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Abstract—This paper presents converse theorems for safety in
terms of barrier functions for unconstrained continuous-time sys-
tems modeled as differential inclusions. Via a counterexample, we
show the lack of existence of autonomous and continuous barrier
functions certifying safety for a nonlinear system that is not only
safe but also has a smooth right-hand side. Guided by converse
Lyapunov theorems for (non-asymptotic) stability, time-varying
barrier functions and appropriate infinitesimal conditions are
shown to be both necessary as well as sufficient under mild
regularity conditions on the right-hand side of the system. More
precisely, we propose a general construction of a time-varying
barrier function in terms of a marginal function involving the
finite-horizon reachable set. Using techniques from set-valued and
nonsmooth analysis, we show that such a function guarantees
safety when the system is safe. Furthermore, we show that the
proposed barrier function construction inherits the regularity
properties of the proposed reachable set. In addition, when the
system is safe and smooth, we build upon the constructed barrier
function to show the existence of a smooth barrier function
guaranteeing safety. Comparisons and relationships to results in
the literature are also presented.

I. INTRODUCTION

Beyond stability and convergence, safety is among the most
important properties to analyze for a general continuous-time
system modeled as the differential inclusion

z € F(x) x € R"™. (1)

Differential inclusions extend the concept of differential equa-
tions by allowing the dynamics to be governed by a set-valued
map instead of only a single-valued function [1]. Safety is
the property that requires the solutions to (1) starting from a
given set of initial conditions X, C R™ to never reach a given
unsafe region X,, C R™, where, necessarily, X, N X, = 0
[2], [3]. Safety with respect to (X,, X,,) is verified when a
set K C R", with X, C K and K N X,, = 0, is forward pre-
invariant, i.e., the solutions to (1) starting from K remain in
K for all time [4] — the prefix “pre” indicates that solutions
may not exist for all ¢ € [0,00), in particular, due to finite
escape times. Such a set K is called inductive invariant in
[5]. Depending on the considered application, reaching the
unsafe set X,, can correspond to the impossibility of applying
a predefined feedback law [6] or, simply colliding with an
obstacle [7].
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A. Background

Analogous to Lyapunov theory for stability, the concept of
barrier functions is a powerful tool to study safety without
computing the solutions to the system. Generally speaking,
two main types of barrier functions can be identified in the
literature [8]. The first type of barrier functions consists of a
scalar function B defined on the interior of K, denoted int(X),
with nonnegative values such that

iy, Blo) = oo
where 0K is the boundary of K. This barrier function certifies
safety when the growth condition

(VB(a).m) < 1(B(x)  Vne F(z), Vaein(K) @)

is satisfied, where the scalar function « is such that condition
(2) implies that the map t — B(¢(t, x,)) does not become un-
bounded in finite time for every solution ¢ to (1) starting from
Z, € int(K) — each such solution is denoted ¢ — ¢(t, z,).
Hence, the solution ¢ remains in int(K) for all time. This type
of barrier functions, often named potential functions, has been
used in constrained optimization [9], multiagent systems [7],
and constrained nonlinear control design [10].

The second type of barrier functions is given by a scalar
function B with a prescribed sign on the initial set X, and
with the opposite sign on the unsafe set X,,. Without loss of
generality, we can assume that B and (X,, X,,) satisfy

B(z)>0 VrelX,

B(z) <0 Vae X, 3)

In this case, safety is guaranteed when the zero-sublevel set
K :={z €R": B(x) < 0} 4)

is forward pre-invariant. The first characterization of for-
ward pre-invariance dates back to the work of Nagumo in
[11], where tangent-cone-based conditions are proposed; see
Section V-A for more details. Note that the computation
of a tangent cone to a general set is not always a trivial
task. Fortunately, when the set K satisfies (4), it is possible
to formulate sufficient conditions for forward pre-invariance
using only the barrier candidate B and the right-hand side
of (1), F'. Such sufficient conditions are usually expressed in
terms of an inequality constraining the variation of B along the
solutions to the system (1). In [2, Proposition 2], the condition

(VB(z),n) <0  VneF(z), VeeR" (5

is used. Condition (5) has been relaxed in the literature in
different ways. According to our previous work in [12], the
inequality in (5) does not need to hold on the entire R™ to



guarantee forward pre-invariance. It is enough to guarantee
that

(VB(z),n) <0 Vn € F(x), VzxeUK)N\K, (6)

where U(K) is any open neighborhood around the (closed)
set K. Furthermore, according to [13, Theorem 1], when F' is
locally Lipschitz and VB(x) # 0 for all z in the boundary of
K denoted 0K, the inequality in (5) can be relaxed to hold
only on the boundary of K'; namely, it is enough to assume

(VB(z),n) <0 VYn € F(z), Ve dK. @)

The non-positiveness required in (5) and (6) can be relaxed
using uniqueness functions, or, minimal functions; see Section
V for more details. It is important to note that conditions (5),
(6), and (7) require continuous differentiability of the barrier
function candidate B. Similar conditions can be formulated
when B is only locally Lipschitz or only lower semicontinu-
ous, using appropriate tools; see [12]. In the most general case
where B is not necessarily smooth, the aforementioned con-
ditions can be replaced by the following solution-dependent
monotonicity property:

(x) Along each solution ¢ to (1) starting from
z, € U(K)\int(K) and such that ¢([0,7T],z,) C
U(K)\int(K), for some T > 0, the map ¢ — B(¢(t, z,))
is nonincreasing on [0, 7. .

The second type of barrier functions in (3) has been applied to

multi-robots collision avoidance in [14], [15], adaptive cruise

control in [16], and bipedal walking in [17].

Finally, a notion equivalent to safety, named conditional
invariance, is studied and characterized in [18], [19], [20],
[21] using Lyapunov-like conditions. Roughly speaking, a set
X C R™ is conditionally invariant with respect to a set X, C
X, if the solutions starting from X, never leave the set X.
Connections between Lyapunov-like conditions guaranteeing
conditional invariance and the more recent conditions using
barrier functions are discussed in Section V-D.

B. Motivation

Many existing tools to certify safety for control systems
are based on the search of a controller and the corresponding
barrier function that certifies safety for the resulting closed-
loop system [22], [23], [24]. By solving the converse safety
problem, in this case, one can be assured that a barrier function
exists when the control system can be rendered safe. Generally
speaking, given a safe system (1) with respect to (X,, X,),
the converse safety problem pertains to showing the existence
of a barrier function candidate B : R” — R satisfying (3) and
verifying conditions guaranteeing safety, such as those in (5),
(6), (7), and (%). To the best of our knowledge, [25], [26], and
[27] are the only existing works treating the converse safety
problem via barrier functions. We review these results next.

The converse safety result proposed in [25] applies when F’
is single valued and continuously differentiable. Furthermore,
it assumes that there exists a continuously differentiable func-
tion V : R™ — R that is strictly decreasing along the solutions
to (1); namely, V' and F' satisfy

(VV(2),F(z)) <0  VaeR" (8)

Under these conditions, safety with respect to (X,, X,,) is
shown to imply the existence of a continuously differentiable
barrier function candidate B satisfying (5). Note that this result
does not apply when system (1) admits a limit cycle. Indeed,
for systems with limit cycles, it is not possible to find a
function V' such that (8) holds; see Example 6.

In [26], a geometric point of view is adopted using Morse-
Smale theory when system (1) is defined on a smooth and com-
pact manifold. The right-hand side F' is assumed to be single
valued and smooth. Also, the sets X, and X, are assumed to
be compact and disjoint. In the study in [26], a robust safety
notion (see Definition 17) is introduced, for which necessary
and sufficient conditions using barrier functions are proposed.
Furthermore, in the converse safety result in [26], the strictly
decreasing function V' assumed to exist in [25] is replaced by
the existence of a Meyer function; see [26, Definitions 7 and
8] for more details.

Finally, in [27], a converse robust safety result that does
not assume existence of V' : R™ — R such that (8) holds nor
the existence of a Meyer function is established when F' is
smooth and single valued. According to the latter reference,
system (1) is robustly safe with respect (X,, X, ) if, for some
€ > 0, the perturbed system

&€ F(z)+ B xz € R", )

where B C R"™ is the closed unit ball centered at the origin,
is safe with respect (X,, X,). It is shown in [27] that when
additionally the closures of the sets X, and X, are disjoint,
and the set R™\ X, is bounded, robust safety of system (1)
with respect to (X,, X,) is equivalent to the existence of a
barrier function candidate satisfying (3) and such that

(VB(z),F(z)) <0 Ve K.

To the best of our knowledge, providing necessary and suffi-
cient conditions for safety, or robust safety, without restricting
the class of systems (1), are not available in the literature.
Furthermore, as we show in this paper, safe systems may not
admit a barrier function with the properties assumed in the
literature. In fact, Example 1 presents a system as in (1) that
is safe with respect to (X,, X,) C R™ x R", where F' is
single valued and smooth, but does not admit a barrier function
candidate B : R™ — R, function of x only, that is continuous
and satisfies any of the sufficient conditions for safety in (5),
(6), (7), and (x). This fact motivates the new class of barrier
functions introduced in this paper.

C. Contributions

This paper makes the following contributions:

1) We formulate a safety problem in terms of time-varying
barrier functions, that are not necessarily smooth, and
propose necessary and sufficient conditions for safety
without assuming existence of V' : R™ — R such that
(8) holds, the existence of a Meyer function, or bounded-
ness of the set R™\ X,,. Allowing for nonsmooth barrier
functions is justified by the lack of existence of smooth
scalar functions satisfying (3) for some scenarios of sets



(X,, X,) as shown in Example 5. Furthermore, time-
varying barrier functions are motivated by the existing
converse Lyapunov theorems for stability, where time-
varying Lyapunov functions are constructed for systems
with a stable origin [28], [29], [30], [31], [32].

2) In Section IV-A, inspired by the converse Lyapunov
stability theorem in [28], given initial and unsafe sets
(X,, X.), we construct a time-varying barrier function as
a marginal function of an appropriately defined reachable
set over a given finite window of time, along the solu-
tions to (1), and starting from a given initial condition.
We show that such a barrier function guarantees safety
provided that (1) is safe with respect to (X,, X,,).

3) Furthermore, we show that this barrier function inherits
the regularity properties of the proposed reachable set
when this one is viewed as a set-valued map [33]. As
a result, when F' satisfies mild regularity conditions,
we show that safety of (1) with respect to (X,, X,) is
equivalent to the existence of a lower semicontinuous
time-varying barrier function; see Theorem 2.

4) In Section IV-B, when in addition F' is locally Lipschitz,
we establish Lipschitz continuity of the proposed reacha-
bility map using Filippov Theorem [34, Theorem 5.3.1].
As a result, using the dependence of the constructed
barrier function on the reachability map, we conclude that
safety is equivalent to the existence of a locally Lipschitz
time-varying barrier function; see Theorem 3.

5) In Section IV-C, inspired by the converse Lyapunov sta-
bility theorem in [29], we build upon the barrier function
constructed in Section IV-B to conclude the existence
of a barrier function that is continuously differentiable
provided that F' is single valued and continuously dif-
ferentiable; see Theorem 4. As observed in [30], Lya-
punov stability of the origin is equivalent to conditional
invariance with respect to a sequence of compact sets
{(Xoi, Xsi) 32, that converges to the origin. However,
extending the converse stability result in [29] to the
context of safety is not straightforward and offers many
technical challenges. Those challenges are due to the
fact that the sets X, and R™\X, are not necessarily
bounded, X, is not necessarily forward pre-invariant, and
the solutions to the system are not necessarily bounded.

Preliminary version of this work is in [35], where only dif-
ferential equations are considered and the proofs are omitted.
Furthermore, the current paper includes more examples and a
more detailed comparison to the existing literature.

The remainder of the paper is organized as follows. Prelim-
inary notions are in Section II. The converse safety problem
using time-varying barrier functions is formulated in Section
III. The main results are in Section IV. A comparison to
existing literature is in Section V. Finally, conclusion and
future work are in Section VI.

Notation. Let R>( := [0,00), N:={0,1,...}, and N* :=
{1,2,...,00}. For z and y € R", 2" denotes the transpose
of z, |z| the Euclidean norm of x, and (z,%) := x "y denotes
the scalar product between x and y. For a set K C R", we
use cl(K) to denote its closure and |z|x := inf ek |z — ¥
to define the distance between x and the set K. For O C R",

K\O denotes the subset of elements of K that are not in O.
By B, we denote the closed unite ball centered at the origin.
By F' : R®" = R"”, we denote a set-valued map associating
each element © € R™ into a subset F'(x) C R™. For a set-
valued map F' : R™ = R™, dom F' denotes the domain of
definition of F' and F~!(x) denotes the reciprocal image of
F evaluated at x. For a continuously differentiable function
B :R"™ — R, VB(z) denotes the gradient of B evaluated at .
Finally, by C*(K), with k € N, we denote the class of k—times
differentiable functions on K where the k—th derivative is
continuous on K (when K = R”, we only write C*).

II. PRELIMINARIES
A. Set-Valued and Single-Valued Maps

We start this section by recalling the following continuity

notions for set-valued and single-valued maps.

Definition 1 (Semicontinuous set-valued maps): Consider a

set-valued map F': K = R”, where K C R™.

e The map F' is said to be outer semicontinuous at
z € K if, for every sequence {z;};°, C K and for
every sequence {y;}.~, C R”" with lim; ,cz; = z,
lim; ,ooy; =y € R, and y; € F(x;) for all i € N,
we have y € F(z); see [36, Definition 5.9].

e The map F' is said to be lower semicontinuous (or,
equivalently, inner semicontinuous) at x € K if for each
€ > 0 and y, € F(x), there exists U(x) satisfying the
following property: for each z € U(x) N K, there exists
y. € F(z) such that |y, — y.| < ¢ see [37, Proposition
2.1].

o The map F' is said to be upper semicontinuous at x € K
if, for each € > 0, there exists U(xz) such that for each
yeU(x)NK, F(y) C F(x) + €B; see [38, Definition
1.4.1].

o The map F' is said to be continuous at x € K if it is both
upper and lower semicontinuous at x.

Furthermore, the map F' is said to be upper, lower, outer
semicontinuous, or continuous if, respectively, it is upper,
lower, outer semicontinuous, or continuous for all x € K.
[ ]

Definition 2 (Semicontinuous single-valued maps): Consider

a scalar function B : K — R, where K C R™.

o The scalar function B is said to be lower semicontinuous
at ¢ € K if, for every sequence {z;};~, C K such that
lim;_, oo ¢; = x, we have liminf; ,, B(z;) > B(z).

o The scalar function B is said to be upper semicontinuous
at ¢ € K if, for every sequence {z;};-, C K such that
lim;_,o x; = x, we have limsup,_,., B(z;) < B(x).

o The scalar function B is said to be continuous at x € K
if it is both upper and lower semicontinuous at x.

Furthermore, B is said to be upper semicontinuous, lower
semicontinuous, or continuous if, respectively, it is upper
semicontinuous, lower semicontinuous, or continuous for all
r e K. °

Definition 3 (Locally bounded set-valued maps): A set-
valued map F': K = R”, with K C R™, is said to be locally
bounded if, for any x € K, there exist U(z) and 8 > 0 such
that (| < S forall (€ F(y) and forally c U(z)NK. o



Definition 4 (Locally Lipschitz set-valued maps): The set-
valued map F': K = R”, with K C R™, is said to be locally
Lipschitz if, for each nonempty set K, C K, there exists k£ > 0
such that, for all (z1,23) € K, X K,,

F(x1) C F(l‘g)—‘rk“ﬂ?l —Z‘Q‘B, (10)
or, equivalently,
dp (F(22), F(21)) < klwg — 21], (11)

where dy (X1, X5) is the Hausdorff distance between the sets
X7 C R™ and X5 C R™; namely,

di (X7, Xs) := max{ sup |x|x,, su}? |3CX1}~ (12)
reXo

reXq
[ ]
Definition 5 (Locally Lipschitz functions): A function F' :
K = R”, with K C R™, is said to be locally Lipschitz if, for
each nonempty set K, C K, there exists k£ > 0 such that, for
all (z1,29) € K, x K,,

|F(.131)—F(l‘2)| S ]{i|$1 —$2|. (13)

[ ]
Definition 6 (Epigraph of functions): Given a scalar function
B :R™ — R, its epigraph is given by

epi B :={(z,r) e R" xR:r > B(z)}. (14)

[ ]

Definition 7 (Regular sets and functions): A set K C R"

is said to be regular if Tk (x) = Ck () for all z € K, where

Tk and C are the contingent and the Clarke tangent cones
of K at z, respectively, and given by

15)

h
lim sup Ier”K:o}. (16)

y—x,h—0t h

h
Tk (x) := {1} cR"”: liminfw _ 0} '

h—0+t
Ck(x) = {v e R™:

Furthermore, a locally Lipschitz function B : R" — R is
regular if epi B is regular. °

Remark 1: The definition of regular functions used in
this paper is equivalent to the definition used in [39]; see
Proposition 7.3 therein. .

B. Proximal Subdifferential and Clarke Generalized Gradient

In this section, we recall from [39] the tools to certify safety
using nonsmooth barrier function candidates.

Definition 8 (Proximal normal cone): Given a set S C R",
the proximal normal cone NZ associated with S evaluated at
x € cl(S) is given by

NE(x) ;== {¢C €R™:3r >0 so that |z +r(|s = r[¢|}. (17)

[ ]

Definition 9 (Proximal subdifferential): The proximal subd-
ifferential of a lower semicontinuous function B : R™ — R is
the set-valued map 0p B : R™ == R" such that, for all z € R™,

OpB(z):={CeR":[¢(" —1]T € NL,p(x,B(x))}. (18)

Moreover, each vector ¢ € dpB(z) is said to be a proximal
subgradient of B at x. °
Remark 2: Using [39, Theorem 2.5], we conclude that

OpB(x) ={CeR":3U(z), Je > 0:Vy € U(x)
B(y) > B(x) + Gy — ) —ely —a’}. (19)

Furthermore, when B € C2, we conclude that dpB(z) =
{VB(z)}. Moreover, the latter equality holds also when B is
only C! provided that Op B(z) # 0. .

Definition 10 (Clarke generalized gradient): Let B : R" —
R be locally Lipschitz. Let €2 be any subset of zero measure
in R™, and let (25 be the set of points in R™ at which B fails
to be differentiable. The Clarke generalized gradient at x is
defined as

0cB(x) := co{‘lim VB(x;) 2, > x, ©; & Qp, z; ¢ Q}
71— 00

(20)

[ ]

Remark 3: Definition 10 is equivalent to the original defini-

tion of the Clarke generalized gradient in [39]; see Theorem
8.1 therein. °

C. Safety and Set-Invariance in Differential Inclusions

First, we recall the concept of solution to (1).

Definition 11 (Concept of solution): A function ¢
dom ¢ — R”™, where dom ¢ is of the form [0,7] or [0,T)
for some T' € R>o U {+00}, is a solution to (1) starting from
xo € R™ if t — ¢(t,x,) is locally absolutely continuous and
satisfies (1) for almost all ¢ € dom ¢. °
A solution ¢ starting from x, € R™ is forward complete if
dom ¢ is unbounded, and it is maximal if there is no solution
¢ starting from z, such that ¢(t,z,) = ¢é(t, z,) for all
t € dom¢ and dom ¢ is a proper subset of dom . Finally,
the system (1) is said to be forward complete if each of its
maximal solutions is forward complete.

Next, we consider a set X,, C R" denoting the unsafe region
of the state space, a set X, C R™ denoting the set of initial
conditions — namely, the region that the solutions start from —
and a set X denoting the safe set. Without loss of generality,
we assume that X, N X, =0, X, C X, and X, N X, = 0.

Definition 12 (Safety): System (1) is said to be safe with
respect to (X,, X,,) if, for each solution ¢ to (1) starting from
z, € X,, we have ¢(t,z,) € R"\ X, for all t € dom¢p. e

Definition 13 (Conditional invariance [18]): A set X; C R"
is conditionally invariant with respect to a set X, C X, for
system (1) if, for each solution ¢ starting from x, € X,, we
have ¢(t,x,) € X, for all t € dom ¢. .

Definition 14 (Forward pre-invariance): A set Xy C R"
is forward pre-invariant for (1) if, for each solution ¢ to (1)
starting from z, € X, we have ¢(t,z,) € X, for all t €
dom ¢. .

The safety and the conditional invariance notions are related
as follows: system (1) is safe with respect to (X,, X,) if
and only if the set X, := R™\ X, is conditionally invariant
with respect to X, for (1). Safety generalizes the forward pre-
invariance notion: forward pre-invariance of a set X; C R" is
equivalent to safety with respect (X, R™\ X;). Note that, the



prefix “pre” in forward pre-invariance is used to accommodate
maximal solutions that are not complete. For example, if a
solution ¢ to (1) starts from x, € X, and has a finite-time
escape while remaining in X, then such a solution may still
satisfy ¢(t,z,) € X, for all ¢ € dom ¢, but with dom ¢
bounded and open to the right.

III. THE CONVERSE-SAFETY PROBLEM FORMULATION

Generally speaking, converse safety theorems identify
classes of dynamical systems for which safety is equivalent to
the existence of a smooth barrier function satisfying (3) plus
a sufficient condition for safety. According to the following
(counter) example, for the system in (1) that is safe with
respect to (X,, X,,), it is not always possible to find a barrier
function candidate B : R” — R, function of x only, that is
continuous and such that both (3) and (x) hold.

Example 1: Consider the system in (1) with = € R?,

—x9 + ray sin(1/r)?

x1 + regsin(l/r)? if z 70

F(z):= 1)

0 otherwise,
and 7 := |z|. The system is safe with respect to the sets

X, :={0}, X,:=R’\X,. (22)

Indeed, the safety property, in this case, is equivalent to
forward invariance of the origin (which coincides with X,).
Forward invariance of the origin holds since the origin is an
equilibrium point for system (21). However, we show below
that it is not possible to find a barrier candidate B, function
only of z, that is continuous, nonincreasing along the solutions
to the system, and at the same time having a value at the
origin that is strictly smaller than all the values elsewhere as
(3) requires.
In polar coordinates, system (21) can be rewritten as

i = (r?/2)sin(1/r)?,  6=1. (23)
Furthermore, from (23), it follows that the origin is surrounded
by (countably) infinitely many limit cycles centered at the
origin, denoted by Q;, i € N. Moreover, the radius of the
limit cycles monotonically converges to zero as ¢ — oo and
the trajectories starting from the interior of the annulus formed
by each two circles ;11 and (); are spirals that leave Q;41
and approach @;. Figure 1 depicts such limit cycles as well
as solutions starting from different initial conditions.

Now, assume the existence of a continuous function B
that is nonincreasing along the solutions to (21) and positive
definite. Furthermore, for a sequence of points {z;};°, with
z; € Q;, the sequence {B(z;)};—, converges to zero, and
is strictly positive. Hence, there exists a strictly positive and
monotonically decreasing subsequence {B(z;, )} -, that also
converges to zero. As a result, there exist (I1,l2) € Nx N and
€ > 0 such that B(z;,) — B(z1,) = €. We assume, further and
without loss of generality, that [s —[; = 2 (the same reasoning
is valid if Io — [; > 2). Next, using the continuity assumption
on B and the properties of solutions to (21), it follows that
for any €; > 0 we can find 7' > 0 and two initial conditions

0.08
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Fig. 1. Solutions to system (21) starting from different initial conditions.

Z, and x,; in the interior of the annulus formed by @, and
Q1,1 and, respectively, in the interior of the torus formed by
Q1,—1 and @, such that

B(z1,)], [B(zo1) = B(¢(T' x,))l,
|B(xll) - B(¢1(Ta xol))”’ < e,

where ¢ and ¢, are the solutions to (21) starting from x, and
Zo1, respectively. Now, having

€ :B(‘rll) - B(xlz) = B(xh) - B(¢1(T7 xol))"‘

B(¢1(T7 xol)) - B(Zol) + B(xol) - B(¢(T7 xo))+
B(¢(T' x,)) = B(xo) + B(wo) — Bl(x1,)

max {|B(x,) —

and using the fact that B does not increase along the solutions
to system (21), we obtain

€ =B(x1,) — B(a,) < [B(a1,) — B(¢1(T, wor)) |+
|B(201) = B(¢(T,20))| + |B(wo) — B(1,)| < 3e1.

The latter fact yields to a contradiction since e is fixed and €;
can be made as small as possible, that is, for ¢ = €/4, we
obtain € < 3¢/4 which is a contradiction. Hence, though it is
safe, an autonomous barrier function does not exist. O

This example is inspired from [32, Page 82] and [31, Page
46], where the existence of Lyapunov functions for (non-
asymptotically) stable systems is analyzed.

To handle the lack of existence of smooth barrier functions
for safe systems, we introduce the following time-varying
barrier function candidate notion.

Definition 15 (Time-varying barrier function candidate): A
scalar function B : R>9 x R” — R is a time-varying barrier
function candidate for safety with respect to (X,, X,,) if

B(t,z) >0 V(t,z) € R>g x Xy, 24)
B(t,z) <0 Y(t,z) € Rag x X,. (25)
L)

Using time-varying barrier functions, we will be able to
address the following converse safety problem.



Problem 1 (Converse safety problem): Given sets
(Xo,Xy) C R™ x R™, with X, N X, = 0, show that
the system in (1) is safe with respect to (X,,X,) if and
only if there exists a time-varying barrier function candidate
B :R> x R® — R, with the best possible regularity!, such
that
(xx) Along each solution ¢ to (1) starting from z, €

U(K)\int(K) and remaining in U(K)\int(K), the map
t — B(t, ¢(t,x,)) is nonincreasing, where

K :={(t,x) € R>o x R" : B(t,x) < 0}. (26)

[ ]

Note that the property in (x%) requires the computation of

the solutions to (1). However, depending on the regularity of

the function B and of the map F', as shown in [40], it is

possible to use the following infinitesimal conditions that are
necessary and sufficient to conclude (x*).

« When B is continuously differentiable, (x*) is satisfied if
(VB(t,z),[1 7n']") <0

2
Vn € F(x), Y(t, @D

z) e UK)\K.
When additionally F is locally Lipschitz, (27) is equiva-
lent to (x*).

e« When B is locally Lipschitz and F' is locally bounded,
(x%) is satisfied if

(0 ') <0 W edcB(te). e F). o
V(t,z) € UK)\K,

where Oc B is the Clarke generalized gradient of B (see
Definition 10). When additionally F' is locally Lipschitz
and B is regular according to Definition 7, (28) is
equivalent to (%x),

« When B is only continuous and F' is locally Lipschitz
with closed images, (xx) is satisfied if and only if

(G ') <0 VCeopB(ta), Ve F@),
Y(t,z) € U(K)\K,

where OpB is the proximal subdifferential of B (see
Definition 8).

To solve Problem 1, we start showing that having a time-
varying barrier function candidate verifying (x%) is enough
to conclude that the system in (1) is safe with respect to
(Xo, X4). In particular, note that (%) reduces to (x) when
B is time-independent.

Theorem 1: Given initial and unsafe sets (X,, X,) C R™ x
R™, system (1) is safe with respect to (X,, X,,) if there exists a
lower semicontinuous time-varying barrier function candidate
B :R>g x R™ — R such that (xx) holds. ([l

Proof. Consider the extended system

(t,2) € (1, F(x)) (t,r) € Rsg x R™ (30)

and the extended initial and unsafe sets X,, := R>o x X,
and X,, = Ryp x X, respectively. To use a contra-
diction argument, we assume that there exists a solution
¢o = (t,¢) starting from ¢, = (0,z,) € X,, that

By “best regularity” means the strongest smoothness property.

reaches the set X, in finite time. This implies, using the
continuity of ¢,, the existence of 0 < t; < to such that
¢a([t1, 2], Pao) C UQK)N\int(K), ¢o(t1,2a0) € 0K, and
da(te, dao) € U(OK)\K. Hence, B(dq(t1,da0)) < 0 and
B(¢a(t2, ¢ao)) > 0. However, this contradicts (xx). |
The challenge in Problem 1 is to prove the reverse direction
of the statement in Theorem 1, namely, necessity of the
existence of a barrier function when (1) is safe. In Section
IV, we prove that result inspired by the converse Lyapunov
theorems for (non-asymptotic) stability in [28], [29], [30].

IV. SOLUTIONS TO THE CONVERSE SAFETY PROBLEM

Given the differential inclusion in (1), we consider the
following mild condition on F'.

Assumption 1: The map F' : R®™ =2 R" is upper semicon-
tinuous, and F'(z) is compact and convex for all x € R™.
[ ]

Assumption 1 is used in the literature to assure existence
of solutions and adequate structural properties for the set of
solutions to differential inclusions; see [33], [34], [39]. When
F is single valued, Assumption 1 reduces to continuity of F.

Remark 4: In some of the existing literature, e.g. [36],
Assumption 1 is replaced by the equivalent assumption stat-
ing that F' needs to be outer semicontinuous and locally
bounded with convex images. Outer semicontinuous and lo-
cally bounded set-valued maps are upper semicontinuous with
compact images [41, Theorem 5.19]. The converse is also true
using [36, Lemma 5.15] and the fact that upper semicontinuous
set-valued maps with compact images are locally bounded. e

Next, we define the concept of backward solutions to (1).

Definition 16 (Backward solutions to (1)): A function 1) :
domy — R™ starting from z, € R" is a backward solution
to (1) if there exists a solution ¢ in the sense of Definition 11,
starting from z,, to the system

z € —F(x) zeR" 31
such that dom ¢ = — dom ) and ¥(t,x,) = ¢(—t,x,) for all
t € dom . °

Furthermore, for the system in (1), we introduce the reach-
ability map R : R x R™ = R"™ as follows:
o For each (t,z) € R>o x R,

R(t,) = {8(5,2) : 6 € S(2), s € dom 6 [0,4]}, (32)
« For each (t,2) € Rog x R™,
R(t,z) :={o(s,x) : p € Sb“k(o:), s €dome¢nl[t, 0]}, (33)

where S(z) is the set of maximal solutions to (1) starting from
x and S"K(z) is the set of maximal backward solutions to
(1) starting from z. In simple words, when ¢ > 0, the set
R(t,z) includes all the elements reached by the solutions to
(1) starting from x over the interval [0,¢]. Similarly, when
t < 0, the set R(t,x) includes all the elements reached by the
backward solutions to (1) starting from 2 over interval [t, 0].

Finally, given system (1) and a set X, C R™, we introduce
the scalar function B defined for each (¢,z) € R>¢ x R™ by

B(t,z) = inf{|y|x, : y € R(—t,z)}. (34)



Note that the function B in (34) is inspired by the converse
Lyapunov stability theorem in [28]. As we show in this
section, when system (1) is safe with respect to (X,, X, ), the
function B in (34) becomes a time-varying barrier function
candidate with respect to (X,, X,,) in the sense of Definition
15. Furthermore, we also show that the scalar function B in
(34) inherits the regularity properties of the reachability map
R.

A. When F Satisfies Assumption 1

In the following result, for system (1) satisfying Assumption
1, we show that the reachability map R is outer semicontinu-
ous, locally bounded, and continuous with respect to time. A
proof is in the appendix.

Proposition 1: Suppose that the system in (1) is forward
complete and F' satisfies Assumption 1. Then, the following
hold:

1) The map R is outer semicontinuous and locally bounded.
2) The map ¢t — R(t,x) is continuous for all z € R™.

O

Along the lines of [38, Theorem 1.4.16], given a set-valued

map II : R™ == R” and a set X C R"”, we show how the
marginal function f : R™ — R given by

f(z) = inf{ly|x :y € II(2)}

inherits the regularity of the set-valued map R. A proof is in
the Appendix.

Lemma 1: Consider a locally bounded set-valued map
IT : R™ = R” such that II(z) is nonempty for all z € R™.
Consider a closed and nonempty set X C R"™ and the marginal
function f : R™ — R in (35). The following hold:

1) If II is outer semicontinuous, then f is lower semicon-
tinuous.

2) If II is lower semicontinuous, then f is upper semicon-
tinuous.

3) If II is locally Lipschitz, then so is f.

(35)

O

The following result is a direct consequence of Proposition
1 and Lemma 1.

Proposition 2: Suppose the system in (1) is forward com-
plete and that F' satisfies Assumption 1. Consider a closed set
X, C R™ and the function B in (34). The following hold:

1) The function B is lower semicontinuous.

2) The map ¢ — B(t,x) is continuous.

O
Proof. The backward solutions to (1) starting from z € R”
are the forward solutions to (31) starting from x. Furthermore,
having (1) forward complete and F' satisfying Assumption 1
implies that (31) is also forward complete and —F satisfies
Assumption 1. Hence, using Proposition 1, we conclude that
the reachability map R is outer semicontinuous and locally
bounded. Next, using the first item in Lemma 1, we conclude
that B is lower semicontinuous.
Furthermore, using Proposition 1, we conclude that the map
t — R(t, ) is continuous; hence, lower semicontinuous. Next,
using the second item in Lemma 1, we conclude that the map

t — B(t,x) is upper semicontinuous. Finally, since we already
showed that B is lower semicontinuous, we conclude that ¢ —
B(t,z) is continuous. u

We are now ready to provide a solution to Problem 1 when
F satisfies Assumption 1.

Theorem 2: Suppose the system in (1) is forward complete
and F satisfies Assumption 1. Consider initial and unsafe sets
(Xo, X,) C R™xR"™ such that X, is closed and X,NX,, = (.
System (1) is safe with respect to (X,, X,,) if and only if there
exists a lower semicontinuous time-varying barrier function
candidate B : R>o x R” — R, with ¢ — B(¢,x) continuous,
such that (x*) holds. O

Proof. The sufficiency part follows using Theorem 1. To
prove the necessary part, we use the barrier function candidate
B in (34). Since the set X, is closed and system (1) is
safe and the system (1) is forward complete, we conclude
that the backward solutions to (1) starting from z € X,
will neither reach nor converge to the set X, in finite time;
hence, B(t,z) > 0 for all (¢t,2) € R>g x X,. Then, (24)
holds. Furthermore, (25) is trivially satisfied under (34). Then,
B is a time-varying barrier function candidate for safety
with respect to (X,,X,). Next, we show that the barrier
function candidate B is monotonically nonincreasing along the
solutions to (1). Indeed, consider a solution ¢ : [t,t+h] — R”
to (1) starting from z, € R™ at ¢ = 0, for some A > 0.
Note that B(t + h,¢(t + h,z,)) = inf{|y|x, y €
R(—t — h,¢(t + h,z,))}. Furthermore, we use the fact that
R(—t,é(t,x,)) C R(—t—h, ¢(t+h,x,)), which implies that

B(t+ h,¢(t+ h,x,))
= inf{|y[x, : y € R(—t — h, ¢(t + h,z,))}
<inf{lylx, : y € R(=t,8(t,w0))} = B(t, d(t, z,)).

Hence, the barrier function candidate B does not increase
along the solution ¢. Hence, (x%) holds. Finally, the fact that
B is lower semicontinuous and ¢ — B(t,x) is continuous
follows from Proposition 2. |

Example 2 (Example 1 revisited): Consider system (21) in
Example 1 with the sets (X,, X,) as in (22). According to
the proof Theorem 2, the function B : R>o x R? — R given
by

B(ta x) = ¢(_t7 |£L’|),

where ¢ is the backward solution to # = (r2/2)sin?(1/r)
starting from |z|, is a lower semicontinuous time-varying
barrier function candidate satisfying (x%). Indeed, the function
B in (36) coincides with the time-varying barrier function
candidate B in (34). Furthermore, the explicit formula of B
in (36) is given by

(36)

B(t,z) =
0 if 2 =0,
= if‘%l =km, ke N*
L if o7 € (km, (k+1)7), k€N,

arccot(cot(i)7%)+k7r

[ ]

(37
where cot is the cotangent function and arccot is its inverse
function; namely, arccot(cot(x)) =z for all z € (0,7). O



B. When F is Locally Lipschitz

For system (1) with F' locally Lipschitz and having closed
images, one can use the well-known Filippov Theorem (see
Lemma 6 in the appendix) to conclude that the reachability
map R is also locally Lipschitz. In this setting, we have the
following result.

Proposition 3: Suppose system (1) is forward complete and
F satisfies Assumption 1 and is locally Lipschitz. Then, R is
locally Lipschitz. (]

Next, using Lemma 1, we show that, when F' is locally
Lipschitz, B in (34) is locally Lipschitz.

Proposition 4: Suppose that the system in (1) is forward
complete and F' is locally Lipschitz with closed images. Let
X, C R™ be closed. Then, B in (34) is locally Lipschitz. [l

Proof. The backward solutions to (1) starting from z € R”
are the solutions to (31) starting from x. Furthermore, having
(1) forward complete and F' locally Lipschitz and satisfying
Assumption 1 imply that (31) is also forward complete and
—F is locally Lipschitz and satisfies Assumption 1. Hence,
using Proposition 3, we conclude that the reachability map R
is locally Lipschitz. Finally, using the third item in Lemma 1,
we conclude that B is locally Lipschitz. |

We are now ready to present an equivalent characterization
of safety solving Problem 1 when F' is locally Lipschitz.

Theorem 3: Suppose the system in (1) is forward complete,
and F satisfies Assumption 1 and is locally Lipschitz. Con-
sider the initial and unsafe sets (X,, X, ) C R" x R™ such that
X, is closed and X,NX, = 0. System (1) is safe with respect
to (X,, X, ) if and only if there exists a locally Lipschitz time-
varying barrier function candidate B : R>¢ x R” — R such
that (%x) holds. (I

Proof. The proof of the sufficient part follows via Theorem
1. To prove the necessary part, we consider the barrier function
candidate B in (34). The properties in (24), (25), and (x%)
follow as in the proof of Theorem 2. Finally, using Proposition
4 and Lemma 1, we conclude that the candidate B in (34) is
locally Lipschitz. |

In the following result, we provide a characterization of
safety that, rather than using (xx), uses an equivalent infinites-
imal condition. Before that, we first introduce the following
lemma relating monotonicity of B to infinitesimal inequalities.

Lemma 2: Suppose the system in (1) is such that I’ satisfies
Assumption 1 and is locally Lipschitz. Let B : R™ — R be
lower semicontinuous. Then, given an open set O C R", the
monotonicity property
(*") Along each solution ¢ starting from z, € R™ and

satisfying ¢(dom ¢, x,) C O, the map t — B(¢(t,z,))
is nonincreasing; °
is satisfied if and only if

(CG:m) <0  V(e€dpB(x), Vne F(z), Ve O. (38)

(]

Lemma 2 is a particular case of [40, Corollary 4.13].
Corollary 1: Suppose the system in (1) is forward complete
and F' satisfies Assumption 1 and is locally Lipschitz. Con-
sider initial and unsafe sets (X,, X,,) C R™ xR" such that X,
is closed and X, N X, = (). System (1) is safe with respect to

(X,, X,,) if and only if there exists a locally Lipschitz time-
varying barrier function candidate B : R>g x R® — R such
that

(C.[1 n']") <0 V¢ edpB(t ), Vne Fl(z),

39
V(t,l‘) S RZO x R™. (39

O

Proof. According to Theorem 3, safety with respect to
(Xo,Xu), when the set X, is closed, is equivalent to the
existence of a locally Lipschitz time-varying barrier function
B :R>g xR™ — R satisfying (24), (25), and (x%). Moreover,
according to the proof of Theorem 2, for each solution ¢
to (1) starting from z, € R", the map ¢t — B(t, (¢, x,))
is nonincreasing. This property is equivalent to saying that
property (x') in Lemma 2 is satisfied while replacing (z,0)
therein by ((¢, z), (R x R™)), which completes the proof since
the function B is continuous. |
Example 3 (Example 1 revisited): Consider system (21) in
Example 1 with the sets (X,, X,,) as in (22). Since the right-
hand side in (21) is locally Lipschitz and X, is closed, we
conclude via Theorem 3 that the time-varying barrier function
B in (36) is locally Lipschitz and satisfies (39). O

C. When F is Single Valued and Smooth

In the context of (non-asymptotic) stability of the origin,
Kurzweil in [29] deduced from the Lyapunov function con-
structed in [28], which is similar to (34), the existence of a
Lyapunov function that is C! everywhere (except at the origin)
under continuous differentiability of F' and using the fact that
the origin is an equilibrium point. The compactness of the
origin is an important requirement for the proof in [29] to hold.
Unfortunately, this assumption does not hold when a generic
(not necessarily invariant) set X, is considered instead of the
origin, as X, might be unbounded. To handle this situation, we
extend [32, Lemma 48.3] via Lemma 3 and Lemma 4 below,
whose proofs are in the Appendix.

Lemma 3: Consider a continuous function A : R>¢ x R™ —
R>g and a closed set K C R™. Assume that

i) The function h is positive definite with respect to K

uniformly in ¢; namely, h(t,2z) = 0 for all ¢ > 0 if and
only if z € K,

il) The map ¢ — h(t, ) is nonincreasing for each = € R".
Then, for any compact set Z C R™ such that ZN K = (), there
exists a continuous function g : R>g X Z — Rx>( such that
1) The function g € C'(R>¢ x int(Z)),

2) For any (t,z) € R>¢ x Z,

Sh(t,) < g(t,2) < 2h(t,x).

3) The map ¢ — g(t, ) is nonincreasing for each x € 7.

(40)

O
Lemma 4: Consider a continuous function h : R>o x R" —
R>o and consider a closed set K C R™. Assume that i)-ii)
in Lemma 3 hold. Then, there exists a continuous function
g :R>p x R" = R>q such that
1) The function g € C'(R>¢ x (R"\K)),



2) For all (t,x) € R>g x R™,

Sh(t, ) < glt,x) < 20(1,2), @)

3) The map ¢ +— g(t, ) is nonincreasing for each z € R™.

O
It should be added that the origin being an equilibrium plays
an important role in [29] to guarantee positive definiteness of
a certain function constructed in the proof. However, such a
function is not necessarily positive definite when the origin is
replaced by a generic closed set. To handle this situation, we
propose a state dependent change in the time scale such that,
in the new time scale, this function becomes positive definite.
Theorem 4: Suppose the system in (1) is forward com-
plete, and F' is single valued and continuously differentiable.
Consider initial and unsafe sets (X,,X,) C R"™ x R"
such that X, is closed and X, N X, = 0. System (1) is
safe with respect to (X,,X,) if and only if there exists
a continuous time-varying barrier function candidate B
R>o x R® — R of class C! (R>o x R")\K), where K :=
{(t,x) € R>o x R™ : B(t,x) < 0}, such that

(VB(t.x),[1 F(x)']") <0

V(t,z) € “2)

(RZO X Rn) \K
O
Proof. In order to prove the sufficient part of the statement,
we use a contradiction. That is, assume the existence of a
solution ¢ starting from x, € X, such that ¢(T,x,) € X,
for some T' > 0. The latter fact implies, using (42), that
B(0,¢(0,z,)) < 0 and B(T,¢(T,z,)) > 0. Furthermore,
since t — B(t, ¢(t,x,)) is continuous, we also conclude the
existence of 0 < Ty < T such that B(Ty,¢(T1,z,)) =
0 and B(t,¢(t,x,)) > 0 for all t € (T1,T]. Hence,
B(T,¢(T,x,)) — B(Th, ¢(T1,2,)) > 0 and using the con-
tinuity of ¢ — B(t, (¢, z,)), we also conclude the existence
of € > 0 sufficiently small such that 77 + 2¢ < T and
B(T—e,¢(T—¢€,x,))—B(T1+e€, ¢p(T1+¢€,x,)) > 0. However,
since B(t,¢(t,z,)) > 0 for all ¢t € (T1,T], it follows that
t — B(t, ¢(t,z,)) is C*((T1,T)). Hence,

B(T = ¢, ¢(T = €,2,)) = B(T1 + €, 6(Th + €,7,)) =

T=<oB dB
t,o(t,z,)) + —
| Gt ote + 32

which yields to a contradiction.

(t> ¢(t’ .”L'O))F((b(t, mo))dt <0,

To prove the necessary part, we first propose to render the
behavior of the system (1) around the set X, similar to the
behavior of a smooth system around its equilibrium point.
More precisely, by proposing a new time scale, we render the
set X, unreachable in finite time by the solutions starting from
R™\ X,. To this end, given an initial condition z, € R™\X,,
we propose the following new time scale

i 1
T(t,xo) =1 +/0 md&

where V' is any locally Lipschitz and positive definite function
with respect to the set X, which is differentiable everywhere

(43)

outside the set X, and ¢ is the solution to (1) starting from z,,.
The function V' always exists for any given closed set X, C
R™ and it can be constructed using Lemma 4 by considering
the distance function with respect to X, to be the function h
therein. Furthermore, we let ¢ (7(t, x,), o) := (¢, x,).

As a consequence, the derivative of y with respect to the
new time scale 7 satisfies

d d
Y(r20) = 2, 0) = Lt
44)
_ F((tw0) _ F(t,mo))V(6(t ) ¢
0 (¢, 20) L+ V(o(t20)
Hence,
’ _ F((r,2,))V((1,7,))
S E s
Note that the solutions to the system
,_ F)V(¥)
VST o

starting from x, cannot reach X, when starting outside that
set X,. Moreover, the set X, is forward invariant under the
system (46).

Let us now introduce the continuous function h : R>q x
R — RZO as

h(7,zo) := inf{|y|x, : y € R(T,2,)}, 47)

where R in this case is the reachable set along the solutions
to the system (46). Using Proposition 4, we conclude that the
function h is locally Lipschitz. Furthermore, since the right-
hand side of (46) is locally Lipschitz, we conclude that h
positive definite with respect to the set X,. Finally, the map
T — h(T, z,) non-increasing for all =, € R™. Therefore, using
Lemma 4, we conclude the existence of a continuous function
g : R>g x R™ = R>( which is C! outside the set X,, non-
increasing with respect to the first argument, and satisfies

%h(’]’, Zo) < g(1,20) < 2h(T, 2,)

V(1,20) € (R>o x R™).

Next, we introduce the barrier candidate B : R>oxR"” — R>q
as
g<T<t7 X(_tv 'T))v X(_ta x))
if X([_t7 OLJ?) NnX,= wa (48)
0 otherwise,

B(t,z) :=

where y is the backward solution to (1) starting from z. Note
that when = € X, for each ¢ > 0, we have x([—¢,0],2) N
X, =0, hence,

B(t7x) = g(T(t,X(—t,l‘)),X(—t,l‘))
= h(7(t, x(=t,2)), x(—t,2))/2 > 0.

Contrary, when z € X,, x([-t,0],z) N X, # 0, hence,
B(t,z) = 0. Furthermore, we show that the candidate B is
non-increasing along the solutions to (1) by showing that

B(t+h,¢(t + h,z,)) < B(t, ¢(t,z0)) ¥Vt =0, Vh=0,

and for each solution ¢ to (1) starting from x,. To this end,
we distinguish two complementary situations.



1) When x([—(t+ h),0], ¢(t + h,z,)) N X, = 0, it follows
that B(t + h, ¢(t + h,z,)) = 0 < B(t, ¢(t, ,)).

2) When x([—(t+ h),0],¢(t + h,z,)) N X, = 0, it follows
that

B(t+h, ¢(t+ h,x,)) = g(t(t + h,x,), o)
= g(7(t + h, x(=t, 6(t, 20))), x(—t, ¢(t, z0)))
< g(7(t, x(=t, 9(t, 20))), x(—t, 6(t, z5)))
= B(t,o(t, x,))-

To obtain the latter inequality, we used the fact that
the function g is non-increasing with respect to its first
argument uniformly in the second.

In order to complete the proof, it remains to show that
B € C'((Rsp x R")\K). Indeed, for (t,z) € (R>g X
R™)\K, we have B(t,z) > 0. Hence, x([—t,0],z) N X, =
¢ and B(t,z) = g(7(t, x(—t,2)), x(—t,z)). Furthermore,
since the function B is continuous, we conclude the exis-
tence of U(t,z) an open neighborhood around (¢,z) such
that, for any (¢,2') € U(t,z), we have B(t',2') =
g(r(t', x(=t',2")), x(=t',2")) > 0. Next, we note that the
map (7,2) +— g(r,x) is continuously differentiable on
R>o x (R™\X,). Furthermore, x(—t, z) is continuously dif-
ferentiable with respect to its arguments since F € C!, see
[42, Chapter 5]. Moreover, the map (¢,x) — 7(t, x(—t,x))
is C! provided that x(—s,z) ¢ X, for all s € [0,¢], which
completes the proof. |

Example 4 (Example 1 revisited): Consider system (21) in
Example 1 with the sets (X,, X,,) as in (22). Since the right-
hand side in (21) is continuously differentiable, we conclude
using Theorem 4 that system (21) admits a continuous time-
varying barrier function candidate B : R>g x R — R of
class C!' ((R>o x R™")\K) satisfying (42). In particular, the
function B in (36), given explicitly in (37), corresponds to
such a smooth barrier function. (]

V. CONNECTIONS TO RESULTS IN THE LITERATURE
A. Connections to Tangent-Cone-Type Conditions

According to [11], given a closed set K C R”, when the
solutions to (1) are unique or when F' is locally Lipschitz
according to Definition 4, the set K is forward pre-invariant
if and only if

F(z) C Tk(z) Vo € K. (49)

Note that (49) involves the contingent cone Tk and the map
F' on the boundary of the closed set K. However, in general,
as stressed in [34], invariance depends on the values of F'
outside K rather than on its boundary. Under mild regularity
properties on F, the external contingent cone Ex is used in
[34], and (49) can be replaced by

F(z) C Ex(x) Vo € R"\K, (50)

where F is the external contingent cone of K at x is given

by Ex(z) := {1} € R™ : liminfj,_,o+ M <0;.
Note that conditions (49) and (50) resemble conditions (7)

and (6), respectively. Indeed, in (49) and (50), we are using

the distance function B(z) := |z|x since (4) holds. However,

since the distance function to a set is only locally Lipschitz,
the gradient-based inequalities in (7) and (6) are replaced by
the limits in the definitions of Tx and Ex in (49) and (50),
respectively.

B. Connections to Results using Barrier Functions
Before comparing our results to the existing literature, we
recall the following useful notions.
o Uniqueness function [12]. A function g : R — R is
said to be a uniqueness function if, for each continuous
function [ : R>¢o — Rx satisfying [(0) = 0 and, for

some € > 0,
l(t+h) =1t
lim sup E+h) =) < g(l(t)) foraa.te0,¢,
h—0+ h

it follows that I(t) = 0 for all ¢ € [0, ¢].

e Minimal functions [43]. A function g : R — R is said
to be a minimal function if, for each continuous function
l:R>p — Ry satisfying {(0) < 0 and, for some € > 0,

Wt+h)— 1) <

=
it follows that I(¢) < 0 for all ¢ € [0, ¢].

o Extended class-K functions [8]. A continuous function

g : R — R is said to be an extended class-XC function if
g is strictly increasing and g(0) = 0.

lim sup g(l(t)) for a.a. t € 0,¢€,

h—0t

The nonpositive sign required in (27) can be relaxed using
uniqueness functions or minimal functions, as shown in [12]
and [43], respectively. More precisely, for a general time-
varying barrier function candidate B € C!, condition (27) can
be relaxed to

(VB(t,z),[1 nT]T> < g(B(t,x))

Vn € F(x), Y(t, Gb

x) € U(K)\K,
where ¢ is either a uniqueness or a minimal function. Fur-
thermore, given a time-independent barrier function candidate
B € C', according to [22], [23], [8], the following condition
implies forward pre-invariance of the set K in (4):

(VB(z),n) < g(B(z)) Vne F(z), Vo € U(K),

where the function g is either an extended class-XC or a locally
Lipschitz function. Moreover, when F' is locally Lipschitz
and the set K is compact, (52) is equivalent to forward pre-
invariance of the set K. This converse result, in addition to
restricting the class of systems (1), requires the existence of a
C* barrier function candidate. As we show in the following
example, it is possible to find situations where the sets
(X,, X,) do not admit a C' time-independent barrier function
candidate.

Example 5: Let X, := R*\X, and X, := {z € R? :
p1(xz) <0, pa(x) < 0}, where p; and py : R™ — R are
C! functions such that, for each i € {1,2}, Vp;(z) # 0
for all x € R™ such that p;(z) = 0. Furthermore, suppose
there exists ¥, € R? such that p;(z,) = p2(z,) = 0 and the
vectors Vp1(x,) and Vps(z,) are linearly independent. For
this choice of (X,, X, ), we show that it is not possible to find
a C! barrier function candidate. To arrive to a contradiction,

(52)



we assume the existence of B : R — R such that X, :=
{z € R? : B(x) < 0}. Assume without loss of generality
that VB(z,) # 0. Hence, using [38, Proposition 4.3.7], we
conclude that T'x,(z,) = {v € R? : (VB(z,),v) < 0}.
Moreover, from the construction of X, using p; and ps, we
conclude that

Tx, (z,) ={ve R? : (Vpi(z,),v) <0, (Vpa(z,),v) < 0}.

Now, let y € R2\{0} be such that (VB(z,),y) = 0;
hence, \y € Tx,(x,) for all A € R. The latter implies that
(Vp1(zo),y) = 0 and (Vpa(z,),y) = 0, which contradicts
the fact that the vectors Vp1(z,) and Vpa(z,) are linearly
independent. (]

When g is an extended class-KC function, the condition in
(52) is a particular case of (6), and thus a particular case of
(27). Furthermore, when g is locally Lipschitz, (52) becomes a
particular case of (51). Indeed, every locally Lipschitz function
is a uniqueness function and a minimal function at the same
time. However, Osgood functions are examples of uniqueness
and minimal functions that are not locally Lipschitz [44], [45].
Finally, imposing the inequality in (52) to hold on U(K)
instead of only on U(K)\K is not necessary to guarantee
safety; however, it becomes useful when using numerical
methods for the (online) design of smooth controllers that
enforce safety [46].

Remark 5: When the barrier function candidate B is locally
Lipschitz, condition (28) can also be relaxed using uniqueness
functions and minimal functions. Furthermore, when B is time
independent, condition (28) reduces to the condition used in
[14, Theorem 2] and [15]. °

C. Connections to Existing Converse Safety Results
Via the following simple example, we illustrate the limita-
tion of the converse safety results in [25], [26], and [27].
Example 6: Consider the system

. |—=1 -10 9
x—{l O}x r € R*, (53)

and let the initial and unsafe sets be given by
X, = {zGRQ:forx%Sl}, X 2:{I€R25$222}.

Note that the set X, is not forward pre-invariant but the system
(53) is safe with respect to (X,, X, ). One way to show this
fact consists in verifying (5) using the barrier function candi-
date B(z) := 23/10+ 23— 1. Note that system (53) admits the
origin as an equilibrium point, which is a trivial limit cycle.
Hence, it is not possible to apply the converse safety result
in [25]. Furthermore, according to the robust safety notion
introduced in [26], which is included below, the system (53)
is robustly safe with respect to (X,, X,,). However, the system
(53) is not defined on a bounded manifold. Hence, it is not
possible to use the converse result in [26].

Definition 17 (Robust safety [26]): System (1) is said to
be robustly safe with respect to (X,,X,) if there exists
V, := U(X,) and V,, := U(X,) such that the vector field
F separates V, from V,,. In turn, a vector field F' is said to
separate a set V, from a set V,, if F' does not join V, to V.

In turn, a vector field F' is said to join a set V,, to a set V,, if
one of the following is true.

1) There exists a solution to (1) starting from V,, that reaches
V-

2) There is not a succession of singular elements (singular
points and limit cycles) {31, Ba,...,6n}, N € N, such
that the following properties hold simultaneously:

o A forward solution to (1), starting from V,, converges
to (.

o A backward solution to (1), starting from V,,, converges
to By.

o A broken solution joins (1 to [By; namely, for each
i € {1,2,...,N}, there is z,; € R" such that the
forward solution to (1) starting from x,; converges to
Bi+1 and the backward solution to (1) starting from
Z,; converges to [3;; see [26] for more details.

[ )
Finally, note that the system
i€ [_11 _(ﬂ r+eB  zeR? (54)

is input-to-state stable (ISS) with respect to € and the sets X,
and X, are closed and disjoint. Hence, for ¢ > 0 sufficiently
small, system (54) is safe with respect to (X,, X, ). However,
the complement of the set X, is unbounded. As a result, we
cannot use the converse result in [27]. O

D. Connections to Results on Conditional Invariance

According to [18, Theorem 2], the set X is conditionally
invariant with respect to X, if there exists a continuously
differentiable function V' : R™ — R such that the following
three conditions hold:

i) For each x € R™\ X, and for each y, € X, satisfying
Yp = arg inf{V(z — 2) : z € X, }, we have (VV (z —
Yz),n) < 0 for all n € F(yy).

ii) There exists a € R such that the function B : R” — R
given by B(z) := inf{V(x — z) —a: z € X,} satisfies

B(z) > 0Vz € 9X,, B(x) <0 Ve e dX,. (55
iii) For each (z,y) € (R™"\X,) x X,,
(VV(z=y),mz—my) <g(V(z—y)—a)  (56)

for all (1,7ny) € F(x)x F(y), where the scalar function
g is a minimal function (see Section V-B).

The proof of this result is based on showing that, along the
solutions to (1), the function B cannot become positive when
starting from nonpositive values. Indeed, using i) and iii), we
can prove that

(¢, <g(B(z)) V(€ cB(x), Vn € F(z), Vo € R"\X,.

(57)
Note that ii) along with (57) guarantee forward pre-invariance
of the set K in (4); however, condition (3) is not necessarily
satisfied in this case. Furthermore, ii) and (57) imply that
int(X,) is conditionally invariant with respect to X,, when

X, C int(Xs).



Next, we present a result that generalizes [18, Theorem
2]. In our result, we distinguish strict conditional invariance,
where the solutions starting from X, remain in the interior of
X, from conditional invariance, where the solutions starting
from X, remain in X,. To match the setting in [18], it is
written for a time-independent barrier function candidate.

Theorem 5: Consider the system in (1) such that F satisfies
Assumption 1. Let (X,, X;) € R™ x R™ with X, C Xj,
g : R — R be a minimal function, and B : R® — R be
locally Lipschitz.

1) The set X is conditionally invariant with respect to X,

if

B(z) > 0 Vz € U(X,)\ X,

(¢;m) < g(B(z)) V(€ doB(x), Vn € F(x),
(59
Vo € U(Xs)\ Xo.

2) The set X is strictly conditionally invariant with respect
to X, C int(X,) if (55) holds and

B(z) <0Vz e dX,, (58)

(C;n) < g(B(x)) V(€€ dcB(x), Vn e F(z), Vo € X \X,.

(60)
O
Proof. To reach a contradiction and establish item 1
(respectively, item 2), we assume that (58) (respectively, (55))
holds and X, is not conditionally invariant (respectively,
not strictly conditionally invariant) with respect to X,. That
is, there exists a solution ¢ starting from z, € 90X, —
thus, B(z,) < 0 — and there exists 77 > 0 such that
d(T,x,) € U(Xs)\ X, (respectively, ¢(T,z,) € 0X;); thus,
o(T,z,) > 0, and ¢((0,T],z,) C U(Xs)\X, (respectively,
#((0,T],2,) C X:\X,). Hence, according to [47, Page 7]
and [48], we conclude that, for almost all ¢ € [0, T,

B((t, z0)) < sup{(C, d(t,z,)) : ¢ € D B(b(t, o))}
< g(B(¢(t,2,))),

with B(z,) < 0 and B(¢(T,z,)) > 0, which yields a
contradiction since ¢ is a minimal function, implying that
B(¢(T,z,)) has to be nonpositive. |

Theorem 5 relaxes condition (3) while assuming that the
inequality in (51) holds in a relatively larger set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose sufficient and necessary conditions
for safety in differential inclusions. Guided by the lack of
existence of autonomous and continuous barrier functions
certifying safety, time-varying barrier functions are proposed,
and their existence is shown to be both necessary as well as
sufficient. The regularity of the proposed time-varying barrier
functions depends on the regularity of the right-hand side of
the system.

Future work pertains to solve Problem 1 for constrained
systems of the form

& € F(z) reCCR"” (61)

or, more generally, hybrid systems as in [36]. Although the
sufficient conditions for safety in constrained and hybrid

systems are studied in [12], the converse problem is still
not fully answered in the literature. Indeed, the converse
safety results in [26] and [25] consider only particular cases
of constrained systems, where the sets C, X,, and X, are
assumed to be compact, and F' is assumed to be at least
continuously differentiable. Furthermore, in [26], the system is
assumed to admit a Meyer function and in [25] (8) is assumed
to hold which, as shown in Example 6, are rather restrictive
conditions to impose. It is important to note that Theorem 2
can already be extended to constrained and hybrid systems;
see [49]. However, to establish the existence of a barrier
function that is continuous or smooth, the problem becomes
more challenging due to the presence of the constraint. In
particular, the regularity properties of the reachability map R,
that allows to conclude Lipschitz continuity and continuous
differentiability of the marginal functions in (34) and (47), are
not necessary satisfied in the constrained case; see [50].

VII. APPENDIX
A. Auxiliary Results

We start this section by introducing the reachability map
RY: R>p x R™ = R", along the solutions to (1), given by

R(t,z) :={¢(s,z) : ¢ € S(x), s € dom¢pN0,1],

As' € [0,t)Ndom¢ s.t. s' > s}k.  (62)

In words, the set R(¢,z) includes only the last element
reached by each maximal solution to (1) starting from x over
the interval [0, ¢].
The following lemma can be found in [33, Theorem 1].
Lemma 5: Suppose that the system in (1) is forward com-
plete and that F' satisfies Assumption 1. Then, the following
hold for each t > 0:
1) The map = > RY(t,z) is outer semicontinuous and
locally bounded.
2) The map x — A(t, x) is outer semicontinuous and locally
bounded, where A : R>¢ x R® = S(R™) is given by

A(t,z) :={¢: ¢ € S(z), dom¢ = 0,¢]}. (63)

d

The following lemma recalls the well-known Filippov The-
orem that can be found in [34, Theorem 5.3.1].

Lemma 6 (Filippov Theorem): Consider the system in (1)
and suppose that F is locally Lipschitz on a compact set K C
R™; namely, there exists A > 0 such that F(y) C F(z) +
Az — y|B for all (x,y) € K x K. Assume further that F(z)
is closed for all x € R™. Then, for any (z,y) € K x K and
t > 0 such that (R(t,z), R(t,y)) C K x K, each solution ¢ to
(1) starting from x satisfies |¢(s,2)|go(s,,) < exp(As)|z — y|
for all s € [0,¢], where the map R? is introduced in (62). [

B. Proof of Proposition 1

To prove the first item using Lemma 5, we start showing
outer semicontinuity of R in (62). Let (t,,7,) € R>o x R
and let two sequences {(to;,Zoi)}ico and {y;};—, be such
that 1im; oo (toi, Toi) = (to,To)s ¥i € R%(tei,Toi), and
lim;,y; = y € R" Outer semicontinuity of RY at



(to,,) follows if we show that y € R®(t,,,). To this
end, we introduce t := min{t,,inf{t,; : ¢ € N}} and
t := max{t,,sup{t,; : ¢ € N}}. Furthermore, consider a
sequence of solutions {¢; },-, to (1) such that each solution ¢;
starts from x,;, dom ¢; = [0, t,;—t], and y; € R®(t, z;), where
2z = ¢i(toi —t, Zo;). Now, since the sequence {(tos, Toi)} oo p
is uniformly bounded, the solutions to (1) are forward com-
plete, and since x — A(%, z) is locally bounded, we conclude
that the sequence {¢;}32, is uniformly bounded. Hence, by
passing to an adequate subsequence, we conclude the existence
of a function ¢ : dom¢ — R”™ such that lim; .., ¢; = ¢;
hence, ¢(0,2,) = z, and dom ¢ = [0,¢, — ¢]. The function
¢ is a solution to (1) since the map = — A(f,x) is outer
semicontinuous via item 2) of Lemma 5. Furthermore, we note
that lim; _, o 2; = lim;_, d’i(toi*t’ a:m-) = gf)(toft, ZZEO) = z.
Finally, using the first item in Lemma 5, we conclude that
y € RY(t,2) C Rb(t,,7,); thus, RY is outer semicontinuous.

Now, to show outer semicontinuity of R, we con-
sider two sequences {(toi,%oi)};eo and {y;}.—, such that
limi—)oo(toiaxoi) = (tovxo)’ Yi € R(toivmoi)’ and
lim; ,ooy; = y € R™ Outer semicontinuity of (¢,x) —
R(t,z) at (t,,x,) follows if we show that y € R(t,,z,).
Having y; € R(toi,%0i), for each i € N, implies the
existence of t, € [0,t,;] such that y; € RU(t,z,;), for
each i € N. By passing to an adequate subsequence, we
conclude the existence of t' € [0, t,] such that ¢’ = lim;_, t}.
Hence, since R’ is outer semicontinuous, we conclude that
y € RO(t',z,) C R(to, ).

Next, we show that R’ is locally bounded using con-
tradiction. That is, assume the existence of a sequence
{(toi,xoi) ;:)io such that limig)(x;(toi,woi) = (to,l’o> and

Ve > 0,3i € N sit. RO(toi, 2oi) ¢ B Vi > .. (64)

Note that R®(toi, 70;) C RP(t, 2;), where z; := ¢;(toi —1t, To;)
and ¢; is a backward solution to (1) starting from =z,
with dom¢; = [t,; — t,0]. Since the backward solutions
to (1) are the forward solutions to (31), the solutions to
(31) are forward complete, and since =z — A(f,z) for
the system (31) is locally bounded, we conclude that the
sequence {¢;}°, is uniformly bounded. Hence, by passing
to an adequate subsequence, we conclude the existence of
a function ¢ : dom¢ — R" such that lim; , ¢; = ¢;
hence, ¢(0,x,) = z, and dom ¢ = [t, — ¢,0]. The function
¢ is a backward solution to (1) since the map = — A(t', x)
for (31) is outer semicontinuous. Furthermore, we note that
im0 23 = My 00 Gi(toi — ', 20i) = O(to — t',2) = 2.
The later contradicts (64) since, using Lemma 5, x > R(, z)
is locally bounded.

Now, we show that R is locally bounded via contradiction.
Assume the existence of a sequence {(to:, Zo:i) }$2, such that
Hmi—)oo(toi; moi) = (toaxo) and,

Vi > ..

Ve > 0,3i. € N s.t. R(to;, Toi) ¢ B (65)

This implies the existence of ¢, € [0, ¢,;], for all i € N, such
that

Ve >0,3i. € Nsit. RO(th, ;) ¢ B Vi>i.. (66)

By passing to an adequate subsequence, we conclude the
existence of ¢ € [0,t,] such that ¢ = lim;_, ¢;. Having
RY locally bounded contradicts (66) and, thus, R is locally
bounded.

To prove the second item in Proposition 1, given z € R", we
establish continuity of the set-valued map ¢ — R(t, z). Since
t — R(t,z) is outer semicontinuous and locally bounded, it
is enough to show that it is lower semicontinuous. We show
lower semicontinuity of ¢ — RP(¢, z) in (62) via contradiction.
Assume that there exist € > 0, t, > 0, y € R’(t,,z), and a
sequence {t,; }5°, such that lim;_, t,; = ¢, and, at the same
time,

ly—2|>¢  Vze& Rl(ty,x), VieN. (67)

Consider a maximal solution ¢ to (1) starting from x such
that ¢(t,,2) = y and let y; := &(to;,x). Note that y; €
R®(t,;, ). Since the solution ¢ is continuous, it follows that
lim; o |y — v;| = 0, which contradicts (67). Now, to show
lower semicontinuity of ¢ — R(t,z), we assume that there
exist € > 0, t, > 0, y € R(t,,x), and a sequence {t,;}5°,
such that lim;_, . t,; = t, and, at the same time,

Vz € R(to,z), Vi€ N. (68)

Note that (68) implies the existence of t’ € [0,t,] such that
y € RY(', x). Moreover, for each sequence {t.}3°, such that
t, € [0,¢0;] and lim;_, ; = ¢/, we have

Vz € RV (t), 2), (69)

However, (69) contradicts lower semicontinuity of the map
t— Rb(t,x). [ |

ly — 2] > €

ly —z| > ¢ Vi € N.

C. Proof of Proposition 3

To show that the set-valued map R is locally Lipschitz, we
will first show that the map R’ in (62) is locally Lipschitz. To
that end, we consider (t,,z,) € R>¢ x R™ and the set

Ur(to, xo) :=={(t,z) € R5g x R" :

te0,to+ 7], |z — 2] <1}, (70)

for some r > 0. Furthermore, let A\x > 0 be the Lipschitz
constant of F' on the set K := R(U,(t,,,)). Note that K is
compact since the system is forward complete. Next, we show
the existence of € > 0 such that, for any ((t1,z1), (t2,z2)) €
Uy (to,z0) X Up(to, o), for any y; € RY([0,t1],21) there
exists yo € RY(t2,x2) such that

ly1 — ya| <e(|z1 — @a| + [t1 — t2]). (71)

The latter inequality is enough to conclude that R® is
locally Lipschitz. Let ((t1,z1), (t2,22)) € Up(to,xo) X
U, (to,x,), assume without loss of generality that to > ¢4,
and note that both R(t¢2,22) and R(t1,z;) belong to the
compact set K. Hence, using Lemma 6, we conclude that
Y1l Ro 41,00y < exp™ et |2y — 2] Thus, for yh =
argmin {y; —y:y € R°(t1,x2)}, we have |y; — yh| <
exp & (toF7) |2y — 21|, Furthermore, for any y, € R°(ty —
t1,y5) and since F' is locally bounded, we conclude that

M, (to,20) := max{|F(¢(1,y))| : ¢ € S(y),
y € R(U,(to, o)), T €[0,t, + 7]} < 00,



where S(y) is the set of maximal solutions to system (1)
starting from y. Hence, |y2 — y5| < M,(to,x,)|t1 — t2| and
ly1 — y2| < ly1 —vol + |y5 — y2| < €|z —z1| + [t — t2]),
where

€ :=max {eprK(t"H’), M, (t,, xo)} . (72)

Now, to show that the set-valued map R is locally Lip-
schitz, we consider (t,,2,) € R>¢ x R™ and the compact
neighborhood U, (t,,,) introduced in (70). We will show
the existence of € > 0 such that for any two elements
((t1,21), (ta, z2)) € Up(to, o) X Up(to,x,), for any y; €
R(t1,2z1) we can find yo € R(t2,z2) such that (71) holds.
Indeed, consider ¢,, € [0,¢;] such that R®(t,,,21) = y; and
(ty,,71) € U(to,7,). Hence, there exists yo € R(t,,,r2)
with ¢,, the closest element to t,, while being in [0,%s].
Note that (t,,,72) € U,.(ty,2,) and since R’ is locally
Lipschitz, we have |y; — y2| < €(|ty, —ty,| +|z1 —22]) <
€ ([t1 — ta| + |x1 — x2|), where € is introduced in (72). W

D. Proof of Lemma 1

We prove item 1 by directly showing that B satisfies the def-
inition of lower semicontinuity for scalar functions. That is, for
every sequence {zi}fio C R™ such that lim;_, . 2; = z,, We
show that liminf; o f(2;) = liminf; o minger(z,) [y|x >
minger(.,) |ylx = f(2,) provided that the set-valued map
II is outer semicontinuous in which case, since 1I is already
locally bounded, inf in f becomes min. Since the map II is
outer semicontinuous, we conclude that, for all y; € II(z;)
such that lim; ,ooy; = yo € R™, we have y, € II(z,).
Choose {y;}2, to be such that y; € II(z) and |yi|x =
miny ez, |y|x for each i € N. Hence, liminf; ;o f(2;) =
liminf; ,oo mingerz,) ylx = liminf; o yi[x. Since
the distance function to X 1is continuous, we conclude
that liminf; o f(z;) = liminf; o mingen,) lylx =
|liminf; o y;|x. Since II is locally bounded, the sequence
{yi};=, is bounded; hence, liminf; ,ocy; = y, € R™
Moreover, by passing to a suitable sub-sequence {y;, }zozo, we
conclude that lim inf, o ¥; = limg_,o0 Y5, = Yo. Thus, since
I is outer semicontinuous, it follows that y, € II(2,). Finally,
liminf; o0 f(2:) = [Yolx > mingene,) ylx = f(z0).
We prove item 2 by directly using the definition of upper
semicontinuity for scalar functions. That is, we show that, for
every sequence {z;}-, C R™ such that lim; ,oc 2; = 2o,
we have limsup,_, ., f(2;) = limsup,_,, mingem.,) [ylx <
ming (., ) [y¥|x = f(2,) provided that the set-valued map II
is lower semicontinuous. To reach a contradiction, we assume
the existence of a sequence {z;};, such that lim; o z; = 2,
and lim; o f(2;) > f(2,). The latter implies the existence
of € > 0 and i, € N such that, for all 7 > i,,

zi) — f(zo) = inf — inf > €. 73
fG) = feo) = b flx - inf Plx>e (03
Let z, := arg inf ¢y, )|y[x, and

w; = arg infy ey lylx  Vi€N. (74)

Using (73), we conclude that |w;|x — |w,|x > €. On the other
hand, since the set-valued map II is lower semicontinuous, it

follows that there exists 7; € N such that, for all ¢ > i1, there
exists w) € II(z;) such that |w; — w,| < €/2. Using (74),
we conclude that, for all ¢ > max {i,,41}, |2}|x > |zi|x and
|2l x — |20lx > |2i]lx — |#0|x > €. Finally, since the distance
function with respect to the set X is globally Lipschitz, we
obtain, for all i > max {i,, i1}, €/2 > |w} — w,| > |wi|x —
|wo|x > €, which yields to a contradiction.

To prove the third item, we consider two elements (z,y) €
R™xR"™ and the corresponding two elements (2’,y’) € X x X
such that

' ) = inf 5 = inf = s 75
AN U}IEIXWH( )=, lw|x = f(2) (75)
Y/ [1(y) = inf |wiy) = weilﬁféy) lw|x = f(y). (76)

Using the triangular inequality, we conclude that |y'|r.) <
Vnw) + da((2),1(y)) and [2'[ne) < [2[ne) +
dy (I1(2),II(y)), where dg (T1(z), II(y)) is the Hausdorff dis-
tance between the two sets R(z) and R(y) introduced in
(12). Furthermore, using the first equality in (75) and (76),
respectively, we conclude that

(77)
(78)

12"y < W' Ty <Y e + da(I(2),(y)),
1Y ey < 12 ) <12’ ne) + da(T(2), (y)).

Hence, using (77)-(78) and the second equality in (75) and
(76), respectively, we obtain |f(z) — f(y)| < [TI(z) — II(y)|.
Finally, when the map II is locally Lipschitz, using Definition
4, we conclude the existence of A > 0 such that |f(z) —

f) < M(z) = M(y)| < Alz —yl. u

E. Proof of Lemma 3

Given a compact set Z C R™ such that ZN K = ) and the
continuous function h, we introduce the sequence {Wk}k=1
given by

N, = min{h(t,z) : x € Z, t € [0, k]}. (79)

This sequence is strictly positive and nonincreasing.

Next, we propose to partition the set R using an increas-

ing sequence {¢;}2, C R>( that we design as follows:

1) For each interval Ty := [k — 1,k], k € N*, we asso-
ciate u; € N*. Furthermore, we introduce the sequence
{Jr}32, such that j; := 0 and ji1 := ji + ug.

2) The subsequence {¢;};", satisfies to := 0 and t;1; :=
ti+uil foralli € {0,1,...,u;—1}. It follows that t,,, = 1.

3) For each k > 2, the subsequence {tz}fijku’“ satisfies t;, =
k—1and t;1 :=t; + o forall i € {jy,jx +1,..., jx +
uy, — 1}. It follows that tj, 4., = tj,., = k.

4) Under the continuity of h, we choose the parameter uy
such that, for each i € {jx,jx + 1, ..., jx + ur — 1} and
for each x € Z, h(ti, Z‘) — h(ti+17 J}) = h(ti,l‘) - h(tz +
(1/ug), ) < jo.

Now, we consider a nonincreasing sequence {Ci};}io C Rsy

such that

> 1
Z G < g

=]k

(80)



Furthermore, using the continuity of h, we conclude the
existence of a sequence of functions {w; };, such that: Each
w; : R™ — Ry gis continuously differentiable on int(Z). For
each z € Z, the sequence {w;(z)};~, is nonincreasing. For
eachi e N,

[(ts, x) —

wi(z)] < %Ci‘f’ZCL 81

1=i
Finally, we construct the function ¢ — ¢(t, z) by interpolating
the sequence of functions {w;(z)}$°, by means of a nonin-
creasing third order polynomial to obtain, for any ¢ € [t;, t;41]
and ¢ € N, g(t, l‘) = q(t,ti,ti_;,_l, wi(x), wi+1(x)), where

qt,ti, tivr, wi(z), wiy1(z)) == wi(z)+

3(t — ;)2
(U}iJrl(x) - wl(x)) (ti+1 - tl)2 -

2(t — t;)°
(wiJrl(m) - wl(x))m

Note that ¢ is nonincreasing on [t;,¢;+1] and

In order to complete the proof, it remains to show that (40) is
satisfied for all (¢,z) € R>o x Z. Without loss of generality,
consider z € Z and t € [k — 1,k), for k € {1,2,...,00}.
Assume that ¢ € [t;,t;41] for some ¢; € [k — 1,k). Hence,
1 € (Ji, jk + ug). It follows that g(¢,z) — h(t,x) < g(t;,x) —
h(tipr, @) < |g(ti, @) — h(ts,z)| + h(ti,x) — h(tis1,2) <
Gt 3G+ 1M < 37k, where we used the fact that
g(ti, ) = w;(z), (81), and (80). Similarly,

h(t,l‘)— ( Z‘) < h(ti-‘rhx) _g(tz,.’E)
< g(tivr, @) = htivr, @) + h(ti, x) = h(tit1, @)
- 1 1 1

D GGt g < g

Jj=i+1
Therefore, |h(t,z) — g(t,x)| < %m and h(t,z) — $m <
g(t,z) < h(t,z) + $my. Finally, using (79), we conclude that
e < min{h(r,z) : 7 € [0,k]} and, since t € [k — 1,k), it
follows that ny < h(t, z). [ |

F. Proof of Lemma 4

We propose to adapt the proof of [32, Lemma 48.3] to the
case where the origin is replaced by a general closed set K C
R™. For each integer s, we introduce the set

si={z eR":2°73 < |zl <2871}, (82)

Furthermore, we propose to decompose the set I, into a
sequence of nonempty compact subsets { D3} i1, where N ¢
{1,2,...,00}, such that D C I, for all ¢ € {1,2,...,N}.
Furthermore, for each ¢ € {1,2,..., N}, there exist a finite
set N¥ C {1,2,...,N} and a compact set D including D;

in its interior such that Df N K = (), D§ C UJGNS D3, and
D; N D; =0 for all j ¢ NF.
The rest of the proof follows in three steps.

1) In the first step, we use Lemma 3 to construct a function
¥f : R> x Df — R that is nonincreasing with respect
to its first argument, C' on R>¢ x int(D3), and satisfies
(41) for all (t,z) € Rxq x Dj.

2) In the next step, we consider an open set Of C D;
that contains D], and a differentiable function A}
R™ — Ryq, which is positive in O] and vanishes
outside. Then we introduce the function 1 ]St T) =
mzz‘:1 ¥; (t, )X (z) with A(z) =
Note that, for each x € I, the previous sum 1s ﬁmte
by construction of the sequence {D$}Y . Furthermore,
the map ¢ — t,(¢, ) nonincreasing , ¥s € C*'(Rxo x
int(I;)), and satisfies (41) for all (¢,2) € R>¢ x I.

3) In the last step, we consider g(¢,z) =
57 Dam oo Yot 2)As(2), Al@) = 352 (@),

Finally, it is easy to see that for all z € R", the previous
sum is finite.
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