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Abstract

This paper proposes a general framework for state estimation of plants modeled as hybrid dynamical systems with jumps
occurring at (approximately) known times. A candidate observer is a hybrid dynamical system with jumps triggered when the
plant jumps. With some information about the time elapsed between successive jumps, a Lyapunov-based analysis allows us to
derive sufficient conditions for observer design. In particular, a high-gain flow-based observer, with innovation during flow only,
can be designed for plants with an average dwell-time when the flow dynamics are strongly differentially observable. On the
other hand, when the jumps are persistent, a jump-based observer, with innovation at jumps only, should be designed based
on an equivalent discrete-time system corresponding to the hybrid system discretized at jump times. In the linear context, this
reasoning leads us to a hybrid Kalman filter. These designs apply to a large class of hybrid systems, including cases where the
time between successive jumps is unbounded or tends to zero – namely, Zeno behavior–, and cases where detectability only
holds during flows, at jumps, or neither. We also study the robustness of this approach when the jumps of the observer are
delayed with respect to those of the plant. Under some regularity and dwell-time conditions, we show that the estimation error
is semiglobally practically asymptotically stable over time intervals after such delays. The results are illustrated in examples
and applications, including mechanical systems with impacts, spiking neurons, and switched systems.

1 Introduction

1.1 Context

In many applications, estimating the state of a system
is crucial, whether it be for control, supervision, or
fault diagnosis purposes. Unfortunately, the problem
of designing observers for hybrid systems of the form
(Goebel et al. (2012))

ẋ ∈ f(x) x ∈ C , x+ ∈ g(x) x ∈ D (1)

presenting both a continuous-time behavior in C and
a discrete-time behavior in D, is still largely unsolved,
even when the flow/jump maps f and g are linear. A
major difficulty lies in the fact that the plant’s jump
times, that is, the times at which discrete events occur
in the plant’s solution, generally depend on its initial
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condition, which is unknown in the context of observer
design. From there, one may distinguish two scenarios:
when the jump times of the plant are detected by sensors
(or known a priori), and when these jump times are truly
unknown.

In the second scenario, the jumps of the observer can-
not be triggered when the jumps of the plant occur. It
follows that the domain of definition of the solutions to
the plant and observer are different and a standard er-
ror system approach for observer design does not apply.
This mismatch of time domains makes the formulation
of observability/detectability and, in turn, observer de-
sign very challenging (Bernard and Sanfelice (2020a)).
Very few observer results for plants of the form (1) exist
apart from particular settings as in Forni et al. (2013),
which requires the composition g ◦ g to be the identity
map, and in Kim et al. (2019), thanks to a change of co-
ordinates transforming the jump map g into the identity
map, in this way, removing the jumps. Note that in the
particular context of switched systems, this mismatch is-
sue translates into the problem of estimating the switch-
ing signal. The observability properties of such a signal
have been studied in Vidal et al. (2003); Küsters and
Trenn (2017). Observer designs based on the so-called
mode location observers, capable of detecting and identi-
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fying properties of the switching signal appeared in Bal-
luchi et al. (2013); Lee et al. (2013); Battistelli (2013);
Gómez-Gutiérrez et al. (2015); Ping et al. (2017); Zam-
mali et al. (2019), to list a few, which include the broad
literature of fault tolerant control.

On the other hand, in the first scenario where the jump
times of the plant are known/detected, the observer
jumps can be triggered at the same time as those of
plant (up to small detection delays). The difficulties due
to a possible mismatch of time domains thus disappear,
and observability analysis also reduces to comparing so-
lutions with same output on the same time domain.

A first class of systems falling into this first scenario is
the so-called impulsive systems. It consists of continuous-
time dynamical systems (possibly switching among dif-
ferent flow dynamics) with state jumps (or switch) that
occur at pre-specified times, which are usually assumed
to be separated by nonzero periods of flow – in partic-
ular, to avoid Zeno behavior. In that setting, observ-
ability/determinability have been extensively studied in
Guan et al. (2002); Xie and Wang (2004); Medina and
Lawrence (2008); Zhao and Sun (2009); Tanwani et al.
(2015). As for observer design, results first appeared as-
suming observability of each flow dynamics Alessandri
and Coletta (2001), and then more generally in Medina
and Lawrence (2009) (resp. in Tanwani et al. (2015)),
for impulsive systems (resp. switched impulsive systems)
that are observable (resp. determinable) for any impulse
time sequence containing more than a known finite num-
ber N of jumps.

Another important class of hybrid systems falling
into the second scenario is when the system itself has
continuous-time dynamics, but the measurements are
sampled and available intermittently at specific time
instances. For such a class of systems with sporadic
events, observers have been designed under specific as-
sumptions on the time elapsed between successive events
or, in the case of periodic events, the sampling period.
From Sur and Paden (1997); Deza et al. (1992), conver-
gence of an impulsive observer with innovation terms
triggered by the measurement events can be guaranteed
when the sampling period is sufficiently small. Designs
were then developed in Raff and Allgöwer (2007); Dinh
et al. (2015) for any constant sampling period provided
that appropriate matrix inequalities are satisfied, and
further extended in Raff et al. (2008); Ahmed-Ali et al.
(2014); Ferrante et al. (2016); Etienne et al. (2017);
Sferlazza et al. (2019) to the case of sporadic measure-
ments, i.e., when the time elapsed between sampling
events varies in a known interval.

In this paper, we propose to address the problem of state
estimation for general hybrid systems (1), in the context
of the first scenario, namely when the jump times of the
plant are (approximately) known, and in an attempt to

unify most of the previously cited approaches. Prelimi-
nary results in this direction were given in Bernard and
Sanfelice (2018); Ŕıos et al. (2020), in the particular case
where f and g are linear, and when at least either the
flow dynamics or the jump dynamics are detectable. We
extend those results here to nonlinear dynamics, also
when neither the continuous nor the discrete dynamics
of the plant are detectable, but, the hybrid plant as a
whole is.

1.2 Content and Contributions

First, under the assumption that the jumps of the plant
are instantaneously detected, a candidate observer is
defined as a hybrid system that jumps at the same time
as the plant does, and is fed with the measured output
in either the flow map, the jump map, or both (Section
2). Assuming the plant has an average dwell-time or a
reverse average dwell-time, or simply that the time be-
tween its successive jumps belongs to a known (possibly
unbounded) closed set, we derive Lyapunov-based suffi-
cient conditions so as to ensure uniform pre-asymptotic
stability of the zero estimation error set (Section 3).
Then, we provide additional design conditions for spe-
cial cases of the general observer problem and proposed
hybrid observer. In Section 4, we consider the case when
measurements are only used during flow, for which we
propose a hybrid observer, which we call flow-based
hybrid observer. Similarly, but for the situation when
output measurements are used only at jumps, Section 5
introduces a jump-based hybrid observer and associ-
ated design conditions. Motivated by the fact that, in
practice, the jumps of the plant cannot always be in-
stantaneously detected, we study the robustness of the
observer when the jumps of the observer are slightly de-
layed relative to those of the plant (Section 6). Finally,
we demonstrate how those results can be used in sev-
eral examples and applications, including mechanical
systems with impacts, spiking neurons, and switched
systems (Section 7). Our main contributions compared
to the literature are as follows:

1. General hybrid systems (1) are considered in a unified
framework, only assuming knowledge about the time
between successive jumps, which allows any type of
solutions, from Zeno and eventually discrete, to even-
tually continuous trajectories;

2. When the plant has an average dwell-time and its con-
tinuous dynamics are strongly differentially observ-
able, we prove that a hybrid observer can be obtained
by copying the discrete dynamics of the plant and
designing a high-gain observer for its continuous dy-
namics, as long as the gain is taken sufficiently large
compared to the average dwell-time and the Lipschitz
constants of the flow and jump maps;

3. When the output measurements are only injected in
the observer at jumps, we highlight that the inno-
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vation term in the observer, which only plays a role
at jumps, should be designed based on an equivalent
discrete-time system that models the hybrid plant
sampled at jumps. In the linear context, this reason-
ing leads us to a constructive hybrid Kalman filter;

4. A robustness analysis with respect to delays in the
triggering of the jumps of the observer jumps is
provided: under some regularity and dwell-time con-
ditions, we show that the estimation error remains
bounded and semi-global practical stability holds
outside the delay intervals between the jumps of the
plant and of the observer;

5. The generality of the framework enables us to recover
and unify a significant part of the literature. In partic-
ular, the results apply well to switched systems with
state-triggered switches: we show in the report ver-
sion of this paper Bernard and Sanfelice (2020b) how
a high-gain observer can be designed for switched sys-
tems with observable modes and average dwell-time,
or how the output at the switching instants can be
used when each mode is not observable on its own
but the combination of them is.

1.3 Notation and Preliminaries

The setR (resp.N) denotes the set of real numbers (resp.
integers), R≥0 = [0,+∞), R>0 = (0,+∞), and N>0 =

N \ {0}. For P ∈ R
n×n, λ(P ) (resp. λ(P )) stands for

its smallest (resp. largest) eigenvalue. The symbol ? in a
matrix denotes the symmetric blocks. A map α : R≥0 →
R≥0 is a class-Kmap if α(0) = 0 and α is continuous and
increasing, and a class-K∞ map if it is also unbounded. A
map β : R≥0×R≥0 → R≥0 is a class-KLmap if for all t ∈
R≥0, β(·, t) is class-K and for all r ∈ R≥0, β(r, ·) is non-
increasing with limt→∞ β(r, t) = 0. For a set valued map
S : Rdx ⇒ R and a scalar c, writing S(x) ≤ c for some
x ∈ R

dx means that s ≤ c for all s ∈ S(x). For a C1 map
V : Rdx → R, LSV (x) denotes the set of Lie derivatives
along vector fields s ∈ S(x), i.e.

{
dV
dx

(x)s , s ∈ S(x)
}
. We

consider hybrid dynamical systems of the form (1) where
f (resp. g) is the flow (resp. jump) map, and C (resp.D)
is the flow (resp. jump) set. Solutions to such systems are
defined on hybrid time domains. A subsetE ofR≥0×N is

a compact hybrid time domain if E =
⋃J−1

j=0 ([tj , tj+1], j)
for some finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ ,
and it is a hybrid time domain if for any (T, J) ∈ E,
E∩[0, T ]×{0, 1, . . . , J} is a compact hybrid time domain.
For a solution (t, j) 7→ x(t, j) (see (Goebel et al., 2012,
Definition 2.6)), we denote domx its domain, domt x
(resp.domj x) its projection on the time (resp. jump)
component, and for j ∈ N, tj(x) the only time defined
by (tj , j) ∈ domx and (tj , j − 1) ∈ domx. Also, N(t, s)
denotes the number of jumps occurring between times t
and s. We say that x is complete if domx is unbounded
and Zeno if it is complete and sup domt x < +∞.

2 Synchronized Hybrid Observer

2.1 Mathematical Modeling

We consider a hybrid plant of the form

H

{
ẋ ∈ f(x) , yc = hc(x) , x ∈ C

x+ ∈ g(x) , yd = hd(x) , x ∈ D
(2)

with state x ∈ R
dx , output y = (yc, yd) ∈ R

dyc × R
dyd ,

with yc available during flow and yd during jumps. We
are interested in estimating the state of (or part of the
state of) H when its solutions are initialized in a given
subset X0 ⊆ C ∪ D. We denote by SH(X0) the set of
maximal solutions of H with initial condition in X0.

Definition 2.1 For a closed subset I of R≥0 and a pos-
itive scalar τ?, we will say that

• solutions have flow length within I if, for any x ∈
SH(X0),
- 0 ≤ t− tj(x) ≤ sup I ∀(t, j) ∈ domx
- tj+1(x)− tj(x) ∈ I holds

∀j ∈ N>0 if sup domj x = +∞,
∀j ∈ {1, . . . , sup domj x− 1} otherwise.

For simplicity, we say that CX0
[I] holds;

• solutions have an average dwell-time (ADT) τ? if there
exists N0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≤
(t− s)

τ?
+N0 ∀t ≥ s ≥ 0 .

For simplicity, we say that Cav
X0

[τ?] holds;
• solutions have a reverse average dwell-time (rADT) τ?

if there existsN0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≥
(t− s)

τ?
−N0 ∀t ≥ s ≥ 0 .

For simplicity, we say that Crav
X0

[τ?] holds.

In the definition of CX0
[I], the set I describes the possible

lengths of the flow intervals between successive jumps.
Properties Cav

X0
[τ?] and Crav

X0
[τ?] correspond to the stan-

dard notions of average dwell-time and reverse average
dwell-time respectively (Goebel et al. (2012); Hespanha
et al. (2008)). They enforce that the solutions jump, on
average, at most (resp. at least) once per time interval
of length τ?. A particular case of Cav

X0
[τ?] is when all

the intervals of flow last at least τ?, namely they have
a dwell-time, which can also be modeled by CX0

[I] with
I = [τ?,+∞).

We are now ready to state the observer problem of in-
terest. Our goal is to design an observer assuming we
know: 1) when the jumps of the plant occur, 2) the out-
puts yc during flows and/or yd at jumps, 3) some infor-
mation about the flow time between successive jumps of
the type CX0

[I], Cav
X0

[τ?], or Crav
X0

[τ?].
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Example 2.2 A Lagrangian mechanical system with
impacts is typically modeled as H with state x = (θ, ω) ∈
R

d × R
d capturing its (generalized) position and ve-

locity, flow of the form f(x) = (ω, α(x)), jump map g
translating the velocity discontinuity at the impact, D
characterizing the impact condition and C = cl(Rd \D).
A complete model is given in Section 7.1. If there is
loss of energy at impacts, we typically know that for a
bounded set of initial conditions X0, the time between
impacts is bounded, so that CX0 [I] holds with I of the
form I = [0, τmax], with τmax > 0. This case does not
exclude Zeno behavior close to the jump set D. On the
other hand, we may know that solutions have a dwell-
time, for instance if at least τmin > 0 amount of time is
needed to flow from g(D) to D. Then, CX0

[I] holds with
I of the form I = [τmin,+∞) or I = [τmin, τmax].

Example 2.3 The important class of switched systems
also falls in the framework of this paper with

x =

(
xp

q

)
, f(x) =

(
fq(xp)

0

)
, g(x) =

(
gq(xp)

Q

)

C =
⋃

q∈Q

Cq × {q} , D =
⋃

q∈Q

Dq × {q} (3)

where Q = {1, 2, . . . , qmax} and the discrete signal q in-
dicates the mode in which the system evolves. When xp

is in Dq and a jump occurs, the mode either stays the
same or is “switched” to a new value in Q. The plant
then evolves according to the flow map fq and jump map
gq, until q is switched to another value. The switches
are triggered by the state being in a certain region Dq:
it is a state-dependent switching. The switches can also
be triggered by an external signal called switching sig-
nal, in which case the switches are said time-dependent.
This case could also be modeled by (2) by making some
assumptions about the time between successive switches,
which can take the form of Cav

X0
[τ?], Crav

X0
[τ?], or CX0

[I].
See Liberzon (2003); Goebel et al. (2012) for more de-
tail. In this paper, we assume the switching times are
known or detected. The output map is defined depend-
ing on the available information: known/unknown mode
q, measurements of xp, etc. See (Bernard and Sanfelice,
2020b, Section 7.3) for a detailed analysis on the way the
results of this paper apply to switched systems.

Example 2.4 The proposed framework applies also to
continuous-time systems

ẋp = fp(xp) , y = hp(xp)

whose output y is only available at discrete times tj (hence
hc(x) = ∅ in (4)), which do not necessarily occur peri-
odically. Assuming we know bounds on the time elapsed
between two successive sampling events, or more gener-
ally that it belongs to a closed bounded set I, namely

CX0 [I] holds, such a system can be modeled by H with
state x = (xp, τ),

f(x) = (fp(xp), 1) , g(x) = (xp, 0) (4)

C = R
dxp × [0,max I] , D = R

dxp × I

hc(x) = ∅ , hd(x) = (hp(xp), τ)

where τ models the (known) time elapsed since the pre-
vious jump. For instance, I is a singleton in the case of
periodic sampling Raff and Allgöwer (2007); Dinh et al.
(2015), and I is a compact interval of R>0 in the case of
aperiodic sampling with known bounds as considered for
linear systems in Ferrante et al. (2016); Sferlazza et al.
(2019) and classes of nonlinear Lipschitz systems in Raff
et al. (2008); Ahmed-Ali et al. (2014); Farza et al. (2014);
Mazenc et al. (2015); Etienne et al. (2017). Similarly,
we could say that Crav

X0
[τ?] holds if we know that measure-

ments occur at most every τ? units of time and adapt the
model (4) accordingly.

2.2 Problem Statement and Proposed Hybrid Observer

Since the jump times of the plant are assumed to be
known, it is natural to use an observer for (2) of the form

Ĥ

{
ż ∈ F (z, yc) when H flows

z+ ∈ G(z, yd) when H jumps
(5)

that is synchronized with the plant, for some maps F :
R

dz × R
dyc → R

dz and G : Rdz × R
dyd → R

dz to be
designed such that z asymptotically enables to recon-
struct the plant state x, or part of it, as formalized next.
Since the plant and the observer jump simultaneously,
the observer analysis and design can be carried out on
the cascade system

H− Ĥ





ẋ ∈ f(x)
ż ∈ F (z, hc(x))

}
(x, z) ∈ C × R

dz

x+ ∈ g(x)
z+ ∈ G(z, hd(x))

}
(x, z) ∈ D × R

dz

(6)

whose flow and jump map we denote

F(x, z) = (f(x), F (z, hc(x)) (7a)

G(x, z) = (g(x), G(z, hd(x))) (7b)

The observer problem can then be reformulated as a
stabilization problem of a set A ⊆ R

dx × R
dz , which

depends on the observation goal. For instance, if we want
to estimate the full state x, we can first try to take dz =
dx and stabilize the zero estimation error set given by

A =
{
(x, z) ∈ R

dx × R
dz : x = z

}
, (8a)

which is nothing but the diagonal. In that case, z directly
provides an asymptotic estimate of x. But sometimes, as
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for continuous-time systems, we need to change coordi-
nates, or add some degrees of freedom, thus leading to
dz ≥ dx and

A =
{
(x, z) ∈ R

dx × R
dz : z = T (x)

}
, (8b)

for some map T : Rdx → R
dz . In that case, an estimate

for x may be recovered from z by left-inversion if T is
injective. We may also be interested in estimating only a
part xp of the state x, in the context of switched systems
for instance, or use in z states that are not directly func-
tions of x, such as varying gains. This can be translated
into an appropriate choice of A, i.e., more generally

A =
{
(x, z) ∈ R

dx × R
dz : T (x, z) = 0

}
, (8c)

for some map T : Rdx × R
dz → R

p. The goal of this
paper is finally to solve the following problem.

Problem (O) : Given a set of initial conditions X0 ⊆
R

dx , a closed subsetA of Rdx ×R
dz as in (8), and assum-

ing one of the conditions of Definition 2.1 holds, design
maps F : Rdz × R

dyc → R
dz and G : Rdz × R

dyd → R
dz

such that there exist a class-KL function β and a subset
Z0 of Rdz such that for every φ = (x, z) ∈ SH−Ĥ(X0 ×
Z0), ∣∣φ(t, j)

∣∣
A
≤ β

(∣∣φ(0, 0)
∣∣
A
, t+ j

)
(9)

for all (t, j) ∈ domφ, namely A is uniformly pre-

asymptotically stable (UpAS) for H − Ĥ with basin of
attraction including X0 ×Z0.

Note that the set A should also ensure that

x bounded and
∣∣(x, z)

∣∣
A
bounded =⇒ z bounded

to guarantee from (9) that z cannot escape in finite time
before x does. In other words, the observer solution is
indeed defined as long as the plant solution is. This is
verified for A defined in (8a) or (8b) if T is continuous.

Remark 2.5 The implementation of the observer Ĥ re-
quires a perfect jump synchronization with the plant H.
Unfortunately, the practical detection of the plant jumps
often involves measurements and transmission of infor-
mation which might entail some delays in the triggering
of the observer jumps. The robustness of the UpAS prop-
erty of A given by Problem (O) with respect to delays is
thus analyzed in Section 6.

Remark 2.6 We have restricted Problem (O) to sets A
of the forms (8) in order to remain in the observation
context, even though some results presented in this paper,
such as Theorem 3.1 below, guarantee (9) for any choice
ofA. On the other hand, some of the results are restricted
to specific forms of A defined in (8a) or (8b).

3 A General Sufficient Condition

The following theorem gives a first Lyapunov-based suf-
ficient condition to solve Problem (O).

Theorem 3.1 Assume there exist scalars ac, ad ∈ R,
class-K∞ maps α, α, and a C1 map V : Rdx × R

dz → R

verifying

{
α (|(x, z)|A) ≤ V (x, z) ∀(x, z) ∈ (C ∪D ∪ g(D))× R

dz

V (x, z) ≤ α (|(x, z)|A) ∀(x, z) ∈ X0 ×Z0

(10a)

LFV (x, z) ≤ ac V (x, z) ∀(x, z) ∈ C × R
dz (10b)

V (G(x, z)) ≤ ead V (x, z) ∀(x, z) ∈ D × R
dz (10c)

with F and G defined in (7). Then, Problem (O) is solved
if any of the following conditions holds, referred to as
conditions (C):

(C1a) ac < 0 and CX0 [I] holds with min I > ad

|ac|
.

(C1b) ac < 0 and Cav
X0

[τ?] holds with τ? > ad

|ac|
.

(C2a) ad < 0 and CX0
[I] holds with ac sup I < |ad|.

(C2b) ad < 0 and Crav
X0

[τ?] holds with acτ
? < |ad|.

PROOF. The proof consists in modeling the jumps by
a hybrid timer τ with appropriate dynamics depending
on the condition (C). Then, similarly to Liberzon et al.
(2014), maps of the form eaτV (x, z) with a appropriately
chosen provide strict Lyapunov functions satisfying the
conditions in (Goebel et al., 2012, Theorem 3.18). See
report version Bernard and Sanfelice (2020b).

Remark 3.2 In (Goebel et al., 2012, Theorem 3.18),
Condition (10a) is strengthened into

α (|(x, z)|A) ≤ V (x, z) ≤ α (|(x, z)|A)

∀(x, z) ∈ (C ∪D ∪ g(D))× R
dz (11)

for easiness of presentation but the upper inequality is
only needed on the initial conditions in the proof. It turns
out to be useful to relax it to (10a) in what follows.

Conditions (C) imply that in the case of a reverse average
dwell-time or if 0 ∈ I, the innovation term in the discrete
dynamics of the observer makes the error contract at
jumps (ad < 0), due to possible Zeno solutions. Similarly
in the case of average dwell-time or if sup I = +∞, then
the innovation term in the continuous dynamics makes
the error contract during flow (ac < 0).

Example 3.3 The case of linear flow/jump/output
maps, where f(x) = Acx, g(x) = Adx, hc(x) = Hcx,
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hd(x) = Hdx, has been studied in Bernard and Sanfelice
(2018). We consider A defined in (8a) and

F (z, yc) = Acz + Lc(yc −Hcx) (12a)

G(z, yd) = Adz + Ld(yd −Hdx) (12b)

with Lc ∈ R
dx×dyc and Ld ∈ R

dx×dyd . Then, the con-
ditions in (10) hold for a quadratic Lyapunov function
V (x, z) = (x− z)>P (x− z) if there exist scalars ac and
ad, and a positive definite symmetric matrix P ∈ R

dx×dx

such that

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (13a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (13b)

If a solution to (13) exists and one of the conditions (C)
holds, Problem (O) is solved. Note that if both (Ac, Hc)
and (Ad, Hd) are detectable, (13) may be solvable with
both ac ≤ 0 and ad ≤ 0, and (C) then holds directly if at
least one of them is nonzero. By the Schur complement,
this is equivalent to solving the LMIs

A>
c P + PAc − (L̃cHc +H>

c L̃>
c ) < 0(

P (PAd − L̃dHd)
>

? P

)
> 0 (14)

in (P, L̃c, L̃d) and take Lc = P−1L̃c and Ld = P−1L̃d.
This has been done in (Bernard and Sanfelice, 2018, Ex-
ample 3.3) for a bouncing ball with a restitution coeffi-
cient λ < 1, and position measured at all (hybrid) times.

Remark 3.4 In the favorable case where both the flow
and jump dynamics of H are detectable, it is not suffi-
cient to choose independently a map F as a continuous-
time observer of the flow and a map G as a discrete-
time observer of the jumps. Indeed, jumps could destroy
what has been achieved during flow, or vice versa. See
Bernard and Sanfelice (2020b) for an example. To avoid
this phenomenon, (10b) and (10c) should hold with the
same Lyapunov function V .

A drawback of Theorem 3.1 is that design conditions on
the observer flow and jump maps are coupled through
ac and ad in conditions (C) and it is not clear how they
can be solved in the general nonlinear context. Even in
the linear case as in Example 3.3, the conditions are
nonlinear, unless both ac and ad can be taken negative
and (14) can be solved. In Sections 4 and 5, we show
how this loop can be broken by using innovation only in
flow or only at jumps, through high-gain in flows and by
considering an equivalent discrete-time system at jumps.

Another drawback is that Theorem 3.1 requires at least
ac or ad to be negative. Therefore, either the continuous
or the discrete dynamics of H has to admit an observer
and thus be detectable. But it could happen that neither

the continuous nor the discrete dynamics is observable,
and yet the system as a whole is indeed observable. An
application featuring an hybrid system with such a prop-
erty is given in Section 7.2. Actually, Section 5 will show
that we should rather study an equivalent discrete-time
system, containing both the continuous and discrete dy-
namics and providing insight for observer design.

4 Flow-based Hybrid Observer

When the continuous dynamics of H are detectable and
persistent in the sense of an average dwell-time, it is
tempting to use a continuous-time observer

ż = F (z, hc(x)) , x̂ = Θ(z) (15)

during flow, and simply copy the discrete dynamics of
H in the jump map of the observer. Indeed, intuitively,
if the estimation error decreases more during flow than
it increases at jumps, namely, if the continuous-time ob-
server (15) is sufficiently fast, the error is expected to
converge to zero asymptotically. We thus need persis-
tence of flow, namely conditions of the type CX0 [I] with
min I > 0, or more generally Cav

X0
[τ?].

4.1 Sufficiently Large Average Dwell-time

The first thing to notice is that if the continuous-time
observer (15) verifies (10a)-(10b) with ac < 0 and if G
is chosen such that (10c) holds for some ad ∈ R, then
Problem (O) is solved if the average dwell time (ADT)
is sufficiently large to satisfy (C1b). This result is stan-
dard in the literature of switched systems as reviewed in
(Bernard and Sanfelice, 2020b, Section 7.3). Actually,
if (10a) is strengthened into (11) and if there exists a
class-K∞ map κ such that

|G(x, z)|A ≤ κ (|(x, z)|A) ∀(x, z) ∈ D × R
dz (16a)

α ◦ κ ◦ α−1 ≤ c Id (16b)

for some positive scalar c, then (10c) automatically holds
with ad = ln(c). For instance, in the case where dz = dx
andA is simply the diagonal set (8a), a mapG satisfying
(16a) is a simple copy of the plant jump map g, namely,

G(z, yd) = g(z) , (17)

if g is single-valued and κ-continuous, namely,

|g(x)− g(x̂)| ≤ κ(|x− x̂|) ∀(x, x̂) ∈ D×R
dx . (18)

In particular, if g is Lipschitz with Lipschitz constant
kG and V is quadratic with α = λ(·)2 and α = λ(·)2,
then Problem (O) is solved if the ADT is larger than
1

|ac|
ln
(

λ(P )
λ(P )k

2
G

)
. Note that if g is only locally Lipschitz
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and any x ∈ SH(X0) remains in a compact set X , it is
enough to guarantee (18) on (D ∩ X )× R

dx by taking

G(z, yd) = sat(g(z)) (19)

where sat is a saturation map active outside of g(X ).

However, apart from switched systems where the switch-
ing signal may be a controlled input, the ADT property
cannot be imposed or controlled for a general hybrid sys-
tem due to the jumps being state-dependent. Therefore,
ADT (if it exists) is a property of the system and cannot
be made “sufficiently fast.”When the flow/jump/output
maps are linear, this problem is overcome in Bernard
and Sanfelice (2018); Ŕıos et al. (2020) by using (12)
with Ld = 0 and Lc such that there exists P = P> > 0
solution to

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (20a)

A>
d PAd ≤ eadP (20b)

acτ
? + ad < 0 (20c)

with ac < 0. However existence of a solution to (20)
is a priori not guaranteed, and more importantly, this
method is not viable for general nonlinear systems.

4.2 Arbitrary Average Dwell-time

Another way to satisfy (C1a) or (C1b) is to choose a
sufficiently fast continuous-time observer (15); i.e., sat-
isfying (10a)-(10b) with |ac| sufficiently large. However,
increasing ac may require to change V , which in turns,
modifies ad. The following corollary shows that this com-
promise can be achieved for “high-gain observers.”

Corollary 4.1 Assume X0 is compact and Cav
X0

[τ?] holds
for some τ? > 0. Suppose also there exist λ > 0, `0 > 0,
rational functions c and c, a continuous map T : Rdx →
R

dz , and for all ` > `0, a map F` : R
dz ×R

dy → R
dz and

a C1 map V` : R
dx × R

dz → R such that

c(`)|z − T (x)|2 ≤ V`(x, z) ≤ c(`)|z − T (x)|2

∀(x, z) ∈ (C ∪D ∪ g(D))× R
dz (21a)

LF`
V`(x, z) ≤ −`λ V`(x, z) ∀(x, z) ∈ C × R

dz (21b)

with F`(x, z) = (f(x), F`(z, hc(x)). Then, for any com-
pact set Z0 ⊂ R

dz , there exists `∗ ≥ `0 such that for all
` > `∗, Problem (O) is solved with A defined in (8b),
F := F`, and any map G : Rdz × R

dyd → R
dz , Lipschitz

with respect to z (uniformly in yd ∈ hd(D)), verifying

G (T (x), hd(x)) = T ◦ g(x) ∀x ∈ D . (21c)

PROOF. Consider a compact set Z0 ⊂ R
dz . First, by

definition of A in (8b), |(x, z)|A ≤ |z − T (x)| for all

(x, z) ∈ R
dx × R

dz , and by continuity of T , because
X0×Z0 is compact, there exists a class-K∞ map α such
that |z − T (x)| ≤ α(|(x, z)|A) on X0 × Z0. Therefore,
(21a) implies (10a) for all ` > `0. In addition, (21b)
implies (10b) with ac = −`λ. Then, from the definition
of G in (7b) and from (21a), for all (x, z) ∈ D × R

dz ,

V`(G(x, z)) ≤ c(`) |G(z, hd(x))− T (g(x))|2

≤ c(`) |G(z, hd(x))−G(T (x), hd(x))|
2

≤ c(`)k2G |z − T (x)|2

≤
c(`)

c(`)
k2GV`(x, z)

where kG is the Lipschitz constant of G with re-
spect to z. Therefore, (10c) holds for all ` > `0 with

ad = ln
(
k2G

c(`)
c(`)

)
. Exploiting exponential over polyno-

mial growth, −`λτ? + ln
(
k2G

c(`)
c(`)

)
< 0 for ` sufficiently

large and (C1b) holds. Therefore, the result follows from
Theorem 3.1.

In other words, if we know a high-gain continuous-time
observer for the continuous dynamics of H, verifying
(21a)-(21b), then a possible hybrid observer is made of
this continuous-time observer and a copy of the jump dy-
namics (written in the high-gain coordinates z = T (x),
i.e. verifying (21c)), with a gain ` sufficiently large com-
pared to the average dwell-time and the Lipschitz con-
stant of the jump dynamics. Compared to Bernard and
Sanfelice (2018); Ŕıos et al. (2020), this result guaran-
tees the existence of a solution to (20) in the linear con-
text and provides a constructive way to compute it as
detailed in Example 4.2. More importantly, the result
applies to general nonlinear dynamics whose flow dy-
namics are strongly differentially observable as detailed
in Example 4.3.

Example 4.2 Assume f(x) = Acx and hc(x) = Hcx
with the pair (Ac, Hc) observable. The eigenvalues of the
observer can then be assigned arbitrarily fast. For that, we
define V ∈ R

dx×dx a change of coordinates transforming
(Ac, Hc) into a block-diagonal observable form, namely
such that

VAcV
−1 = A+DH , HcV

−1 = H

with

A := blkdiag(A1, . . . , Adyc
) , D := blkdiag(D1, . . . , Ddyc

)

H := blkdiag(H1, . . . , Hdyc
) ,
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Di ∈ R
di×1, Ai ∈ R

di×di , Hi ∈ R
1×di of shape

Ai =




0 0 . . . . . . 0
1 0 0
...
. . .

. . .
...

0 1 0 0
0 . . . 0 1 0


 , Hi = (0 . . . 0 1) ,

and di integers such that
∑

di = dx. Consider vectors
Ki such that Ai − KiHi is Hurwitz, and for a positive
scalar `, define Li(`) := diag(`di−1, . . . , `, 1). Then, let
us take F defined by (12a) with

Lc = V−1(D + `L(`)K) (22)

K := blkdiag(K1, . . . ,Kdyc
),L := blkdiag(L1, . . . ,Ldyc

).

Consider a positive definite matrix P ∈ R
dx×dx such that

(A−KH)>P + P (A−KH) ≤ −λP

for some λ > 0. Then, (21a)-(21b) hold with T = Id,

V`(x, z) = (x− z)>V>
L(`)−1PL(`)−1V (x− z) ,

c(`) =
λ(V>PV)

`2(d−1)
, c(`) = λ(V>PV)

where d = max di. Therefore, whatever the average dwell-
time is, Problem (O) is solved for ` sufficiently large by
taking G as in (17) (resp. (19)) if g is Lipschitz (resp.
locally Lipschitz and the solutions x are bounded).

Example 4.3 Assume that f and g are single valued,
with a single output (dyc

= 1), and the flow pair (f, hc)
of H is strongly differentially observable of order dz on
C ∪D, namely the map T : Rdx → R

dz defined by

T (x) = (hc(x), Lfhc(x), ..., L
dz−1
f hc(x)) (23)

is C1 and an injective immersion on C∪D. Assume also
there exists a Lipschitz map Φ : Rdz → R verifying

Φ(T (x)) = Ldz

f h(x) ∀x ∈ C ∪D .

This is guaranteed, in particular, if any x ∈ SH(X0)
evolves in a compact set X ⊆ C ∪D, since there exists a
Lipschitz map Θ : Rdz → R

dx such that

Θ(T (x)) = x ∀x ∈ X ,

and Φ can simply be chosen as Φ = sat ◦Ldz

f ◦ Θ where

sat saturates outside of Ldz

f (X ). Then, following Khalil

and Praly (2013), a high-gain observer can be built for
the flow dynamics, defined by

F`(z, yc) = Az +BΦ(z) + `L(`)K(yc − z1) ,

A =




0 1 . . . 0
0 0 1
...
. . .

. . .
. . .

... 0 1
0 . . . . . . 0 0




∈ R
dz , B =



0
...
0
1


 ∈ R

dz ,

L(`) = diag(1, `, `2, . . . , `dz−1), andK such thatA−KH
is Hurwitz with H = (1, 0, . . . , 0). Classical high gain
computations show that conditions (21a) and (21b) then
hold for the Lyapunov function

V`(x, z) = (T (x)− z)>L(`)−1PL(`)−1(T (x)− z) ,

with P a positive definite matrix such that

(A−KH)>P + P (A−KH) ≤ −λ0P

for some λ0 > 0, c(`) =
λ(P )

`2(dz−1) , c(`) = λ(P ), λ > 0
depending on λ0 and on the Lipschitz constant ofΦ, and `
larger than a threshold `0 also depending on that Lipschitz
constant. Selecting G Lipschitz verifying (21c), finally
provides an observer relative to A defined in (8b), if the
gain ` is sufficiently large according to Corollary 4.1. In
particular, if any x ∈ SH(X0) evolves in a compact set
X , we can choose G(z, yd) = sat ◦T ◦ g ◦ Θ(z) where
sat saturates outside of T ◦ g(D), and an estimate of x
is obtained by x̂ = Θ(z). This design is illustrated in
Sections 7.1 and 7.2. Note that the same tools can be
used for other (multi-output) triangular normal forms,
as long as the nonlinearities are Lipschitz .

5 Jump-based Hybrid Observer

Wenow consider the case where the output is used to cre-
ate contraction of the Lyapunov function at jump times,
namely we rather exploit yd. Without natural contrac-
tion in the continuous dynamics of H, we thus need the
jumps to be persistent and sufficiently frequent to inject
sufficient information in the observer, i.e., conditions of
the type Crav

X0
[τ?] or CX0 [I] with I bounded.

5.1 Sufficiently Small Reverse Dwell-time

Similarly to the previous section, we can start by noting
that when the discrete dynamics of H admit a discrete-
time observer verifying (10a) and (10c) with ad < 0, we
may choose F such that (10b) holds for some ac ∈ R

and Problem (O) will then be solved if ad is sufficiently
negative with respect to ac and to the maximal amount
of flow; or equivalently, if the jumps are sufficiently fre-
quent, i.e. either if max I is sufficiently small to satisfy
(C2a), or the rADT is sufficiently small to satisfy (C2b).
When f is single valued and A defined as in (8a), one
may choose F single-valued so that

|f(x)− F (z, hc(x))| ≤ c |x− z| ∀(x, z) ∈ C × R
dz
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for some scalar c. For instance, if x ∈ SH(X0) evolves in a
compact setX and f is locally Lipschitz, one may simply
take F (z, yc) = sat(f(z)), where sat saturates outside of
f(X ). In other words, F is simply a flow predictor.

However, again, this method has an interest only when
the jumps are naturally sufficiently frequent (Zeno solu-
tions) or can be made so (switching systems). Otherwise,
we need to take explicitly into account the potential in-
crease of V during flow, to ensure the conditions (10) and
(C2b) hold simultaneously.When the flow/jump/output
maps are linear, one may choose F and G as in (12) with
Lc = 0 and Ld such that there exists P positive definite
solution to

A>
c P + PAc ≤ acP (24a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (24b)

acτ
? + ad < 0 (24c)

for some ac ∈ R and ad < 0 as in Bernard and Sanfelice
(2018); Ŕıos et al. (2020), where τ? denotes the rADT
or the maximal length of flow.

As noticed in Etienne et al. (2017) in the context of
sampled systems (Ad = I), this design is extendable to
particular classes of nonlinear continuous dynamics for
which f is included in the convex hull of a finite number
of linear maps. The LMI (24a) must then hold for each
of those maps. Furthermore, Etienne et al. (2017) shows
that (24) might be relaxed by allowing P and Ld to
depend on the length τ of the flow intervals in a way
that ensures contraction during both flows and jumps.
But this requires the feasibility of some LMIs that are
not clearly related to observability.

In any case, the methods mentioned in this section re-
quire the detectability of the discrete dynamics of H
and a sufficient contraction of the error at jumps. When
either the discrete dynamics are not detectable, or the
coupling between flows and jumps makes the matrix in-
equalities not feasible, we show in the next section that
we should rather analyze an equivalent discrete-time
system made of the plant sampled at the jump times,
which naturally contains the information of both flows
and jumps.

5.2 Arbitrary Reverse Dwell-Time

We now assume the jumps are persistent, i.e. CX0 [I]
holds with I compact, but without any constraint on the
upper bound of I. We also suppose that maximal solu-
tions of ẋ ∈ f(x) are defined on R≥0 and we denote Ψf

the flow operator alongside f , i.e, Ψf (x0, τ) denotes the
set of points that can be reached at time τ by solutions
to ẋ ∈ f(x) initialized at x0 at τ = 0.

Now consider a solution x ∈ SH(X0) and notice that
xk := x(tk, k) sampled after each jump and the output

yk := hd(x(tk, k − 1)) obtained before each jump verify

xk+1 ∈ g(Ψf (xk, τk)) , yk ∈ hd (Ψf (xk, τk)) (25)

where τk = tk+1 − tk denotes the length of the kth flow
interval, k ∈ N>0. It follows that with the discrete out-
put yd obtained right before each jump, we are actually
observing the discrete-time system (25). It is therefore
the observability/determinability of (25) that counts,
and we must look for F and GmakingA of Problem (O)
UpAS for the reduced system

xk+1 ∈ g(Ψf (xk, τk))
zk+1 ∈ G(ΨF (zk, τk), hd(Ψf (xk, τk)))

or equivalently

(xk+1, zk+1) ∈ G ◦ΨF ((xk, zk), τk) , (26)

with F and G defined in (7). Indeed, the following the-
orem shows that it is sufficient to prove UpAS of A for
(26) with sequences (τk) ∈ IN to solve Problem (O)
(see (28) below). But because the first interval of flow
t1 ∈ [0,max I] is not necessarily in I, the system (26)
with (τk) ∈ IN only captures the behavior of solutions
after hybrid time (t1, 1). Hence, we need to consider (26)

initialized in a superset X̃0 × Z̃0 of X0 ×Z0 such that

G ◦ΨF (X0 ×Z0, τ0) ⊆ X̃0 × Z̃0 ∀τ0 ∈ [0,max I] .

In addition, because (26) only describes solutions at dis-
crete times (tk, k), we need a regularity property of so-
lutions during flow (see (29) below).

Theorem 5.1 Assume that CX0
[I] holds with I compact

and maximal solutions to (ẋ, ż) ∈ F(x, z) are defined on
R≥0. Suppose the following properties hold.

1. There exists a class-K function ρ0 such that for all
(x0, z0, τ0) ∈ X0 ×Z0 × [0,max I],

|G ◦ΨF ((x0, z0), τ0)|A ≤ ρ0 (|(x0, z0)|A) . (27)

2. There exist a class-KL function β and a superset X ×
Z of X̃0 × Z̃0 such that any solution (x, z) to (26)

initialized to (x1, z1) ∈ X̃0 × Z̃0 and with input k 7→
τk ∈ I, remains in X × Z and verifies

∣∣(xk, zk)
∣∣
A
≤ β

(∣∣(x1, z1)
∣∣
A
, k
)

∀k ∈ N>0 .

(28)
3. There exists a class-K function ρ such that for all

(x0, z0) ∈ X × Z and for all τ ∈ [0,max I],

|ΨF ((x0, z0), τ)|A ≤ ρ (|(x0, z0)|A) . (29)

Then, Problem (O) is solved.
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PROOF. Consider φ = (x, z) ∈ SH−Ĥ(X0 × Z0). De-
note J := sup domj φ and τmax := max I. The discrete

trajectory φ̃ = (x̃, z̃) : domj φ → R
dx × R

dz defined

by φ̃k = φ(tk, k) verifies (26) with input τ defined by
τk = tk+1 − tk, for all k ∈ domj φ \ {J}. It follows from
CX0

[I] that τ0 ≤ τmax, and τk ∈ I for all k ∈ N>0 if
J = +∞ and for all k ∈ {1, . . . , J−1} otherwise. There-

fore, φ̃1 ∈ X̃0 × Z̃0, φ̃k ∈ X ×Z for all k, and according
to (27),(28), for all k ∈ domj φ ≥ 1,

|φ(tk, k)|A ≤ β(|φ(t1, 1)|A, k)

≤ β
(
ρ0(|φ(0, 0)|A), k

)
.

This latter inequality still holds for k = 0, by redefining
β so that β(ρ0(s), 0) ≥ s. Then, by CX0 [I], for all (t, j) ∈
domφ, t− tj ∈ [0, τmax] and from (29),

|φ(t, j)|A ≤ ρ (|φ(tj , j)|A) ≤ ρ
(
β
(
ρ0(|φ(0, 0)|A), j

))
.

Besides, for all (t, j) ∈ domφ, t − tj ≤ τmax and tj −
tj−1 ≤ τmax for j ≥ 1, so that tj ≤ τmaxj and t ≤
τmax(j + 1). Thus,

|φ(t, j)|A ≤ ρ
(
β
(
ρ0(|φ(0, 0)|A),max{a(t+ j) + b, 0}

))

with a = 1
τmax+1 and b = − τmax

τmax+1 . Therefore, Problem

(O) is solved. �

The condition (29) guarantees that the distance of (x, z)
to A during flow is continuous on the compact interval
[0,max I] with respect to the initial distance to A. If A
is defined by (8a) and f = F is locally Lipschitz, this
regularity property is always satisfied when X and Z are
compact.

It is important to note that Ψf and ΨF need not be
computed for the implementation of the observer (5) :
they are only used in the analysis in order to design the
maps F and G to be used in (5). Although the reduced
system (26) may not be handier to use for design than
(6), it helps to understand the observability conditions
that are at stake here. In addition, when f is linear, i.e.
f(x) = Acx, we can choose F (z) = Acz, so that

Ψf (xk, τk) = exp(Acτk)xk , ΨF (zk, τk) = exp(Acτk)zk

and (29) immediately holds for A defined in (8a).

Corollary 5.2 Assume that CX0
[I] holds with I compact

and f, g, hd are linear defined by f(x) = Acx, g(x) = Adx
and hd(x) = Hdx. Assume there exist a positive definite
matrix P ∈ R

dx×dx and a gain vector Ld ∈ R
dx×dyd such

that

(exp(Acτ))
>(Ad−LdHd)

>P (Ad−LdHd) exp(Acτ) < P

∀τ ∈ I . (30)

Then,F andG defined in (12)withLc = 0, solve Problem
(O) with A defined in (8a).

PROOF. Follows from Theorem 5.1 using the Lya-
punov function V (x, z) = (x−z)>P (x−z) since e = z−x
in (26) verifies ek+1 = (Ad − LdHd) exp(Acτk)ek. �

The existence of the matrix P verifying (30) for a given
τ is equivalent to (Ad − LdHd) exp(Acτ) being Schur
for some gain Ld, which in turn is equivalent to the de-
tectability of the discrete-time system

xk+1 = Ad exp(Acτ)xk , yk = Hd exp(Acτ)xk . (31)

Thus, having (30) for any τ ∈ I requires detectability of
(31) for any τ ∈ I. It is not sufficient, however, because
(30) must be verified with the same Ld and P for all
τ ∈ I. So (30) requires in fact the detectability of the
LTV or LPV discrete-time system

xk+1 = Ad exp(Ac τk)xk , yk = Hd exp(Acτk)xk (32)

with input τk in the compact set I, which is exactly (25).
Actually, (30) is stronger because it requires a quadratic
Lyapunov function with a matrix P , that is independent
from the sequence k 7→ τk. This property is sometimes
called “quadratic detectability” (see Wu (1995); Halimi
et al. (2013); Bernussou et al. (1992)).

Remark 5.3 By the Schur complement, finding P and
Ld satisfying (30) is equivalent to finding P and L̃d sat-
isfying the LMIs

(
P exp(Acτ)

>(PAd − L̃dHd)
>

? P

)
> 0 ∀τ ∈ I (33)

with L̃d = PLd. In the case where I has infinitely many
elements, it is shown in Ferrante et al. (2016) that it is al-
ways possible to compute numerically a polytopic decom-
position of exp(Acτ), namely a finite number of matrices
{M1,M2, . . . ,Mν} such that exp(Acτ) is in the convex
hull of those matrices whenever τ ∈ I. Since (33) is con-
vex in exp(Acτ), it is then sufficient to solve the finite
number of LMIs

(
P M>

i (PAd − L̃dHd)
>

? P

)
> 0 ∀i ∈ {1, 2, . . . , ν}

(34)

with common P and L̃d. An example is given in Sec-
tion 7.1. In particular, if Ac is nilpotent of order N ,

we have exp(Acτ) =
∑N−1

k=0
τk

k! A
k
c so that for all τ in

a compact subset I of R≥0, exp(Acτ) is in the convex

hull of the ν = 2N−1 matrices
{
I +

∑N−1
k=1

τk
k

k! A
k
c

}
with

τk ∈ {min I,max I} for all k. See Section 7.2.
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What makes the approach of Remark 5.3 work is the fact
that the flow operator of the error e = x̂−x is contained
in the convex hull of a finite number of linear maps. In
the context of sampled nonlinear systems, Andrieu and
Nadri (2010); Dinh et al. (2015) noticed that by copying
the continuous dynamics in the observer, namely taking
F = f , the error components evolve during flow accord-
ing to

ėi = fi(x̂)− fi(x) =
dfi
dx

(v(t))e

for some v depending on x and x̂, thanks to the mean
value theorem. For certain classes of maps f Dinh et al.
(2015), the error reachable set within a time τ ∈ I may
then be included in the convex hull of a finite number
of linear maps {e 7→ Mie}i=1,..ν if the Jacobian compo-
nents of f are bounded. If g is linear, the discrete error
system in Corollary 5.2 is then replaced by

ek+1 =

ν∑

i=1

βi,k(Ad − LdHd)Miek

with
∑ν

i=1 βi,k = 1, and following the same steps as in
Andrieu and Nadri (2010) with the Lyapunov function of
Corollary 5.2, it is enough to ensure (30) with exp(Acτ)
replaced by Mi, for each i ∈ {1, 2, . . . ν}, namely solve
the LMIs (34).

The advantage of using a constant gainLd is that it is suf-
ficient to compute only once the vertices Mi of the poly-
topic decomposition of the flow operator for τ ∈ I and
solve offline the finite number of LMIs (34). However,
as mentioned above, those LMIs might not be solvable
since they require a stronger property than detectabil-
ity of (32). In that case, we may allow Ld to be time-
varying, by adapting Ld to τk, as done in the particular
case of sampled-data observers in Sferlazza et al. (2019).
Indeed, observe that the observer jump map G in (26) is
applied after flowing τk units of time with F . Therefore,
at the moment where G is used, τk represents the time
elapsed since the previous jump and is known to the ob-
server. This can be modeled in our framework with a
timer τ added to the observer state, where τ flows ac-
cording to τ̇ = 1 and jumps according to τ+ = 0. It fol-
lows that at each jump, the gain Ld in the jump map G
defined in Corollary 5.2 can be adapted to the length of
the previous interval of flow, in a way that makes

x̂k+1 = A(τk)x̂k + Ld,k(yk −H(τk)x̂k) (35)

an observer for (32), where

A(τk) = Ad exp(Acτk) , H(τk) = Hd exp(Acτk) .

Since H is not constant, we cannot use the results ob-
tained for LPV systems (Halimi et al. (2013)). However,
an even simpler approach is to consider (32) as a LTV
system and design Ld,k as the gain of a discrete Kalman

filter. More precisely, we use an observer with state z =
(x̂, τ,K, P ), flow dynamics F (z) = (Acx̂ , 1 , 0 , 0) and
jump dynamics

G(z, yd) =



Adx̂+A(τ)K(yd −Hdx̂)

0
χ(P, τ)(

I − χ(P, τ)H(τ)
)
p(P, τ)


 (36)

where the maps p and χ are defined by

p(P, τ) = A(τ)PA(τ)> +Q

χ(P, τ) = p(P, τ)H(τ)>
(
H(τ)p(P, τ)H(τ)> +R

)−1

It is important to note that the innovation of x̂k+1 in (35)
must use yk, instead of yk+1 as in a standard Kalman
filter. That is why we use in (36) a Kalman filter with
prediction after innovation, where the gain writes Ld =
A(τ)K with K the Kalman gain computed at the previ-
ous jump.

In the same spirit, one may note that if (32) is known
to be observable after N jumps, Medina and Lawrence
(2009) proposed to compute Ld,k based on the weighted
observability Grammian over the past N jumps.

6 Robustness with Respect to Delays in Jumps

We now study how the observer convergence is impacted
if the jumps of the observer are delayed with respect to
those of the plant, thus leading to a mismatch between
the observer jump times and those of the plant. For this,
we start from the following assumption.

Assumption 6.1 CX0 [I] holds with I compact,min I >
0 (dwell-time), and Problem (O) has been solved, namely

the set A is UpAS for H − Ĥ with basin of attraction
including X0 ×Z0.

We choose to study the particular case where the value of
the innovation term, implemented in the observer at the
delayed jump is the one that would have been computed
at the actual jump time of the plant if there had been
no delay. This covers the situations where the measure-
ment and computation of the innovation G(z, yd) are in-
stantaneous, but the implementation of the jump in the
observer is delayed; or the measurement takes a known
amount of time δ ≥ 0 to arrive to the observer, and the
update of z is chosen as G(z(t − δ, j), yd), thanks to a
buffer in z or by backward integration of z. Inspired from
Altin and Sanfelice (2020), for any delay ∆ ∈ [0,min I),
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this situation can be modeled as

Ĥ(∆)





ẋ ∈ f(x)
ż ∈ F (z, hc(x))
µ̇ = 0
τ̇δ = −min{τδ + 1 , 1}





x ∈ Ĉ(∆)

x+ ∈ g(x)
z+ = z
µ+ ∈ G(z, hd(x))
τ+δ ∈ [0,∆]





x ∈ D̂−1(∆)

x+ = x, µ+ = 0 ,

z+ = µ, τ+δ = −1,

}
x ∈ D̂0(∆)

(37)

with state x = (x, z, µ, τδ), flow set

Ĉ(∆) =
(
Ĉ × {0} × {−1}

)
∪
(
Ĉ × R

dz × [0,∆]
)

,

jump set D̂−1(∆) ∪ D̂0(∆) with

D̂−1(∆) = D̂×{0}×{−1} , D̂0(∆) = (Ĉ∪D̂)×R
dz×{0}

Ĉ := C × R
dz , D̂ := D × R

dz .

System Ĥ(∆) contains two new states µ and τδ evolving
in R

dz and [0,∆] ∪ {−1} respectively. The state τδ is a
timer modeling the delay between the jumps of the plant
and of the observer. The role of µ is to store the update
to be implemented in the observer at the end of the delay
interval, when it actually jumps. More precisely, when
τδ = −1 and x does not jump, Ĥ(∆) flows, with (x, z)

flowing according toF as inH−Ĥ, while µ and τδ remain
equal to 0 and −1 respectively. When the plant state x
jumps, then the update in G(z, hd(x)) that should have
been instantaneously implemented in the observer state
z is stored in the memory state µ, and τδ is set to a
number in [0,∆] thus starting a delay period: Ĥ(∆) then
flows and the time τδ decreases, until it reaches 0. At this
point, a delay interval of length smaller than or equal to
∆ has elapsed, and the observer state z is updated with
the content of µ, while µ is reset to 0 and τδ switched
back to −1.

Note that the plant state x is not allowed to jump again
before the delay expressed by τδ has expired. That is why
this model only works in the case where ∆ < min I, i.e.,
the maximal delay is smaller than the smallest possible
time between successive jumps of the plant.

In order to study the robustness of this property in pres-
ence of delay, we need to resort to compact attractors
and some regularity properties of H− Ĥ.

Assumption 6.2 There exists a compact subset X of
C ∪D, such that any solution x ∈ SH(X0) remains in X .
In addition, AX := A ∩ (X × R

dz ) is compact.

Assumption 6.3 The interconnection H − Ĥ defined
in (6) satisfies the hybrid basic conditions defined in
(Goebel et al., 2012, Assumption 6.5), namely C and D
are closed, F|Ĉ and G|D̂ are outer semicontinuous and

locally bounded, and F|Ĉ takes convex values.

It follows that the plant solutions from X0 are also so-
lution to (2) with flow set C ∩ X and jump set D ∩ X ,
which are compact. The assumption that AX is com-
pact is satisfied for A defined in (8b) if T is continuous,
namely in all the examples considered above.

Let us define the sets

A′ :=
(
AX × {0} × {−1}

)
∪
(
Ĝ× {0}

)

Ĝ :=
{
(ηx, z, ηz) : ηx ∈ g(x) , ηz ∈ G(z, hd(x))

x ∈ D , (x, z) ∈ AX

}
.

Theorem 6.4 Suppose Assumptions 6.1, 6.2 and 6.3
hold. Then, A′ is UpAS for Ĥ(0) with basin of attraction
containing X0 ×Z0 ×{0}× {−1}. In addition, there ex-
ist a class-KL map β, scalars t? ≥ 0 and j? ∈ N, and for
any ε > 0, there exists ∆∗ > 0, such that any solution
φ = (x, z, µ, τδ) to Ĥ(∆) with ∆ < ∆∗ and initialized in
X0 ×Z0 × {0} × {−1} verifies

|φ(t, j)|A′ ≤ β(|φ(0, 0)|A′ , t+ j) + ε , (38)

and
∣∣(x, z)(t, j)

∣∣
A

≤ 2ε for all (t, j) ≥ (t?, j?) such that

τδ(t, j) = −1.

PROOF. Take a solution φδ = (x, z, µ, τδ) to Ĥ(∆) for
some ∆ ∈ [0,min I) with (x, z)(0, 0) ∈ X0 × Z0. Ob-
serve that the component x is not impacted by the delay
mechanism, therefore, from Assumption 6.2, x(t, j) ∈ X
for all (t, j) ∈ domx. It follows that φδ is solution to

a hybrid system ĤX (∆) which has same dynamics as

Ĥ(∆) but with flow set ĈX (∆) := Ĉ(∆)∩ (X ×R
2dz+1)

and jump set D̂X (∆) := D̂(∆) ∩ (X × R
2dz+1). In the

framework of Altin and Sanfelice (2020), ĤX (∆) is then

the delayed version of the nominal observer H−Ĥ with
flow set ĈX = (C ∩ X ) × R

dz , and jump set D̂X =
(D∩X )×R

dz . By Assumption 6.1 (and by containment
(Goebel et al., 2012, Theorem 3.32)), the set AX (that
is compact according to Assumption 6.2) is still UpAS
for this modified system. With the hybrid basic condi-
tions in Assumption 6.3, we conclude from (Altin and
Sanfelice, 2020, Proposition 4.3, Remark 4.4) that the

set A′ is UpAS for ĤX (0) with basin of attraction con-

taining X0 × Z0 × {0} × {−1}. Ĝ is compact by outer-
semicontinuity and local boundedness of g and G. A′

is therefore compact. Still from the hybrid basic condi-
tions, A′ is thus semi-globally practically robustly KL
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asymptotically stable for ĤX (0) according to (Goebel
et al., 2012, Lemma 7.20). This means that there exists
a KL function β such that for any ε > 0, there exists
ρ > 0 such that any solution φ to a ρ-perturbation of
ĤX (0) initialized in X0×Z0×{0}×{−1}, verifies (38).

Since ĤX (∆) can be included in any outer-perturbation

of ĤX (0) by taking ∆ sufficiently small, (38) holds along

solutions of ĤX (∆) for ∆ sufficiently small. Now for
ε sufficiently small and for sufficiently large (t, j) (de-
pending only on β and the compact set of initial condi-
tions), |φ(t, j)|A′ = |φ(t, j)|A′

−1
when τδ = −1, and thus

|(x, z)(t, j)|A ≤ |φ(t, j)|A′ ≤ 2ε. �

In other words, we achieve semi-global practical stabil-
ity of A except possibly on the delay intervals. More
precisely, for any ε > 0, there exists a maximal delay
∆∗ between the jumps of the plant and of the observer,
such that the distance of (x, z) to A is asymptotically
smaller than 2ε, except possibly during the delay inter-
vals in-between those jumps, of length smaller than ∆∗.
This is illustrated in Section 7.2.

In fact, if A is the diagonal set (8a), the mismatch dur-
ing the delay intervals cannot be prevented if the jump
map is not the identity. Indeed, after one jump of either
x or z, one is close to x− while the other is in g(x−),
no matter how short the delay is. This well-known phe-
nomenon, called peaking, was reported in the context
of observation Forni et al. (2013), but also more gener-
ally output-feedback and tracking Biemond et al. (2013).
This suggests that the Euclidian distance to evaluate
the observer error is not appropriate and more general
distances could be designed Biemond et al. (2016). In
particular, the expression of A′ shows that semi-global
practical stability is ensured for the peaking free set

Ã = A∪
{
(x, z) ∈ R

dx×R
dz : x ∈ g(x−) , (x−, z) ∈ A

}
.

Note that in the limit case wheremin I = 0, namely Zeno
solutions could exist, then an arbitrarily small delay in
the observer jumps could lead to several jumps of delay,
namely, one would need to consider

Ã = A∪
{
(x, z) ∈ R

dx×R
dz : x ∈ gk

∗

(x−) , (x−, z) ∈ A

gk(x−) ∩D 6= ∅ ∀k ∈ {1, · · · , k∗ − 1}
}
.

With an average dwell-time, k∗ would be limited by N0.

7 Applications

The results in the previous sections are exercised in ap-
plications. Section 7.1 introduces a model that covers
a class of mechanical systems with impacts, including
juggling systems and walking robots; see Sanfelice et al.
(2007) and Short and Sanfelice (2018), and the references

therein. Section 7.2 presents a second application that
pertains to a parameterized model capturing the dynam-
ics exhibited by a wide range of cortical neurons. This
model, introduced in Izhikevich (2003), has been widely
used by the neuroscience community due to its capabili-
ties of reproducing a variety of spiking and bursting be-
haviors by properly choosing its parameters. The reader
is also referred to the report version (Bernard and San-
felice, 2020b, Section 7.3) for a detailed analysis of the
way those results apply to the design of observers for the
general class of switched systems defined in Example 2.3.

7.1 Mechanical system with impacts

Consider a system evolving according to

{
θ̇ = ω

ω̇ = α(θ, ω)
(θ, ω) ∈ C ,

{
θ+ = gθ(θ, ω)

ω+ = gω(θ, ω)
(θ, ω) ∈ D

with x = (θ, ω) ∈ R
d × R

d the (bounded) positions and
velocities, α, gθ and gω locally Lipschitz functions, the
position y = θ measured and jumps occurring at the
impacts of θ on a surface W, typically modeled by a
jump set of the form

D = {(θ, w) ∈ R
d × R

d , θ ∈ W , 〈ω,∇W〉 ≤ 0}

where the second condition ensures the velocity is point-
ing inwards W. The flow dynamics are clearly strongly
differentially observable of order dz = 2, since (y, ẏ) = x
defines an injective immersion (with T simply the iden-
tity map). Therefore, if the impacts are detected (for in-
stance through force sensors) and are known to have an
average dwell-time, then an observer is simply given by





˙̂
θ = ω̂ − `(θ̂ − y)

˙̂ω = sat
(
α(θ̂, ω̂)

)
− `2(θ̂ − y)





θ̂+ = sat
(
gθ(θ̂, ω̂)

)

ω̂+ = sat
(
gω(θ̂, ω̂)

)

for ` sufficiently large, sat saturation functions saturat-
ing outside the bounds within which x is known to evolve,
and jumps triggered at the detected impacts.

On the other hand, if the mechanical system possibly
exhibits Zeno behavior (i.e. with sup domt x < +∞ and
sup domj x = +∞), for instance due to gravity, a jump-
based observer should be used instead. For instance, con-
sider a vertical bouncing ball with

f(θ, ω) = (ω,−%ω − g) , g(θ, ω) = (−θ,−λω) (39)

C = R≥0 × R , D = {(θ, ω) ∈ R
2 : θ = 0 , ω ≤ 0}

with g the gravity constant, % the friction coefficient,
and λ < 1 the impact restitution coefficient. Assume
the measurement yd = θ is only available at jumps,
namely only impact sensors are used. We know that any
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Fig. 1. Jump-based estimation of a Zeno bouncing ball (39).

maximal solution x is Zeno. More precisely, the time
between two successive jumps tj+1(x) − tj(x) tends to
zero when j tends to +∞, and its upper bound in-
creases with |x(0, 0)|. Hence, for any bounded set of
initial conditions X0, CX0 [I] holds with I of the form
I = [0, τmax], with τmax < +∞ depending on X0. Since
the system is linear, we implement a linear observer
(12), with Lc = 0 and Ld chosen such that (30) holds,
where Ac =

(
0 1
0 −%

)
, Ad =

(
−1 0
0 −λ

)
and Hd = (1, 0). As

in Remark 5.3, we compute a polytopic decomposition
of exp (Acτ) based on the residues of Ac. Because one
eigenvalue of Ac equals zero and τmin = 0, we obtain
that exp (Acτ) is in the convex hull of only two matri-
ces M1 = I and M2 = ( 1 3.9347

0 0.6065 ) for τmin = 0, τmax = 5,
λ = 0.8, and ρ = 0.1. Solving (34) with Yalmip then
gives Ld = (−1,−0.1085)>. The result of a simulation 1

with initial condition x0 = (5, 0), x̂0 = (10, 2) is shown
on Figure 1. Note that one could also use the hybrid
Kalman filter (36) with a varying gain Ld.

7.2 Spiking Neurons

The parameterized model of a spiking neuron in Izhike-
vich (2003) results in a hybrid system H as in (2) with
state (x1, x2) ∈ R

2 and data given by

f(x) =
(
0.04x2

1 + 5x1 + 140− x2 + Iext , a(bx1 − x2)
)

g(x) = (c, x2 + d) , hc(x) = hd(x) = x1

C = {(x1, x2) ∈ R
2 : x1 ≤ vm} (40)

D = {(x1, x2) ∈ R
2 : x1 = vm}

where x1 is the membrane potential, x2 is the recovery
variable, and Iext represents the (constant) synaptic cur-
rent or injected DC current. The value of the input Iext
and the model parameters a, b, c, and d, as well as the
threshold voltage vm characterize the neuron type and

1 Available on https://github.com/HybridSystemsLab/
SyncHyObserverMechanicalSysImpacts.
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Fig. 2. Flow-based estimation of (x1, x2, a, b) in the neuron
model (40) through high-gain observer.

its firing pattern Izhikevich (2003). The solutions are
known to have an average dwell-time (actually a dwell-
time), and the jump times can be detected from the dis-
continuities of the output y = x1. We consider two sce-
narios 2 for estimation of state variables and parameters.

Let us first assume that c and d are known and we want
to estimate the state x2 as well as the parameters a and
b. Adding the constant parameters a and b to the state,
the nonlinear map T made of the successive derivatives
of h along f defined by (23) for dz = 4 is an injec-
tive immersion with respect to x = (x1, x2, a, b) if the
matrix

( x1 x2
ẋ1 ẋ2

)
is invertible along the plant trajectories.

Under this condition, we can thus use the high-gain de-
sign of Example 4.3. The result of a simulation with
Iext = 10, a = 0.02, b = 0.2, c = −55, d = 4, x(0, 0) =
(−55,−6, a, b), x̂0 = (−50, 0, 0.1, 0.1), z(0, 0) = T (x̂0),
` = 4, K = (3.0777, 4.2361, 3.0777, 1) and appropriate
saturations is shown on Figure 2.

Let us now consider the case where a, b are known but d
is not. Neither the continuous dynamics nor the discrete
dynamics are observable for (x1, x2, d) with output x1,
so a flow-based observer cannot be used. However, x2

is observable from the flow and d impacts x2 at jumps,
so the system as a whole could be observable thanks
to the jumps. Actually, we observe that the model is
linear in the unknowns x2 and d, namely the dynam-
ics of (x1, x2, d) are characterized by the matrices Ac =(

0 −1 0
0 −a 0
0 0 0

)
, Ad =

(
0 0 0
0 1 1
0 0 1

)
, Hd = (1, 0, 0), modulo output

injection. One can check that the equivalent discrete-
time model given by (31), namely the pair A(τ) :=

2 Available on https://github.com/HybridSystemsLab/
SyncHyObserverSpikingNeurons.
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Ad exp(Acτ) =
(

0 0 0
0 1−aτ 1
0 0 1

)
, H(τ) := Hd exp(Acτ) =

( 1 −τ 0 ) is observable for any nonzero τ . Let’s say that
from the measurements, the flow intervals in-between
firing times are known to be within a compact set I =
[τmin, τmax] with τmin > 0. Since Ac is nilpotent of order
2, from Remark 5.3, it is enough to solve the two LMIs
given by

(
P (I + τAc)

>(PAd − L̃dHd)
>

? P

)
> 0 (41)

for τ = τmin and τ = τmax. If they are solvable (with

common P and L̃d), then with Corollary 5.2, we obtain

an observer with state z = (x̂1, x̂2, d̂) by taking

F (x̂1, x̂2, d̂, yc) = (f(yc, x̂2), 0)

G(x̂1, x̂2, d̂, yd) = (c, x̂2 + d̂, d̂) + Ld(yd − x̂1) .

For instance, for τmin = 30 and τmax = 50, solv-
ing the LMIs via Yalmip for P and L̃d, we get
Ld = (0, 0.0028,−0.0063)>. The results of a simulation
are provided on the top and bottom left of Figure 3. Of
course, because information from the output is injected
at the jumps only, the estimation error takes a longer
time to converge than the flow-based observer where
instantaneous observability is guaranteed during flow.
Note that theoretically, we could have used the estimate
x̂1 instead of the measurement yc in the observer flow
F for the linear terms in x1, and take it into account
in Ac. However, this does not work well with the term
5x1 because it produces an error growing in e5τ during
flow, which reaches 1086 for τ = 40. In other words,
a jump-based observer will only work numerically if
the eigenvalues of Ac are reasonable compared to the
length of the flow intervals. Finally, we plot on the bot-
tom right of Figure 3, the norm of the estimation error

‖(x̂1, x̂2, d̂)−(x1, x2, d)‖ in steady state, when the jumps
of the observer are triggered with some delay after the
plant state. We observe the error peaking to around 80
during the delay intervals whatever the delay’s value ;
and then the smaller the delay the smaller the error out-
side of the delay intervals, as predicted by Theorem 6.4.

8 Conclusion

Under the assumption that the jumps of the plant can
be detected, we have given Lyapunov-based sufficient
conditions for asymptotic convergence of an observer
for general hybrid systems. Design methods have been
provided, in particular high-gain designs for nonlin-
ear differentially observable continuous dynamics, and
discrete-based designs when observability is ensured
from the output at jump times. Jumps in the observer
must be triggered at the same time as the plant jumps
but we have shown their robustness with respect to de-
tection delays, namely semi-global practical stability of
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Fig. 3. Top and bottom left : jump-based estimation of
(x1, x2, d) in the neuron model (40) without delay. Bottom
right : norm of the residual estimation error without delay
(red), with delay ∆ = 1 (blue), with delay ∆ = 5 (pink).

the estimation error outside the delay intervals. Those
results provide a new insight for the design of observers
for switched systems.

However, unlike the flow-based designs which are inher-
ently made for nonlinear dynamics, the nonlinear jump-
based designs are limited by the computation of the flow
reachable set, as well as the limits already existing for
the design of nonlinear discrete-time observers. Future
work consists in combining the flow-based and jump-
based designs via high-gain ISS interconnections in order
to enlarge the class of systems for which those designs
are constructive. Moreover, further work is needed to
evaluate how those observers can be used in the context
of output-feedback, as was done on a particular exam-
ple of biped robot in Grizzle et al. (2007), with precisely
the high-gain observer of Example 4.3.

More importantly, observers able to synchronize auto-
matically their jumps with those of the plant still need
to be developed, at least locally, to avoid relying on the
often noisy/delayed jump detection. Indeed, the robust
practical stability result of Theorem 6.4 would then en-
able to combine such local auto-synchronizing observers
with the global observers of this paper. This problem
represents a significant challenge since the entire anal-
ysis needs to be rethought to handle non-simultaneous
jumps and ensure contraction of the difference between
jump times. Preliminary work in this direction is pre-
sented in Bernard and Sanfelice (2021).
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