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Abstract— We consider the problem of estimating a vector
of unknown constant parameters for a hybrid system whose
flow and jump dynamics are affine in the unknown parameter.
Using a hybrid systems framework, a hybrid algorithm is
proposed and sufficient conditions are established to guarantee
exponential stability of the parameter estimate. Examples are
provided showing the merits of the proposed approach.

I. INTRODUCTION

Estimating the unknown parameters of a system is critical

in many engineering applications [1]. A popular estimation

application is the classical model-reference adaptive control

(MRAC) problem, which has been a topic of research since

the 1960s [2] and has seen a recent resurgence with the ad-

vent of machine learning [3]. For such models, the estimation

algorithm is typically based on the gradient descent algorithm

[1], [4]. This algorithm consists of exploiting the information

about the structure of the system along with the available

input signals to compute online an estimate of the unknown

parameters. Analyzing the convergence rate of the gradient

algorithm can be translated into showing exponential stability

of the origin for a linear time-varying system. This problem

has been studied in [1], [5] for the continuous-time case.

It is well-known since [6] that a persistence of excitation

condition is necessary and sufficient for exponential stability

of such systems. The aforementioned approaches translate

naturally to the discrete-time case [7].

In this paper, we consider the problem of estimating

an unknown vector of constant parameters for an MRAC-

type system whose inputs and dynamics are hybrid; namely,

its state and inputs exhibit both continuous and discrete

evolution. As we show in Section III, for such systems, the

purely continuous-time gradient algorithm fails to converge

and the purely discrete-time gradient algorithm converges,

but disregards relevant information. To resolve this issue, in

Section IV we combine both algorithms into one (hybrid)

algorithm that addresses the estimation problem. In Section

VI we provide sufficient conditions to guarantee exponential
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convergence of the parameter estimate and provide a lower

bound on the convergence rate. The recently developed

tools for robust stability in hybrid systems [8] and the

hybrid gradient descent algorithm in [9] form the enabling

techniques to achieve these results. Due to space constraints,

the proofs of some results are sketched or omitted and will

be published elsewhere.

II. PRELIMINARIES

A. Notation

We denote the set of real, nonnegative, positive, and

natural numbers (including zero) as R, R≥0, R>0, and N,

respectively. The matrix I denotes the identity matrix of

appropriate dimension. The Euclidean norm of vectors and

the induced matrix norm is denoted |·|, and the infinity norm

is denoted | · |∞. The distance of a point x to a nonempty

set S is denoted |x|S = infy∈S |y − x|. Given a set-valued

mapping M : R
m

⇒ R
n, the domain of M is the set

domM = {x ∈ R
m : M(x) 6= ∅}.

B. Continuous and discrete-time gradient algorithms

Before introducing the proposed hybrid gradient descent

algorithm, we review the classical continuous-time and

discrete-time gradient algorithms commonly used in MRAC

applications [1], [7].

• Suppose that the signal t 7→ x(t) is generated by a

continuous-time system of the form

ẋ = Acx+ bc
(

r(t) + φ>(t)θ
)

where Ac ∈ R
n×n and bc ∈ R

n are known constant ma-

trices, x ∈ R
n is the known state vector, t 7→ r(t) ∈ R

is a known exogenous input (e.g., measured disturbance,

reference, or feedforward signal), t 7→ φ(t) ∈ R
p is the

known regressor, and θ ∈ R
p is an unknown vector of

constant parameters.

We estimate the parameter vector θ using a gradient

algorithm [1] of the form

˙̂x = Acx−A(x− x̂) + bc(r(t) + φ>(t)θ̂)

˙̂
θ = γcφ(t)b

>
c P (x− x̂)

(1)

where γc > 0 is a design parameter, A ∈ R
n×n is a

user-selected Hurwitz matrix, P = P> ∈ R
n×n is a

positive definite matrix that solves A>P + PA = −Q,

and Q = Q> ∈ R
n×n is a user-selected positive definite

matrix.



Denote the state estimation error as e := x− x̂ and

the parameter estimation error as θ̃ := θ − θ̂, then the

error dynamics can be written as follows:

ė = Ae+ bcφ
>(t)θ̃,

˙̃
θ = −γcφ(t)b

>
c Pe. (2)

• Suppose that the signal j 7→ x(j) ∈ R
n is generated by

a discrete-time system of the form

x+ = Adx+ bd(r(j) + φ(j)>θ) (3)

where Ad ∈ R
n×n and bd ∈ R

n are known constant ma-

trices, x ∈ R
n is the known state vector, j 7→ r(j) ∈ R

is a known exogenous input (e.g., measured disturbance,

reference, or feedforward signal), j 7→ φ(j) ∈ R
p is the

known regressor, and θ ∈ R
p is an unknown vector of

constant parameters.

We develop a gradient algorithm for θ by first

rewriting (3) as x+−Adx−bdr(j) = bdφ
>(j)θ. Then,

pre-multiplying both sides by b>d 6= 0 yields

y = θ>φd(j) (4)

where y := b>d (x
+ − Adx − bdr(j)) ∈ R and φd :=

φ(j)b>d bd ∈ R
p. Note that, to compute y, we require

measurements of x for two consecutive discrete steps.

Omitting the first discrete step included in computing y,

we have expressed the jump dynamics of (3) in the form

of a linear regression model, and the gradient algorithm

for θ̂ [7] is given by

θ̂+ = θ̂ +
φd(j)

γd + |φd(j)|2
(y> − φ>

d (j)θ̂) (5)

where γd > 0 is a design parameter. Then, the parameter

estimation error, θ̃, has dynamics

θ̃+ = θ̃ −
φd(j)φ

>
d (j)

γd + |φd(j)|2
θ̃. (6)

Analyzing the convergence of the gradient algorithms can

be translated into showing exponential stability of the origin

for the systems (2) and (6). It is shown in [10] that the

following persistence of excitation condition on the regressor

φ is necessary and sufficient for exponential stability of (2):

(C1) There exist µ1, µ2 > 0 and φM > 0 such that, for each

t ≥ 0,
∫ t+µ1

t

φ(τ)φ(τ)>dτ ≥ µ2I

and ess sup {|φ(t)|, |φ̇(t)| : t ≥ 0} ≤ φM .

Similarly, following [7], the persistence of excitation condi-

tion for the discrete-time case is:

(C2) There exist η1 ∈ N>0, η2 > 0, and φM > 0 such that,

for each j ∈ N,

j+η1
∑

k=j

φ(k)φ(k)> ≥ η2I

and sup {|φ(j)| : j ∈ N} ≤ φM .

C. Hybrid dynamical systems

In this paper, a hybrid system H is defined as in [11] by

(C,F,D,G) as

H =

{

ξ̇ = F (ξ, u) (ξ, u) ∈ C

ξ+ = G(ξ, u) (ξ, u) ∈ D
(7)

where ξ ∈ R
n is the state, u ∈ R

p is the input, F : Rn ×
R

p → R
n is the flow map defining a differential equation

capturing the continuous dynamics, and C ⊂ R
n defines the

flow set on which flows are permitted. The mapping G :
R

n×R
p → R

n is the jump map defining the law resetting ξ
at jumps, and D ⊂ R

n is the jump set on which jumps are

permitted.

A solution ξ to H is a hybrid arc that is parameterized by

(t, j) ∈ R≥0 × N, where t is the elapsed ordinary time and

j is the number of jumps that have occurred. The domain of

ξ, denoted dom ξ ⊂ R≥0 × N, is a hybrid time domain,

in the sense that for every (t′, j′) ∈ dom ξ, there exists

a nondecreasing sequence {tj}
j′+1
j=0 with t0 = 0 such that

dom ξ∩([0, t′]× {0, 1, . . . , j′}) =
⋃j′

j=0 ([tj , tj+1], {j}) . A

solution ξ to H is said to be

• nontrivial if dom ξ contains at least two points;

• eventually continuous if J = supj dom ξ < ∞ and

dom ξ ∩ (R≥0 × {J}) contains at least two points;

• eventually discrete if T = supt dom ξ < ∞ and

dom ξ ∩ ({T} × N) contains at least two points;

• continuous if nontrivial and dom ξ ⊂ R≥0 × {0};

• discrete if nontrivial and dom ξ ⊂ {0} × N.

A solution is called maximal if it cannot be extended further,

and is called complete if its domain is unbounded.

We employ the following notion of exponential stability

for hybrid systems [11, Definition 3.11].

Definition 2.1: Given a hybrid system H with data as in (7),

the origin is said to be globally pre-exponentially stable for

H if there exist κ > 0 and λ > 0 such that each solution ξ
to H satisfies

|ξ(t, j)| ≤ κe−λ(t+j)|ξ(0, 0)| ∀(t, j)∈dom ξ. (8)

When, additionally, every maximal solution to H is complete,

we say that the origin is globally exponentially stable for H.

III. MOTIVATIONAL EXAMPLE

To motivate the proposed algorithm for estimation of pa-

rameters in hybrid systems, consider a system with dynamics

ẋ1 = x2, ẋ2 = −10θ x ∈ CP

x+
1 = x1, x+

2 = −x2θ x ∈ DP

(9)

where CP := {x ∈ R
2 : x1 ≥ 0} and DP := {x ∈ R

2 :
x1 = 0, x2 ≤ 0} are the flow and jump sets, respectively, and

θ ∈ R≥0 is an unknown parameter. We apply the estimation

algorithms in Section II-B to estimate θ. The continuous-time

algorithm receives state measurements during flows while the

discrete-time algorithm receives measurements immediately

before and after each jump. Figure 1 shows simulation

results with initial conditions x(0, 0) = x̂(0, 0) = (1, 0) and



θ̂(0, 0) = 0, with parameters θ = 1, A = −5I , Q = I ,

γc = 0.4, and γd = 0.5, using the regressors φ = −10
during flows and φ = −x2 at each jump.1
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Fig. 1: Trajectories of x1 and x2 (left) and parameter

estimation error (right).

From Figure 1, we see that the continuous-time gradient

descent algorithm fails to converge even though condition

(C1) is satisfied over each interval of flow. The reason it does

not converge is that the algorithm does not account for the

resets of the state that occur at each jump. Moreover, while

the discrete-time gradient descent algorithm successfully

converges, it disregards the information available to estimate

θ during each interval of flow. On the other hand, if we

combine the continuous-time update map in (1) during flows

and the discrete-time reset map in (5) at jumps, the resulting

hybrid algorithm leverages the information available during

both flows and jumps to estimate the unknown parameter.

IV. PROBLEM STATEMENT

Motivated by the example in Section III, we extend the

continuous-time and discrete-time gradient algorithms in

Section II-B to hybrid dynamical systems of the form

ẋ = Acx+ bc
(

r(t, j) + φ>(t, j)θ
)

x ∈ CP

x+ = Adx+ bd
(

r(t, j) + φ>(t, j)θ
)

x ∈ DP

(10)

where CP ⊂ R
n is the flow set, DP ⊂ R

n is the jump set,

and the inputs r ∈ R and φ ∈ R
p are now hybrid.

Since the regressor φ may exhibit both flows and jumps, it

is important to update x̂ and θ̂ according to (2) when φ flows

and to update θ̂ according to (6) each time φ jumps, under

the assumption that jumps in φ are detected instantaneously.

Due to the fact that the reset map for θ̂ in (6) does not depend

on the value of x̂+, we are free to choose the reset map for

x̂ so that the resulting hybrid system exhibits the desired

stability properties. In this paper, we choose the update map

for x̂ at jumps as x̂+ = x+ +
(

1−
∣

∣

φdφ
>

d

γd+|φd|2

∣

∣

)

(x− x̂).
Given a hybrid arc (t, j) 7→ φ(t, j) representing the

regressor, we express the dynamics of x̂ and θ̂ as a hybrid

system that flows when φ flows and jumps when φ jumps. We

denote this hybrid system as Hg , with state ξg := (x, x̂, θ̂) ∈
Xg := R

n × R
n × R

p, inputs φ : domφ 7→ R
p and

r : domφ 7→ R, and data

Hg :

{

ξ̇g = Fg(ξg, φ(t, j), r(t, j)) (t, j) ∈ Cg

ξ+g = Gg(ξg, φ(t, j), r(t, j)) (t, j) ∈ Dg

(11)

1Code at https://github.com/HybridSystemsLab/HybridGradient

where Cg := domφ \ Dg , Dg := {(t, j) ∈ domφ : (t, j +
1) ∈ domφ}, and

Fg(ξg,φ(t,j),r(t,j)) :=









Acx+bc
(

r(t,j)+φ>(t,j)θ
)

Acx−A(x− x̂)+bc(r(t,j)+φ>(t,j)θ̂)

γcφ(t,j)b
>
c P (x− x̂)









Gg(ξg,φ(t,j),r(t,j)) :=









Adx+bd
(

r(t,j)+φ>(t,j)θ
)

x++
(

1−
∣

∣

φd(t,j)φ
>

d (t,j)
γd+|φd(t,j)|2

∣

∣

)

(x− x̂)

θ̂+ φd(t,j)
γd+|φd(t,j)|2

(y>−φ>
d (t,j)θ̂)









.

where x+ is given in (10).

Remark 4.1: We assume for simplicity that the state x, the

regressor φ, and the input r have the same hybrid time

domains. The proposed algorithm can be extended to the

case where x, φ, and r have different hybrid time domains

through the inclusion of the flow set CP and jump set DP of

the plant. In this case, we need to reparameterize the domain

of φ and r to express x, φ, and r on a common hybrid time

domain, for example, as in [12].

Remark 4.2: For simplicity, the hybrid algorithm in (11) is

expressed such that jumps in the estimator state coincide

with jumps in φ. In practice, since measurements of x+ are

not available until after a jump in φ, the corresponding jump

in the estimator state will occur at a time instant after a

jump in φ. Section VII presents a numerical example that

demonstrates the effects of including this delay in the closed-

loop dynamics. A formal study of the effects of this delay

is left as future research.

V. A GENERAL CLASS OF

HYBRID GRADIENT ALGORITHMS

Recall the error coordinates e = x − x̂ and θ̃ = θ − θ̂
corresponding to the state and parameter estimation error,

respectively. The system resulting from expressing the hybrid

system Hg in error coordinates belongs to a class of hybrid

systems, denoted H, with state ξ := (e, θ̃) ∈ X := R
n×R

p,

inputs Φc : E 7→ R
p×n and Φd : E 7→ R

p×p with E :=
domΦc = domΦd, and data

H :















ξ̇=

[

Ae+Φc(t,j)θ̃
−γΦ>

c (t,j)Pe

]

=:F (ξ,Φc(t,j)) (t,j)∈C

ξ+=

[

e−|Φd(t,j)|e

θ̃−Φd(t,j)θ̃

]

=:G(ξ,Φd(t,j)) (t,j)∈D

(12)

where C := E \ D, D := {(t, j) ∈ E : (t, j + 1) ∈ E}.

The matrix functions Φc : E 7→ R
p×n and Φd : E 7→ R

p×p

are called the continuous and discrete regression matrices,

respectively, and γ > 0 is a design parameter that modifies

the convergence rate of θ̂ during flows.

To study the stability properties induced by Hg , we focus

on providing sufficient conditions on the hybrid regressors

Φc and Φd that guarantee global pre-exponential stability of

the origin for H in the sense of Definition 2.1.



The following remark relates the hybrid systems H in (12)

and Hg in (11).

Remark 5.1: The hybrid system H in (12) reduces to the

hybrid gradient system Hg in (11) (expressed in error coor-

dinates) when γ = γc and

Φc = bcφ
>, Φd =

φdφ
>
d

γd + |φd|2
. (13)

We assume the following structural properties for the matri-

ces Φc and Φd to match those required in the continuous-time

and discrete-time gradient algorithms, respectively.

Assumption 5.2: The matrix functions Φc and Φd satisfy the

following properties:

1. There exists φM > 0 such that

ess sup{|Φc(t, j)|, |Φ̇c(t, j)| : (t, j) ∈ E} ≤ φM ;

2. For each (t, j) ∈ E,

Φd(t, j) = Φd(t, j)
> ≥ 0, |Φd(t, j)| ≤ 1;

3. domΦc = domΦd =: E.

Finally, inspired from the conditions in (C1) and (C2), we

assume the following persistence of excitation conditions that

will enable us to guarantee convergence of the parameter

estimate using the proposed hybrid algorithm.

Assumption 5.3: The matrix functions Φc and Φd satisfy the

following properties:

1. There exist µ1, µ2 > 0 such that, for each solution ξ to

H and each hybrid time window [t, t + µ1] × {j, j +
1, · · · , j∗} ⊂ dom ξ, the following holds:

∫ tj+1

t

Φ>
c (τ, j)Φc(τ, j)dτ

+

j∗−1
∑

k=j+1

∫ tk+1

tk

Φ>
c (τ, k)Φc(τ, k)dτ

+

∫ t+µ1

tj∗

Φ>
c (τ, j

∗)Φc(τ, j
∗)dτ ≥ µ2I.

(14)

2. There exist η1 ∈ N≥1, η2 > 0 such that for

each solution ξ to H and each hybrid time window

[tj+1, tj+η1+1] × {j, j + 1, · · · , j + η1} ⊂ dom ξ, the

following holds:

j+η1
∑

k=j

Φd(tk+1, k) ≥ η2I. (15)

The excitation conditions in Assumption 5.3 are similar

in form to the hybrid persistence of excitation condition

proposed in [9] for linear regression models. However,

compared to the condition in [9], the conditions in this paper

are more restrictive since they require the regression matrices

Φc and Φd to be persistently exciting during flows and jumps,

respectively. Relaxing Assumption 5.3 to the case of hybrid

persistence of excitation is left as future research.

VI. STABILITY ANALYSIS

To analyze the stability properties induced by H, we first

establish the following two propositions that study the rate

of descent for solutions of H during only flows and jumps,

respectively. These results will be used to show convergence

of solutions of in the hybrid case.

Proposition 6.1: Given a hybrid system H with data as in

(12), where the matrix A is Hurwitz and γ > 0, suppose

Assumption 5.2 and item 1 of Assumption 5.3 hold. Then,

there exist κc, λc > 0 such that for each solution ξ to H, the

following holds:
|ξ(t, j)| ≤ κce

−λc(t−tj)|ξ(tj , j)| (16)

for all (t, j) ∈ dom ξ such that (t, j) ∈ [tj , tj+1]× {j}.

Sketch of Proof: We consider the following cases:

• Using the function V1(ξ) := e>Pe+ γ−1|θ̃|2, where P
is given below (1), it can be shown that there exists σ0 >
0 such that each solution ξ to H with supt dom ξ < µ1

satisfies |ξ(t, j)| ≤ σ0|ξ(0, 0)| for all (t, j) ∈ dom ξ.

• Inspried by [10], consider the function

V (ξ, t, j) = cV1(ξ) +W1(ξ, t, j) +
1
4W2(ξ, t, j)

where c > 0 is a design parameter, W1(ξ, t, j) :=
−e>Φc(t, j)θ̃, and W2(ξ, t, j) := −θ̃>M(t, j)θ̃ with

M(t, j) :=

∫ tj+1

t

et−τΦ>
c (τ, j)Φc(τ, j)dτ

+
J−1
∑

k=j+1

∫ tk+1

tk

et−τΦ>
c (τ, k)Φc(τ, k)dτ

+

∫ T

tJ

et−τΦ>
c (τ, J)Φc(τ, J)dτ

where T := supt dom ξ and J := supj dom ξ. Using

the fact that (t, j) 7→ Φc(t, j) is persistently exciting as

in item 1 of Assumption 5.3, it can be shown that there

exist constants σ1, σ2, σ3 > 0 with
√

σ2

σ1
e−

σ3
2σ2

µ1 ≥ σ0

such that each solution ξ to H with supt dom ξ ≥ µ1

satisfies
|ξ(t, j)| ≤

√

σ2

σ1
e−

σ3
2σ2

t|ξ(0, 0)|

for all (t, j) ∈ dom ξ. Hence, (16) holds.

Proposition 6.2: Given a hybrid system H with data as in

(12), suppose item 2 of Assumptions 5.2 and 5.3 hold. Denote

the matrix (t, j) 7→ R(t, j) as

R(t, j) := I −

[

|Φd(t, j)|I 0
0 Φd(t, j)

]

.

Then, for each solution ξ to H and each (t, j) ∈ dom ξ such

that (t, j + 1) ∈ dom ξ, the following holds:

|ξ(t, j + 1)| ≤ |R(t, j)||ξ(t, j)| (17)

where |R(t, j)| ≤ 1. Furthermore, there exist κd, λd > 0
such that for any (t, j) ∈ dom ξ,

j−1
∏

k=0

|R(tk+1, k)| ≤ κde
−λdj . (18)



Sketch of Proof: For each solution ξ to H and each (t, j) ∈
dom ξ such that (t, j + 1) ∈ dom ξ, according to the jump

map we have ξ(t, j + 1) = R(t, j)ξ(t, j), and (17) follows

from the triangle inequality. Next, since for all (t, j) ∈
dom ξ, Φd(t, j) ≥ 0 and |Φd(t, j)| ≤ 1, we have |R(t, j)| ≤
1, and (18) follows from the fact that (t, j) 7→ Φd(t, j) is

persistently exciting as in item 2 of Assumption 5.3.

A. Main Result

We are now ready to establish our main result stating the

stability properties induced by proposed hybrid algorithm.

Theorem 6.3: Given a hybrid system H with data as in (12)

where the matrix A is Hurwitz and γ > 0, suppose that

Assumptions 5.2 and 5.3 hold. Then, for each solution ξ to

H and each (t, j) ∈ dom ξ, we have the following:

1. If ξ is eventually continuous (or continuous), then there

exists κJ > 0 such that

|ξ(t, j)| ≤ κJe
−λct|ξ(0, 0)| (19)

with λc > 0 given in Proposition 6.1.

2. If ξ is eventually discrete (or discrete), then there exists

κT > 0 such that

|ξ(t, j)| ≤ κT e
−λdj |ξ(0, 0)| (20)

with λd > 0 given in Proposition 6.2.

3. If ξ is neither eventually continuous nor eventually

discrete, then

|ξ(t, j)| ≤ κcκde
−λct−(λd−ln(κc))j |ξ(0, 0)| (21)

with κc, λc > 0 given in Proposition 6.1 and κd, λd > 0
given in Proposition 6.2.

Hence, with κc, λc > 0 coming from Proposition 6.1 and

κd, λd > 0 from Proposition 6.2, the origin is globally pre-

exponentially stable for H if

I. λd > ln(κc), or

II. there exist γ > 0 and M > 0 such that every solution ξ
to H is such that −λct−(λd− ln(κc))j ≤ M−γ(t+j)
for all (t, j) ∈ dom ξ.

Sketch of Proof: Pick a solution ξ to H and a hybrid time

(t, j) ∈ dom ξ and define W := dom ξ ∩ [0, t]×{0, · · · , j}.

Since, W is a compact hybrid time domain, there exists a

finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tj such that

W = ∪j
j′=0([tj′ , tj′+1]×{j′}). Then, at each time (t′, j′) ∈

W , let (t′, j′) 7→ i(t′, j′) ∈ N denote the number intervals

of flow with nonempty interior between hybrid times (0, 0)
and (t′, j′).2 That is, given (t′, j′) ∈ W ,

i(t′, j′) :=



























0 if t′ = j′ = 0

Σ
j′−1

k=0 β(I
k) if t′ = t′j′ , j

′ ≥ 1

Σ
j′

k=0β(I
k) if t′ > t′j′

2For example, if ξ is discrete, then i(t′, j′) = 0 for all (t′, j′) ∈ W . If
ξ is continuous, then i(t′, j′) = 1 for all (t′, j′) ∈ W with t′ > 0. If ξ is
neither continuous nor discrete, then i(t′, j′) ≥ 0 for all (t′, j′) ∈ W .

where Ik := {t′ : (t′, k) ∈ W } and β(Ik) := 0 if

int(Ik) = ∅ and β(Ik) := 1 if int(Ik) 6= ∅.

By induction on j′ ∈ {0, 1, · · · , j} and, using the fact that

Assumptions 5.2 and 5.3 hold, it can be shown that

|ξ(t, j)| ≤ κi(t,j)
c κde

−λct−λdj |ξ(0, 0)| (22)

for all (t, j) ∈ dom ξ. Then, we consider the following cases:

1. If ξ is eventually continuous (or continuous), then there

exists (tJ , J) ∈ dom ξ such that supj dom ξ = J ≥ 0
and thus (19) holds with

κJ := κi(tJ ,J)+1
c κde

−λdJ .

2. If ξ is eventually discrete (or discrete), then there exists

(T, j′) ∈ dom ξ such that supt dom ξ = T ≥ 0 and

thus (20) holds with

κT := κi(T,j′)
c κde

−λcT .

3. If ξ is neither eventually continuous nor eventually

discrete, then using the fact that for each (t, j) ∈ dom ξ,

i(t, j) ≤ j + 1, we have from (22) that (21) holds and

we consider the following cases:

a) If λd > ln(κc), we define ρ := λd − ln(κc) > 0. By

substituting this expression into (21), we have

|ξ(t, j)| ≤ κcκde
−λct−ρj |ξ(0, 0)|.

b) If there exist γ > 0 and M > 0 such that (t, j) ∈ ξ
implies −λct − (λd − ln(κc))j ≤ M − γ(t + j), by

substituting this expression into (21), we have

|ξ(t, j)| ≤ eM−γ(t+j)|ξ(0, 0)|.

Combining the conditions from items 1, 2, and 3 of the list

above, it follows that the origin is globally pre-exponentially

stable for H in the sense of Definition 2.1 if item I or item

II of Theorem 6.3 hold.

VII. EXAMPLES

In this section, we present simulation results that demon-

strate the practicality of the proposed algorithm. Simulations

are performed using the Hybrid Equations Toolbox [13].

A. Motivational example

First, we briefly revisit the motivational example from

Section III. The proposed hybrid algorithm Hg in 11 is

applied to estimate the unknown parameter θ in (9). Using

the system parameters and initial conditions given in Section

III, it can be shown that the conditions of Theorem 6.3 are

satisfied. The parameter estimate from Hg is shown in Figure

2 alongside the estimates from the purely continuous-time

and discrete-time gradient algorithms for comparison. The

parameter estimate for Hg converges exponentially to the

true value in accordance with Theorem 6.3. Additionally,

the proposed hybrid algorithm converges more quickly than

the discrete-time algorithm due to the ability of the hybrid

algorithm to leverage information available during both flows

and jumps.
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Fig. 2: The projection onto t of the parameter estimation

error for the proposed hybrid algorithm.

B. Pressure mounter machine

Consider the problem of estimating the friction coefficient

c ∈ R>0 for the vertical dynamics of the main shaft of

a pressure mounter machine. In this work, we consider a

simplified model, akin to a mass-spring-damper, which is

obtained by adding appropriate compensators to the open-

loop dynamics. Let x1 ∈ R denote the vertical position of

the shaft (x1 = 0 at rest, x1 = xmax > 0 while in contact

with the workbench), and x2 ∈ R the vertical velocity of the

machine. Then, during flows, the dynamics are given by

ẋ1 = x2, ẋ2 = −
k

m
x1 −

c

m
x2 +

1

m
u

where m is the mass of the machine and k is the spring

constant. The input u is provided by a full-state feedback

controller of the form u = −Kx+Fclv, where Fcl is chosen

to achieve unitary dc-gain and v is the reference command.

Jumps occur each time the machine impacts a plate at

position xmax. Following each impact, the machine rebounds

from the plate with a velocity that is inversely proportional

to the friction coefficient, as follows:

x+
1 = x1, x+

2 = −αx2
1

c

where α ∈ R>0 is the known proportionality constant.

Assuming the variation in c is small, we linearize the jump

dynamics about a nominal value of c, denoted c as

x+
1 = x1, x+

2 = −αx2

(

1

c
−

1

c2
(c− c)

)

.

Denoting θ := c, the dynamics of the pressure mounter

machine can be written in the form of (10) as
[

ẋ1

ẋ2

]

=

[

0 1
− k

m
0

] [

x1

x2

]

+

[

0
1
m

]

(

u+ φ>θ
)

x ∈ CP

[

x+
1

x+
2

]

=

[

1 0
0 0

] [

x1

x2

]

+

[

0
α
c

]

(

−2x2 + φ>θ
)

x ∈ DP

where φ(t, j) := x2(t, j) if x ∈ CP and φ(t, j) := x2(t, j)/c
if x ∈ DP , with CP := {x ∈ R

2 : x1 ≤ xmax}, DP := {x ∈
R

2 : x1 = xmax, x2 ≥ 0}, and xmax > 0.

The proposed hybrid gradient descent algorithm is applied

to estimate θ. In accordance with Remark 4.2, the delay

between each jump of the pressure mounter machine and the

corresponding jump of the estimator is explicitly represented

in this model. The system has parameters m = 0.5, k = 25,

α = 0.5, xmax = 3, and θ = 1.5 and the proposed hybrid

estimator has parameters A = −50I , Q = I , γc = 10, γd =
0.5, and c = 1. The reference command v is chosen such that

trajectories of the pressure mounter machine achieve a limit

cycle in steady-state, thereby assuring (numerically) that the

conditions in Theorem 6.3 are satisfied. The simulation has

initial conditions x(0, 0) = x̂(0, 0) = (0, 0), θ̂(0, 0) = c,
producing the results in Figure 3.3 The parameter estimate

converges exponentially to the true value in accordance

with Theorem 6.3. The instantaneous increases in the state

estimation error resulting from the delay between jumps in

the plant state and jumps in the estimator state are visible in

the upper right subplot of Figure 3.
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Fig. 3: The projection onto t of the pressure mounter machine

position, velocity, and reference input (left), and the norm of

the state and parameter estimation error (right).
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