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ABSTRACT
Genomics has grown exponentially over the last decade. Common variants are associated with
physiological changes through statistical strategies such as Genome-Wide Association Studies
(GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through
extensive filtering tools, including population genomics and trio-based sequencing (parents and
probands). However, the genomic associations require follow-up analyses to narrow causal vari-
ants, identify genes that are influenced, and to determine the physiological changes. Large quanti-
ties of data exist that can be used to connect variants to gene changes, cell types, protein pathways,
clinical phenotypes, and animal models that establish physiological genomics. This data combined
with bioinformatics including evolutionary analysis, structural insights, and gene regulation can
yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry,
cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular vari-
ant mechanisms. Variant characterizations can be a significant component of educating future
professionals at the undergraduate, graduate, or medical training programs through teaching
the basic concepts and terminology of genetics while learning independent research hypothesis
design. This article goes through the computational and experimental analysis strategies of variant
characterization and provides examples of these tools applied in publications. © 2022 American
Physiological Society. Compr Physiol 12:3303-3336, 2022.

Didactic Synopsis
Major teaching points
• Common variants greater than 1% allele frequency nom-

inated by GWAS and fine-mapping are characterized by
screening of variants for protein changes, gene regulation,
and colocalization of signals for other phenotypes or traits.

• Rare variants below 0.01% allele frequency are connected
to phenotypes through variant filtering and trio-based
sequencing followed by assessing how variants impact
protein function.

• Known data filtering provides ultra-rapid insights on vari-
ant connections to genes, cells, protein networks, epige-
netics, and animal phenotypes.

• Data compiled with bioinformatics including gene evolu-
tion, protein structures, posttranscriptional modifications,
splicing, nonsense-mediated decay (NMD), and tran-
scription factor binding can generate hypotheses for how
a variant influences physiology.

• Molecular biology, biochemistry, cell culture, and animal
modeling can then be used to test variant hypotheses.

• There is growing support for environmental components
including hypoxia and viruses to activate responses that
are modulated by genetic variants.

• Variant analysis can be integrated into independent
research or classroom activities to expose students to
genetics and data analysis.

Introduction
While most students are exposed to genomics in their train-
ing, there is a rapid growth in the past few years of databases
and tools that allow for the translation of genomic knowledge
into physiological mechanisms. Large-scale sequencing of
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DNA and RNA has elevated genetics (targeting a set of genes)
into genome wide insights for biology. The terminology of
classroom genetics has changed from Punnett squares and
pedigrees into advanced concepts of genome-wide asso-
ciation studies (GWAS), quantitative trait loci (QTL), and
complex consomic/congenic animal models for physiology.
Many of the current genomic terminologies, strategies, and
insights are not readily available to the classically trained
physiologist. Many of the tools and the databases that are
available are unknown to many physiologists. Within a
few mouse clicks, physiologists have thousands of datasets
publicly available to them. This article serves as a resource
for a physiologist to gain a working knowledge of the ter-
minology, tools, datasets, and strategies in genomics that
can be applied to nearly any genetic variant that has con-
nections to phenotypes and physiology. Therefore, with
the insights gained from this article, we anticipate any
physiologist to be able to analyze genetic variants for their
projects.
Genetic variants have a significant impact on human medi-

cine. Every individual has millions of variants relative to the
reference genome. Variants include single nucleotide variants
(SNVs)/single nucleotide polymorphisms (SNPs), insertions
and deletions (indels), and copy number variants (CNVs).
Dissecting each variant’s contribution to biology is currently
impossible. Therefore, we rely on statistical strategies, data
filtering, and high-throughput approaches to nominate vari-
ants to study within laboratories. More importantly, these
tools to identify functional variants also elucidate many
insights into the physiological genomics, such that a variant
can be associated to gene and cell/tissue changes that impact
physiological processes. Two main areas of genetic filtering

have emerged for variants, common allele frequency that is
less penetrant for phenotypes vs. rare allele frequency with
highly penetrant phenotypes. These two strategies use inverse
statistical approaches to associate variants to biological
traits.
Traditionally, the most intuitive understanding of genetics

on human biology has been seen in pediatric populations,
as infants and children have had little environmental exposure
that modulate phenotypes compared to adults. This allows for
the determination of highly penetrant genotype-to-phenotype
associations. Rare variants below 0.1% allele frequency and
ultrarare variants unique in one or a few patients (proband)
can be connected to disease by comparing inheritance from
parents using trio-based sequencing, determining the variant
absence in healthy individuals (Figure 1). Common vari-
ants (>1% allele frequency in the population) instead of
require statistical analysis such as Genome-Wide Association
Studies (GWAS), where variants from either SNP arrays or
whole-exome sequencing (WES)/whole-genome sequencing
(WGS) are connected to phenotype by comparison of large
populations of cases with phenotype relative to controls
without phenotype (Figure 1). Variants with allele frequen-
cies between 1% and 0.01% are mainly void of statistical
strategies to associate variants to phenotypes and remain
one of the most challenging genomic variant classes. Once
an association of a variant is established, multiple tools are
used to move from associations into causal mechanisms
for variants. Throughout this educational review article, we
explore the background of genomic variants and sequencing,
followed by laying forth the tools used for establishing causal
mechanisms for common to rare variants in phenotypes and
physiology.

SNP array Genome / exome

Sequencing / imaging

Rare variants
Common variants

Parents

Proband

Phenotype
trait

Association
15

10

5

0

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0987654321

Chromosome

–
lo

g
1
0
(P

)

Figure 1 Sequencing to association studies for rare and common variants. Cre-
ated with BioRender. Genomics can be performed by SNP arrays or genome/exome sequencing
chemistries, followed by various statistical strategies for rare or common variants.
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Figure 2 EBI/NHGRI GWAS catalog. (A) Associations per year. (B) The number of associations per trait
is ranked based on the number of associations. Data was pulled from the GWAS catalog on March 6, 2021.

Common Variants (>1% Allele
Frequency)
Human genomics had its most significant breakthrough
in the early 2000s with the completion of the compiled
draft genome (89). As the genome became confirmed for
high-quality insights (141), the initial genome advanced
into 1092 (1) and then 2504 individual genomes (2). These
2504 genomes were from 26 populations, allowing for better
insights into how variants are shared across individuals of
diverse geographical areas that have diverse physiology.
In total, 84.7million SNPs were observed in the first 2504
individuals sequenced. Additionally, 3.6 million indels and
60,000 structural variants were detected. Now, in 2021,
with over a million genomes having been sequenced, we
know that there are hundreds of millions of variants in the
genome and that any site within the genome can vary due
to de novo mutagenesis. The only way to identify every
variant in an individual’s genome is through whole-genome
sequencing. Yet the cost of a human genome sequence
still remains approximately $1000. Using the thousands of
genomes sequenced/genotyped, variants that are coinherited
together can be identified in linkage disequilibrium (LD),
and variant blocks can be imputed through the detection of
fewer base calls. A smaller set of variants can be developed
into probes, known as a SNP array. A narrowed variant list
can be generated, removing redundancy of linked variants,
such that variants assessed have the power to impute the tens
of millions of variants seen in the initial haplotypes. Com-
mon variants are the focus of SNP arrays. These strategies
became widely adapted for GWAS and population genomics,
including commercial entities of genomics like 23andMe.

GWAS/PheWAS
With these lower-cost strategies of genetic insights, the
numbers of individuals with common variant maps grew into
the millions. That allows for statistical strategies to identify
when variants are associated with biological traits. Focusing
on a single trait, GWAS can establish associations of a variant

to that trait, yielding statistical p-values for each variant.
These studies have been scaled to many traits over the past
decade, with a highly curated list present in the EBI/NHGRI
GWAS catalog (97). As of March 2021, 248,356 indepen-
dent associations have been observed for 3947 different traits,
yielding 62.9 ± 4.9 associations per trait (Figure 2). The rapid
expansion of variant-to-trait associations has been driven by
pairing genotypes of individuals to more extensive pheno-
type collections, such as surveys of traits within 23andMe
or medical records of Phenome Wide Association Studies
(PheWAS). For example, the UK Biobank has linked 4203
phenotypes to 361,194 individuals with genotype data (155).
As the sample sizes continue to increase in these studies,
these tools’ power for lower allele frequency increases. The
use of burden testing in disease association can also allow
for variants on the genotyping platform with lower allele
frequency to be associated with biological traits (61). To go
from an association in GWAS or PheWAS to mechanisms that
drive physiology, additional statistical approaches can narrow
likely causal variants and potential mechanisms. As with
many GWAS and PheWAS, the study design can influence
statistical modeling (128). These can be normalized using
multi-study integrations or through building insights of the
overlap of physiological and variant mechanisms.

Fine-mapping associations with functional data
For each of the variants with trait associations, functional-
ity can be narrowed using statistical approaches or existing
data. The use of the GWAS data structure relative to imputed
variants, in addition to multiple study overlap of signal allows
for a statistical narrowing of likely variants, which can be fur-
ther filtered with known data for protein and gene biology.
These insights can then be used to formulate hypotheses that
can be tested with biochemical, molecular, cellular, or animal
physiological experiments.

Statistical fine-mapping

As noted, variants connected to biological traits using GWAS
or PheWAS are only associations. This is primarily due

Volume 12, April 2022 3305



Computational and Experimental Analysis of Genetic Variants Comprehensive Physiology

to LD, or the co-occurrence of variants inherited together
in haplotypes. Any of the variants within LD can be the
causal variant for the biological trait. Therefore, finding
variants associated with a trait takes additional imputation
of variants followed by statistical analysis and integration of
datasets for causal variant mechanisms. The base of statis-
tical fine-mapping takes the strong SNP-associated p-value
sites through additional computation of genotype imputa-
tions and cross-study narrowing (140). The initial variant
summary statistics can be combined with larger population
LD inheritance structures (such as the TOPMed imputation
server (37)), additional independent association signals, and
a variety of statistical modeling to create a minimum list of
likely causal variants (147). These statistical modeling can
include heuristic methods, penalized regression, or Bayesian
approaches (140). In some cases, based on limited LD vari-
ant coinheritance, fine-mapping minimum variant list can
nominate a single potential causal variant. However, most
of the time, fine-mapping narrows associations to a smaller
list of multiple variants that might be causal for a trait. With
these narrowed SNPs, screening can assess missense variants
that impact protein biology or by identifying variants that
impact splicing, expression, or more complex outcomes of
genes. These rapid screening of variant insights can be done
using tools such as the Variant Effect Predictor (VEP) and
ANNOVAR (102, 161).
For example, the SNP rs12126142 is highly associated

with interleukin 6 receptor subunit alpha (IL6R) protein mea-
surement (p-value 4E-5877), ranking as one of the highest
associations in the GWAS catalog. The variant is present at
different allele frequencies in different populations and has
greater than 20 variants in LD greater than 0.8R2 (Figure 3).
The fine mapping can narrow a list of causal variants, which
then when filtered reveal the rs2228145 SNP (R2 of 1 with
rs12126142) as amissense variant that falls near a splicing site
of an alternatively used exon that can serve as a proteolytic
cleavage site in activating the soluble receptor (56, 80).

Cross trait associations

As the associations’ catalog grows, it becomes increasingly
probable that a variant LD block has associations with more
than one trait. Thus, by integrating multiple associated traits
for a region, one can identify correlations between multiple
disease associations into potential gene/protein outcomes. For
example, the LD block of rs12126142, as shown in Figure 3,
has 18 distinct traits associated within the GWAS catalog
(Table 1). The most significant association is to interleukin
6 receptor subunit alpha measurement. It is also connected
to diseases (Alzheimer’s, asthma, ankylosing spondylitis,
abdominal aortic aneurysm, coronary artery disease, rheuma-
toid arthritis, respiratory system disease), cell level insights
(monocyte count, red blood cell distribution width, mean
platelet volume), biomarkers (C-reactive protein, fibrino-
gen, alkaline phosphatase), and environmental responses
(mosquito bite reaction itch intensity measurement). These
trait integrations give an incredible insight into the mecha-
nisms of a genome location to phenotypic outcomes.

Quantitative trait loci

As suggested from Table 1, it is possible to build associations
from genomic loci to proteins or gene changes. Targeted
analysis, for example, the measurement of cytokines like
IL-6 in blood, can utilize GWAS to determine sites in the
genome that contribute to variable expression levels. In
the initial assessment screening of variants from GWAS,
most loci do not have variants that directly change proteins
(missense or nonsense). Therefore, it became increasingly
important for new tools to assess how common genetic vari-
ants impact gene expression (135, 170). More extensive omic
technologies such as transcriptomics or RNA-Sequencing
(RNA-Seq) can derive associations between genomic loci and
gene expression of each gene in the genome. To make this
a reality, the Genotype-Tissue Expression (GTEx) project
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Table 1 Traits Associated with the rs12126142 LD Block Pulled from
the GWAS Catalog (97) on March 16, 2021

Mapped_trait p-Value

Interleukin 6 receptor subunit alpha measurement 4E-5877

C-reactive protein measurement 3E-436

Alzheimer’s disease 6.00E-63

Fibrinogen measurement 3.00E-36

Alkaline phosphatase measurement 2.00E-31

Monocyte count 1.00E-23

Asthma 1.00E-17

Mean corpuscular volume 8.00E-17

Red blood cell distribution width 1.00E-16

Ankylosing spondylitis 2.00E-15

Mean corpuscular hemoglobin 5.00E-15

Mean platelet volume 7.00E-15

Abdominal aortic aneurysm 5.00E-13

Coronary artery disease 3.00E-11

Rheumatoid arthritis 1.00E-10

Platelet count 2.00E-10

Mosquito bite reaction itch intensity measurement 9.00E-09

Respiratory system disease 9.00E-08

was launched (59, 60). In approximately 1000 individu-
als, a total of 54 different tissues were collected, followed
by RNA-Seq that were combined with the individual’s
genomic data.
The RNA-Seq is paired to genotyping information for

each individual, allowing for transcriptome-wide analysis of
variants’ influence on genes, known as a quantitative trait
loci (QTL). The current GTEx release (v8) focuses on both
the outcomes of variants to expression (eQTL) and splicing
(sQTL). The number of genes in all tissues with eQTLs
greatly outnumbers sQTLs (Figure 4A). For eQTLs, the
relative change in the mapping of RNA reads to a gene for
different genotypes (fold change) relative to the significance
(p-value) shows that thousands of sites in the genome impact
expression (Figure 4B). The sQTLs similarly have thousands
of associations and represent a broad array of minor allele
frequencies (Figure 4C).
To detail eQTL biology, we selected one of the most

significant eQTLs, that at rs6593279 for the PSPHP1 gene
(p-value of 8.3e-252). The violin plot of normalized expres-
sion of PSPHP1 when individuals are homozygous for G at
rs6593279 (chr7 55,736,277) shows marked lower expres-
sion than either the heterozygous (GA) or homozygous A
(AA) individuals (Figure 5A). This tiered expression of the
three genotypes at the loci shows the additive effects of

homozygous individuals’ expression. It should be noted that
the rs6593279 variant is in high LD with multiple additional
SNPs (Figure 5B). Thus, the causal SNP is not determined
by eQTL, requiring further data analysis to determine causal
variants on gene expression.
Similar to the eQTL example, sQTLs show changes in

splicing and exon usage that are associated with genetic
variants. As an example, we show rs56105022 impact on
splicing for the CNIH4 gene. The variant is one of the most
significant sQTLs within the genome (p-value <1e-300),
with the signal in tissues including muscle and cultured
fibroblasts (Figure 6A). The heterozygous individuals with
CA have marked elevation (Figure 6A) of alternative splicing
of exon 1 to exon 4, resulting in an altered CNIH4 splicing
(Figure 6B-6C) and a resulting isoform that does not code
for a protein (Figure 6D). It should also be noted that no
homozygous A (AA) individuals are part of the GTEx anal-
ysis. In the case of this variant, the LD structure (Figure 6E),
sQTL, and isolated presence of rs56105022 over the CNIH4
gene suggest the narrowing of a causal variant to a single
SNP, showing how fine-mapping can at times suggest single
causal variants.
Building overlap of eQTL/sQTL signals for any two loci

associations requires some careful consideration, performed
through a colocalization of signal analysis (Figure 7). In
these analyses, if the two associations’ peaks are located on
the curve’s exact position, then the causal variants are likely
to be the same for the two traits (Figure 7A). However, it
is possible that the two peaks do not overlap, yet both have
SNPs that reach significance due to LD (Figure 7B). In the
latter case, the causal variants are likely to be different even
though the same SNPs have shared significance for both
traits. Accounting for colocalization of signals decreases the
probability of false-positive trait overlap annotations.

ENCODE and epigenomics data

Narrowing from associations to causality for an individ-
ual variant, even with knowledge of cellular or gene-level
mechanisms using the above approaches, requires screening
gene regulation mechanisms at the variant resolution. The
ENCODE project was launched and has completed three
phases to provide a starting point of resolution for base-pair
regulation (45–47). Using various cell lines and tissues,
18,905 different assays have been performed to give insights
into transcription factor-DNA binding (ChIP-Seq), gene
expression (RNA-Seq), DNA accessibility (DNase hypersen-
sitivity, footprinting, ATAC-Seq), DNAmethylation (bisulfite
sequencing, RRBS), histone modifications (ChIP-Seq), and
3D chromatin structure (Hi-C). Integrated insights of the
epigenetics data for individual variant sites such as CADD
(130), state models of regulation like ChromHMM (136), or
RegulomeDB (21) give a detailed map of overlapping data to
prioritize the minimal fine-mapped variants of an association
region (Figure 8). Additional tools such as GeneHancer (50)
can link the regulation datasets to genes.
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Noncoding RNA

As sequencing technologies for transcripts increase, our
knowledge of RNA classes outside of those that code for pro-
teins has advanced. Variants can fall within these noncoding

RNA molecules and impact cellular function, such as gene
regulation. The current human Gencode38 database (https://
www.gencodegenes.org/human/) contains 236,186 known
transcripts (Figure 9A), of which 63% are not protein-
coding annotation (53). The long noncoding RNA (lncRNA)
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transcripts represent 20% of all known transcripts, with
46,963 annotated, ranking as the largest class of the non-
coding RNA (Figure 9B). Using the Gencode38 annotation
statistics, these noncoding RNA are vastly under published
relative to protein-coding transcripts (Figure 9C), making it
incredibly difficult to interpret functional consequences of
variants in these transcripts. Many noncoding RNA is not
conserved between species and thus evolutionary analysis

cannot be applied to defining the functional nucleotides of the
noncoding RNA (42). Even when noncoding RNA are found
between species, their expression can vastly differ, such that
animal modeling of the human noncoding RNA has been a
robust challenge in defining their roles in human diseases (94).
In addition, many of these lncRNA transcripts are quite large,
averaging 1318± 2247 bases per transcript (Figure 9D) with
the largest that of XACT-203 (ENST00000674361= 347,561
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bases). Yet, multiple examples do exist for functional variants
within or contributing to noncoding RNA. The most common
mechanistic studies for noncoding RNAs involve changes
in their expression, likely due to eQTLs, as these can be
readily measured through total RNA-Seq strategies. Various
GWAS for cardiovascular diseases (myocardial infarction,
coronary artery disease, type-2 diabetes, blood pressure, etc.)
have suggested disease involvement and expression changes
of lncRNAs such as ANRIL, CDKN2B-AS1, MIAT, H19,
and LOC157273 (27, 58, 167). In autism spectrum disor-
der (ASD) and Development Delay/Intellectual Disability
(DD/ID), the lncRNAs of MSNP1AS, ASFMR1, ATXN8OS,
BACE1-AS, BC200, MALAT1, and SOX2OT are all known
to contribute to disease progression (81, 151, 162). The
ncRNAVar database (www.liwzlab.cn/ncrnavar/ncrnavar
.html) has a curated list of 3112 variants that contribute to
711 different human diseases through noncoding RNA from
common to rare disorders/phenotypes (171). Most of these
variants are found associated with lncRNA (3203 associa-
tions, Figure 9B) followed by miRNA (622 associations).
One of the more striking observations from this database
is that most variants connected to noncoding RNAs are
those that influence expression and are found intergenic,
downstream, upstream, or intronic of transcript annotations
(Figure 9F). Advancing resources in noncoding RNA show
growth but also the need to better understand the mechanisms
and physiology associated through noncoding RNA.

Pharmacogenomics
One area of common genomics that is actively growing is
that of pharmacogenomics. The PharmGKB database (67)
represents the most extensive integrated knowledgebase of

pharmacogenomics, giving the ability to search any disease,
gene, or variant and get to drug label annotation, clinical
guideline, gene pathway, or annotated drugs. Pharmacoge-
nomics is primarily linked to the genome’s common variants,
where GWAS strategies can be applied to populations in
clinical trials to stratify drug delivery based on genotypes.
A smaller subset of pharmacogenomics focuses on rare
variants and rare diseases, such as cystic fibrosis.

Example variants in broad phenotypes
To show examples of how association data can be taken to
mechanisms using the discussed statistical filtering and anno-
tation tools, we have provided five examples of GWAS loci
(Figures 10–14). Logically, many of the loci with causal vari-
ants determined are those sites where a pronounced missense
variant exists. Computation tools such as PolyPhen2 (5),
Provean (32), and SIFT (108) that use evolutionary data and
amino acid functionality can narrow missense variants that
likely cause a change to protein function. A total of 12,242
variant associations are seen for 3333 missense variants
within the GWAS catalog, of which 102 missense variants
(Figure 10A) are predicted to damage protein function using
PolyPhen2 (5), Provean (32), and SIFT (108) filtering tools.
There are only a total of 31 missense variant annotations that
are predicted functional in the three tools and have a MLOG
>20 (Table 2).
The missense variant with the lowest p-value within the

entire GWAS catalog is ALDH2 E504K (rs671, p-value
1E-4740). rs671 is found listed in the GWAS catalog 37
times, mostly connected to alcohol drinking, consumption,
or response (99, 125, 149). It is also linked to various car-
diovascular outcomes such as gout, coronary artery disease,
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metabolic syndrome, and myocardial infarction (106, 150,
165, 172). The E504K variant is found near the enzyme’s
active site (Figure 10B) and is known to significantly
reduce enzyme activity as determined by biochemical
experiments (78). Homozygous knockout of Aldh2 in mice
results in multiple phenotypes connected to cardiovascular
(https://www.mousephenotype.org/data/genes/MGI:99600#
phenotypesTab) and ethanol processes (96).
Genetics and variants play a substantial role in neurological

diseases, particularly in Alzheimer’s, the most common form
of dementia (173). Heritability is estimated to be up to 79%
based on twin and family studies (57, 134). Alzheimer’s can
roughly be divided into early-onset (EOAD) and late-onset
(LOAD), both of which GWAS, linkage studies, as well as
other imaging modalities have identified autosomal dominant

and sporadic genes associated with these conditions (173). Of
note, APP, PSEN1, and PSEN2 have been genes of interest
that have been implicated in the pathogenesis of EOAD.
For LOAD, APOE is a well-studied risk gene, with newer
implicated in GWAS studies including ABCA7, CLU, CR1,
and DRB1. There are currently 1361 association loci for
Alzheimer’s disease (Figure 11A). The variant rs429358, also
known asAPOE*4 allele, is found elevated inAfrican/African
American ancestry (Figure 11B), has independent inheritance
without highly correlated LD (Figure 11C), and results in
a missense variant APOE C130R (Figure 11D). The APOE
star 4 allele is one of the most penetrant adult genotype-
phenotype common variants, increasing Alzheimer’s disease
risk from 20% to 90% (35). This missense variant results in
changes to the APOE protein structure and interaction with
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APP/A4 amyloid-beta peptide that results in loss-of-function
to the protein in neurons and is associated with elevated
plasma cholesterol and triglyceride levels (39). The variant
is amongst the most published variants, with over 100 cur-
rent publications in PubMed (https://pubmed.ncbi.nlm.nih
.gov/?term=rs429358&sort=pubdate), many of which detail
mechanisms of physiology due to the variants. This example
represents where a causal missense variant can be confidently
mapped with fine-mapping strategies.
Stroke risk factors fall under modifiable and nonmodifi-

able risks, with numerous suggested genetic factors (158).
These mutations can be rare single-gene disorders (such
as cerebral autosomal dominant arteriopathy), single genes
causing multisystem effects (such as sickle cell anemia), to
common polygenetic variants. Common variants have been
associated with increased stroke risk through genes including
TSPAN2, FOXF2, ABO, and PITX (20). These loci, such as
polymorphisms in 9q21, play a modest role in stroke develop-
ment in patients. There are 353 loci for stroke in the GWAS

database (Figure 12A). The rs6025 variant is amongst the
most significant associations (70), with the minor allele found
highest in Non-Finnish European ancestry (Figure 12B) with
few SNPs in LD (Figure 12C). rs6025 results in a missense
mutation F5 R534Q (Figure 12D), which is also associated
with Budd-Chiari syndrome and is a driver for thrombosis
complications (16, 29).
In total, 523 loci have an associationwith CKD (Figure 13A).

The rs2147896 variant is the most significant CKD locus (p-
value 3E-917), is found elevated in African/African American
ancestry (Figure 13B), has a complex LD block of variants
(Figure 13C), and has a pronounced eQTL for PYROXD2
(Figure 13D). While this association is strong, there remains
a surprisingly low number of publications on the gene. Thus,
physiological validation using diverse techniques are needed
to determine what the outcomes of changed PYROXD2
expression can have on humans or model organisms.
Throughout many of the top LD blocks for traits within the

GWAS database, causal variants are relatively thin, outside
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Figure 13 Chronic Kidney Disease (CKD). (A) All SNPs in GWAS database for Chronic Kidney Disease (CKD) showing the number of LD
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project phase 3 using African imputation for rs2147896. (D) rs2147896 results in an eQTL for PYROXD2. (E) rs17319721 allele frequencies
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results in altered gene regulation of a shortened SHROOM3 isoform through disruption of TCF7L2 binding and looping between an enhancer
and promoter.

of missense variants. Our group defined one specific LD
block to determine the causality of a single change on gene
regulation, focusing on rs17319721 impact on SHROOM3 in
chronic kidney disease (CKD). rs17319721 is found elevated
highest in Non-Finnish Southern European (Figure 13E) and
has multiple variants in LD (Figure 13F). Using data filter-
ing, electrophoresis mobility shift assays (EMSA), CRISPR
modifications, and a zebrafish nephrology model, our group
showed that the single variant disrupts TCF7L2 transcription
factor binding, impacting structural looping of an enhancer to
a secondary transcriptional start site that is used in podocytes

(Figure 13G). The disruption of this enhancer by the variant
directly impacts the expression of SHROOM3 (124). That
work represents a strategy for going from association to
causal variant mechanisms, where many future sites must
be analyzed for the GWAS catalog to take association into
mechanism.

Rare Variants (<0.01% Allele Frequency)
Rare variants are often connected to rare Mendelian diseases
through high penetrance. Rare variants can also have impact
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Table 2 Missense Variants in GWAS Catalog Annotated as Damaging to Protein Function Using PolyPhen2, Provean, and SIFT from the GWAS
Catalog (97) on March 16, 2021

SNP UniProt Gene Variant GWAS traits Top mapped trait Top MLOG

rs671 P05091 ALDH2 E504K 37 Alcohol drinking 4740.00

rs463312 Q9H4B7 TUBB1 Q43P 4 Platelet component distribution width 2658.40

rs6258 P04278 SHBG P185L 10 Sex hormone-binding globulin measurement 1823.00

rs1800562 Q30201 HFE C282Y 58 Mean corpuscular hemoglobin 1685.00

rs12975366 O75023 LILRB5 D247G 8 Blood protein measurement 1275.52

rs10490924 P0C7Q2 ARMS2 A69S 11 Age-related macular degeneration 539.40

rs7412 P02649 APOE R176C 147 Blood protein measurement 483.52

rs1801690 P02749 APOH W335S 14 Blood protein measurement 430.15

rs1043657 O43488 AKR7A2 A142T 2 Chronic kidney disease, urinary metabolite measurement 411.70

rs2228467 O00590 ACKR2 V41A 30 Monocyte count 360.40

rs4149056 Q9Y6L6 SLCO1B1 V174A 43 Blood metabolite measurement 327.22

rs678 P19827 ITIH1 E585V 16 Blood protein measurement 320.52

rs16891982 Q9UMX9 SLC45A2 L374F 40 Sunburn 319.52

rs11547464 Q01726 MC1R R142H 3 Hair color 307.70

rs1805006 Q01726 MC1R D84E 3 Hair color 307.70

rs6025 P12259 F5 R534Q 10 Venous thromboembolism 300.00

rs28385609 Q92484 SMPDL3A P161S 2 Blood protein measurement 281.70

rs1042602 P14679 TYR S192Y 12 Hair color measurement 278.52

rs1048328 Q9UBX7 KLK11 R166C 3 Blood protein measurement 261.00

rs28929474 P01009 SERPINA1 E366K 58 Sex hormone-binding globulin measurement 252.00

rs676210 P04114 APOB P2739L 25 Triglyceride measurement 196.22

rs34210653 P16050 ALOX15 T560M 14 Eosinophil count 139.10

rs34557412 O14836 TNFRSF13B C104R 35 Monocyte count 93.40

rs17580 P01009 SERPINA1 E288V 29 Blood protein measurement 89.00

rs1801689 P02749 APOH C325G 25 Platelet count 80.70

rs9379084 Q92766 RREB1 D1171N 32 Body height 64.40

rs167479 Q3MIN7 RGL3 P162H 19 Systolic blood pressure 62.00

rs12210538 Q86VW1 SLC22A16 M409T 16 Reticulocyte measurement 46.70

rs2277339 P49642 PRIM1 D5A 30 Mean corpuscular volume 42.22

rs34536443 P29597 TYK2 P1104A 27 Platelet count 38.00

rs2229742 P48552 NRIP1 R448G 17 Erythrocyte count 20.30

The list includes all missense and damaging variants with an MLOG>20 (p-value 10e-20).

on common diseases, potentially explaining much of the
unknown disease inheritance not explained by common
variants (33). A disease is defined as rare if it affects fewer
than 200,000 people in the United States. Since most rare
diseases primarily affect children and have a strong penetrant
genetic component, this has promoted pediatric genetics
and genomics as a growing medical specialty (163). The
development of rapid genetic sequencing has revolutionized

the medical management of critically ill children, with the
potential of finding a diagnosis in as little as 19.5 h (34).
This rapid turnover allows for more timely and efficient
medical management, leading to better health outcomes and
comfort for families (83). It is crucial that this improved
turnaround time also be translated to smaller community
hospitals that typically do not have the access to sequencing
technology at the scale of larger academic hospitals, which
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63 63 63 63

63 63

36 36
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Figure 14 Inheritance and de novo rare variants of the
genome. 63 is a representative number of de novo variants, with each
individual of the pedigree have added variants in subsequent genera-
tions.

have demonstrated the ability to utilize this technology with
great utility, while still maintaining cost-effectiveness (34).
The 1000 genomes project was the first to conclusively

show that each individual has 42 to 82 unique variants not
found in either parent (4). These changes are known as
de novo variants. These de novo variants compound over
generations, where half of one’s germline de novo variants
are passed on to children. This results in a pool of variants
inherited in local family structures (Figure 14). With an
average of 63 changes between an individual’s parents and
their own de novo variants, approximately 126 variants are
found. Extending back generations of de novo accumulation
would suggest >1000 variants arising in this way looking
at the 16th generation of inheritance. These accumulated de
novo variants represent the bulk of analysis for rare variants.
Our current statistical tools for identifying rare variants

with phenotypic associations are based on comparing an indi-
vidual with a phenotype to a large population of genomics
without the phenotype. As rare variant analysis currently
focuses on highly penetrant variant detection, assessing vari-
ants is limited by the number of “healthy” control genomes.
Over the past few years, science has contributed to a boom
in genomes sequenced. Projects such as gnomAD contain
76,156 genomes of diverse inheritance, and the TOPMed pro-
gram has grown to 168,220 genomes (Figure 15). This large
base allows for a patient’s genome to be compared to remove
all variants seen in the larger asymptomatic population. That
analysis still leaves hundreds of potential damaging variants.
In this case, it is preferred to compare the patient to their
parents to determine de novo variants and inheritance struc-
ture. However, much of genomic sequencing has required
identifying candidate regions of the genome for phenotypes,
starting from the larger structural genomics field that has
been around longer than sequencing, and now moving into
clustering patients with overlapping gene signatures.

Structural genomics to disease
Large chromosomal structural changes, known as copy num-
ber variation (CNV), were amongst the first clinical genetic
changes studied (26). Using karyotyping and multicolor spec-
tral karyotyping, it is possible to visualize entire chromosome
replications (such as trisomy 21) and substantial changes

(142). Advancing microarray-based platforms allowed for
scaling of CNV detections clinically (28, 117). CNVs account
for genetic contributions for many diseases (14, 48), where
targeted analysis is often performed for suspected diseases.
With most CNVs, the focus has been on the gain or loss of
one or more copies of a gene and how it impacts physiology,
known as gene dosage sensitivity. The ClinGen database
(129) has become the leading curated database for dosage
sensitivity information at the gene level. As of March 8, 2021,
there are 1457 dosage-sensitive genes curated in ClinGen.
The removal of one copy of the gene to result in disease,
haploinsufficiency, has sufficient evidence for 353 genes.
In contrast, the gain of a copy of the gene, triplosensitivity,
is only sufficient in 24 genes. The ClinGen database also
includes curated information for clinical actionability and
pathogenicity for genes.
The use of dosage sensitivity is significant for determining

loss vs gain of function for a gene association to the disease.
If CNVs establish haploinsufficiency for a gene to a specific
disease, a single variant site (missense) in an individual
with the same disease can be used as a filter to identify
potential loss-of-function causal variants in the individual’s
genome. Similarly, if triplosensitivity has been observed for a
disease, single variants can be screened for gain-of-function
outcomes on the protein. Therefore, the curation of dosage
sensitivity information lends important tools for assessing
single variants to physiological outcomes. This is incredibly
important recently with the growth of long-read sequencing
of Pacific Biosciences circular consensus sequencing, able
to determine smaller CNVs not assessed in karyotyping or
array technologies, vastly improving the clinical detection of
CNVs in diseases (68).

Clinical variant database (ClinVar)
The gain or removal of a copy of a gene is logically easier
to understand proteins’ outcome. More subtle changes, how-
ever, account for most genotype-phenotype relationships.
Therefore, focusing on single base changes, databases such
as ClinVar (90) have grown lists of hundreds of thousands
of observed variants seen in patients with broad diseases. It
should be noted that ClinVar is not curated and thus is based
on submitters’ annotation of variants. Care must be taken
when extracting variant annotations into clinical or research
interpretation. Dissection of the nearly million variants within
ClinVar shows that variants of uncertain significance (VUS)
account for 43% of variants, while pathogenic and likely
pathogenic account for only 16% (Figure 16A). Variants
are broken down into the following common groups within
ClinVar (Figure 16B).
Missense (44.8%): Results in an altered amino acid of

the coded protein. Example=NM_152486.3(SAMD11):
c.106G>A (p.Ala36Thr), where c. represents the coding
transcript position, and p. represents the protein position.
Synonymous (19.2%): Does not alter the sequence of

the protein. These variants typically fall in codon wobble
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Figure 16 ClinVar variants (A) Clinical annotation of 774,966 ClinVar variants. (B) Molecular type of
774,966 ClinVar variants. (C) Percent of each molecular type that falls into pathogenic (red) or VUS (cyan)
annotations. Data were extracted from the UCSC Genome Browser on October 14, 2020.

positions. Example=NM_152486.4(SAMD11):c.255A>G
(p.Arg85=).
Intron (11.0%): A change in the DNA for regions

spliced out of protein sequences. Example=NM_152486.4
(SAMD11):c.1565-3C>T, where the -3 represents the num-
ber of bases into the intron from the splice site at 1565 of the
coding transcript.

3 prime UTR (5.8%): Found in a spliced gene sequence
following the stop codon. Example=NM_198576.4(AGRN):
c.*19C>T, where * represents the stop codon.
Frameshift (5.7%): A small indel (addition or removal

of base/bases) disrupts the frame of codons. Example =
NM_152486.3(SAMD11): c.1005dup (p.Ala336LysfsTer24),
where the change results in a new amino acid (Lys instead of

3316 Volume 12, April 2022



Comprehensive Physiology Computational and Experimental Analysis of Genetic Variants

Ala) followed by a new set of amino acid sequence from the
frameshift (fs) that goes so many amino acids before a stop
codon (Ter).
Nonsense (4.1%): A change of a base that results in a

stop codon’s insertion in the gene. Example=NM_152486.4
(SAMD11):c.1888C>T (p.Arg630Ter).
5 prime UTR (1.4%): Found in a spliced gene sequence

before start codon. Example=NM_080605.4(B3GALT6):c.-
38G>A, where the number is the bases before the start codon.
Splice donor (1.3%): A DNA change that might impact

splicing due to its location near exon/intron boundaries.
Example=NM_152486.3(SAMD11):c.869+1G>A.
Splice acceptor (1.0%): A DNA change that might impact

splicing due to its location near exon/intron boundaries.
Example=NM_002074.5(GNB1):c.700-1G>T.
Inframe deletion (0.8%): The deletion of three DNA

bases that result in removing one or more amino acids.
Example=NM_003036.4(SKI):c.280_291del
(p.Ser94_Ser97del).
Inframe insertion (0.3%): The insertion of three DNA bases

removes one or more amino acids. Example=NM_080605.4
(B3GALT6):c.22_36dup (p.Trp8_Ala12dup).
Several variant classes are more biased to pathogenic vs.

VUS determination (Figure 16C). For example, if a variant is
a frameshift, nonsense, or splice site and is within ClinVar,
it is more likely to be pathogenic. Of the missense variants,
67.9% are annotated as VUS, while 10.8% are pathogenic.
This suggests that there is currently a lag in the mechanistic
characterization of missense variants, more so than any other
molecular outcome group.
Not all genes are evenly divided in the observance of vari-

ants in ClinVar. Most genes within ClinVar have 1-9 variants
listed, with a few genes having greater than 1000 listed vari-
ants (Figure 17A). Genes with high pathogenic or VUS levels
are either large genes (such as TTN) or commonly studied
genes that are focused on in targeted sequencing (Figure 17B).
When a variant result in loss-of-function (LoF) for a

protein, this will often exert dosage issues. If approximately

50% of the gene function manifests disease phenotype, the
variant is often dominant. Dominant-negative variants are
those that not only decrease a protein’s function but exert
additional change on normal proteins, for example, multimer
proteins where a variant at the dimer interface results in loss
of interaction even within normal protein. If a gene requires
both copies to be altered to result in disease, we annotate
these as recessive variants. Some variants in the genome
result in gain-of-function (GoF) changes, such as a missense
variant in a degradation motif that results in the accumu-
lation of protein. Most nonsense and frameshift mutations
have probability of being GoF or dominant-negative if the
resulting shortened protein were made. However, cells have a
mechanism to prevent these proteins from being made, known
as nonsense-mediated decay (NMD) (66). NMD results from
the persistence of proteins on the extended 3′UTR that are
not removed due to early release of the ribosome subunits
by the nonsense variant, which initiates degradation of the
entire mRNA (Figure 18). The new stop codon’s location
determines the likelihood for NMD to occur, such that the
further towards the 5′ end of the mRNA the more likely NMD
occurs. Thus, it is possible that in one gene, the location of
NMD can result in one variant (further 5′) to undergo NMD
and result in dosage changes of the protein and a second stop
codon (further 3′) to make a shortened protein that drives
dominant-negative or GoF outcomes, where the two variants
have different phenotypes (71).

Clinical whole-genome sequencing
In clinical genomics for rare diseases, the gold standard
has become trio-based sequencing (Figure 19). A proband’s
genome is first filtered against the large population genomics
datasets such as gnomAD and TOPMed to remove com-
mon variants seen in many individuals without the patient
phenotype. Then mom and dad’s genomes are used in
combination with known inheritance for the pathology to
search for candidate variants. The list of candidate variants is
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plexes (EJC) near splice sites. When a nonsense variant arises, the 3′UTR is enlarged, with the
accumulation of decay-inducing complex proteins (red) that initiate the mRNA’s degradation
to prevent partial protein production. Created with BioRender.

filtered through computational algorithms, publications, and
genomic databases to address the variants’ similarity in other
patients and the predicted functional consequences of the
variants. With the information, often a clinical analyst fol-
lows guidelines provided by the American College ofMedical
Genetics and Genomics and the Association for Molecular
Pathology to rank variants based on priority and insights
(133). A certified pathologist then signs off on a report that
annotates the top variant, annotation, condition/disease, and
inheritance pattern. The annotations include:
Pathogenic: Variant must be conclusively connected to the

condition. These often include nonsense and frameshift vari-
ants that without a doubt cause LoF in a gene where LoF is
known for the condition.
Likely pathogenic: Variant that falls in a gene well con-

nected to the condition, meets inheritance structure of the con-
dition, and in silico analysis of the variant leave no room to
doubt it will disrupt the protein.
Uncertain significance: Variants of uncertain significance

(VUS) most often are those where a variant is found in a gene
well connected to the condition, but the variant’s role is still
uncertain. In some occurrences, VUS can fall within a gene
not connected to the condition before, but the variant’s out-
come meets inheritance and is predicted damaging, known as

a Gene of Uncertain Disease Significance (GUDS). VUS and
GUDS are not reported to families as they are still uncertain.
The guidelines suggest follow-up experiments or waiting until
another patient with a similar variant-condition combination
is observed. As shown in Figure 16, most VUS are missense
variants.
Likely benign: A variant that falls at a site that has never

been connected to pathology or has no support for impacting
the protein.
Benign: Without a doubt, the variant is not causal for

pathology. These are often variants where population fre-
quency is too high for it to drive a rare condition.
The application of whole-genome/exome sequencing in

a large population of individuals with disease allows for
detecting patients with variants in shared genes. This has
enabled an accumulation of risk genes in data filtering and
prioritization of variants. The most well-studied gene list is
known as the ACMG59, a list of 59 medically actionable
genes (76) connected to several phenotypes/physiology,
including cancer and circulatory systems (Figure 20). When
analyzing a genome, often findings can be made that do not
directly relate to the condition being assessed, such as risk
variants in the ACMG59 list that might put one at risk for
a future medical condition such as cancer. These are known
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Figure 19 Trio genomes: from variants to narrowed list. Created with BioRender.
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as secondary findings, and genetic counselors and clinicians
are continually challenged on when and how to report these
variants to families.

Clustering patients to genes
Historically, discovering a new genetic syndrome often
required chance meeting or overlap of two or more patients
with the same gene suggested. For example, Ellis and van

Creveld’s joint identification of the syndrome that bears
their name took place after an incidental meeting on a train
riding to a medical conference in 1939 (13). In the early
pregenome era, these chance occurrences were often based
more on phenotype/physiology matching for traits, condi-
tions, or phenotypes that impact thousands of individuals,
such as autism (138). Larger cohorts of sequencing databases
allowed for the association of genes observed with variants
in multiple individuals with these conditions. The advent of
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the internet, social media, and instantaneous and straightfor-
ward worldwide connection now allow for more interaction
and collaboration than ever before, particularly for phe-
notypes that are unique. This has directly translated to the
improved matching of unique phenotypes, genes, and variants
by clinicians, researchers, and even patients and families. This
means that many physiology experiments are now actually
performed by matching individuals across the world instead
of needing animal models to confirm the causal genes. Tools
such as GeneMatcher (146), Matchmaker Exchange (116),
and MyGene2 allow profiles to be created and the sharing of
genotype-phenotype insights between interested parties. Data
sharing in these venues now spans thousands of contributors
and cases across numerous countries. Other larger programs
have recently emerged, which aim to drive genomic and
physiological discoveries through the sharing of omics data,
phenotypic details, and samples between collaborating insti-
tutions. The Genomics Research and Innovation Network,
founded in 2019, combines the expertise at Boston Children’s
Hospital, Cincinnati Children’s, and Children’s Hospital
of Philadelphia and standardizes data sharing between the
institutions (98). This resource is needed to increase clinical
sequencing volume, which translates to lower numbers of
uncertain results, novel variants, and genetic variants in
genes not currently associated with the disease. In many
cases, the connection and discovery of overlap for VUS and
GUDS in two or more individuals can elevate variants into
likely pathogenic annotations and themselves provide critical
physiological insights of humans.

From common to rare
It is possible to integrate both common and rare variant anal-
yses so that one of the analysis strategies nominates a gene
followed by variant screening for additional causal variants.
This is particularly useful for finding variants in the 1% to
0.01% allele frequency range that lack the GWAS strategies
(p-value rarely elevates to significance) and are too common
for rare variant statistical analysis. For example, our group
built on the GWAS analysis of SHROOM3, where we used
the GWASmechanisms that suggested SHROOM3 as a causal
gene for CKD (Figure 13) to screen missense variants below
1% allele frequency that are present in gnomAD (Figure 21).

Computational tools as discussed below were used to score
every missense variant within gnomAD for SHROOM3, fol-
lowed by assessing population structure for inheritance and
location of variants in the protein. The top variants were taken
back to the CKD GWAS study groups to confirm high odds
ratios (OR) where p-values do not reach significance due to
low allele frequency, such as the P1244L variant (168). Using
both animal models and molecular biochemistry, we showed
that this variant functionally alters 14-3-3 protein interactions
and changing kidney podocyte function (124, 168).

Tools for Association to Mechanisms
Population genomics and rare variant statistical analysis
narrow down causal variants. Yet, the further narrowing of a
single variant in LD or the causal role of rare variants such as
VUS requires a different set of tools. Labs studying variants
often start with known data, advancing the data using bioin-
formatics to generate hypotheses for how a variant drives the
molecular outcome. These hypotheses can then be studied
at the bench using biochemistry, molecular biology, cell
culture, and ultimately animal or human models. Below we
provide examples of tools commonly used for characterizing
variants within each of these groups for both protein-coding
and noncoding variants.

Known data
Gene/Protein level insights: Normally, the first step in under-
standing the potential outcomes of a variant is to connect the
variant to a gene and establish the gene’s role in biology and
disease. The Online Mendelian Inheritance in Man (OMIM)
database is the authoritative tool for gene-to-phenotype
knowledge, including common inheritance and references
for the historical insights on relationships (7). As mentioned
above, ClinGen (129) and ClinVar (90) have become core
resources in concatenated variants to gene insights. For
simplified ClinVar analysis, the Broad Institute developed
Simple ClinVar, a more user-friendly search to figure tool
(114). The National Center for Biotechnology Information’s
(NCBI) Gene browser is a core of any analyst for extracting
sequences, finding literature, and basic knowledge for any
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Figure 21 Narrowing rare missense variants in SHROOM3 with pathogenic outcomes in Chronic Kidney Disease.
Modified, with permission, from Prokop JW, et al., 2018 (124).
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gene in humans (23). UniProt represents the authoritative
knowledgebase at the protein level, containing domain, motif,
variant, sequence, and structure annotations for all human
proteins (156).
Expression of gene: To build insight into the cells and

tissues impacted by genetic variants, it becomes essential to
know where in the human a gene is expressed. As discussed
early, the GTEx database provides a robust expression of
human genes in diverse individuals for 54 different tissues
(60). The Human Protein Atlas (HPA) is the gold standard
for assessing human gene and protein combined expression.
The database consists of RNA-Seq for 37 tissues and is
matched to 15,320 protein immunohistochemistry stains
in each tissue (154). The combination allows for insights
into gene expression and tracks the protein’s histology, nar-
rowing down cell types and cell location (nuclear, cytosol,
membrane). The database has grown to include single-cell
expression datasets and expression annotations for various
cancer pathologies. For larger expression insights in more
diverse samples, databases like FANTOM contain greater
than 1000 samples of gene expressions (3). Scaling to a
single-cell level, tools such as PanglaoDB provide millions of
cells over 1368 datasets curated into enriched cell annotations
for each gene of the genome (54). As many rare diseases
are associated with neurological phenotypes, there is a high
utility of additionally integrating the tools of the Allen Brain
Atlas (74).
Protein interactions and network: Many protein–protein

interactions are known in the literature. Tools such as
BioGRID bring these interactions into searchable tools (31).
Additional insight on gene interactions such as co-occurrence
in publications is curated within the STRING database (52),
allowing for the production of publication networks of pro-
teins of interest (Figure 20). From the interaction network of
a protein, the ontology terms annotated to each gene can be
assessed for enrichment, a process known as Gene Ontology
(GO) enrichment (103). For genes with little known, such as
GUDS, GO enrichment of the protein network can provide
strong insight into protein biology and association to overlap
with phenotypes.
Epigenetics: When a variant is predicted to be noncoding

based on gene regulation, the variant analysis focuses on
understanding or generating epigenetics datasets. Thousands
of datasets for any position in the genome are available
from the UCSC Human Genome Browser (107). There are
two common human genome releases used within these
tools, hg19 and hg38. While hg38 is newer, it should be
noted that many more datasets are found using hg19 coor-
dinates. For extracting datasets built into or accessible
within the genome browser, the table browser tools are
more amenable to extracting data for a position within the
genome (https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=
1053662027_kl33ckiOAgtRf8J2QAAQQrk4oHj8). The NIH
Roadmap Epigenomics Mapping Consortium provided
integrative analysis (136) of datasets for positions in the
chromosomes, allowing for the development of chromatic

state annotations that can be easily assessed for a vari-
ant location (http://epigenomegateway.wustl.edu/legacy/?
genome=hg19&datahub=https://egg2.wustl.edu/web_portal_
cache/233165663.json). GeneHancer links many aspects of
ENCODE datasets into readily available information for a
variant region (50). More than a hundred chromatin inter-
action datasets (Hi-C, 4C, CIA-PET, HiChIP, PLAC-seq,
Capture Hi-C) are easily visible in the Yue Lab online func-
tional tools (http://3dgenome.fsm.northwestern.edu/index
.html). Integrated insights of gene regulation are available
from RegulomeDB (21). Suppose there is a desire to obtain
overlapping data for a list of variants in the genome. In that
case, tools like the Ensembl VEP and SNPnexus provide
options for finding overlapping data of epigenetics and
exporting them (102, 109).
Knockout and model animals: Multiple resources exist for

animal phenotyping based on gene knockouts. The mouse
genome database (MGD) and the rat genome database (RGD)
contain many tools and resources for understanding genes
in the individual species (24, 153). The GeneNetwork tools
allow for assessing genes in diverse species, including the
recombinant inbred and heterogenous stock model systems
(105). The International Mouse Phenotyping Consortium
(IMPC) aims to knock out every gene in the mouse genome
followed by multiple phenotyping, building a database of
genotype-to-phenotype information that overlaps with rare
human diseases (41). As of March 10, 2021, there are 7970
phenotyped knockout mice in the database (https://www
.mousephenotype.org/).
Paralog mapping: In some cases, genes get through all

these tools and reveal very little insights. If this occurs, our
group typically looks for paralogs of the gene of interest,
those genes that share sequence similarity due to gene dupli-
cation in evolution. With the paralog genes, one can utilize
all of the known data to generate hypotheses of function.
In the past, these strategies worked well to help understand
the LIMD2 gene and its role in regulating cancer metastasis
(113) or the integration of cancer genes ASXL1/2 (112) into
ASXL3 biology in neural development and autism spectrum
disorder (86). Moreover, the integration of knowledge for an
entire gene family allows one to use variants in one gene to
characterize paralogs in other genes, as previously done for
the HMG-containing gene family (122).

Bioinformatics
Evolution and conservation

Information and knowledge can further be processed into
usable insights for a variant location. One of the most valu-
able insights for a variant comes from evolutionary analysis
and conservation. Tools such as PolyPhen2, Provean, and
ConSurf (9) have already established protein alignments
to determine a variant site’s conservation. However, new
genomes continue to be released, and there is additional value
in the use of codon-level information (121). Rapid extraction
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of protein or mRNA sequence can be obtained from NCBI
Orthologs. Our group utilizes the mRNA sequence, which is
then processed with Transdecoder to get open reading frames
(62), aligned with ClustalW codon (91), and cleaned to
remove sequences with ambiguity or missing exons. A man-
ual step in alignment cleaning is always preferred to remove
sequences with oddities and make sure alignments do not
contain erroneous information. Codon selection metrics are
calculated from the alignments, in addition to conservation.
The calculation is placed on a sliding window to calculate
the additive conservation of motifs and domains, a powerful
approach in discovering regulation sites within proteins.
We highlight these additional conservation scores’ power

with an example from ABCC8, a transmembrane gene
with many variants connected to familial hyperinsulinemic
hypoglycemia and neonatal diabetes (11). Following align-
ment, a total of 221 species were assessed for ABCC8 open
reading frames (Figure 22A). Conservation of each amino
acid is quite challenging to visualize the regions conserved
(Figure 22B), but with a 21-codon sliding window visibility
of conserved motifs and domains becomes more understand-
able (Figure 22C). While the protein has many conserved
transmembrane regions (Figure 22D), the protein’s ATP
binding sites are highly conserved. Detailing the conserved
amino acids in the two ATP binding pockets shows that
multiple familial hyperinsulinemic hypoglycemia variants
cluster to conserved amino acids (Figure 22E), showing how
motifs become enriched for disease variants.
While a gene like ABCC8 is well known for functional

sites, variants falling into conserved motifs often inform
the research team on possible clinical/physiological vari-
ant analysis experiments. For example, the hypothesis of
SHROOM3 P1244L role in 14-3-3 interaction (Figure 21)
came from motif conservation analysis. The conservation of
a motif can then be processed with tools such as the Eukary-
otic Linear Motif tool (ELM, http://elm.eu.org/) to identify
the potential role of short sequences of amino acids (43).
In one case, the detection of the motif alone was able to help
reclassify variants for a group of patients. A group of patients
was identified with similar phenotypes with mutations in the
MED13 gene linked through social media platforms, where
several patients had variants around a conserved motif. This
motif was predicted to be a critical degradation box for the
protein regulated by interaction with the SCF complex (111).
A further literature review of the SCF complex revealed a
paper that already showed a biochemical analysis of the amino
acid sites (38), giving definitive biochemical support for vari-
ant outcomes. This was a lesson that review of literature for
genes can be very tough to find the right papers that address
a site and the impact on physiology when only searching a
gene name and not the details of the complex interactions.

Protein domains and structures

Some variants fall within domains of proteins and contribute
to complex structural changes. To assess these changes,

one must start by identifying structures that can be used.
Human structures for each protein are listed in the UniProt
database. A BLAST against the Protein Data Bank (PDB)
can be performed to find proteins including orthologs and
paralogs. The PDB is the repository for all solved protein
structures (15). In some cases, proteins can also have solved
interaction partners ranging from chemicals, DNA, other
proteins, or even large complexes as solved by cryo-EM
techniques. These structures can be downloaded and used to
generate insights into a variant position.
In some cases, multiple protein targets are available, or the

targets have regions of the protein unresolved in the structure
determination, such as dynamic loops. Therefore, to speed
up analyses, many groups such as ours utilize modeling tools
to screen through the structures, clean them, and merging
them into a single model. We utilize the YASARA set of
tools (85) for merging models and the integration of many
other structural tools. These tools also allow the protein
to be placed in physiological environments to relax crystal
packing forces or mimic complex environments such as lipid
membranes. With a protein structure, one can generate a
high-resolution image of a variant or video for a qualitative
assessment of its importance.
As with most science, qualitative analysis is not amenable

to higher-throughput screening. Therefore, many groups turn
to a set of tools for molecular dynamic simulations (mds),
where atoms can move using biophysical approximation
algorithms and tracked over a period of time, often in the
nanosecond timescale. Different mathematical calculations
can be used, referred to as force fields, including those of
AMBER (160), CHARMM (22), and GROMACS (157).
With atomic trajectories, any amino acid can be calculated
for how it has moved throughout the mds. Using wild-type
and mutant protein, a quantitative analysis can be performed
on the variants’ impact on protein movement. However, mds
tools require a large amount of computing and take time to
generate results. Thus, they are not a strong reactive tool for
variant analysis when there is a clinical sensitivity to time for
diagnosis. To bypass this limitation, mds can build a network
insight of all amino acids and how they interact and move
throughout time and space. Using a dynamics-cross corre-
lation matrix (DCCM), a protein mds can be precomputed
and a matrix generated for how every amino acid correlate in
the movement to all other amino acids. This matrix becomes
an asset in screening variants, allowing for quantitative
insights into each amino acid of the protein.
To give an example of these tools, we highlight the ABCC8

protein. We begin with modeling ABCC8 from known struc-
tures (Figure 23A), embedding the protein within a lipid
membrane (Figure 23B), followed by adding water and ions
to physiological conditions (Figure 23C). The full simula-
tion space was then run for extended >60 nanoseconds of
molecular dynamics simulations that yielded equilibrium of
movements throughout the simulation (Figure 23D), includ-
ing for the secondary structure annotations (Figure 23E). We
can calculate each amino acids average movement from the
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Figure 22 ABCC8 evolution. (A) Phylogenic tree of 221 sequences for ABCC8. Human is the red box. Values at the nodes represent the
clustering of 50 bootstrapped trees. (B) Conservation score for each codon. (C) Conservation score on a 21-codon sliding window, where
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UniProt for association with familial hyperinsulinemic hypoglycemia.

trajectory data, giving quantitative assessments of folding
space, with those sites having lower RMSF values to be
well folded and those with higher values existing within
disordered regions of the protein (Figure 23F). Tracking the
movement of all amino acids, it is possible to calculate the
correlation of movement for all amino acids relative to DCCM
(Figure 23G). This DCCM can connect one amino acid to
other sites within a protein structure through quantitative

metrics (Figure 23H). With this structural dynamics data,
combined with our evolutionary data (Figure 22), variants
pulled from ClinVar, TOPMed, and gnomAD (Figure 23I),
assessed with multiple variant prediction tools (Figure 23J),
we can generate a complex impact score (Figure 23K) for
each variant, accounting for domain and motif functionality
for any variant within ABCC8. Several of the pathogenic
variants and VUS from ABCC8 are present in diverse
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Figure 23 Screening variants for ABCC8 using protein model and variant analysis workflow.

ethnicities and within highly conserved motifs (Figure 23L),
generating hypotheses for testing with lab-based tools.
Integrating conservation with structural biology is of high

utility for screening variants for an entire protein or to create
tools for rapid analysis of new variants (121). For example,
the integration of data for the CFTR gene into a knowledge-
base was able to identify variants in diverse ethnicities that
contribute to cystic fibrosis (137). This knowledgebase and
the precomputed matrix for each amino acid allow for de novo
variant assessments of evolution and structure, connecting
the new variant to other pathogenic variants through DCCM
insights.

Posttranscriptional modifications

Each variant can be screened for potential posttranslational
modification (ptm) alterations. Known ptm sites for genes
are annotated in Uniprot (8) and HPRD (115). Predictions
for modification can be generated using tools such as ProSite
(73), NetPhos 2.0 (18), NetPhosK 1.0 (19), Phos3D (44),
NetNGlyc 1.0 (19), UbPred (126), and SUMOsp (164). In
the case of SHROOM3 P1244L, the variant falls flanking
a highly predicted phosphorylation site that is critical for

14-3-3 interaction. This screening can provide valuable expe-
riential hypotheses for variant outcomes on changing protein
modifications and interactions.

Splicing

A variant’s impact on splicing can be calculated using tools
such as the Human Splicing Finder (40) or MutPred Splice
(104). While the prediction of loss of splicing role can be
easy to predict, the resulting exon splicing change is rather
complex and hard to predict (148). Therefore, further lab-
oratory analysis is often needed for the outcomes of the
splicing change to determine if splicing results in nonsense
or frameshift changes.

Nonsense-mediated decay

A nonsense or frameshift mutation that results in early
truncation of the protein can result in RNA being broken
down by NMD (Figure 18). This process can occur through
either 3′ UTR exon junction complex (EJC)-dependent or
independent mechanisms, but EJC-dependent accounts for
most NMD (88). Databases such as SNP2NMD (63) and
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NMD Classifier (72) can be used to guess if a change results
in NMD. However, these predictions are not well-validated
and usually require additional laboratory analysis, such as
allelic bias expression analysis.

Transcription factor binding

Noncoding variants can result in disease by impacting tran-
scription factor (TF) binding. Amongst the many tools for
predicting if a variant alters TF is SNP2TFBS (87), giving
metrics for loss or gain of TF binding due to a change. The
tools also allow for screening large lists of variants, includ-
ing all association regions’ LD variants. The TF and DNA
binding can be modeled as with protein modeling above,
followed by mds of the typical DNA sequence and changes
to the DNA sequence that mimic the variant. In the case of
SHROOM3, rs17319721, and TCF7L2 binding (Figure 13),
we were able to show changes in TF interaction with the
DNA element using mds of the change (124). However, the
difficulty in doing these analyses is that TF binding motifs are
still an active area of research, and recruitment by additional
flanking TFs contributes significantly to in vivo TF binding
at motifs (111). An example of this is the degenerate Ebox
binding motifs used by the TWIST protein, where dimers
of dimers interact with larger motifs that can have genetic
variants predicted to impact DNA binding. However, these
are still preferred due to the higher order of multiple TF
recruitments (30).

Molecular biology and biochemistry
With hypotheses for variant outcomes generated by known
data or bioinformatics, it is possible to identify laboratory
tools that can be used to test the hypothesis.

Patient RNA analysis

One of the growing tools in doing this is RNA abundance
analyses done either in a targeted approach such as real-time
quantitative PCR, targeted PCR sequencing, or using global
transcriptomics of RNA-Seq. By sequencing RNA for readily
obtainable material from patients, such as blood, if a gene of
interest is expressed, nonsense and frameshift variants can
be studied for NMD regulation. Also, sequencing the RNA
can inform on splicing variant outcomes and the resulting
change that is very hard to predict computationally. Trio-
based genomics is ideal to do such a task, giving insight into
variants on the two alleles to separate them in RNA reads,
yielding a phased insight onto the gene level variants. Then
RNA reads can be assessed for the variants to determine if
the two alleles have even expression. Our work on a patient
with an RNASEH2B splicing variant with hemophagocytic
lymphohistiocytosis (HLH) showed that the allele inherited
from the patient’s mother was actively being suppressed
when the patient was healthy (123). In that case, we were
actively attempting to use the patient RNA-Seq to determine

the outcome of the splicing variant inherited from the mother,
observing that in 3/4 of blood samples collected on the patient
that there were no changes in splicing. Using other variants
in the gene, we showed that the RNA was only found in the
blood for the father’s inherited allele. At one time point, at
the height of a viral infection, the mom’s allele was observed.
The splicing variant was determined to result in a frameshift
variant that was likely inhibited in the cells through NMD
making it challenging to observe the variant. This serves as
a constant reminder that just because splicing, frameshift, or
nonsense variant cannot be observed in a sample, does not
mean it does not have functional outcomes. In the RNASEH2B
case, compared to other RNA-Seq samples showed that the
RNASEH2B gene was about 50% lower in the patient, further
supporting NMD. In the cases of dosage-sensitive genes, that
NMD process can still result in dominant diseases. In the
cases of recessive diseases, the dosage levels are not likely
to result in disease unless something is perturbed, such as
dominant-negative partial proteins being made, as will be
discussed later in the environmental genetics section.
In the case of missense or noncoding variants, RNA-Seq or

targeted sequencing can be fruitful to determine the patient’s
dyshomeostasis. The RNA-Seq can tell overlapping genes to
pathways, using GO enrichment, altered in a patient. This
serves as a biomarker assessment tool for the phenotype that
can confirm molecular level physiology.

Biomarker assays

Like RNA, many biomarkers can be measured in individual
samples to determine the disease’s molecular etiology. Mass
spectrometry and/or HPLC can be used to determine metabo-
lites (metabolomics), lipids (lipidomics), or small molecules
altered in an individual. Proteomics can be used to determine
if protein changes result from a variant. For many biochem-
ical pathways altered in diseases, these biomarker assays
serve as a critical tool to confirm etiology, which allows for
connecting the genes into the known pathways. An example
of these tools can be seen in the recent determination of
the ODC1-related gain-of-function disorder. Patient samples
show an alteration of the polyamine pathway determined by
targeted metabolite analyses (25, 143). These techniques can
be critically used in treatment as done with a patient with an
ODC variant, where the metabolites were normalized with
the drug eflornithine (127).

Protein-protein interactions

If a missense variant is predicted to fall at a protein-protein
interface and likely impacts the interaction, then the logical
follow-up experiment is an interaction assay. Large reposi-
tories of already cloned plasmids exist from places such as
DNASU or Addgene, which can be used for site-directed
mutagenesis followed by producing the protein in bacteria
(or other system) with a tag (such as 6xHis), purifying
it (FPLC with affinity columns), and conducting binding

Volume 12, April 2022 3325



Computational and Experimental Analysis of Genetic Variants Comprehensive Physiology

assays. Obtaining these plasmids and performing mutations
can take weeks. When characterization is needed quickly,
an alternative is to custom synthesized plasmids. Companies
such as ATUM (formerly DNA2.0) can generate wild type
and mutation in less than a week, codon-optimized for the
species desired, and adding the exact tagging system for
purification. Interaction assays can be performed by either
affinity capture or by immunoprecipitation (IP). In affinity
capture, recombinantly purifying protein of interest with or
without a variant is linked to a magnetic bead or column,
baiting additional proteins from cellular/tissue lysates, and
determining with western blots or mass spec the interaction
partners. In IP experiments, the protein of interest with or
without variant is expressed in a mammalian cell or tissue
followed by capturing the protein and its native interactions
with antibody-coated beads followed by similar detection
platforms. In both cases, these can lend themselves to deter-
mining if a variant alters a known (western blot) or unknown
(mass spec) interaction partner. An example of this use of
interaction assays can be seen by our groups strategy for rapid
characterization of NAA10 altered interaction with NAA15
in Ogden syndrome (6).
In some cases, variants fall into linear motifs that interact

with proteins. In these cases, peptide synthesis works well.
The wild type and variant peptides of the motif can be pro-
duced with biotin (or other) tags to allow other proteins’ affin-
ity capture. For SHROOM3 P1244L interaction with 14-3-3
(Figure 21), we used this strategy (124). In some cases, these
changes can be taken into structure determination work to
show advanced biophysical insights.

Protein–DNA interactions

In the case of a variant on a protein or DNA that is predicted
to impact protein(TF)-DNA interactions, several binding
strategies can be used. DNA oligos can be produced with
major or minor alleles and labeled with either biotin or a flu-
orescence probe. The probes can be mixed with recombinant
TFs or with nuclear protein extracts from cell lines or tissues
followed by affinity capture, electrophoresis mobility shift
assays (EMSA), isothermal titration calorimetry (ITC), or
fluorescence anisotropy/polarization (FP). We have shown
how it is possible to synthesize a dozen probes from LD
SNPs of GWAS and rapidly screen alterations of TF-DNA
binding from nuclear extracts of various cell types specified
in the kidney (124). In the case of missense variants in TFs,
the same strategies can be used but focusing on the wild type
to variant TF impacts.

Protein enzymatic assays

If the protein with mutations is an enzyme or at a PTM
site, functional biochemical assays can be used. Enzymes
can be produced as wild type or variant and assessed for
changes in a functional enzyme assay. If a variant falls on
or near a PTM and is predicted to impact the modification,

such as SHROOM3 P1244L (Figure 21), the protein or
peptides can be generated and mixed into an enzyme assay.
For phosphorylation, an ATP assay can now replace the need
for phosphorus radioisotope work. If a variant is found in
the enzyme, the recombinant enzyme can be produced fol-
lowed by enzymatic assay. An example of this can be found
in the characterization of ODC G84R, a 1% minor allele
frequency variant that is associated with neurodevelopmental
disorders (119).

Cell culture
Moving from the macromolecular alteration of variants into
physiology requires using human or animal model systems.
The quickest of these systems is to use human cells culture.
Cells can be isolated from patients or controls and grown in
the lab, known as primary cultures. Cells are often from acces-
sible material, including blood isolated PBMCs (peripheral
blood mononuclear cell) or skin isolated fibroblasts. These
primary cultures are limited in the number of cell doublings
that can occur in the lab. To get around these issues, cells can
be immortalized using gene or viral processes or by iden-
tifying natural cells that can proliferate indefinitely. These
cell lines can then be grown for years in the lab. Standard
cell lines include EBV transformed blood cells, cancer cells
from patients, TERT1 induced immortalization, embryonic
stem cells, or gene transformed pluripotent stem cells. With
these lines, many functional assays can be performed for
characterizing variants.
Immunofluorescence: Cells allow for tracking how a variant

influences cellular localization using immunofluorescence.
These include variants that might impact nuclear, mitochon-
drial, membrane, or other cellular locations.
Overexpression: Genes cloned into mammalian expression

vectors can be transfected, electroporated, or delivered using
packaged lenti particles into cells. The plasmids can contain
a broad array of tagging systems and mutations for studies.
If an antibiotic selection marker is added to the plasmid,
the successful delivery to the cells can be selected with
antibiotic inclusion into the media. If the cells are left on
antibiotics for an extended time (>1 month), cells that have
stabilized the plasmid into the genome can be selected, known
as a stable cell line. The overexpression of a wild-type allele
into a cell line or tissue with the mutation and a measurable
phenotype can be used as a rescue assay of the phenotype.
Knockdown: To study the outcomes of disrupting a gene,

especially to understand the role of dosage sensitivity to cel-
lular outcomes, gene knockdown systems can be used, known
as RNA interference (RNAi). Small 21 to 23 nucleotides
can be delivered, resulting in double-stranded RNA that
is degraded (169). A short hairpin RNA (shRNA) can be
cloned into mammalian plasmids that can be selected and
stabilized into a cell line. Following knockdown, cell assays
can determine the extent of gene knockdown and outcome
on cell biology. For speed of knockdown, we often utilize
the Sigma prepackaged lenti MISSION shRNA system.
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Following knockdown and validation of an altered cell assay,
additional delivery of an overexpression plasmid (or mRNA)
can test if the wild type or variant protein can rescue the cell
assay changes.
CRISPR-Cas9 mutations: Direct genome modifications

are possible using CRISPR/Cas9 (12). Delivery of the Cas9
enzyme with gRNA targeted to a gene results in cutting the
DNA until nonhomologous end joining occurs with a PAM
site disruption. Cells can be selected through single-cell
expansion for variants that result in frameshift changes that
disrupt the gene. Delivery of an additional donor sequence
containing a variant with homologous overlapping regions
near the gRNA PAM site, allow homologous recombination,
and can generate a cell with a variant. In the case of LD block
regions, it is also possible to use two gRNAs and remove the
entire LD block to determine if a region influences any genes’
expression. Unlike with animal experiments where off-target
editing can be removed with selected back crossing, cell
line gene editing is more susceptible to off-target and need
to be screened more carefully. An example of using both
complete LD block removal and single SNP replacement
with CRISPR/Cas9 can be seen for the noncoding variant
regulation of SHROOM3 for CKD (124).
CRISPRi: For gene regulation variants, CRISPR mutations

can take a long time and are not high throughput. Therefore,
CRISPR strategies have been developed where the Cas9 is
nonfunctional and contains gene inhibitor function, being
driven to a target site by specific gRNAs, a technique known
as CRISPR interference (CRISPRi) (92). This allows for
rapid screening of sites of noncoding regulation such as
GWAS and eQTLs, by suppressing the region and observing
what genes change and how they change through various
epigenetic assays.
Human-induced pluripotent stem cells (HiPSCs): A rapidly

growing platform for understanding patient variants is iPSCs
(166). Patient fibroblasts or PBMCs can be converted into
iPSCs and differentiated into diverse tissue or cell types of
the body. This is one of the few ways that complex cell types
of a patient can be derived with the variant of interest to study
cellular biology changes.

Animal models
There are many examples of animal models for characterizing
genomic variants of common or rare diseases (75, 82). Mice
and rats are commonly used for modeling human genes. As
mentioned earlier, the IMPC within the mouse community
has shown that many gene knockouts can mimic human
disease (41). Cardiovascular diseases from congestive heart
failure to myocardial infarction have been modeled, where
the rat has been particularly useful due to the increased size
of organs (51, 65). Zebrafish has been a robust model of early
developmental genetics, mainly because of the fish’s trans-
parency, allowing for easy observation of phenotypic changes
of internal organs (93). Animal models need to be used
carefully, especially in the detailed phenotypic overlap and

studying the role of drug pharmacokinetic/pharmacodynamic
combined with disease genetics (101, 159). CRISPR, espe-
cially point mutations of patients, use in animal models has
been invaluable to variant characterizations (110).

Genetics by Environment (GxE)
As our knowledge of genomics has advanced, so has our
understanding of genetics’ complex interactions with envi-
ronmental stimuli. For most common disease genetics,
the penetrance is not always high, and therefore we must
always keep in mind how physiological responses interplay
with genetic variants. For example, much of cardiovascular
genetics are connected to how the immune system responds
to damage (49). Hypoxia response in tissues and cells can
be modulated by genetics (77, 78, 118), including cancer
(95). One area this has become increasingly important as of
late is COVID-19 response, where GWAS have suggested
variants for the severity of response that do not overlap with
other pathologies, suggesting that the virus and genomic
elements interact (36, 64, 120, 144). Many other infec-
tions are connected to genetic changes, including cytokine
responses (79).
As briefly mentioned in the section on RNA-Seq, the case

of HLH and a heterozygous splicing variant that results in a
frameshift to RNASEH2B, it is possible for the environment,
including viral infections and hypoxia, to impact genes (123).
The RNA-Seq of multiple time points for the patient sug-
gested that the frameshift variant was cleared from the cell by
NMD (Figure 24A), except in the height of EBV infection.
Heterozygous mutations in RNASEH2B are not associated
with any diseases. RNASEH2B is associated with reces-
sive Aicardi-Goutières syndrome (132), a disease of altered
interferon response and encephalopathy (131). Our patient
with a single RNASEH2B frameshift variant was healthy
for 16 years. An EBV infection brought the patient into the
hospital with severe multi-organ failure, and at the height of
the EBV infection, the frameshift variant appeared at high
levels in the patient’s blood. It turns out that EBV and many
additional viruses can inhibit NMD pathways (Figure 24B),
where the inhibition of NMD allows for the survival of viral
RNA typically degraded by NMD (100). In the case of our
RNASEH2B variant patient, at the height of EBV infection,
NMD was inhibited, which results in the expression of a
dominant-negative protein of RNASEH2B that inhibits the
RNASEH2A/C and PCNA complex formation (Figure 24C)
driving a rare disease that only manifests if NMD is altered
in the cell. This represents an incredible new challenge for
physiological genetics to begin understanding the interaction
of environmental stimuli and dyshomeostasis onto genetic
influenced changes within the cells and tissues. Going from
a proteinuria loci nominated in the heterogenous stock rats
to a novel cell culture system, it has been shown how kidney
tubule cell response is altered when variants exist in hypoxia
response genes (78). In neural development, the influence
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of chemicals, such as diesel particulate matter, has been
shown to modulate the expression of critical genes involved
in ASD and DD/ID (17), where iPSCs were combined with
advanced sequencing of single-cell RNA-seq and direct
sequencing. Direct RNA-seq allows the transcriptome-wide
detection of base-pair changes that occur in RNA molecules
(55), a technique with a high potential to discover many new
physiological genomic mechanisms in the future.

Variants in the Classroom
The characterization of genomic variants in the clinical
setting, particularly variants identified as VUS, is imperative
for patient care. Clinical geneticists and genetic counselors
have taken on a large role in this effort. Multiple education
resources aimed at genetics professionals explain how VUSs
are classified, describe tools that predict pathogenicity, and
seek to inform clinicians when VUSs have been reclassified
(10). Building variant characterizations into future scientists’
training is expedient as variant insights have become decisive
for medical professionals.
Informational videos are available to explain the clinical

interpretation of sequence variants from sources such as The
Broad’sMedical and PopulationGenetics Primer series of lec-
tures (https://www.broadinstitute.org/scientific-community/
science/programs/medical-and-population-genetics/primers/

primer-medical-and-pop). At the general population level,
patients with genetic sequencing finding of a VUS can par-
ticipate in research studies that educate and seek to reclassify
the variant, such as the Family Variant Classification study,
centered at the University of Washington. The current project
builds on the FindMyVariant Research Study, which uses
strategies to improve variant classification probability using
familial segregation (152). The study aims to educate indi-
viduals about their VUS results and learn more about their
unique variants through family data and DNA sequencing of
relatives. The ultimate goal is to collect enough information
to reclassify the VUS.
While the tools often used to predict variant impact are

robust, such as SIFT, PolyPhen2, Provean, and AlignGVGD,
they do not provide data on how variants can alter a protein’s
structure and potentially its cellular physiology. Improving
the knowledgebase of academic researchers in computational
variant analysis techniques will develop a powerful resource
for evidence production surrounding a large number of
VUS currently identified, while simultaneously exposing
future professionals to the value and challenges of genetic
mechanisms. The HudsonAlpha Institute for Biotechnology
has developed an initial effort to move this type of research
to the undergraduate level. The Characterizing Our DNA
Exceptions (CODE) program (https://hudsonalphacode.org/)
seeks to expand opportunities for authentic research by
students at non-research-intensive colleges and universities,
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while advancing student knowledge of genetic variants.
Much of the CODE program is aimed at the undergraduate
level with independent research projects. Faculty facilitators
are trained in a VUS characterization workflow using open-
source databases/tools and the YASARA molecular graphics,
modeling, and simulation program. Student researchers
examine clinical variants from the HudsonAlpha genomic
sequencing projects to help explain complex VUS such as
MED13 (145) and RALA (69). This work also suggests
an incredible potential to bring this work into the training
of future physiologists, providing lower-cost experimental
hypothesis design in physiology departments without budgets
for expensive variant characterizations.
The steps toward a research project that identifies a variant

and explores how it might affect the structure and function
of the encoded protein describe an immersive experience,
where genetics is taught in the context of the specific
disease/phenotype of interest. The first step is to choose a
disease or disorder. A student drives the selection based on
something that interests them, driving independent project
design that does not have to align with a research mentors’
interest. After selecting a disease of interest, students begin
an exhaustive search and compilation of known data from
databases such as gnomAD, TOPMed, ClinVar, and UniProt
to determine what genes are associated with the disease,
to select a gene for study, and gather data on the variants
associated with the gene or a disease. Students synergize
this information into slides and figures to discuss with their
research mentors.
Students then begin characterizing variants by building

an in silico model of the protein of interest, analyzing evo-
lutionary conservation and molecular dynamic simulations.
This includes the development of educational materials such
as videos, 3D models, and publications that can be used by
clinical staff to explain VUS. Students compare VUS to all
known variants by collecting, analyzing, and interpreting data
from other sources and ClinVar datasets. Molecular dynamic
simulations provide additional information about the vari-
ant impact on a protein’s movement in a computationally
derived cellular environment by analyzing the movement
trajectories. We provide students with a standardized macro
for simulating proteins consisting of only two lines of code
to initiate a simulation and analysis. These platforms are
flexible to PC, Mac, or Linux environments based on schools
computing resources. With the information gleaned from
their investigations, students can develop a hypothesis about
variant impacts, allowing them to share their findings with
the scientific community through presentations and publica-
tions. With the required resources, students can expand their
projects to functional assays or build collaborations with
other scientists.
Independent research projects often lose some efficiency.

Many students are challenged for time outside of their classes
and extracurricular activities. Mentors often reteach the
same content multiple times if they have several students. To
expand variant characterizations into a classroom setting to

account for these issues, schools such as the University of
North Alabama (UNA) have made extensive efforts within the
CODE program. The UNA CODE class is offered for upper-
division mathematics credit and counts toward a major or
minor in mathematics, but it often includes student cohorts of
diverse majors. This creates a classroom environment where
the students bring diverse integrative science backgrounds to
variant characterizations, where chemistry, biology, statistics,
medicine, and computer science backgrounds combine to
tackle physiological problems. These courses are carefully
designed to be employable by undergraduate students at all
levels, to prepare students to participate in research through a
series of skill-building activities, gathering known data and
performing simulations, culminating in one or more research
presentations at regional science or undergraduate research
conferences.
Consequently, the course results in a decisive improvement

in written and oral communication skills. Students receive
instruction on literature searches, project design, imple-
mentation, data analysis, and scientific writing/presentation.
Students are immersed in scientific research and incremen-
tally learn skills and techniques as they are needed in this
approach.
One group where variant characterizations fit well is medi-

cal (MD/DO) students. Students, especially those interested in
medical genetics, can work with a clinician and a researcher to
serve as the primary analyst for a case study. The MD student
works with the lead clinician to go over the clinical pheno-
type/physiology, medical records, and disease overlaps for a
patient with a newly reported clinical VUS. Then they pro-
cess the variant similar to undergraduate students above. This
positions the student to be the first author of a case study, such
as those case studies authored by MD students for NAA10
(6), HSD17B4 (139), and IL11RA (84). With the next genera-
tion of professionals, clinicians, and researchers’ experiences
in variant characterizations, we continue advancing genomics
knowledge and how it integrates with physiology.

Conclusions
The number of variants requiring further research to establish
physiological mechanisms continues to grow. The majority
of genetic associations from GWAS or PheWAS are at an
association level only, with few examples of mechanisms
for variants that cause the phenotype. Rare variants and
their role in rare diseases have many more examples of
mechanistic roles on phenotype, but the number of genomes
being sequenced increases. For variants in 1% to 0.01% of
individuals, we lack statistical tools to find causal variants
to biology changes. The rate-limiting step for figuring out
the intervention of genotype-to-phenotype often requires
mechanisms. Therefore, the determination of these mecha-
nisms using the techniques and strategies laid out is critically
important. Additionally, having newly trained professionals
that are focused on variant characterizations, or even know
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the terminology of genetics so they can communicate with
collaborators, has growing importance.
As our tools and strategies improve for rare and common

variants, many areas will need continued growth. We need
to start focusing on intermediate variant roles in physiology,
developing new tools for statistics and characterization.
Genome sequencing also needs to be expanded to more
diverse individuals, including those from countries (such as
Africa) where genomic diversity is high. For rare variants,
the majority of the focus is still on protein-coding changes.
As most common variants impact noncoding gene regulation,
it is highly probable that rare noncoding variants also have a
significant physiological role, notably for common disorders.
While we lack statistical modeling for these rare variants
that might impact gene expression, using the common variant
GWAS and PheWAS along with larger epigenomics insights
to narrow functional gene regulatory regions, these sites can
then be screened for rare variant influences. This may one
day open the door to characterizing these rare variants impact
in physiology, moving to a patient/individual physiological
genomics insight. While we have much growth in genomics,
the ongoingwork in computational and experimental variants’
mechanisms is an exciting time for physiological genomics.
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