{X ∈ PC(R

n) : d(X,A) ≤ ε}.

(B1) The inclusion Aε ∩D1 ⊂ XV holds.

Assumption 4.4: There is a state feedback κ : PC(R
n) ⇒

P(Rm) such that the terminal constraint collection of sets

XV is forward invariant for the system (4). Moreover, κ
satisfies Vf (Gκ(X))− Vf (X) ≤ −`(X,κ(X)) for all states

X ∈ XV such that (X,κ(X)) ∈ D.

V. PROPERTIES OF THE OPTIMAL CONTROL PROBLEM

In this section, the basic assumptions defined before are

used to characterize properties of the optimal control problem

formulated in Section III.



Proposition 5.1: Suppose Assumptions 4.2 and 4.4 hold.

Then, `(X,κ(X)) = 0 for all (X,κ(X)) ∈ D such that

X ∈ A.

Proposition 5.2: Let (X,U) be a feasible solution pair

to the set dynamical system in (4). Suppose the terminal

constraint collection XV is forward invariant for the system

(4). Then, for any j ∈ dom(X,U), there exists a feasible

pair (X′,U′) ∈ Ŝ(Xj); i.e., Xj ∈ X for all j ∈ dom(X,U).
The next results present properties analogous to the ob-

tained for classic MPC to establish the value function as a

candidate Lyapunov function.

Lemma 5.1: Suppose Assumptions 4.2, 4.3 and 4.4 hold.

Then, J ∗(X) = 0 for all X ∈ A ∩XV .

Lemma 5.2: Suppose Assumption 4.2 holds. Then, there

exists a class-K∞ function α such that the value function

satisfies J ∗(X) ≥ α(d(X,A)) for all X ∈ X .

Lemma 5.3: Suppose Assumption 4.4 holds and XV ⊂
X . Then, J ∗(X0) ≤ Vf (X0) for all X0 ∈ XV .

Lemma 5.4: Suppose Assumptions 4.2 and 4.4 hold. Let

(X∗,U∗) ∈ Ŝ(X0) be an optimal solution pair to Problem

1. Then, for any j ∈ dom(X∗,U∗), J ∗(Xj) ≤ J ∗(X0) −
∑j−1

i=0 `(Xi,Ui).

A. Asymptotic Stability of Set-valued MPC

We use the properties defined in the previous section for

the optimal control problem to find conditions that guarantee

stability for the set-valued MPC approach. We start by

providing a definition of stability for a collection of sets.

Definition 5.1 (stability of a collection): The set-valued

MPC algorithm is said to render the collection A ⊂ PC(R
n)

stable for the set dynamical system in (2) if the following

hold:

1) There exists δ > 0 such that for every X0 ∈ D1

satisfying d(X0,A) ≤ δ, there exists a solution pair

(X,U) generated by the set-valued MPC algorithm

originating from X0.

2) For every ε > 0, there exists δ > 0 such that given a

solution pair (X,U) generated by the set-valued MPC

algorithm, d(X0,A) ≤ δ implies d(Xj ,A) ≤ ε for all

j ∈ dom(X,U).
3) If, in addition to 1) and 2), every solution pair (X,U)

generated by the set-valued MPC algorithm satisfies

limj→∞ d(Xj ,A) = 0, then the set-valued MPC algo-

rithm renders the collection A asymptotically stable.

Theorem 5.1: Suppose Assumptions 4.1, 4.2, 4.3, and

4.4 hold. Then, the set-valued MPC algorithm renders the

collection of sets A asymptotically stable for the system (2).

VI. IMPLEMENTATION

The set-valued predictive control proposed in the previous

sections presents several challenges for its implementation,

given the need to properly generate and represent sets, and

to solve online the constrained optimization formulated in

Problem 1. These challenges, as discussed in [9], can be

summarized as below.

1) A suitable and computationally efficient representation

for the sets characterizing the dynamics must be found.

2) A solution for Problem 1 must be obtained, which

may be difficult given the presence of state and inputs

defined as sets, along with constraints formulated as

collections of sets.

3) The computational burden associated to the numerical

solution of Problem 1 may become intractable, similar

to the case of some robust formulations for MPC [13].

4) Presence of delays, perturbations on the set dynamical

system or unmodeled dynamics, can severely affect

the performance of the described set-valued MPC

implementation.

These challenges are not uncommon in classic MPC, such

as the need for accurate, fast optimization [14] and the need

to propagate and evaluate set-based trajectories, also found

in reachability problems [15]. Approaches to these issues

often consider over- or under-approximation of the dynam-

ics, in order to provide computationally tractable solutions.

These include the use of polytopes, zonotopes and support

functions, among others, as means to represent sets and to

maintain desirable computation properties [13]. We illustrate

next an implementation approach for the set-valued MPC

based on a approximations using polytopes, which allows

for the proposed controller to be computationally efficient.

Example 6.1 (Autonomous vehicle control): Consider the

problem of controlling an autonomous vehicle towards a

given target location XT = P(XT ), while satisfying system

constraints. Here, XT may represent a parking space as

the terminal state. Recalling the coordinates in Fig. 1, we

assume that there exists bounded uncertainty in the vehicle

coordinates (q1, q2) due to sensor noise, while θ may be

determined more exactly due to visual feedback of parking

space lines: this motivates the set-valued framework. With

this the system, dynamics will be represented using an over

approximation, i.e. the dynamics will be contained in a set,

where the map G will be defined such that G(X,U) is a

compact convex polytope. Similar to the approach in [9] we

consider a selection of constraints for the system such that

the area of the set X given by its q1− q2 projection remains

constant. We present next the selection of a representation

and parameters to implement the set-valued MPC for this

problem.

1) Representation. We consider the system dynamics as in

(3), where the state satisfies x ∈ [z1, z2]×[z3, z4]×[z5]
with zi ∈ R, i = 1, . . . , 5. With this, as the dynamics of

q1 and q2 are decoupled, the system can be described

in terms of the new variable z = [z1, z2, z3, z4, z5] by

z+ = g(z, u) =















z1 + Tu1
2 cos(z5+u2) sin(u2)

u2

z2 + Tu1
2 cos(z5+u2) sin(u2)

u2

z3 + Tu1
2 sin(z5+u2) sin(u2)

u2

z4 + Tu1
2 sin(z5+u2) sin(u2)

u2

z5 + 2u2















For consistency with real actuator commands, we will

consider the decision variable (U∗) to be chosen from

subsets of R2 consisting of a single element.



Fig. 3. Set-valued trajectory for the system in Example 6.1

2) Constraint selection. Bounds associated to the state

and commanded inputs are governed by physical pa-

rameters of the vehicle and sensors. In particular we

consider here: D1 = P(R2 × R) and D2 = P(Du),
with Du = {(u1, u2) : 0 ≤ u1 ≤ umax,

−T
2 φcar ≤ u2 ≤

T
2 φcar}, where umax, φcar represent the autonomous

vehicle allowable maximum speed and steering, re-

spectively, and where T is the sampling time.

3) Cost Function and terminal constraint selection. We

can represent the target collection as XT = P(XT ),
where XT can be defined by the physical dimensions

of the target location. In particular here we consider

XT = [d1, d2]× [d3, d4]× R, where di ∈ R, with i =
1, . . . , 4. We define the terminal constraint set XV ⊂
P(Rn) to be such that XV ∩ P(XT ) is nonempty. In

order to steer the system towards the selected target,

we define `(X,U) =
∑p

i=1 |xk|XT
, where xk, with

k = 1, . . . , p, represent the vertices of the set-valued

state X , which is considered to be a polytope. The

terminal cost is also defined in terms of the target as

Vf (X) = λ
∑p

i=1 |xk|XT
, with λ ∈ R≥0 a weight

factor as in classic MPC.

Numerical simulation result associated is presented in Figure

3 where the selected parameters for the set-valued MPC are:

N = 6, M = 1, λ = 1, target location XT defined as

[−0.75,−0.25] × [−0.7,−0.3] × R, and system parameters

umax = 0.8, φcar =
π
6 , vehicle length and width of 0.5m and

0.4m respectively, with sampling time T = 0.2s.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a formulation for a set-valued model

predictive controller where the state trajectory is represented

as a sequence of sets. This framework can be useful to

incorporate the effects of uncertainty or variability in the

MPC formulation. In the proposed setting, the cost associated

to state trajectories assigns a real-valued cost to solutions

given by sequences of sets. For the resulting optimal control

problem properties were presented and used to develop

recursive feasibility and stability results associated to the

set-valued MPC formulation. Even though the implementa-

tion of the proposed controller may be complex or require

high computational costs, as it is the case with other op-

timal control formulations, successful implementation can

be accomplished in particular cases, using computationally

efficient sets representations, such as polytopes. Future work

includes the development of practical applications where data

generated from multiple vehicle trajectories can be used

to obtain the characterization of the set-valued dynamics

considered in this approach.

ACKNOWLEDGMENT

This research has been partially supported by the National

Science Foundation under Grant no. ECS-1710621, Grant no.

CNS-1544396, CNS-1544395 and Grant no. CNS-2039054,

by the Air Force Office of Scientific Research under Grant

no. FA9550-19-1-0053, Grant no. FA9550-19-1-0169, and

Grant no. FA9550-20-1-0238, by the Army Research Office

under Grant no. W911NF-20-1-0253 and by Universidad

del Bı́o-Bı́o Project 194810 GI/VC and Corfo grant 14ENI-

26886: Ingenierı́a de Clase Mundial.

REFERENCES

[1] L. Magni, G. De Nicolao, R. Scattolini, and F. Allgöwer, “Robust
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[5] S. V. Raković and Q. Cheng, “Homothetic tube mpc for constrained

linear difference inclusions,” in 2013 25th Chinese Control and

Decision Conference (CCDC). IEEE, 2013, pp. 754–761.
[6] M. S. Ghasemi and A. A. Afzalian, “Robust tube-based mpc of con-

strained piecewise affine systems with bounded additive disturbances,”
Nonlinear Analysis: Hybrid Systems, vol. 26, pp. 86–100, 2017.

[7] R. G. Sanfelice, “Asymptotic properties of solutions to set dynamical
systems,” in Decision and Control (CDC), 2014 IEEE 53rd Annual

Conference on. IEEE, 2014, pp. 2287–2292.
[8] N. Risso and R. G. Sanfelice, “Detectability and invariance properties

for set dynamical systems,” IFAC-PapersOnLine, vol. 49, no. 18, pp.
1030–1035, 2016.

[9] J. Crowley, Y. Zeleke, B. Altm, and R. G. Sanfelice, “Set-based
predictive control for collision detection and evasion,” in 2019 IEEE

15th International Conference on Automation Science and Engineering

(CASE). IEEE, 2019, pp. 541–546.
[10] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer

Science & Business Media, 2009, vol. 317.
[11] N. Risso and R. G. Sanfelice, “Sufficient conditions for asymptotic

stability and feedback control of set dynamical systems,” in American

Control Conference (ACC), 2017. IEEE, 2017, pp. 1923–1928.
[12] J. Rawlings and D. Mayne, Model Predictive Control: Theory

and Design. Nob Hill Pub., 2012. [Online]. Available: https:
//books.google.cl/books?id=3 rfQQAACAAJ
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