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Explaining the “mystery” of periodicity in
Inter-transmission times in two-dimensional
event-triggered controlled systems

Romain Postoyan, Ricardo G. Sanfelice, W.P.M.H. (Maurice) Heemels

Abstract— Motivated by scenarios where the communi-
cation or the computation resources are limited, event-
triggered control consists of transmitting data between the
plant and the controller according to the actual system
needs, and not the elapsed time since the last transmission
instant as in traditional sampled-data control, so that the
desired control objective is achieved. A range of tech-
niques are nowadays available to design event-triggered
controllers. However, we generally have only very little
information about the actual behaviour of the transmission
instants and thus about the amount of transmissions being
actually generated, though this is a key feature of the
design. In this paper, we analyse the inter-event times, i.e.,
the times between two successive transmission instants,
when the plant is modeled as a two-dimensional linear time-
invariant system. The controller is a state-feedback law and
the triggering rule is the relative threshold policy, which is
allowed to be time-regularized. One of the main results in
this paper is the explanation of the oscillatory behaviour of
the inter-event times when the constant used to define the
threshold is small relative to 1, a phenomenon commonly
observed in simulations but never explained so far. More
generally, the presented results help to understand the
behaviour of the inter-event times, instead of solely relying
on numerical simulations, and thereby can be exploited to
rigorously evaluate the performance of the considered trig-
gering condition in terms of (average) inter-transmission
times.

Index Terms— Event-triggered control, sampled-data, hy-
brid systems

[. INTRODUCTION

Event-triggered control is a transmission paradigm, which
consists in generating communications between the plant and
the controller using a state-dependent criterion that is con-
tinuously monitored [22]. The basic idea is to adapt plant-
controller communication based on the current system needs,
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and not the time elapsed since the last transmission as in
traditional time-triggered control. Event-triggered control is
relevant in scenarios where the control system is subject to
communication or computation constraints, as in networked
control systems or embedded systems see, e.g., [23], [25], [50].

While various event-triggered control techniques are avail-
able in the literature, very little is known about the actual
behaviour of the inter-event times, i.e., the time between two
successive transmission instants. This is problematic as the
inter-event times directly relate to the amount of transmissions
generated and is therefore of primary importance in view of
the raison d’étre of event-triggered control. In most cases, the
analysis of the inter-event times only ensures the existence
of a dwell-time also sometimes called “minimum inter-event
time”, that is a (uniform) strictly positive amount of time be-
tween any two successive transmissions. This property allows
avoiding the Zeno phenomenon and is required by practical
hardware limitations. Besides the existence of a dwell-time,
we generally do not know how the inter-event times behave.
Numerical simulations are thus often carried out to get an
idea of it. Exceptions exist though. The work in [46] provides
conditions under which the inter-event times approximately
converge to a constant value when the triggering rule satisfies
a homogeneity property and when zero-order hold devices
are used to implement the controller. This reference also
analyses stability properties of the inter-event times assuming
it exhibits a periodic pattern. Similarly, conditions for the
inter-event times function to exhibit continuity and periodicity
properties have been very recently proposed in [38] for two-
dimensional linear time-invariant systems. The works on/based
on discrete-time systems in, e.g., [4], [10], [11], which rely
on model predictive control techniques, provide analytical
guarantees regarding the average inter-event times. When the
plant dynamics evolve in continuous-time and smart actuators
are available, properties on the inter-event times can be derived
when using model-based holding functions [34], as advocated
in [5], [27] for fixed threshold policies, even in the presence
of stochastic disturbances. Interestingly, in the absence of
disturbances, model-based implementations [34] can lead to
a single transmission to stabilize the system in the ideal state-
feedback control case. Also, some schemes ensure that inter-
event times grow larger or converge to a constant as the
solution converges to the origin [24], [32], and [37, Section
V.B], or as time grows [35]. Another recent relevant line of
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research is based on symbolic abstractions see, e.g., [18], [19],
[29]. The general idea is to partition either the state space
or the inter-event times and then to construct an automaton
that schedules transmissions with guaranteed properties on
(the long term behaviour of) the inter-event times. Lastly, it
has to be noted that several works on event-triggered control
under bit-rate constraints and also on event-triggered stochastic
estimation analyse the inter-event times, see, e.g., [28], [31],
[33] and, e.g., [21], [30], [45], [48], respectively.

Besides the aforementioned works, our understanding of the
inter-event times remains limited, while it is a key charac-
teristic of the event-triggered controlled system. Phenomena
such as when the inter-event time describes a periodic-like
pattern, which is often seen in simulations (see, e.g., [6,
Figure 3], [8, Figure 3], [40, Figure 4], [44, Figure 1], [49,
Figure 4]), remain unexplained. Interestingly, inter-event times
oscillations were observed in one of the earliest works in the
field: more than twenty years ago in [7] it was stated that
“Several interesting phenomena have been observed during the
simulations. One example is limit cycles in the actual sampling
interval”, which is still not elucidated as far as we know.
More generally, understanding the behaviour of the inter-event
times is essential to appreciate the features of the considered
triggering technique and to evaluate its performance in terms
of transmissions.

There is a simple reason for our limited understanding of
the inter-event times: the question is notoriously challenging
technically. In this paper, we focus on plant dynamics given by
two-dimensional continuous-time linear time-invariant systems
and we will see that the problem becomes quickly technically
involved. The controller is a static state-feedback law imple-
mented using zero-order hold devices. The triggering rule is
the one in [42], which is one of the pillars of the literature
that has been used and extended in various contexts see, e.g.,
[2], [13], [15], [17], [40], [47]. This triggering law relies on
the condition |z — &| > o|z|, where x is the current plant
state, = is the plant state at the last transmission instant and
o € R5 is a tunable parameter. Our results also apply for
a time-regularized version of [42], in the sense that a given
minimum time is enforced between any two transmissions, see,
e.g., [11, [9], [14], [16], [39], [41], [43]. This is relevant when
we want to have a direct control on the minimum inter-event
time as well as for robustness reasons, see [2], [8], [9], [12],
[14]. The idea of including time-regularization is to check the
condition above once 1" > 0 units of times have elapsed since
the last transmission instant: if it is satisfied, a transmission
between the plant and the controller is triggered. We only
talk of time-regularization when T' > 0, as, for T" = 0, the
“classical” relative triggering law of [42] is obtained.

Our results require o to be small relative to 1, which is
typically the case to ensure the stability of the origin of the
closed-loop system, see, e.g., [1], [14], [41], [42]. We will
see that accurate results are obtained on examples even when
o is taken close to its maximum admissible value ensuring
stability. We first establish key properties of the inter-event
times functions, which apply to system of any dimension,
not only two-dimensional ones. In particular, we provide an
expression of the inter-event time, which allows to derive new

lower and upper bounds; this result has its own interest and
could be exploited for scheduling purposes for instance. We
then specialize to two-dimensional systems and distinguish
different cases depending on the nature of the eigenvalues
A1 and A\, of the state matrix of the continuous-time closed-
loop system in the absence of sampling. In summary, when
A1 and Ao are complex conjugates, we show that the inter-
event times oscillate with a period close to % where 3 is
the absolute value of the imaginary parts of A\; and Ag. This
provides for the first time, as far as we know, an explanation
of the oscillatory nature of the inter-event times. In addition,
we demonstrate that the values taken by the inter-event times
over any time interval of length longer than % are almost
insensitive to the considered initial condition. This result has
important implications: not only the periodicity of inter-event
times is explained and analysed, but this means that a single
simulation over a time interval of length Z is enough to
rigorously know the behaviour of the inter-event times for
all initial conditions and all times. Compared to [46, Section
IV] where periodic patterns of the inter-transmission times are
mentioned, (i) we do prove the existence of such patterns,
instead of assuming it, (ii) we provide an easy-to-compute
expression of the period and (iii) we analyse the impact of the
initial conditions on the inter-event times, while [46] assumes
exact periodicity, which cannot occur in general as we show,
and studies the stability properties of the inter-event times. On
the other hand, when \; and A5 are real, the inter-event times

either converge to a neighborhood of max Ifil\’ T} as time

tends to infinity or lies in a neighborhood of max {l)%\’T
for all positive times. The only case that we do not treat is
when A\; = A2 and the corresponding geometric multiplicity
is equal to one because significant technical difficulties arise
in this case as we explain. We conjecture that the inter-
event times converge to max{lf—l‘,T} in this case, which
is confirmed by simulations. These results are consistent with
[46, Proposition 1] where non-time-regularized homogeneous
triggering rules are discussed. We go further here as (i) we
carefully analyse the impact of ¢ (and 7') on the inter-event
times, (ii) we prove that the inter-event times are close to
given values for all positive times in some cases, instead of
providing asymptotic properties only, (iii) we address time-
regularization. Compared to [38], we provide constructive and
easy-to-compute estimates on the behaviour of the inter-event
times, we reveal the relationship between these properties and
the eigenvalues of the closed-loop state matrix and we analyse
the impact of the initial conditions on the inter-event times.
The provided simulation results confirm and show the strength
of the obtained theoretical guarantees.

Compared to preliminary version of this work [36], the main
novelty is the time regularization of the triggering law of [42],
which is important as the relative threshold strategy of [42]
is known to be non-robust [8] as mentioned above. We also
present several new results, including new lower and upper-
bounds on the inter-event times (see Lemma 1), discussions
about the application or the extension of the results to other
classes of systems (see Section V), as well as new examples
including a nonlinear one (Section VI).
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The remainder of the paper is organized as follows. The
problem is formally stated in Section II. Then, key properties
of the inter-event time function are established in Section III.
The main results are given in Section IV. Discussions on
the extension of the results are proposed in Section V. The
results are confronted to numerical simulations in Section VI.
Section VII provides conclusions. Finally, lengthy proofs are
presented in the appendix.

Notation. Let R be the set of real numbers, R>( := [0, c0),
R.¢ := (0,0), Ry := (—00,0), Z be the set of integers,
Zso:=1{0,1,2,...} and Z~¢o := {1,2,...}. Given a set £ <
R™ with n € Z~, we use E* to denote F\{0}. We denote
the set of unit norm vectors of R" with n € Z~g, as S,,, i.e.,
S, :={z € R™ : || = 1} where |- | stands for the Euclidean
norm. The notation (x,y) stands for [z, y"]", where z €
R™ and y € R™. For f : Ryy — R” right continuous and
t > 0, we write f(¢t7) to denote limy ; f(¢'). We use I to
denote the identity matrix of appropriate dimension according
to the context. For a matrix A € R™*" with n € Z-qg, we
respectively denote its maximum and minimum singular values
as Smax(A4) == v/ Amax(ATA) and ¢uin(A4) 1= A/ Amin (AT A),
where Apax(ATA) and A\yin (AT A) are the maximal and the
minimal eigenvalues of AT A, respectively. The argument! of
x = (z1,22) € R®* is defined as

arg : R?* — [—7, 7]

~

arctan(22), when z; > 0

1
Z2o
arctan(3) +
when 17 <0 and 29 = 0
xT
arctan(3?) — ,
when 7 < 0 and 29 <0
5, Wwhenz; =0and 22 >0
—%, when z; = 0 and 22 <0

x—arg(z) :=

By argument, we mean here the angle of the two-dimensional
vector x, which, without loss of generality, is treated as a
complex number.

Il. PROBLEM STATEMENT
Consider the plant model

Ax + Bu, (1)

T =

where x € R" is the state with n € Z~ ¢, u € R™ is the control
input with m € Z~¢, and (A, B) is stabilizable. We restrict n
to be equal to 2 later, in Section IV. The control input u is
given by the feedback law

u =

Kz, 2

where the matrix K € R™*" is such that A+ BK is Hurwitz;
such a matrix does exist since (A, B) is stabilizable.

We study the scenario where controller (2) is implemented
on a digital platform and communicates with system (1) at
time instants ¢;, ¢ € Z with Z := {1,2,..., N} n Z>( with
N € Z~¢ v {o0}; this will be clarified in Section III. Between
two successive transmission instants, the control input is held

10Often, the argument is defined as arg(z) = arctan(%), but this is
only true when 1 > 0.

constant using a zero-order hold device, and it is updated at
every t;, ¢ € Z, which leads to

Kz 3)
with & being given by the solution to

&t) = 0
B(t]) (t:).

We also introduce the clock variable § € R>( to measure the
time elapsed since the last transmission instant. This variable
is needed when the triggering law is time-regularized. Its
dynamics are given by

5t = 1 for all t € (t;,t;41) 5)
sty = o.

for all ¢t € (t;,t;41) 4)

The overall system is

#(t) = Az(t) + BK#(t)

i’(t) = 0 for all t € (ti,ti+1)
5(t) 1

w(t)) (t:)

2tf) = ax(t;) p forallieZ.

Sty =0

(6)
To obtain a solution to (6) in the Carathéodory sense, for each
i € Z, the latter flows on [t;, ;1) and experiences a jump
at t;11, and so on. Also, by a solution, we mean a maximal
solution, i.e., one that cannot be extended.

The sequence of transmission instants t;, ¢ € Z, is defined
implicitly by a state-dependent triggering rule. In particular,
we consider the law in [42], possibly time-regularized, to
define these instants as proposed in, e.g., [1], [14], [16]. Hence,
a transmission occurs whenever

|2(t) —z(t)] = ol|z(t)] and ty=17T, (N

where o > 0 and T' > 0 are design parameters. We only talk
of time-regularization when 7" > 0 as mentioned in Section
I, and we note that, when T° = 0, the second condition in
(7) is always verified. The first inequality in (7) guarantees
that the error |# — x| induced by sampling is smaller than
ol|x| as in [42], after T units of times have elapsed since the
last transmission; otherwise a transmission is triggered. On the
other hand, the inequality 6(¢) > T in (7) enforces a minimum
time between successive transmissions of at least 7" units of
time, which we design, whenever 7' > 0. Constants ¢ and
T are selected to ensure that the origin of system (6)-(7) is
uniformly globally exponentially stable, as formalized next.

Standing Assumption 1 (SAI): There exist d; > 1
da,0*, T* > 0 such that for all (0,7) € (0,0*) x [0,T*)
for all solutions (x,,d) to (6)-(7) and t = 0, |(z(t), &(t))] <
dre="|(2(0), 2(0))]. O

Various techniques are available in the literature to compute
the bounds o* and T* to ensure SA1, see?, e.g., [1], [14], [16],
[39], [41], [42], [42], [43].

2 Although the work in [42] does not consider time-regularized triggering
laws, SA1 does hold by taking T* = 7 where 7 is given in [42, Corollary
IV.1].
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We assume that ¢t; = 0, which means that the initial time ¢ =
0 is a sampling time. We therefore concentrate on solutions
to (6)-(7) initialized at time O with initial state of the form
(20,0, 0) where 29 € R™, since after a sampling instant & is
equal to x and § to 0. The first inter-transmission time is the
time, greater than or equal to 7', such that |& — x| is larger
than or equal to ol|z|. Since ¢y = 0, and z(0) = Z(0) = zo,
this time only depends on z(, and is parameterized by o and
T, we therefore denote it 7, (o). The first inter-transmission
time is defined as, given x,

= inf{n =T : |zo — (3 20)| = old(n; z0)|}

®)
where ¢(n; o) denotes the solution® to @ = Az + BKx
at time 7 > 0, initialized at time zero at state xy. By
induction, we denote the i inter-transmission time, with i € Z,
as 7, 7(x(t;)), which only depends on z(t;), as z(t}) =
#(t]) = x(t;) and 6(t]) = 0. The mathematical definition
of 7, r(x(t;)) is given by (8) by simply replacing zo by*
x(t;). Noting that &(t) = x(t;) for t € (t;,t;+1) in view of
(6), we can write 7, 7(x(t;)) = 707 (Z(t)).

Problem Statement: The objective is to analyse the proper-
ties of 7, 7(Z(-)) along solutions to the hybrid system (6)-(7)
initialized at (xg,x,0) for some zo € R™ when n = 2 and
for o small relative to 1. |

The only guarantee on the inter-event times we find in the
literature for the triggering condition (7) is the existence of a
minimum inter-event time. More precisely, when T = 0, we
know from [42] that there exists £ > 0 such that 7, r(z¢) > ¢
for any xy € R™*, and, when T > 0, 7, 7(xo) = T for any
zo € R", which directly follows from (7). We aim at going
further in the analysis of the function 7, r: we want to provide
analytical characterizations of the behaviour of ¢ — 7, 7(Z (%))
along the solutions to (6)-(7). In that way, we would be able
to rigorously quantify the amount of transmissions generated
by the triggering rule.

For this purpose, we view system (6)-(7) as a family of
systems parameterized by ¢ and T, and the presented results
apply for small ¢ in (7), which we justify as follows. First, o
typically needs to be small for the closed-loop system in (6)-
(7) to exhibit stability properties, see SA1. Second, our line of
analysis exploits properties of the limit case when o — 0. This
allows us to derive simple and accurate properties on the inter-
event times, which are corroborated by numerical simulations
in Section VI even when o is taken close to ¢* defined in
SAL.

The next section establishes preliminary instrumental prop-
erties of the map 7, 7.

To1(20)

Ill. PROPERTIES OF THE MAP 7, 1

We first need to make sure that 7, 7 cannot be equal to co.
In other words, we want to guarantee that 7, 7 (R") < [0, 00).
This is ensured by the next proposition.

3We abandon in the following the notation ¢ to denote a solution, and
use instead directly x (or ).

4We can still consider the time from n = T in (8) in this case, and
not from n = t; + T, as system (6)-(7) is time-invariant and satisfies the
semi-group property.

Proposition 1: For any g € R", ¢ € (0,0*) and T €
[0,7*) where o* and T* come from SA1, 7, 1 (o) € [0, ).
U
Proof: Let 0 € (0,0*) and T € [0,7*). We first note that
To1(0) = T in view of (6), (7) and (8). To prove that 7, 1
takes finite values on R™*, we proceed by contradiction and
we suppose that there exists g € R™* such that 7, r(xg) =
oo. This means that the solution (z,%,d) to system (6)-(7)
initialized at (o, o, 0) never jumps. By SA1, z(t) is defined
for all positive times and converges to zero as t tends to
infinity. On the other hand, |Z(t) — z(t)| = |zo — z(t)| <
olxz(t)| for any ¢ > T since no jump occurs. By taking the
limit as ¢ — oo on both sides of the latter inequality, we obtain
|zo| < 0, which is impossible since z¢ # 0. This proves the
desired result. ]

Proposition 1 implies that Z = Z~( as introduced in Section
11, for any 2y € R™ and any pair (o, T), which satisfies SA1.

Second, we state a homogeneity property of 7, 7, which is
established in [3, Theorem 4.11 and Remark 4.12] for the case
where 1" = 0. The proof directly follows when 7" > 0, and is
therefore omitted.

Proposition 2: For any zg € R™*, ne R*, 0 € (0,0*) and
Te[0,T*), 75,7(x0) = Tor(uzo). O

Proposition 2 states that 7, 7 is constant along lines passing
through the origin, excluding the origin.

Third, we derive an approximate expression of 7, 7 on R™*
for small o. We distinguish two cases for this purpose whether,
given m > 0, the pairs (0,7 belong to the set

Sm(a*7T*)::{(a, T): o€ (0,0%),T € [0, min {mo, T*})}
)

or not. While the set S, imposes no extra condition on o
compared to SAl, it requires that, when o is small, so is T’
(which implies that 7" depends on o). Note that, when no time-
regularization mechanism is implemented, 7" = 0 and any pair
(0,0) belongs to S,,(0*, T*). The next proposition provides
approximate expressions of 7,7 on R™* for small o in the
general case first, and then provides additional expressions
when the pairs (o, T') belong to S,,,(¢*, T*) for a given m > 0.
Proposition 3: There exist 7/ : R" x (0,1) > R, ¢. > 0
and 0¥ € (0,min{1,0*}) such that for any o € (0,07 ),
T € [0,T*) and any xy € R™*, 75 p(x0) = T + 1'(x0,0)
and |r'(zg,0)] < ¢,.o. Moreover, for any fixed m > 0,
there exist » : R" x (0,1) — R, ¢, > 0 and o] €
(0, min{1,0*}) such that for any (0,7) € Spn(of,T%),
Tor(®o) = max {U‘Xi‘;lol + r(z9,0),T ¢ and |r(zg,0)| <
cro?, where A, := A+ BK. O
Proposition 3 states that 7, (z) can be written as T'
plus a term of the order of o when (0,T) is selected as in
SA1 and o is small compared to 1. This result implies that
when 7' is “big” compared to o, we essentially have periodic
sampling as 7, 7 (o) is then well approximated by 7" for all
Zo in this case, since 7’/(xg,c), which is of the order of o,
is negligible compared to 7'. Because of that, we concentrate
on the case where the pairs (o,T) belong to Sy, (o7, T™) for
a given fixed m > 0 in the remainder of the paper. In this
case, Proposition 3 states that 7, (o) is well approximated
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|zo|
‘Acw0|’

which is of the order of o, while the error term 7(z¢, o) is of
the order of o2. The fact that the constant c,, which appears
in the upper-bound of the norm r(zg, o), is independent of
zo and (0,T) (but does depend on m), is crucial in the
following. We will see via examples in Section VI that the
forthcoming analytical guarantees on the inter-event times may
provide accurate estimations even when o and 7' are taken
close to their respective maximal admissible values o* and
T* according to SAL.

Interestingly, Proposition 3 can be used to derive a new
lower bound as well as an upper bound on 7, 7(xo), which
have their own interest.

Lemma 1: Given m > 0, for any (0,T) € Sy(o7,T*)

by max {0 T} for small ¢ > 0, for any zy € R™*,

with 7% from SAl and o] from Proposition 3,
and any v € R™, 71,7 < 7or(z0) < Tor
where 1, = max{m—qﬂg?’T}, ToT =
max {#(AC) + cT027T} and ¢, as in Proposition 3. O
Proof: Let m > 0, zg9 € R™ and (0,T) €
Sm(o7,T*). In view of Proposition 3, 7,r(x9) =
max {U\Xi?ﬁlo\ +r(z9,0),T}. On the other hand, |X‘;IO| <
max,, ezl = MaXy,/ ¢ |2 |= Lé’linviewofProo-
w5 #0 TA 20 wp st |2h|=1 TA 27] P
sition 2, and thus i f‘iilol < <m;n1( A Consequently, since

r(zo,0) < 0% Tor(w0) < Tor with T, defined in
Lemma 1. We follow similar lines to derive the lower bound
inequality on 7, 7 (o) in Lemma 1. [ ]

Lemma 1 provides a global lower-bound on the inter-
transmission times when ¢ is small. Compared to the exact
expression of the (global) minimum inter-event time we find
in [15, Theorem IV.1], which addresses non-time regularized
triggering conditions, i.e., T = 0, the bound in Lemma 1 is

more conservative a priori but easier to compute. Indeed, we

can simply take it as max {%(A), T} as the term c,0? is

negligible compared to it for small 0. Lemma 1 also gives a
global upper-bound on the inter-event times, for the first time
as far as we know, which is similarly well-approximated by

m,T}. Both bounds of Lemma 1 may be very
accurate and even exact, as illustrated in Section VI-A.
Remark 1: To know lower and upper-bounds on the inter-
event times may be precious in practice, as it provides guaran-
tees on the window of time at which the transmissions occur,
which can be used for scheduling purposes when the plant and

the controller communicate over a shared digital network for

max {

instance. O
On the other hand, Proposition 3 and Lemma 1 apply for
xo € R™*. The case where zyo = 0 was ignored as some

of the above expressions above are not well-defined in this
case. Now, when 9 = 0 and T = 0, 7,0(0) = 0, which
means that an infinite number of jumps occurs in finite time
at the origin®. This potential issue is clarified when writing
the overall system using the hybrid formalism [20], see [15]

SWe consider Carathéodory solutions in this work as mentioned in Section
I, which leads to a slight inconsistency because the solution initialized at the
origin is trivial, as it cannot flow. We nevertheless show in the following that
we can exclude the origin in the forthcoming analysis.

and [37, Section IV.B] for more details. On other hand, when
T > 0, 7,0(0) = T and this implies that 7, 0(&(¢)) = T
for all ¢ > 0 in view of (6)-(7). In other words, a solution
initialized at state (0, 0, 0) at time 0 experiences jumps every T
units of time: we have periodic sampling. These singularities
invite us to discard the case where z( is equal to O in the
sequel. This is fine according to the next proposition, which
ensures the (z, &)-component of any solution to system (6)-(7)
initialized at (o, xo) with 29 # 0 will never reach (0,0). We
can therefore indeed exclusively consider x and Z on R™* in
the rest of this study.

Proposition 4: Given m > 0, for any (0,T) € Sy, (07, T7),
any solution (z, &, §) to system (6)-(7) initialized at (z, o, 0)
with 2o € R™* verifies x(t) # 0 and &(¢t) # 0 for all ¢ > 0.
U
Proof: The proof relies on the next claims, whose proofs are
given in the appendix.

Claim 1: Given m > 0, there exists p > 0 such that for any
(0,T) € Sp(o7,T*), any solution (x,Z,d) to system (6)-(7)
initialized at (zg, o, 0) with 2o € R™* verifies |#(¢) —z(t)| <
oplx(t)| for all ¢ = 0. O

Claim 2: Given m > 0, for any zg € R™*, the solution z
to & = Az + BKx initialized at xq satisfies z(¢) # 0 for all
t € [0, 75,1 (z0)]. O

The desired result follows by applying Claim 2 on each
inter-transmission interval, since x is not affected by jumps in
view of (6)-(7) and (t) = x(¢;) # 0 for any ¢ € [¢;,¢;41) and
any i € L. ]

Remark 2: We recall that Proposition 4 applies in the
absence of exogenous perturbations; otherwise it may not be
true, see, e.g., [8], [12]. O

We end this section with a continuity-like property with
respect to time of 7, 7 along the z-component of solutions to
(6)-(7).

Lemma 2: Given m > 0, there exist Ceont,1, Ceont,2 = 0 such
that for any (0,7) € Sy, (o7, T*) with o7 from Proposition
3, any zop € R™*, the x-component of the solution to
(6)-(7) initialized at (zq,xo,0) verifies for any t,¢' > 0,
(7o (2(t) — To.r(2(t'))| < 0Ccon1|t — '] + 0% Ceon2. O

Lemma 2 implies that for close times, 7, r(x) takes close
values. This result plays a key role in some of the forthcoming
proofs.

Remark 3: In Proposition 3 (and Lemmas 1 and 2) as
well as in the forthcoming statements, the results rely on the
existence of some upper-bound on o (o7 in Proposition 3).
Estimates of these bounds can be derived from the proofs.
However, these estimates are typically subject to some con-
servatism and may not be easy to compute, which is the reason
why these are not provided explicitly. O

IV. MAIN RESULTS

From now on n = 2. We distinguish different cases
according to the type of eigenvalues of A, = A+ BK, which
are denoted by A; and A2, under SA1. Note that the real parts
of A\; and ), are strictly negative, otherwise SA1 would not
hold.
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A. When \; and \, are complex conjugates and non-real

We write Ay = A+ i8 and Ay = A — i where A\ < 0 and
5> 0.

The next theorem explains the oscillatory behaviour of the
inter-event times often observed in simulations, see Section I
for references.

Theorem 1: Given m > 0, when \; and Ay are non-real,
complex conjugates, there exist oy € (0,1], & > 0,
Ceomplex = 0 such that for any initial condition (zg, zo,0) with
zo € R**, and any (0,T) € S (0fomplexs T*)» the correspond-

ing solution (z, #,0) to (6)-(7) verifies the next property. For

. T . T
any t > 0, there exist 0(t) € 5 Ceomplex T, 3 + CeomplexT

and Tcomplex (t, Zo, o) such that

TU’T(i'(t + 9(t>)) + rcomplex(tu xg, 0’),
(10)
and |reomplex (t, o, 0)| < ér02. O
Theorem 1 implies that the inter-event time function ¢ —
T, (Z(t)) describes an “almost” periodic pattern of period
% for any initial condition (x¢,z0,0) with 7o € R?*, for
small enough o > 0 and 7" > 0. Note that Ccomplexo, Which
is the order of o, is negligible with respect to %, as o is
taken small. Also, rcomplex(, Zo, ) is of the order of o

Tor(2(t) =

2 and
is therefore negligible with respect to 7, 7(Z(t) +6(t)), which
is of the order of ¢ according to Proposition 3. Theorem 1 thus
explains why periodic patterns can arise when plotting the time
evolution of the inter-event times: because the eigenvalues of
A, are complex, non-real, conjugates.

The next natural question is whether the values taken by the
inter-event times depend on the value zy. The next theorem
ensures that this is not the case, more precisely that zy has a
negligible impact of the inter-event times.

Theorem 2: Given m > 0, when A\; and )\, are non-
real, complex conjugates, for any zo,z), € R%*, there exist

¢r,1,¢r2 > 0 such that for any (0, 7)) € Sy (0rmpiexs T*) With
O zomplex [tom Theorem 1, the solutions (, #, ) and (2,4, ')

to (6)-(7) initialized at (z, 0, 0) and (z{, 5, 0), respectively,
are such that for any t € [O,% + Ceomplex ], there exists
TAcomplex (t7 Zo, 1'6, U) such that

Tcr,T(i'(t)) = To,T(il(t + Cr,l)) + fcomplex(t; Zo, x/07 0)7 (11)

and |7qc0mplex(t7 Zo, CCE), 0—)‘ < Cr,202~ ]

Only the time interval [0, %—l—écomplexa] is considered in The-
orem 2 as this suffices to study the values taken by the inter-
event times over any time interval of length % + Ceomplex0 1N
view of Theorem 1. Hence, Theorem 2 implies that changing
the initial condition xo essentially leads to a phase shift ¢, ;
of the inter-event times. As a result, different initial conditions
essentially gives the same inter-event times over any interval
of length of the order of %, for small enough ¢ > 0 and
T > 0 as ¢, is of the order of o, and thus for all positive
times in view of Theorem 1. As a consequence, the amount
of transmissions is almost the same for any xy € R?*.

We derive from the above results that a single simulation
for a single value of o € R>* over T units of time can be
run to accurately determine the inter-event times for all initial

conditions and all future times, and thus to estimate the av-
erage inter-transmission time. This average inter-transmission
time is defined as the limit of time ¢ over the number of
triggering instants, which have occurred on the interval [0, ¢],
as t goes to infinity, like in [19], [27]. This corresponds, for a
given solution (x, Z, §) to (6)-(7) initialized at (z, zo,0) with
X € RQ’*, to

t
lim

S rnt (12)

7o (%0)
where the number of triggering instants in the time window
[0,t] fort = 01is givenby N (¢,x0) := max{i € Zso : t = t;}
with to = 0 the initial time, and ¢ = tx_1 + 7o.7(z(tk—1)),
for any k € Z~, the kth inter-event time.

We thus have a rigorous, numerical way to estimate the
amount of transmissions generated by the event-triggered

controller in this case as 7. 4(zo) is well approximated by

%m in view of Theorem 1, and this value is essentially
the same for all initial conditions according to Theorem 2,
which can thus be evaluated by performing a single simulation

as illustrated in Section VI-B.

B. When \; and )\, are real and distinct

We assume without loss of generality that A\; > Ao.
Proposition 2 reveals an important feature of the inter-event
time function: it only depends on which line passing through
the origin the state £ lies and not on its actual value. To analyse
To7(&(t)) along the solutions to (6)-(7), we can therefore
study the argument of #(¢) and then exploit the results of
Section III. The next proposition characterizes the (asymptotic)
behaviour of the argument of & along the solutions to (6)-(7).

Proposition 5: Given m > 0, when \; > o, there exist
cdisinee > 0 and o € (0,1] such that for any initial
condition (zg,z0,0) with o € R>**, and any (0,T) €
S (0gtinets T*), the corresponding solution (z, %, ) to (6)-
(7) verifies one of the following properties.

(i) There exists wv;, a non-zero  eigenvector
of A, associated with A, such that
limsup,_, ., |arg(2(t)) — arg(v1)| < Cdistinet0-

(i) There exists vg, a non-zero eigenvector of A, associated
with Ay, such that | arg(Z(¢)) — arg(v2)| < cgistineto for
all t = 0. O

Proposition 5 approximately recovers the properties of the
argument of the solutions for the continuous-time closed-loop
system in the absence of sampling z. = A.z. and z.(0) #
0, see [26, Chapter 2.1]. Indeed, when A\; and A are real
and distinct, the argument of x. converges to arg(vy) for v;
some non-zero eigenvector of A. associated with \; when
T( is not in the eigenspace associated to A,. Otherwise, it is
constant and equal to arg(vsy) at all times, with vy some non-
zero eigenvector of A, associated with 5. Similar results are
recovered in Proposition 5 up to a perturbation of the order of
o due to sampling.

Properties of 7, (&) along solutions to (6)-(7) are estab-
lished in the next theorem.

Theorem 3: Given m > 0, when Ay > )5, there exist
c1,02 > 0 and 0y € (0,1] such that for any initial
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condition (g, (,0) with oy € R?**, and any (0,7) €
S (Chigtines T*), the corresponding solution (z, %, d) to (6)-
(7) verifies one of the following properties.

Tor(£(t)) — max {|;1| T}

ag
7,T
Az

(1) limsup < o’

t—0

(i) |7o.7(2(t)) — max < cpo? forall t = 0. [

Theorem 3 means that, when the eigenvalues of A, are real
and distinct, the inter-event time of system (6)-(7) either tends
{‘/{’—2‘, T} for
all positive times, up to a perturbation of the order of ¢? in
both cases, which is negligible for small ¢ > 0 (and T' > 0)
as, again, the inter-event time is of the order of o according to

Proposition 3. As a result, Tsv‘% in (12) is well approximated

‘;\’T,T} or max{ﬁ,T}.

to max {lf—l‘, T} or it takes values close to max

either by max {

C. When X1 and X\, are real, equal and of geometric
multiplicity two

The next theorem follows from Proposition 3 and the
properties of A\; and A,. Note that in this case A, = A\
Theorem 4: Given m > 0, when A\; = A5 and their geomet-
ric multiplicity is two, there exist ¢, > 0 and o7 € (0, 1] such
that for any initial condition (zg,z,0) with zq € R®*, and
any (0,7) € Sy, (07, T™), the corresponding solution (x, & })
)
)

)

max +r(&(t),0),T

i, 0
to (6)-(7) verifies Ty 7 (3(t)) = |;—‘
with |r(2(t),0)| < c,.02. ' O
Proof: Let m > 0, zg € R?>*, (0,7) € Spn(o},T*
(x,2,d) be the solution to (6)-(7) initialized at (xq,zo,0
and ¢ > 0. In view of Proposition 3, 7, 1 (%(t))
|20 +T(£(t),cr),T}. Since A\; = Ay and their

)

)

geometri‘é4 Cfrgil)l‘tiplicity is two, the associated eigenspace is
R?, consequently A.%(t) = MZ(t). Hence, 7,7(2(t)) =
max {lf—l‘ + r(&(t), o), T, which corresponds to the desired
result as r satisfies the properties stated in Theorem 4 in view
of Proposition 3. |

Theorem 4 ensures that, for any initial condition (z, ¢, 0)

max {0'

with z; € R?>*, the inter-event times are close to
g ... . .

max {|/\|, T ; for all positive times when A\; = Ay and their
1

geometric multiplicity is two for small ¢ > 0 and T" > 0.
Hence, the considered event-triggering rule essentially leads
to periodic sampling, when o is small, and 7 7. in (12) is well

approximated by max {ﬁ, T} for all zyp € R%*. The proof
of Theorem 4 does not exploit the fact that the state = is of
dimension two: the results apply to systems of any dimension.
Hence, when z is of dimension n € Z~( and the eigenvalues
A1y, Ap of A. are equal and of geometric multiplicity 7,
A — BK = M1 and the same conclusions as in Theorem 4
apply. Also, function 7 and constants c,., o] are the same as in
Proposition 3, which explains why the same notation is used.

When the geometric multiplicity of A\; = A2 is one, the
arguments used in the proof of Theorem 4 no longer apply
and significant technical difficulties arise, as explained in more
detail next.

V. DISCUSSIONS

A. When \; and X\, are real, equal and of geometric
multiplicity one

The results of Section IV eludes the case where \; = Ao
and their geometric multiplicity is one. The reason is that the
argument of Z along the solutions to (6)-(7) only exhibits
an attractivity property in this case. As a result, the proof
techniques used for the other cases, which rely on robustness
arguments, do not apply. To see this, consider a non-zero

. L A1
Jz with J := 0 A

proof of Proposition 5, see Section H. The argument of z
either converges to 0 or to m, see [26, Chapter 2.1]. This
property is not an asymptotic stability property, as in the case
where A\; # \g, see the proof of Proposition 5, but only a
global attractivity property. If z5(0) > 0 is very small and
21(0) > 0 for instance, then the argument of the corresponding
solution will monotonically converge to zero. However, if we
change z5(0) so that it is very small but negative, the argument
will converge to m. As a result, a small perturbation may
destroy this convergence property, which explains the difficulty
encountered in this case.

We conjecture that the inter-event times approximately

solution z to 2 = like in the

converge to max{ﬁ,T} in this case, for any xy € R?*,
and (0,T) € S, (o}, T*), consistently with Theorem 3, and

as also seen in simulations in Section VI-A.

B. Nonlinear systems

The results of Section IV apply mutatis mutandis to non-
linear event-triggered control systems, whose linearization
around the origin is given by the considered linear model and
triggering rules. More precisely, the analytical guarantees of
Section IV apply asymptotically in time for such nonlinear
systems assuming its origin is globally asymptotically stable
and its linearization around the origin verifies SA1 and the
considered pairs (o, T') belong to Sy, (c*,T™) for some given
m > 0. In particular, the properties of the average inter-
transmission times (12) presented in Section IV do apply in
this case, as this quantity is related to the asymptotic behaviour
of the inter-event times. An illustration is provided in Section
VI-B.

C. Other system dimension

When the system is scalar, it is commonly known that
the triggering rule in (7) leads to periodic sampling due to
homogeneity (see Proposition 2). As we could not find this
result formally stated in the literature, we formalize it in the
next proposition.

Proposition 6: When n = 1, for any ¢ € (0,0%), T €

_A
[0,7*), and xg € R* 7, p(x0) = max {T7 % In (iﬂ#)}

when A # 0, and 7, 7(z¢) = max {T, ﬁh(l + a)} when
A=0.

Note that (o,7") does not need to belong to S,,(o*,T™*)
for some given m > 0 in Proposition 6. When the system
dimension is larger than 2, the situation becomes much more
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complicated and the proofs in Section IV need to undergo
major changes, unless A, has a single eigenvalue of geometric
multiplicity equal to the state dimension, in which case The-
orem 4 applies as already mentioned. Still, we expect the key
properties of the inter-event times established in Section III,
which apply to systems of any dimension, to play an important
role in future extensions of the present results.

VI. NUMERICAL EXAMPLES
A. Linear example in [42, Section V]

To illustrate the obtained theoretical results, we consider the
same linear system as in [42, Section V], namely

- (5 ) (8)

The matrix K is designed such that the corresponding ma-
trix A + BK is Hurwitz, and three cases are considered
depending on the eigenvalues A, Ay of A + BK being
(i) non-real, complex conjugates, (ii) real and distinct, (iii)
real and equal. To design the triggering rule, we apply
Proposition 1 in [1]. As a result, SAI is satisfied® with

o* = ﬁ\/mln Amin (AgAQ + (61 + EQ)]I) and’ T*

13)

1
Ir arctan(r), where As := —A., L := |By|, r := % -1
and €1,e9,4 > 0 are obtained by solving [1, (16)] with

Ay :=A,, Bi=BK,By=—-BK and C,, = L.

For each of these cases, we have studied numerically the
impact of o, T" and of the initial conditions on the inter-event
times®. We first present a comparison of the estimated lower
and upper-bounds on the inter-event times established in
Lemma 1 with the actual minimum and maximum values of
the inter-event times obtained in simulations, which we denote
Tmin and Tmax, respectively. The estimated bounds are taken as
T, i= max #(AC),T} and ?U,T = max{m,T},
respectively, as explained after Lemma 1. The values of 7Ty,
and Tpax Were computed in simulations by taking 10 initial
conditions on the unit circle and extracting the minimum and
the maximum values of the inter-event times over the 10 runs.
The results are summarized in Table I. We observe that both
the estimated lower and the upper bounds are tight, actually
exact for the former, even when o is close to the maximum
allowed value o*, which is specified in the following for each
case. We now study the results of Section IV on simulations
for each case.

Case (i): K =[-3 =T, 1 =—-2+jand \y = -2 — j.

Then ¢* = 0.0844 and T* = 0.1153. We have selected
different values of o, namely o € {0.01,0.04,0.084},
T = % so that (0,T) € Sp(0*,T*) with m = 1/2, with
initial condition (z¢,2p,0) and zyg = (1,1). The obtained

6Strictly speaking, Proposition 1 in [1] ensures that {(x,%,8) : = = & =
0} is uniformly globally asymptotically stable, but this property is actually
exponential due to the linearity of the flow dynamics.

"In this example, v > L in all cases with the notation of [1], which
explains the expression of T*, see [1, (11)].

8In all the cases T' > 0, simulation results for 7' = 0 are presented in
[36, Section V].

—o = 0.084 (mismatch ~ 30.6%)
—o = 0.04 (mismatch = 10.8%)

o0 =0.01 (msmatch ~ 2.0%)
LI S W
| [ I
0
0 2 4 , 6 8

Fig. 1. Inter-event times for different values of o for the example of
Section VI-A when (A1, A2) = (—2 + j, —2 — j): 0.0845 (blue), 0.04
(green), 0.01 (yellow). The dotted lines represent the value of T for each
selection of . The mismatch is the error percentage between = and the
observed period.

0.045

o T0= (1, 1) =z = (1,~2) =z = (1,~1)
8 10

0.035
< 003
K
0.025
0.02
0 2 4 , 6

T =0.015

Fig. 2. Inter-event times for the example of Section VI-A for different
values of g when (A1,A2) = (-2 + j5,—2 — j) : (1, 1) (yellow),
(1, —2) (green), (1, —1) (blue).

inter-event times are depicted in Figure 1. We observe a
periodic-like behaviour in each case and that the “pseudo”
period is getting closer to % = 7 as o decreases, in agreement
with Theorem 1.

We have then selected 0 = 0.03 and studied the inter-

event times for different initial conditions (zq, z¢) with ¢ €
{(1,1),(1,-2), (1, —1)}, see Figure 2. The inter-event times
describe similar though slightly different patterns of very
similar periods, in agreement with Theorem 2.
Case (ii): K = [0 — 6], Ay = —1 and Ay = —2. Then o* =
0.0761 and 7™ = 0.1486. Figure 3 shows the inter-event
times for ¢ € {0.01,0.03,0.076} and T = E’ and the
initial condition (xg,z¢,0) with o = (1,1). According to
Theorem 3, the inter-event times converge to a value close to
max {o,T} = o as the time tends to infinity or is close to
max {%, T} = 5 for all positive times. We see that the inter-
event times indeed converge to a constant close to ¢ in all the
cases considered in Figure 3, and that the mismatch between
the limit value and o is getting smaller as we decrease o,
which is in agreement with the conclusions of Theorem 3.

We might wonder whether there are solutions for which the
inter-event times are close to 7 for all positive times, which

is allowed by Item (ii) of Theorem 3. We have not been able
to find such solutions for this example, even when taking x
in the eigenspace associated to Ao.

Case (iii): K = [—-2 — 7], Ay = Ay = —2. Then o* = 0.0818
and 7™ = 0.1228. Note that this case is not covered by our
analysis as the geometric multiplicity of the double eigenvalue
is one, see Section V-A. We have considered the initial
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(A, A2) =(=2+44,-2—1])

(A1, A2) = (—1,-2)

(A1, A2) = (—2,-2)

o | 001 0.04 0.084 | 0.01 0.03 0076 | 0.01 0.04  0.081

Tor T T T T T T T T T

Tmin T T T T T T T T T

Tor | 0.0120 0.0515 0.1081 | 0.0185 0.0555 0.1407 | 0.0143 0.0570 0.1155

Tmax | 0.0128  0.0504  0.1033 | 0.0184 0.0545 0.1340 | 0.0142 0.0556 0.1095
TABLE |

GUARANTEED AND ESTIMATED MINIMUM AND MAXIMUM VALUES OF THE INTER-EVENT TIMES FOR THE EXAMPLE OF SECTION VI-A.

0 o = 0.01 (mismatch : 2.4%)
0 2 4 t 6 8 10

Fig. 3. Inter-event times (solid lines) and value of p\i (dashed line)
1

for the example of Section VI-A when (A1, A2) = (—1, —2) for different
values of o : 0.076 (blue), 0.03 (green), 0.01 (yellow). The dotted lines
represent the value of T for each selection of o. The mismatch is the
error percentaie between the limit value of the inter-event times and

max { T

o
[A1]?

0 o = 0.01 (mismatch ; 12.4%)
0 5 10 15 20
t
Fig. 4. Inter-event times for different values of o when A1 = A2 = —2:

0.085 (blue), 0.04 (green), 0.01 (yellow). The dotted lines represent
the value of T for each selection of o. The mismatch corresponds to

the error percentage between max {ﬁ, T} and the limit value of the
inter-event times.

condition (zg,x0,0) and xo = (1,1) and different values of
o, namely o € {0.01,0.04,0.081}, T =
observe that the inter-event times converge in all cases to a
constant, which is in a neighborhood of ¢ as conjectured in
Section V-A, and that the mismatch reduces with o like in
case (ii).

We have also varied the initial conditions for ¢ = 0.01.
In particular, we have taken xo = (1,—2), which is in the
eigenspace associated with Ay, and 29 = (1,—1.9) and 2y =
(1,—2.1), which are, loosely speaking, on both sides of the
eigenspace of A;. Again, in all cases the inter-event times
converge to a constant close to o, see Figure 5.

%, see Figure 4. We

B. Nonlinear single-link robot arm in [1, Example 3]

We revisit [1, Example 3], which is nonlinear, in the light
of Sections IV and V-B. We thus consider a single-link robot
arm modeled as & = Ax + ¢(z) + Bu where z = (x1,22) €

5 x107
.
&
&
B
=g
3 1
0 5 10 15 20
t
Fig. 5. Inter-event times for the example of Section VI-A for different
values of g when A1 = A2 = -—2: (1,-2) (blue), (1,-2.1)

(green), (1, —1.9) (yellow). The dashed line corresponds to the value

{ g T}, and the dotted line to T.

max { <
[A1]?

R?, z; is the angle, x5 is the rotational velocity, u € R is
8 (1) ,B-(?)andgb(x)—
(0, —sin(x1)). The designed state-feedback controller is given
by u = sin(z1)+Kx where K = (—2 —2). We synthesize the
triggering rule as in [1, Section VI], which can be written in
the form of (7) in view [1, Example 3]. As a consequence SA1
is satisfied in view of [1, Corollary 1] with ¢* = 0.1929 and
T* = 0.0898; note that the stability property is exponential
for the considered system.

The state matrix of the linearized continuous-time closed-
loop model around the origin is given by A + BK, whose
eigenvalues are Ay = —1 + j and Ay = —1 — j. We have
selected 0 = 0.19 and T' = 0.089. We have performed
simulations for three initial conditions of the form (x¢, z, 0)
with o € {(10,0),(10,10),(0,10)}. The obtained inter-
transmission times are depicted in Figure 6. We observe that
these all exhibit a periodic-like behaviour and that the values
taken over a “period” are very similar for the different initial
conditions in agreement with Section IV-A. In particular, we
obtain for the estimated values of 7'2% in (12) 0.1208, 0.1206,
0.1199 for zy = (10,0),(10,10) and (0,10), respectively.
These values are similar, in agreement with the statements
in Section V-B. The observed period in simulation is around
2.9 in all cases, while the theory predicts m: we thus have
a mismatch of only 7.7%. Note that these results have been
obtained for ¢ and T close to their maximum value ¢* and
T*, respectively, even though the theory has been developed
for small o and T compared to 1.

the input torque, A =

VII. CONCLUSIONS

We have analysed the inter-event times for two-dimensional
linear event-triggered control based on the relative threshold
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T)A.xo. We deduce from the last equality and the fact that
|a —b| = |a|] — |b| for any a,b e R™ that
le(t)] > (t — T)|Awzo| — ]e(T) + (L Ae(s)ds‘ 1
t
> (t=T)|Acxo| — |e(T)| - §1 [Alle(s)|ds
005 Noting that |e(t)| < IL for t € [T,T + 7, 1(x0)], we
. -0
0 2 4 6 8 10 derive that
t g t ag
le(t)] = (t—T)|Aczo| — 1% — {1 |Al7%;ds
Fig. 6. Inter-event times for the example of Section VI-B for different _ (t B T) |A T | B \A|L o 5)
values of xo: (10,10) (blue), (10,0) (green), (0,10) (yellow). The - c0 I—o I—o-
dotted li dsto T .
oriec ine corresponds fo Let ¢ := min{|A.z(| : |xp| = 1}. Since A. is invertible

technique of [42] with and without time regularization for
small parameter o. We have shown that these times (approx-
imately): (i) describe a periodic pattern, which is essentially
independent of the considered initial condition, when these
eigenvalues are non-real, complex conjugates, and an estima-
tion of the period is provided; (ii) converge to or lie for all
positive times in a neighborhood of given constants when the
eigenvalues of the state matrix of the closed-loop system in
absence of sampling are real and distinct, or real, equal and
of geometric multiplicity two.

It would be interesting, in future work, to adapt and extend
the presented methodology to address other classes of control
systems and triggering rules, and to go beyond the two-
dimensional case.
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APPENDIX
A. Technical results

We first state the next claim, which essentially says that,
given m > 0, 7,1 is of the order of o when (0,7) €
Sm (o7, T*), and which plays an instrumental role in the proof
of Proposition 3.

Claim 3: Given m > 0, there exists ¢y € R5( such that for
any o € Sy, and any (0,7) € S,,(07,T%), Tor(x0) = T
implies that 7, 7(z0) < c20. O
Proof: Let m > 0, 29 € S,, and (0,7T) € S, (07, T*). We first
consider the case where 7, 7(xg) > 7. As a consequence,
|2(T) — xo| < o|z(T)], otherwise we would have 7, r(x¢) =
T in view of (7), which is excluded here. On the other hand,
by the triangle inequality, |z(t)| < |xo| + |z(t) — o] Thus,
as |xo| = 1, |z(t) — xo| < olz(t)| < olxg| + ol|z(t) — 20| =
o + olx(t) — 20|, from which we deduce |z(t) — x| < 1%
for t € [T,7,1(xo)] since o € (0,1). Therefore, 7, 1(x0)
is less than T plus the time it takes for |z(t) — xg| to grow
from |z(T) — x| to , which we denote 7, (o). We

now study 7, 7 (zo). Let e i— 2 — To. In view of (6), ¢ =

Ax + BKxy = A(x — x0) + Axg + BKxzo = Ae + Acxg

on [T, 7, 7(x0)). By integration, for ¢t € [T, 7, r(x0)), e(t) =
t t t

o(T) + L Ac(s)ds + L Azods — e(T) + L Ac(s)ds + (t —

(being Hurwitz), ¢ > 0. We derive from (15) |e(t)] =

t-T) (c —|A] . i ) &. For o} sufficiently small,
o

> Jcasoe (0,07%). Thus,

c— 4]

1—0

le(t)] = (t—T)3c— 1% (16)

when t — T =

The lower-bound in (16) is equal to 1 a

i —
4—1
€1

c and this quantity upper-bounds 7, r(z¢) in view

of (16). Hence, 7, r(zo) < 4g*11L. We deduce that
— 0

Tor(T0) < T+42711L, hence, since T' < mo as (0,7T) €
’ o

Sm (o7, T™), there exists ¢a € Rxg such that 7, 7(x¢) < co0
for o} sufficiently small, as o € (0, 07).
When 7, 7(z0) = T, Tor(z0) < mo as (0,T) €
Sm(o7,T*), and the desired result holds with c; =m. W
The next lemma will also be used in the sequel.

Lemma 3: For any a,b,c € Ry, |max{a,c}
max{b, c}| < |a —|. ]
Proof: Let a,b,c € Rs(. We distinguish several cases. If
max{a,c} = c¢ and max{b,c} = ¢, then max{a,c} —
max{b,c} = 0. If max{a,c} = a and max{b,c} = b, then
| max{a, c} — max{b,c}| = |a — b|. If max{a,c} = a and
max{b, c} = ¢, then | max{a, c} —max{b,c}| =a—c<a-—0.
If max{a,c} = ¢ and max{b,c} = b, then |max{a,c} —

max{b,c}|=b—c<b—a.

B. Proof of Proposition 3

Let m > 0, 29 € R™* and m > 0. In view of Proposition
2, it suffices to prove the desired result for |zo| = 1. Hence,
consider xy € R™ with |zg| = 1, ie., zg € S,, 0 € (0,07)
with o7 € (0, 1] specified in the following and T € [0,T™).
We start by proving the result for (0,7) € S, (07, T%).
The Taylor expansion of the solution ¢t — x(t) to &
Ax + BKux initialized at zo at ¢ = 0 and evaluated at ¢t =
Tor(x0) is (75 17(20)) = x0 + Tor(20) (Azg + BKx0) +
To.1(20)72 (20, 0), where r, : R™ x (0,1) — R is such that’
|7z (0, 0)| < cu7o,r(x0) With ¢, > 0 independent of z( and
o. Since A, = A+ BK,

(1,1 (x0)) =20 + To,7(20) Aco + To 7 (20) 72 (20, 0). (17)

9The existence of such a function r, follows from the expression of
the remainder of the Taylor expansion of (7, 7 (x0)), which can be upper-
bounded by a uniform constant ¢, times 7, 7 (x0) as |zg| = 1 and |z (t)| <
dy for any ¢ = 0 in view of SA1 and the fact that |zo| = 1.
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Consider the case where 7, r(x¢) > T'. Hence, by definition of
To1(20), |2(To 7 (20)) — 0| = olz(T6,7(20))|- Consequently,
in view of (17),

‘TO’,T(‘TO) (Acxo + Ty (CEOa O—))‘ =
olxo + Tor(x0)Acto + Tor(20)r2 (20, 0)]| -

(18)
We have |A.xg + ry(z0,0)] # 0. Indeed, otherwise
we would have from (18) that 0 = o|zg|, and
thus g = 0, which is excluded here as zog € S,.

Hence, in view of (18), we can write 7,7(xz9) =
Zg Acxo + 1r2(x0,0)

o .
|Aczo + 72 (20, 0)] |Aczo + 72 (20, 0)]
This implies that

+ To,T (Jfo)

|0

TU’T({E()) < 0o +O’T07T(£L'0)

|Acx0 + Tac(x07 U)|
o]

TU’T({E()) > o )| —O’TU’T(LU()).
(19)
Since o € (0,1) as o € (0,07) and o} < 1, these inequalities

are equivalent to'?

|Acxo + 74 (20,0

o |0l

T, X <
G,T( 0) 1_U|Ac$0+rx(x050')‘

g Zo
1+ 0 |Acwo + 12(30,0)|

(20)

Tor(To) =

To obtain the desired result, we are going to exploit the fact
that 7, (o) is of the order of ¢. This is not obvious from (20)
because of the term 7, (g, o), which depends on 7, r(x¢), in
the denominator of the right hand-sides.

Returning to (20), we temporarily concentrate on the first
inequality, which gives

a

|Aczo + T2 (20, 0)| To,r(T0) < |o]. (21)

1—0

As ([Aczo| = [ra(x0,0)|) To.r(0) <

7_z:r,T (1'0)’

Acxg + 12(z0,0)

([Aczo| = [ra(z0,0)|) o (T0) < lzol.  (22)

1—0

Since |ry(x0,0)| < 76 (20) and 7, 7(x0) < cpo according
to Claim 3, (22) implies that

|Aczo|To 1 (w0) — cacio? <

N

|AC'TO|TO',T(xO) 1_

(23)
In view of the Taylor expansion of o +— 2= around the
origin and since |A.zo| # 0 as 29 # 0 and A, is invertible,
we deduce from the above inequality that, for o7 sufficiently

small as o € (0,07}),

|0 — 2
|Acx0| +co”,

TgyT(.’L'o) < 0o 24)
with ¢ > 0 independent of ¢ and z.

10We could replace |xo| by 1 in (20), but we do not do so to obtain a,
what we believe, simpler and clearer expression in Proposition 3.

By following similar lines, we derive from the second
inequality in (20) that

ol 2
= 0o —co”,
|Acx0|
with ¢ > 0 independent of ¢ and zy. Consequently, in
view of (24) and (25), 7,1 (z0) = o [0
|Aczol
|7(x9,0)| < ¢.0? and ¢, > 0 independent of 2 and o. Since

|o|
+r(x0,0),T ¢
1 Aozl r(zo,0)

So far, we have been addressing the case where 7, (o) >
T'. Note that this case covers the scenario where 1" = 0, as
Te,17(T0) > 0 = T according to [42]. We now focus on the
case where 7, 7(z0) = T and |z(T) — zo| = ol|z(T)|. Let
t* < T be the first time instant in [0,77] such that |z(¢*) —
xo| = olxz(t*)]. We derive from the above developments that

To1(20) (25)

+ r(z9,0) with

To,1(20) > T, To1(20) = max{a

t*=o0 |Ax0 | +71(z9,0) for all o € (0,07) and small enough
cZo
o71. Since t* < T, 0'|J{x0| | + r(xg,0) < T and 7, 7(x0) =
cZo

max {a |111m0| | + 7(x0,0), T}, which completes the proof of
cTo

Proposition 3.

For general pairs (o, T) € (0,07 ) x [0,T*) (not necessarily
in Sy, (07, T™)), either 7, 7 (xo) = T, or, in view of the the
proof of Claim 3, 7, 7(xo) € (T, T + Qilﬁ). Therefore,
Ter(xo) = T + r'(x9,0) for some 7 : R” x (0,1) — R
satisfying |7’/ (xo,0)| < c,.o with ¢, > 0 independent of
and o, for small enough JI/.

C. Proof of Claim 1

Let m > 0, o0 € R™*, (0,T) € Sp(o7,T*) and ¢t >
0. We either have |Z(t) — x(t)| < olz(t)| or §(t) < T in
view of (7). When |Z(t) — z(¢)| < ol|x(t)], the desired result
holds. On the other hand, by following similar arguments as
in the proof of [42, Theorem III.1] (p. 1682), we derive that'!
2(t)—z(t)| < 24 |x(t)| where L := max {|A.|, |[BK|}. The
map s — 22 is increasing and well-defined on [0,7] <
[0, 1) for of sufficiently small, as o € (0,07), L > 0 as A,
is Hurwitz and is independent of o, and 7' of the order of

o as (0,T) € Sp(o],T*) so that T < l Hence, as o €
(0,07), there exists p’ > 0 independent of o such that |Z(t) —
2() < (o7l < L9 1)) < fola(t)]. The
desired result holds by taking p := max{1, p'}.

D. Proof of Claim 2

Let m > 0. We proceed by contradiction and suppose that
there exist zp € R™* and ¢ € [0,7,7(z)] such that the
solution z to © = Ax + BKx initialized at x( satisfies
x(t) = 0. In view of Claim 1, |zg — x(f)| < polz(t)] = 0
since ¢ € [0, 7,7 (z0)]. Hence, z(t) = w0, but 2:(¢) = 0 while
zo # 0. We have obtained a contradiction, which proves the
claim.

UThere is a typo in the expression of ¢(7,0) in [42, p.1682], it should

be ¢(1,0) = 1I£L and not _1Z£L'
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E. Proof of Lemma 2

Let m > 0, (6,7) € Sp(o},T*) with o}
from Proposition 3, z, € R™* and (z,%,0) be
the solution to (6)-(7) initialized at (zg,zo,0). Let
t,t/ > 0, according to Proposition 3, 7, 7(z(¢)) —

ror(e(t) = ()] Nﬂﬂ%a%T} -

max fo "
2(t")]

| Acz(t))|
maX{UMcx(t’ﬂ +r(z(t'),0),T¢. In
properties of r stated in Proposition 3 and using Lemma

3 given in Appendix A with a = O'ljfit()tl)‘ + r(z(t), o),
|2 (t)]

ooy T (@) and ¢ = T, we derive

view of the

b=o

|0 et
Farelt) = O] < 0| - T
+2¢,02,
(26)
|z(t)]

where ¢, > 0. The function ¢ — Ao ()] is continuously dif-
ferentiable on R+ as x never cancels according to Proposition
4 and A, is invertible, being Hurwitz. Hence,

:i:(t)Tz(t) ‘Acx(t” o |x(t)|w(t)TA;rA‘_:L’(t)

d |z(t)] [2(0)] E¥I0]
|Acx(t)[?

dt |Acx(t)]

(27)
Since A. is invertible, there exist wi, wy > 0 independent of
t,xg,0 such that wq|z(t)| < |Acx(t)| < wa|z(t)|. Therefore,

O] )] 4 fo(t)| EOUAL Al 20

d_Jz(®)] ‘< [2(0)] EA0]
dt [Acz(t)] @iz (t)]?
_ malE®)] | AL AlE(D)]
@ile®)] @@
(28)

We have z(t) = A.x(t)+BK (x(t;)—x(t)) and |z (¢;)—x(t)| <
op|z(t)| in view of Claim 1 where ¢; is such that t € [t;,t;41),
hence [i(t)| < (|Ac|+po| BK])[z(t)] < (|Ac]+p| BK])|2(t))|
as o € (0,1). Consequently,

L B0 (= AT,

— =4
dt |Acx(t)] w? w3

)14l + ol
=: Ccont,l-
(29)
Notice that ccopn; is independent of ¢, zg and o. This implies,
by application of the mean value theorem, that, in view of
(26), Ta,T(l'(t)) - Ta,T(fE(tl))} < Uccont,l‘t - t/| + Ccont,ZU2
with Ceone2 := 26;.

F. Proof of Theorem 1

We first derive properties of 7, 1 (x), which differs from the
inter-event time function 7, (&), along solutions to (6)-(7).
We then exploit these properties to derive the desired result
on 7, 7(&) in Theorem 1.

Proposition 7: Given m > 0, when A\; and A, are non-real,
complex conjugates, there exist Ccomplex > 0 and U:omplex €
(0, 1] such that for any initial condition (zg,x,0) with 2 €
R**, and any (0,T) € Sp(0kmpiex> T*)> the corresponding
solution (x, %, d) to (6)-(7) verifies the next property. For any

. T ™
t > 0, there exists 0(t) € | = — Ccomplex¥, 3 + Ccomplex0 | such

that 7o 7(x(t)) = 707 (z(t + 6(2))). O

The proof of Proposition 7 is given in Appendix K.

Let m > 0, 79 € R**, (0,T) € Sm(0mpex, T*) and
(x, 2, ) be the solution to (6)-(7) initialized at (zq, 2o, 0), and
t > 0. There exists ¢ € Zso such that ¢t € [t;,¢;+1). Hence,
Z(t) = x(t;) in view of (6)-(7) and

Tor(E(t) = Tor(x(t). (30)
According to Proposition 7, there exists 6(t;)) €
™ ™
— — CcomplexT; 3 + Ceomplex0 | such that 7,(z(t;)) =
To(x(t;) + 0(t;)). Therefore,
TU7T(§'I(t)) = TU)T(J)(ti + 9(751))) 31D

Let A(t) := t; —t + 0(t;) so that ¢ + () = t; + 0(t;) and thus
Tor(E(t) = Tor(z(t+0(t)). (32)
By adding and subtracting 7,7 (2(t + 0(t))), we obtain

Tor(@(t) = Tor(@(t+0(2))) + o (x(t + 0(1)))
—To7(Z(t + 6(t))).
(33)
=+

B

+ Ccomplexo- On the other hand, as

We note that 0(t) < 6(t;) as t; < t. Hence, 0(t) <

CcomplexT  AS 9(752) <
A ™
— CcomplexT» e(t) =t —tip1 + B —
v

CoomplexT = —To,1(2(t:)) + = — Ccomplexd. According to Propo-

|(t:)|
|Acx(ti)‘

where v =

t < t;y1 and 0(ti) =

sition 3, 7, p(x(t;)) = max{a +r(x07o),T} <

2

max{v,m}o + ¢y0 max > 0, as

2€Sy |ACZ|
|r(zg,0)] < 0% Since o < 1, max{v,m}o + c,.0% <
écomplexo- Wlth écomplex = maX{'U,m} + Cp > 0 As a result,
e(t) = 7_Cc0mplex0'_5complex0'~ Denoting écomplex 1= Ccomplex T
Ccomplex> W€ have proved that

A ™ R ™ .
G(t) € B — Ccomplex T B + Ceomplex¥ | -

Returning to (33), we now concentrate on the term
Ter(x(t + 0(t)) — 7o,0(Z(t + 6(¢))). Denoting 4’ the el-
ement of Zso such that ¢ + 0(t) € [ty ty41), we have
ror (2t + 0(0))) — o (@ (t + 0()) = Tr(a(t + 6(1))) —
o7 (2(tiv)). By application of Lemma 2, we derive that
7o, 1 (x(t +0(1))) — o7 (2(tr))] < oCeom [t + 0(t) — 1] +
0% Ceont2- By definition of 0(t), t + 0(t) —t, = t; + 0(t;) — tir
and, since t; + 0(t;) < tpy1, |t + 0(t) — t)] < typq —ty =
Tor(x(t;)). By following similar lines as above, we derive
that 7, (z(¢)) < Do with T > 0 independent of ¢, o, g. As a
result,

|T0’>T (.’)S(t + 9@))) - TG’,T(‘/'i.(t + 0(t>)|<0’2000m,16 + UQCcont,Z
- 2
=602,

(34)

(35)
with é. = Ceont,1T + Ceont2. Therefore 7,1 (z(t + 0(t))) —
To, 1 (Z(t + 0(t)) = Teomplex (t, To, 0) With |Feomplex (£, T, 0)| <
¢ér0%. As a consequence, in view of (33), 7,r(Z(t)) =
TU’T(i'(t-i-é(t))) +7Tcomplex (£, o, o). The last equation together
with (34) ensures that the desired result holds. |

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorflgublicationsﬁstandards/Eublications/rights/in_dexhtml for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 02,2022 at 22:

8:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3147009, IEEE

Transactions on Automatic Control

13

G. Proof of Theorem 2

Let m > 0, o,z € R** and (0,T) € S (omplexs T)-
We denote by (x,,4) and (z,2',4") the solutions to (6)-
(7) initialized at (xq,20,0) and (z(,xf,0), respectively. We
define for any ¢ > 0, z(t) = M ~'z(t) and 2/(t) = M~12'(t)
as in the proof of Proposition 7 given in Appendix K. Let
Cra = %(arg(z’(O)) —arg(2(0)) and t € [0, § + Complex]-

We first show that there exists &, 2(t, o, g, 0), ér2(t) for
short, such that

{ 7o (2(t))

|ér2(8)]

where Ceomplex comes from the proof of Proposition 7. In view
of (the proof of) Proposition 7, the range of 7, p(x(-)) is
equal to the range of 7, 7(2'(-)) and there exists &2 () such
that the first inequality in (36) holds. We now need to prove
that |, 2(t)| < %(% + Ceomplex ) Ceomplex- We exploit for this
purpose the fact that (36) is equivalent to

arg(z(t)) =

by Proposition 2. In view of (46) in Appendix K, arg(z(t)) =
arg(z(0)) — Bt 4+ v(t)Ceomplexos Where |v(t)| < % + CeomplexT-
Consequently, arg(z(t)) = arg(z(0)) — B(t + ¢p1 + Er2(t)) +
V(t)Ceomplex + B(Cr,1 + Er2(t)). By definition of ¢, ; and the
fact that arg(2'(t + ¢, 1 +6-2(t))) = arg(2/(0)) — B(t+c¢r1 +
6T,2(t)) + l//(t +cr1 + 5T,2(t))5comp1exa with |I//(t + cr1 +
ér,2(ﬂ)| < % + écomplexo—’

arg(z(t)) =

= Tor(@(t+cr1 + G 2(1)))
< %(% + écomplexJ )azomplexo_v

(36)

arg(2' (t + ¢r1 + Gr2(1))), (37)

arg(2'(t + cr1 + Gr2(t)) + BEr2(t)
+(V(t) - V/(t + Cv’,l + é’7“,2(t)))Ecomplexa-
(38

Since arg(z(t)) = arg(z'(t + ¢-1 + &-.2(t)) and by the
properties of v(t) and v/(t + ¢,1 + ¢,2(t)), we derive that
|ér2(t)] < %(% + CeomplexT ) CeomplexT. We have thus proved
(36).

Second, 7, 7(Z(t)) = 75 r(x(t;)) with i € Z such that
t € [ti,tiy1). We derive from (36) that 7, r(&(t)) =
Tor (@' (t; + ¢rq + Gr2(t;))). Let j € T be such that ¢; +
Cr1 + 57»72(151') € [t;—,t;—+1), T07T(§3(t)) = T07T($/(Tfi +cr1 +
er2(ti))) + 1o (2 () — 7o (2 () = To (2t + o1 +
Cr2(ti))) + 1o (2 (8 + o1 + Cr2(ti)) — Tor(2'(t))). We
derive, by proceeding like in the end of the proof of Theorem
1, that |75 (2 (t; + cry + Cra(ti))) — To0 (2! ()] < é.0°.
Consequently, |7, 7(2(1)) — 0.1 (2 (1 + crx + Era(t))] <
éro2.

Finally, by Lemma 2, we derive that |7, p(Z(t)) —
Tor (&' (ti + 1)) < 60% + |Tor (B (8 + cra1 + Era(ti))) —
TO',T(iJ(ti + Cr,l))‘ < 67“0'2 + Uccont,l‘érﬂ(ti” + U2Ccont,2 <
6W’O—Q'f'o—zcc:()nt,l%(%"'6(:0mplexCT)Ecomplex"_Uzccont.,Q as |ér,2(t)‘ <
%(% + Ccomplex¥ ) Ceomplex» from which we obtain the desired
result.

H. Proof of Proposition 5

Let m > 0, g € R**, (0,T) € Sp(0fgines I*) Wwith
Olistinet € (0,07] specified in the following. We write matrix
A. in a Jordan form. Let M = [wy,ws], where wy,ws
are non-zero eigenvectors of A, associated with A\; and Ao,

respectively, z = (21, 22) := M~'z and 2 := M ~12. Hence,

A0
0 A ) and ¢ =
(€1,62) := M~YBK M (% — 2). Equivalently, 2; = A\1z; + &1
and Z2 = X222 + £2. Note that || < op|z| for some 7 > 0
independent of o, whenever |& — x| < polz|, which holds
along solutions to (6)-(7) in view of Claim 1.

on flows z = Jz + ¢ where J :=

2
We are going to study the variation of A;(z) := ;22 for any

z
z = (21, 22) € R%*, which is equal to sin(arg(z))?, along the

solutions to Z = Jz+¢; recall that z # 0 so that A;(z) is well-
defined. The obtained properties will allow us to derive that
Items (i)-(ii) of Proposition 5 hold. Let z € R** and ¢ € R?
be such that |g| < oplz|. It holds that (VA;(2),Jz +¢&) =
W (222()\222 + 62)|Z‘2 — 223()\12% + 2161 + )\223 + 2262)).
We obtain by adding and subtracting A\2z? in the second
term inside the brackets above (VA(z),Jz+¢e) =

1
W(2Z2()\222 + 62)‘Z|2 — 22’%(/\12% — )\22’12 + )\22:12 +

zZ1€1 + )\223 + 2’282)) 2()\1 — /\2)2’%2’% 72612’12%

~
+e2(222]2|* — 223)). Since |e| < po|z], there exists p1 > 0
independent of o such that

ﬁ (2212123 + £2(222]2 — 223))) < pyo. Consequently,

—2()\1 — )\Q)Z%Z%

(VA1(2),Jz+¢e) < L +pro. (39
2222
We have ‘242 = cos(arg(z))?sin(arg(2))? = (1 —

sin(arg(z))?) sin(arg(z))? = (1 — A1(2))A1(2). Therefore,

(VA1(2),Jz+ &) < —2(A1 — X)) (1 — Ay(2))A1(2) + p1o.
(40)

il We note that ((o) < 1

1-2 .
VW

Let ((o) :=

as A1 > Ao. Also ((o) > for ojiyine Small enough,

1
2 1
as 0 € (0,00yne) - Hence ((o) € (2,1). Furthermore,

1
Oy = )\Qpl((i—g(a)) =3 < ¢(o). Consequently, for any

p1o
a6 | =<
(VAL(z),Jz+e) < —(A1—X)(1—C(0))A1(2).
(41)
System (6)-(7) in the coordinates (z,%,d) becomes
(2,2,6) = (Jz + ¢,0,1) for all ¢t € (t,t;+1) and
(z(t1), 2(¢5),6(t])) = (2(t:), 2(t;),0). Consider a solution
(2,%,8) initialized at (2, z0,0) € R**, where zg = M ~'x.
If A1(2)(0) < ((0), we derive from (41) using standard
Lyapunov techniques and the fact that A;(z) is not affected

. . P10
by jumps that limsup Aq(z(¢ < .
Y jump o A1) S R TS0 o))

—0
This means that either limsup|arg(z(t))] < c¢;arg0 OF

t—0
limsup | arg(z(t)) + 7| < ¢, argo for some constant ¢, arg >

t—oo

0 independent of o and zg, since A;(z) = sin(arg(z))%.
This implies that, in the original coordinates (z,Z), there
exists a non-zero eigenvector v; (fw;) associated with Ag
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|v1]

s o A
Carg > 0 independent of o and xy. On the other hand, if ) . . -1
A1(2(0)) € (¢(0),1] there are two options: (a) there exists MaX {J‘Ac(cos(arg(x(t))),sm(arg(x(t))))‘ + r(m(t),a),T},
t > 0 such that A;(z(t)) < ((0); (b) A1(2(¢)) € (((0)31] or(2(1) — max | o |v1 | T
for all ¢ > 0. In case (a), we deduce from the reasoning ’ |Acv] . . . .
above that there exists a non-zero eigenvector v; associated +Cr0 2. As a result, we obtain by invoking Item (i) of

such that lim sup |arg(z(t)) — arg(v1)| < Cargo for some and ¢ = T, we derive that, when 7, 1 (&(t)) =

< 20/ |arg(z(t))—arg(vy)|

. . 1
with A; such that 11rtns01c1p|arg(x(t)) — arg(v1)| < carg0. Proposition 5 and the fact that m = |f|lvll | as vp is an
—00 1 cV1
In case (b), A1(z(t)) € (¢(0),1] = (1 —20’%71] for eigenvector for \q,
all £ > 0, which means that |arg(z(t)) + | < Clgina® . . o 9 9
for all t > 0 with ¢} > O independent of o and zo. hrtrisogp Tor (4(1)) — max W’T < 2edisine0” + €07,

Returning to the original coordinates, this means that there (44)
exists a non-zero eigenvector vo (+ws) associated with Ay we conclude that Item (i) of Theorem 3 holds with ¢; =
such that |arg(xz(t)) — arg(v2)| < cagisinee for all ¢ > 0.  2flcgiginet + ¢ in this case.
Since &(t) = x(t;) for any t € [¢;,t;+1) and the sequence t;, Similar arguments apply when Item (ii) of Proposition 5 is
i € Z>0, is unbounded according to Propositions 1 and 3, we verified, which leads to the satisfaction of Item (ii) of Theorem
deduce from the properties established in this paragraph that 3.
the desired result holds.
J. Proof of Proposition 6

Let zg € R*, ¢ € (0,0*), and T € [0,7%). We

. Proof of Theorem 3 first assume that A # 0. Consider the case where

Let m > 0, 9 € R>* and (0,7) € Sp(0ligines T)- To1(x0) > T. Hence, |x(75,7(x0)) — ®o| = ol|z(7,1(x0))]
Let ¢ > 0 and consider (z,%,6) the solution to sys- in view of (7). Since (7yr(z0)) = ey +
tem (6)-(7) initialized at (xg,x0,0). In view of Proposi- 7o, 1 (T0) ’

. ) Z(t) ) J Aot (@)= BRpods = eATer@og,
tion 3, 7, 7(Z(t)) = max{o———= +7(Z(t),0),T; = Jo
. [Acz(2)] A7'(1 — A7 t@))BK gz, and 2o € R*, we have at

&(t) L= Tpr(zp), [T (@) = ATL(1 - ATar (o)) BK — 1] —

max< o |A.— +r(z(t),o),T ;, recall that we have

|2(t)] (#(®),0) o |eATer(@0) — A=1(1 — AT (20))BK|. By squaring the
&(t) # 0 according to Proposition 4. In polar co- last inequality and introducing 1 := eA7or(®0) — A=1(1 —
ordinates, the above equation becomes 7, 7(Z(t)) = eA77(*0))BK, we obtain a second order polynomial in 1,

-1 +r(i(t),0), namely (1—02)1p?—21p+1 = 0. This equation has two strictly

max {or | A (cos(arg(&(1))), sin(arg((1))) )

T:. Suppose Item (i) of Proposition 5 holds, and let positive roots, denoted )™ := 1+o = qlﬁ = 1—0" Since
vy be the corresponding unit eigenvector of A. associ- |2(T) —xo| < o|z(75,7(T))], necessarily 1) = 1)~. By solving
ated with A;. Consider the case wliere Tor(Et) = =1, ie, eAor@0) _ A71(1 — AT (@) )BEK = o
o |A. (cos(arg(@(0) sinarg(3(1))|  + r@(1.0) 1 ye derive that 7.1 (z0) = L n (Zs ), which is stictly
holds that greater than T this is the case here.
o] A . -1 4 When 7, 7r(x¢g) = T, this means that |z(T) — zo| >
|Acvr | _) C(Cos(arg(vl))751n(arg(v1)))‘ ) (42) o|z(T)|, which implies that A?ZJ > ~, which is equiva-
lent to 75 7(x0) = Ln (7m+BK). Hence 7, 71(zg) =
S |v1] N . 7 B A 1+BK a,
ths 7, (#(1))~0 = = = r(@(1). 0) + o] A, (cos(arg(i(t))), maX{T,%ln(ﬁ;iK

We follow similar lines as above when A = 0 to obtain the

-1
sin(arg(z(¢ -0 ‘A cos(arg(vy)), sin(arg(v ‘
(arg(#( ))))‘ C< (arg(v)) (ag 1))) expression of the inter-event time in Proposition 6.

Noting that z + |A.z|~! is Lipschitz with some constant

¢ > 0 on the compact set Sy, and since |r(z,0)| < c,.02
for any z € R? according to Proposition 3, we deduce that
Let m > 0, 79 € R** and (0,7T) € S (omplexs T™) with

N |Ul‘ N . o
To.7(2(t)) < JE’(cos(arg(x(t))),sm(arg(x(t)))) Tromplex € (0,07] specified in the following. We write matrix

— 0
|Acv1‘
—(cos(arg(vl)),sin(arg(vl)))‘ + ¢,02. Exploiting the global Ac in the real Jord.an form. Let M = [wl.’ ws] Where wy i
Lipschitz properties of the cosine and sine functions, we have ‘W2 ar¢ NON-Zero e1genve;ctors of A assgmated Wlt.h the pair
of complex conjugates eigenvalues A + i3, respectively, z =

K. Proof of Proposition 7

) 5 14
) _UA12)|1| < 200 |arg((t)) — arg(v1)] + cr0”. 1()210,02212:5.— M=z and 2 := M~'%. Hence, system (6)-(7)
. o RS Ry P 2(t) = 2(t)
By applying Lemma 3 given in the jippendn( with i_p for all t € (t;,tir1), 4 2(t7) =2(t;) (45)
@ = a’Ac(cos(arg(i(t))),sin(arg(a?(t))))‘ +r(Et), o), -1 5(tF) =0
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_Aﬁ § > and & = (e1,60) = M~'BKM (5 —

z) as in the proof of Proposition 5.

The inter-event time function at time ¢ becomes
in these coordinates 7, r(2(t)) with T, r(20) =
inf {77 >T ¢ [Mz — M@?(nyzo)l = J|M€$(77720)\}’ where

b(n; z0) is the solution to 2 = Jz + M~ BKM(zy — z) at
time 7 > 0, initialized at zo. Hence, for the solutions (z, Z, ¢)
and (z,2,0) to (6)-(7) and (45) initialized at (zo, zo,0) and
(20, 20, 0), respectively, 7, 1 (z(t)) = 757 (2(t)) for all t = 0.
Moreover, there exists ps > 0, independent of o, such that
le(t)] < ops|z(t)] in view of Claim 1 and the definition of z.

We investigate the argument of the z-component of the
solution to (45) initialized at (2o, 2o, 0), where zo = M ~lx.
In view of its definition in Section I, the argument function
is differentiable everywhere except on Ry x {0}, which
is of Lebesgue measure zero. On the other hand, the set
{t 20 : z(t) e Ry x{0}} is also of Lebesgue measure zero.
Indeed, suppose there exists t* > 0 such that z;(t*) <
0 and z(t*) = 0. Then 2(t*) = Az (t*) — Bz (t*) +
go(t*) = —B2z1(t*) + e2(t*). Suppose Z2(t*) = 0 to obtain
a contradiction. This means that 5z (t*) = ea(t*), which
implies that 3|z1 (t*)]| = |e2(t*)], but |e2(t*)| < p3o|z(t*)] =
p30|z1(t*)|. Hence, we derive 8]z (t*)| < psolz1(t*)], which
is impossible as z1 (t*) # 0, in view of Proposition 4, when
taking o7, x and thus o small enough. We conclude that
the set {t >0 : z(t) € R x {0}} is of Lebesgue measure
zero. Consequently, for almost all ¢ > 0, %arg(z(t)) =

FO (Zl (t)( Az (t)—Bz1(t) +e2(t)) —22(t) (Nz1 () + Bza () +
e1(1) = e (= BIOF + 21(0)22(t) = 22(0)e1(1)), and

where J =

4 arg(z(t)) = (46)

dt -B+ rcomplex(z<t), E(t)),

where Tcomplex (2, €) 1=

by Cauchy-Schwarz inequality, there exists Ceomplex > 0 such
that |reompiex (2(t), €(t))| < Ceomplexo for any ¢ = 0.

Equation (46) and the properties of 7complex imply that z de-
scribes spirals “converging” to the origin in the phase portrait
and that it spends at most ,@’—% and at least z—="——

complex 0 B+Ceomplex T
units of time to successively intersect twice any given line
passing through the origin. The inter-event time function 7, 7
satisfies the same homogeneity'? as To,7 Stated in Proposi-
tion 2. Consequently, for any ¢t > 0, there exists 0(t) €

such that 7, 7(z(t)) = Tor(z(t +

1 .
e (2162 — 22¢1). Since |e| < op3]z],

s s
B ~+Ceomplex & B — Ceomplex &

0(t))). In view of the Taylor series of 0 — —="—— and
y B+CeomplexT
complex
s * * T
g = B—CeomplexT as o € (ngcomplex) and Ocomplex 18 taken

small, there exists ccomplex > 0 independent of (o, () such

that |:ﬁ+6c:rmplsxo'7 B*Ec:rmp]exo' s % o Ccomplex07 % + CcomplexU !
Therefore, since 7,(z(t)) = T, r(2(t)) for any ¢t > 0,

where z and x are components of the solutions to (45)
and (6)-(7) initialized at (M ~1zo, M ~1x(,0) and (z¢, zo,0),
respectively, the desired result follows.

121t suffices to use the definition of To,r and to compute explicitly 5 to
see that 7, 7(uzl) = 75 7(2}) for any p € R* and any z{ € R%*.
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