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Abstract
A gene in a given taxonomic group is either present in every individual (core) or

absent in at least a single individual (dispensable). Previous pangenomic studies have

identified certain functional differences between core and dispensable genes. How-

ever, identifying if a gene belongs to the core or dispensable portion of the genome

requires the construction of a pangenome, which involves sequencing the genomes

of many individuals. Here we aim to leverage the previously characterized core and

dispensable gene content for two grass species [Brachypodium distachyon (L.) P.

Beauv. and Oryza sativa L.] to construct a machine learning model capable of accu-

rately classifying genes as core or dispensable using only a single annotated refer-

ence genome. Such a model may mitigate the need for pangenome construction, an

expensive hurdle especially in orphan crops, which often lack the adequate genomic

resources.

1 INTRODUCTION

Reference genome assemblies contain information specific
only to the individual of the species sequenced to create the
assembly. They lack genomic regions present in other indi-
viduals of that species. Recently, the widespread adoption
of pangenomics enabled characterization of the gene content
diversity present in a species (Gao et al., 2019; Golicz et al.,
2016; Gordon et al., 2017; Hübner et al., 2019; Hurgobin et al.,
2018; Li et al., 2014; Lin et al., 2014; Montenegro et al., 2017;
Ou et al., 2018; W. Wang et al., 2018; Yu et al., 2019; Zhou
et al., 2017). The term pangenome was first coined in 2005,
referring to collections of sequences across different strains of
microorganisms (Tettelin et al., 2005). This early work built

Abbreviations: AUC-ROC, area under the curve for the receiver operator
curve; GC, guanine–cytosine base-pair; GNB, Gaussian naive Bayes; GO,
Gene Ontology; Ka/Ks, ratio of nonsynonymous to synonymous
substitutions; MCC, Matthews correlation coefficient; PAV,
presence–absence variation; RF, random forest; SVC, support vector
classifier.
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on the observation that genes often display presence–absence
variation (PAV) across different strains. Genes present in
every individual of a taxonomic group are called core genes,
whereas genes absent in at least a single individual are called
dispensable genes.

The generation of a pangenome allows us to determine if
a particular gene in each reference assembly is either core or
dispensable according to their presence or absence in indi-
viduals used to construct the pangenome. In addition, we
know there are both qualitative and quantitative differences
between core and dispensable genes. For example, in plants,
core genes are often associated with essential metabolic pro-
cesses, whereas dispensable genes are associated with adap-
tive functions (e.g., stress responses; Danilevicz et al., 2020).
Previous work also demonstrated dispensable genes exhibit
higher rates of polymorphism than core genes (Gordon et al.,
2017; Hurgobin et al., 2018; Li et al., 2014; W. Wang et al.,
2018). This framework is analogous to a binary classification
problem, one potentially addressed by machine learning.
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We use the term machine learning to refer to the application
of computer algorithms to classify observations based on pre-
vious information. Machine learning has increasingly more
often been applied to genomics research (Golicz et al., 2020).
For example, machine learning has been used to predict gene
expression levels from genomic sequence data (Azodi et al.,
2020). Machine learning has also been used in the biomedical
field to diagnose disease (Kourou et al., 2015). A broad appli-
cation of machine learning is executed in Deep Variant, a soft-
ware tool that identifies variants based on short-read sequence
alignments (Poplin et al., 2018).

Here we aim to apply machine learning algorithms to clas-
sify genes as core or dispensable in a new genome given
nothing except a few simply determined characteristics of
a gene. We first identify quantitative differences between
core and dispensable genes in two different grass species,
Oryza sativa L. and Brachypodium distachyon (L.) P. Beauv.,
for which high-quality pangenomes were developed (Gordon
et al., 2017; W. Wang et al., 2018). Furthermore, a shared
ancient polyploidization event and phylogenetic placement
near many additional agronomically important species make
these species befitting for our study. Then, we trained dif-
ferent machine learning models to differentiate between core
and dispensable genes based on yet to be determined dif-
ferences. Finally, we tested the feasibility of applying these
trained models to species not used to train our models.

2 METHODS

2.1 Core and dispensable gene annotations

2.1.1 O. sativa

We obtained a matrix of gene presence and absence
from https://figshare.com/articles/dataset/Gene_presence_
absence_variations_of_453_rice_accessions/5103769 taken
from a recent publication (Wang et al., 2018). This study
analyzed short read sequencing from <3,000 rice accessions,
yet included gene PAV for 453 accessions (the authors
selected these accessions for “sequencing depths >20× and
mapping depths >15×”).

The gene PAV matrix file is GenePAV.matrix.txt. It pro-
vides PAV information coded in binary (1 for presence,
0 for absence). Locus identifiers are provided according
to the annotation downloaded below (e.g., Os01g0100100).
Therefore, specific transcript information is unavailable. This
potentially affects a few gene measures such as exon count
and gene length. We take information for the longest listed
transcript for each locus. We only consider loci with an avail-
able annotation in the IRGSP-1.0 rice annotation release.
Therefore, we have PAV information for 35,633 genes with
a locus identifier. Using this matrix, we defined core genes
as those present in each of the 453 accessions in the matrix.

Core Ideas
∙ Previous pangenome studies identified differences

between core and dispensable genes.
∙ We applied machine learning models to further dif-

ferentiate between these gene classes.
∙ Machine learning models are capable at classifying

genes as core or dispensable.

Dispensable genes are those absent in at least a single
accession.

2.1.2 B. distachyon

Brachypodium distachyon core and dispensable gene infor-
mation was downloaded from https://genome.jgi.doe.gov/
portal/pages/dynamicOrganismDownload.jsf?organism=
BrachyPan (JGI login required). We found information from
54 brachypodium lines in accordance with Supplemental
Table S1 from Gordon et al. (2017). We then created a PAV
matrix for every locus in the reference genotype Bd21, again
selecting the longest transcript. We define core genes as
those present in all individuals and dispensable genes as
those missing in at least a single accession. Importantly,
given the information available, our core gene annota-
tions may differ from those presented by Gordon et al.
(2017). Their method focused on “Markov clustering in the
GET_HOMOLOGUES-EST pipeline”, while we simply
infer ortholog presence from gene name maps provided
between the reference genotype and each accession. The
result is a shorter list of core genes in our study. Based on
our results, we believe our list contains high confidence core
gene annotations.

2.1.3 Genome and annotation versions

We used the same genome and gene annotation versions
as used in the pangenome studies from which we gathered
core and dispensable annotations. For O. sativa, we col-
lected the IGRSPv1.0 annotation (https://rapdb.dna.affrc.go.
jp/download/irgsp1.html). For B. distachyon, we collected the
Brachypodiumv2.1 annotation from JGI.

2.2 Feature calculations

2.2.1 Quantitative gene features

All gene features were gathered using the scripts ‘anno-
tate_core_genes_osat_nested.py’ and ‘annotate_core_genes_

https://figshare.com/articles/dataset/Gene_presence_absence_variations_of_453_rice_accessions/5103769
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https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=BrachyPan
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bdis.py’ for O. sativa and B. distachyon, respectively. We cal-
culated the following features: gene length (transcription start
site [TSS] to transcription end site [TES]), exon count, intron
length, exon length, guanine-cytosine percentage, and the pro-
portion of all possible dinucleotide pairs (AA, AT, AG, AC,
TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, and CC).

2.2.2 Duplication type

The duplication type for each gene was determined using the
MCScanX duplicate_gene_classifier function. Genes were
assigned to one of five classes: dispersed, proximal, single-
ton, tandem, or whole genome duplicate. Dispersed dupli-
cates are those existing >20 genes apart from each other and
not belonging to any other listed category. Proximal dupli-
cates are paralogs located within 20 genes of each other. Sin-
gleton genes do not have a paralog. Tandem duplicates are
labeled as paralogous pairs existing next to each other with-
out any intervening genes. Whole genome duplicates are those
labeled as anchor genes, in other words those which scaf-
fold intragenomic collinear blocks (Wang et al., 2012). These
anchor genes are hypothesized to have been duplicated by
a polyploidization event. These five categories were one-hot
encoded as separate features. They were listed as 1 if a gene
was a member of the duplication class and 0 otherwise. We
did not apply preprocessing to these columns.

2.2.3 Substitution rate calculations

We calculated nonsynonymous and synonymous substitution
rates in PAML using two different comparisons. First, we
aligned orthologs between B. distachyon and O. sativa. Sec-
ond, we aligned paralogs within each of the two species.
PAML was run through a custom pipeline (https://github.
com/Aeyocca/ka_ks_pipe). As not every gene model has a
paralog and ortholog, there were missing values. We chose
to code these missing values as an arbitrary number (5) the
model could recognize as different from a potential true value.

2.3 Model training and evaluation

Machine learning models were trained and evaluated using
the scikit learn toolkit in the python programming language
(Pedregosa et al., 2011). A few scripts were used to implement
these functions:

Calculation of AUC-ROC for within and cross
species predictions: ‘osat_bdis_kfold_model_
test_auc_21_02.py’

Creation of AUC-ROC curves for
within-species 10-fold cross validation:
‘osat_auc_roc_curves.py’ and ‘bdis_auc_roc_
curves_array.py’

Calculation of accuracy for within and
cross species predictions: ‘osat_bdis_kfold_
model_test_21_02.py’

Calculation of feature importance values for the
Random Forest and Support Vector Machine
models: ‘osat_bdis_feat_imp.py’

3 RESULTS

3.1 Differences between core and
dispensable genes

Previous pangenome studies have revealed that there are some
functional differences between core and dispensable genes
(Danilevicz et al., 2020). We investigated quantitative differ-
ences between gene models in reference genomes listed as
core or dispensable according to two previous pangenomes.
Wang et al. analyzed gene PAV across 453 O. sativa acces-
sions (Wang et al., 2018). They found that roughly 58% of
genes in the reference assembly were present in each of the
453 accessions. Gordon et al. (2017) generated full de novo
assemblies for 54 B. distachyon accessions. They discovered
that roughly 30% of genes in the reference genome were
present in each accession. These two systems provide us with
independent pangenome assemblies to train and test predic-
tion models.

We observe quantitative differences for various features
between the gene models of core and dispensable genes (Fig-
ure 1). Interestingly, we observe a bias for higher guanine–
cytosine base-pair (GC) percentage in dispensable genes.
As observed before, gene models in grass genomes have a
bimodal GC percentage distribution (Clément et al., 2014;
McKain et al., 2016). Other quantitative gene feature dif-
ferences between core and dispensable gene models include
gene length, exon count, intron count, exon length, and intron
length (Figure 1; Supplemental Figure S1).

As dispensable genes are absent in at least one individ-
ual in a taxonomic group, we hypothesize core and dis-
pensable genes may evolve differently. One signature of past
selection is the ratio of nonsynonymous to synonymous sub-
stitutions (Ka/Ks ratio). Previous pangenome studies have
reported a variety of approaches comparing nonsynonymous
and synonymous substitution rates. Consistently, they find
higher nonsynonymous substitution rates, as well as elevated
Ka/Ks ratios for dispensable genes compared with core genes
implying greater positive selection acts on dispensable genes

https://github.com/Aeyocca/ka_ks_pipe
https://github.com/Aeyocca/ka_ks_pipe
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F I G U R E 1 Quantitative differences in core (pink) and dispensable (gray) gene models for both O. sativa (a–c) and B. distachyon (d–f).
Features are as follows: (a, d) guanine-cytosine percentage, (b, e) gene length measured from annotated transcription start site to transcription end
site, and (c, f) number of exons

(Golicz et al., 2016; Gordon et al., 2017; Hurgobin et al., 2018;
Li et al., 2014; Pinosio et al., 2016; W. Wang et al., 2018).

There are two different ways to calculate Ka/Ks values: (a)
alignments between intragenomic paralogs or (b) alignments
between orthologs across species. Both methods were applied
here. We found 88.25% of O. sativa genes have a paralog,
while 52.4% of genes have an ortholog with a B. distachyon
gene. For B. distachyon, these values were 87.1 and 67.4% for
paralogs and orthologs to a O. sativa gene, respectively. As
reported in previous studies, Ka/Ks ratio distributions were
higher for dispensable genes than for core genes (Supplemen-
tal Figure S1).

A consistent observation in pangenomic studies is that
dispensable genes are enriched with functions associated
with biotic and abiotic stress response. Therefore, we wanted
to incorporate these underlying sequence differences in our
models. We considered some sort of quantitative measure of
Gene Ontology (GO) term similarity. However, given that
the primary goal of our study is to develop a machine learn-
ing approach that may be suitable for orphan crops and
lineages for which functional annotations are likely absent,
we excluded GO terms for training our models. Please see
other studies that have incorporated GO term differences into
machine learning models (Cusack et al., 2020).

In an attempt to account for sequence differences between
core and dispensable genes without the onus of missing data,
we investigated the proportion of all possible dinucleotides as
a feature. This measure has a value for each gene, is readily
available, and may allow our machine learning models to
learn differences in underlying sequence between core and

dispensable gene functions. Indeed, we observe differences in
dinucleotide proportions between core and dispensable genes,
suggesting this information may contribute toward core and
dispensable gene differentiation (Supplemental Figure S2).

3.2 Are there differences between core and
dispensable genes in relation to duplication
type?

Gene duplications have played a major role in shaping the
gene content in eukaryotic genomes and have contributed to
the evolution of novel traits (Ohno, 1970). There are multi-
ple mechanisms of gene duplication that may exhibit differ-
ences between core and dispensable genes as reported previ-
ously in sesame (Yu et al., 2019). We used MCScanX (Wang
et al., 2012), a toolkit for evolutionary analyses, to classify
each gene in both O. sativa and B. distachyon (Figure 2)
into different gene duplication classes with the intention to
test whether core or dispensable genes are enriched for tan-
dem or whole genome duplicates. McScanX provides a func-
tion called duplicate_gene_classifier that assigns genes to one
of five classes: dispersed, proximal, singleton, tandem, or
whole genome duplicate. Dispersed duplicates are those exist-
ing >20 genes apart from each other and not belonging to
any other listed category. Proximal duplicates are paralogs
located within 20 genes of each other. Singleton genes do
not have a paralog. Tandem duplicates are labeled as par-
alogous pairs existing next to each other without any inter-
vening genes. Whole genome duplicates are those that were
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F I G U R E 2 Proportion of retained duplicates by duplication class for core and dispensable genes. Panel a depicts differences for gene models in
the O. sativa reference genome. Panel b depicts differences for gene models in the B. distachyon reference genome. WGD, whole genome duplication

derived from an ancient polyploid event (Wang et al., 2012).
The genomes of B. distachyon and O. sativa share the rem-
nants of the same three ancient polyploidization events: rho,
sigma, and tau whole genome duplications (McKain et al.,
2016).

We find nearly the same pattern for both B. distachyon and
O. sativa. All differences between core and dispensable genes
are significant (z-test p-value <.01). Dispensable genes con-
tain a larger proportion of proximal and tandem duplicates,
whereas core genes contain a larger proportion of whole-
genome duplicates and single-copy genes. This pattern, com-
bined with functional enrichment differences, is consistent
with the gene balance hypothesis (M. Freeling, 2008). O.
sativa and B. distachyon differ in which class contains a larger
proportion of dispersed duplicates.

3.3 Machine learning methods

We tested three separate machine learning methods: support-
vector machine, Gaussian naive Bayes (GNB), and random
forest (RF). These three approaches encompass different clas-
sification techniques. Use of all three techniques allow us to
robustly investigate our potential to differentiate between core
and dispensable genes.

Detailed descriptions of these methods can be found else-
where (Vapnik, 1995; Hand & Yu, 2001; Breiman, 2001). The
support-vector machine classifier shapes our data in multidi-
mensional space. It then searches for a vector through that
space which best separates our two classes, in our case core
and dispensable genes. Therefore, when given a new gene
to classify as core or dispensable, it plots that gene’s val-
ues in the same multidimensional space and classifies the
new gene according to the created vector of best separation.
Gaussian naive Bayes takes each feature independently and
assumes the feature values follow a Gaussian distribution
whose midpoint represents the difference between the two
classes. With this distribution for each feature, when given
a new value, it can assign a probability of either class to
that value. Summing these probabilities across all features,
this classifier determines the new gene’s class by the prob-
ability of belonging to either class given its feature values.
The RF classifier creates a forest of decision trees. A deci-
sion tree is similar to a flowchart where different paths are
taken at each node. Nodes in these trees represent values of
a feature that will send a new gene along different classifi-
cation paths depending on their values. The RF is a com-
mon method used in classification and is capable of learn-
ing high-order and nonlinear associations in the classification
data.
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T A B L E 1 Preliminary model assessment

Species Model Accuracy AUC-ROC MCC
Oryza sativa SVM 0.695 ± 0.018 0.750 ± 0.024 0.359 ± 0.041

Oryza sativa GNB 0.647 ± 0.020 0.713 ± 0.026 0.279 ± 0.044

Oryza sativa RF 0.710 ± 0.017 0.774 ± 0.019 0.392 ± 0.035

Brachypodium distachyon SVM 0.766 ± 0.010 0.792 ± 0.013 0.404 ± 0.025

Brachypodium distachyon GNB 0.689 ± 0.011 0.785 ± 0.012 0.393 ± 0.017

Brachypodium distachyon RF 0.799 ± 0.008 0.856 ± 0.009 0.496 ± 0.019

Note. Values are means and ranges are the standard deviation from 10 cross-fold validations. AUC-ROC, area under the curve for the receiver operator curve; GNB,
Gaussian naive Bayes; MCC, Matthews correlation coefficient; RF, random forest; SVM, support vector machine.

3.4 Model training and assessment

We could train our models using all of our data; however,
testing on that same data may allow the models to effectively
memorize certain genes feature values, a phenomenon called
overtraining. These models will perform poorly on unseen
data. To prevent overtraining, we only want to train our mod-
els on a subset of our data. That subset may not reflect all the
patterns in our data. To ensure our model performance is not
affected by a nonrepresentative subset of our data, we apply
a k-fold cross validation approach. We split our data into k
equally sized subsets (k = 10 in our case). For each subset, we
train our models on all other subsets and test it on the remain-
ing subset. Training and testing separately on all 10 subsets
allows for a robust assessment of the model’s performance.

There are several different metrics to test model perfor-
mance. We focus on accuracy, area under the curve for the
receiver operator curve (AUC-ROC), and Matthews correla-
tion coefficient (MCC). Accuracy is simply the proportion of
correctly classified genes in the testing subset. The AUC-ROC
incorporates true positive classification rate and false posi-
tive classification rate. If the model is a random guesser, it
will achieve an AUC-ROC score of 0.5 for binary classifica-
tion problems. A perfect AUC-ROC score is 1 where genes
are always correctly classified. This value allows us to better
assess our true and false positive rates. MCC essentially mea-
sures the correlation between observed and predicted classes.
Its value ranges from−1 to+1, with positive values indicating
agreement between observation and prediction.

3.5 La reveal magnifico

We trained and tested all three models for both species. The
results are presented in Table 1 (Supplemental Table S1,
Supplemental Figures S3–S6). Values correspond to aver-
ages across all k-folds. Overall, all models performed bet-
ter than random expectations. This indicates we are able to
learn differences between core and dispensable genes in dif-
ferent species and classify unseen genes as core or dispens-

able. Model performance is overall better in B. distachyon
than in O. sativa. The RF model outperformed other models
in terms of both accuracy and AUC-ROC.

3.6 What features are most important for
classifying core and dispensable genes?

Not every feature is likely to contribute equally to model per-
formance. To determine which features are most important for
differentiating between core and dispensable genes, we per-
formed recursive feature elimination, one of several strategies
of feature selection. In recursive feature elimination, we train
our model using all features, and the least important feature is
eliminated. After elimination, we retrain our model and per-
form the same operation. We measure model accuracy at each
step. By viewing the accuracy as features are eliminated, we
can select the combination of features that provides us with
the greatest accuracy. These curves for both the support vec-
tor classifier (SVC) and RF models are shown in Supplemen-
tal Figure S4. We find using all features results in the highest
model performance compared with excluding low performing
features.

The RF and SVC models explicitly provide relative feature
importance scores. These scores reflect how much relative
weight each feature contributes to the final prediction. Rel-
ative feature importance scores are shown in Supplemental
Figure S5. Overall, several measures related to GC percentage
stand out as large contributors to final predictions. Compar-
ing the GC percentage between core and dispensable genes in
both B. distachyon and O. sativa reveal striking differences
in this measure (Figure 1a, 1d). Therefore, we believe GC
percentage is an important distinguishing character between
core and dispensable genes in these grass species. However,
we cannot determine the extent of causality in this relation-
ship. We developed these models in two species within the
same family, Poaceae. Perhaps the importance of GC per-
centage is tied to some other feature we do not directly mea-
sure. As pangenomic resources become available in a wider
breadth of species, we will learn whether GC percentage is a
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T A B L E 2 Cross-species model performance (AUC-ROC and MCC) compared with intraspecific model performance

Training data Testing data Model AUC-ROC AUC-ROC self MCC MCC-self
Oryza sativa Brachypodium

distachyon
SVC 0.767 0.750 ± 0.019 0.402 0.360 ± 0.030

Oryza sativa Brachypodium
distachyon

GNB 0.758 0.712 ± 0.021 0.395 0.279 ± 0.038

Oryza sativa Brachypodium
distachyon

RF 0.750 0.775 ± 0.010 0.336 0.396 ± 0.014

Brachypodium
distachyon

Oryza sativa SVC 0.719 0.794 ± 0.012 0.317 0.459 ± 0.026

Brachypodium
distachyon

Oryza sativa GNB 0.701 0.785 ± 0.013 0.269 0.432 ± 0.024

Brachypodium
distachyon

Oryza sativa RF 0.687 0.857 ± 0.011 0.292 0.571 ± 0.023

Note. AUC-ROC, area under the curve for the receiver operator curve; GNB, Gaussian naive Bayes; MCC, Matthews correlation coefficient; RF, random forest; SVC,
support vector classifier.

Poaceae-specific or a broader distinguishing feature between
core and dispensable genes.

3.7 Does the choice of reference genotype
affect prediction quality?

We were interested if the choice of reference genotype
affected prediction quality. Thankfully, annotations were
available for multiple B. distachyon genotypes. To test if the
choice of reference genotype affects our prediction models,
we repeated our analyses using two additional B. distachyon
genotypes: ABR2 and Tek-2. These accessions were ran-
domly selected to represent all three structure groups reported
by Gordon et al. (2017).

Results are shown in Supplemental Tables S2 and S3. Over-
all, models trained on the reference genotype performed best
across all metrics in cross-species comparisons. However,
models trained on the two nonreference genotypes produced
excellent metrics, often only a few percentage points lower
than the reference-trained models. Therefore, we conclude the
choice of reference genotype will not significantly hinder core
and dispensable gene predictions. There may exist genotypes
that better reflect broad core and dispensable gene patterns,
but our analysis suggests these patterns hold across genotypes
within a single species.

3.8 How does a model trained on one
species perform on the other?

We trained our models on one species and tested it on the other
species. In this instance, it is important to consider the propor-
tion of core and dispensable genes in each reference genome.
A model trained on a species with 70% core genes will antic-

ipate 70% of the testing data to be core as well. In addition,
if 70% of genes in a reference genome are core, a model can
obtain an accuracy of 70% simply by predicting every case to
be core. This emphasizes the importance of measures other
than accuracy alone to evaluate models such as MCC and
AUC-ROC.

The proportion of core genes in a reference genome is vari-
able across lineages (Golicz et al., 2020). To account for these
differences, we (a) test balanced training and testing data, as
well as (b) measure AUC-ROC and MCC rather than accu-
racy. To balance our datasets, we subset the majority class to
the size of the minority class. For example, in B. distachyon,
we find ∼30% (n = 9,308) of genes are core out of all used to
train our models (n = 31,679). We balance this data by sub-
setting 9,308 core genes and train our models on only 18,616
genes rather than the 31,679 total gene models.

As expected, model performance is worse cross-species
than within species for B. distachyon (Table 2; Supplemen-
tal Table S1). However, SVC and GNB models trained on
O. sativa and tested on B. distachyon on average performed
better than the same model tested in O. sativa. The trend
held for most comparisons using data from different B. dis-
tachyon genotypes as well. This suggests the quantitative dif-
ferences between core and dispensable genes in B. distachyon
are greater than those in O. sativa. The differences are at least
distinct enough for these models to leverage when differenti-
ating between core and dispensable genes.

There are two possible reasons for decreased model per-
formance cross species. First, there may be lineage-specific
differences between core and dispensable genes. Indeed, we
visualize these differences by plotting gene model distribu-
tions on the same axes comparing O. sativa and B. distachyon
(Supplemental Figure S1). Second, though we attempted
to correct for it, our models could be overtrained on our
data.
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4 DISCUSSION

In this study, we tested the efficacy of training machine
learning models to differentiate between core and dispens-
able genes in a single genome based on various gene fea-
tures. We first sought to characterize differences between core
and dispensable genes in two species (B. distachyon and O.
sativa) with available pangenomes. Determining the origin
of dispensable genes is beyond the scope of this study. How-
ever, our observations of shorter dispensable genes with fewer
exons suggest a fraction of them may have arisen de novo.
This observation is consistent with the hypothesis that short
sequences are more likely to gain genic functions from previ-
ously noncoding DNA than longer sequences, and reports of
de novo gene origin in yeast and Drosophila (Carvunis et al.,
2012; Siepel, 2009) (Figure 1). However, gene duplications
are likely still the predominant source of new genes.

We observed differences in the evolutionary origin and evo-
lutionary signatures between core and dispensable genes. In
addition to differences in length and exon count, we investi-
gated Ka/Ks, as well as duplication type differences between
core and dispensable genes. We calculated nonsynonymous
and synonymous substitution rates in PAML (Yang, 2007)
using two different approaches. First, we aligned orthologs
between B. distachyon and O. sativa. Second, we aligned par-
alogs within each of the two species. The differences in distri-
butions between core and dispensable genes for paralogs and
orthologs yielded similar results for both species. As shown
previously, elevated rates of Ka/Ks observed in dispensable
genes relative to core genes imply higher rates of positive
selection on these genes and possibly the evolution of novel
gene functions (matching the hypothesis outlined by Susumu
Ohno; (Ohno, 1970).

The duplication history of each gene in both genomes was
examined. Previous studies suggested that core and dispens-
able genes are enriched with different classes of gene dupli-
cates (Yu et al., 2019). The observed gene duplication dif-
ferences are consistent with hypotheses of dosage sensitive
genes, as outlined by the gene balance hypothesis (Birch-
ler & Veitia, 2007, 2012). If core genes encode for more
essential cellular functions, which are known to be enriched
with highly dosage-sensitive genes (Freeling, 2009), they
would contain a higher proportion of retained duplicates from
ancient whole genome duplications. Dosage sensitive genes
must retain duplicates from ancient polyploid events to main-
tain proper stoichiometry in macromolecular complexes and
gene networks (Birchler et al., 2001). This skewed pattern
for retained whole genome duplicates was observed for core
genes in both the rice and Brachypodium genomes. Similarly,
previous studies have suggested that certain single-copy genes
encode for essential functions, including organellar-nuclear
interactions (Edger & Pires, 2009), and must remain in single
copy due to gene dosage constraints (De Smet et al., 2013;

Tasdighian et al., 2017). Our analyses also show that core
genes are enriched with a greater number of single copy genes.

Dispensable genes, on the other hand, are enriched with
more adaptive functions. Adaptive genes tend to be more
poorly connected and, thus, are heavily skewed toward being
more dosage insensitive (Rizzon et al., 2006). Dosage insen-
sitive genes are known to be enriched with tandem duplicated
genes (M. Freeling, 2008; Birchler & Veitia, 2007). Similarly,
the dispensable gene content of the pangenome, as shown in
this study, is enriched with tandem duplicates. Thus, tandem
duplication appears to be the prominent mechanism giving
rise to new dispensable genes. In summary, core genes contain
a higher proportion of retained duplicates from whole genome
duplications and single copy genes, while dispensable genes
contain a higher proportion of retained tandem duplicates.

Applying three separate machine learning models revealed
similar results. We are able to differentiate between core
and dispensable genes better than random, yet with imper-
fect accuracy. Our three models displayed different perfor-
mances likely due to differences in the distributions of the
data. For example, we believe the GNB model performed the
worst because it fits each feature to a normal distribution when
the distribution of each feature is not normally distributed. In
addition, it gives equal weight to each feature in the decision-
making process. Our other two models demonstrate each
feature contributes a unique amount to the final prediction
resulting in worse performance for the GNB model. The RF
model outperformed the support vector machine model. This
observation is consistent with other applications of machine
learning that demonstrate RF often outperforms other models
(except Cusack et al., 2020). We recommend using multiple
models on applications of classifying genes as core or dis-
pensable in the future.

Model performance performed better within than across
species (with a few exceptions noted above). Previous appli-
cations of machine learning across species yielded similar
results (Lee et al., 2011; Chen et al., 2018; Kelley, 2020;
Mejía-Guerra & Buckler, 2019). For example, Meng et al.
(2021) trained machine learning models to identify cold-
responsive genes across a few different grass species. Consis-
tent with our results, models performed best when trained and
tested in the same species. Notably, they mentioned shared
phenotypes are better indicators of cross-species model per-
formance than ancestry. Therefore, perhaps our cross species
model performances would be improved by testing in not only
phylogenetically closer taxa, but also those exhibiting similar
phenotypic and perhaps pangenome characteristics.

Annotation quality likely also factors into cross-species
model performance. For example, poor quality annotations
may inaccurately list transcription start and end sites as well
as exon boundaries. In addition to annotation quality, incon-
sistent annotation methods between B. distachyon and O.
sativa may also affect cross-species model performances due
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to potential systematic biases in different annotation meth-
ods. This would reduce the efficacy of our models, as they
are trained to recognize patterns not consistently represented
between annotations. Though this was not explicitly tested
here, we advocate high annotation quality as a key component
to developing and testing these models to new lineages.

A potential application of these models is to classify genes
as core or dispensable in a new species without the costly con-
struction of a pangenome. Although our models perform bet-
ter than random guessing, our accuracy rates are insufficient
to substitute for pangenome construction for many down-
stream applications. However, if ∼70% accuracy is all that
is required, perhaps in the case of developing a genotyping
array that consists of largely core genes for guiding breed-
ing efforts, this strategy may likely suffice. We recommend
training a model on a species as closely related to the study
species as possible. Therefore, we advocate for a community-
wide effort for pangenome construction of strategically phylo-
genetically placed taxa. Broad pangenome development will
further increase our understanding of not only what combi-
nation of features differentiate core and dispensable genes,
but also on various topics ranging from better understand-
ing the evolutionary dynamics of gene families to genotype-
phenotype associations.
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