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Abstract—This paper presents converse theorems for safety in
terms of barrier functions for unconstrained continuous-time sys-
tems modeled as differential inclusions. Via a counterexample, we
show the lack of existence of autonomous and continuous barrier
functions certifying safety for a nonlinear system that is not only
safe but also has a smooth right-hand side. Guided by converse
Lyapunov theorems for (non-asymptotic) stability, time-varying
barrier functions and appropriate infinitesimal conditions are
shown to be both necessary as well as sufficient under mild
regularity conditions on the right-hand side of the system. More
precisely, we propose a general construction of a time-varying
barrier function in terms of a marginal function involving the
finite-horizon reachable set. Using techniques from set-valued and
nonsmooth analysis, we show that such a function guarantees
safety when the system is safe. Furthermore, we show that the
proposed barrier function construction inherits the regularity
properties of the proposed reachable set. In addition, when the
system is safe and smooth, we build upon the constructed barrier
function to show the existence of a smooth barrier function
guaranteeing safety. Comparisons and relationships to results in
the literature are also presented.

I. INTRODUCTION

Beyond stability and convergence, safety is among the most

important properties to analyze for a general continuous-time

system modeled as the differential inclusion

ẋ ∈ F (x) x ∈ R
n. (1)

Differential inclusions extend the concept of differential equa-

tions by allowing the dynamics to be governed by a set-valued

map instead of only a single-valued function [1]. Safety is

the property that requires the solutions to (1) starting from a

given set of initial conditions Xo ⊂ R
n to never reach a given

unsafe region Xu ⊂ R
n, where, necessarily, Xo ∩ Xu = ∅

[2], [3]. Safety with respect to (Xo, Xu) is verified when a

set K ⊂ R
n, with Xo ⊂ K and K ∩Xu = ∅, is forward pre-

invariant, i.e., the solutions to (1) starting from K remain in

K for all time [4] — the prefix “pre” indicates that solutions

may not exist for all t ∈ [0,∞), in particular, due to finite

escape times. Such a set K is called inductive invariant in

[5]. Depending on the considered application, reaching the

unsafe set Xu can correspond to the impossibility of applying

a predefined feedback law [6] or, simply colliding with an

obstacle [7].
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A. Background

Analogous to Lyapunov theory for stability, the concept of

barrier functions is a powerful tool to study safety without

computing the solutions to the system. Generally speaking,

two main types of barrier functions can be identified in the

literature [8]. The first type of barrier functions consists of a

scalar function B defined on the interior of K, denoted int(K),
with nonnegative values such that

lim
x→∂K

B(x) = ∞,

where ∂K is the boundary of K. This barrier function certifies

safety when the growth condition

〈∇B(x), η〉 ≤ γ(B(x)) ∀η ∈ F (x), ∀x ∈ int(K) (2)

is satisfied, where the scalar function γ is such that condition

(2) implies that the map t 7→ B(φ(t, xo)) does not become un-

bounded in finite time for every solution φ to (1) starting from

xo ∈ int(K) — each such solution is denoted t 7→ φ(t, xo).
Hence, the solution φ remains in int(K) for all time. This type

of barrier functions, often named potential functions, has been

used in constrained optimization [9], multiagent systems [7],

and constrained nonlinear control design [10].

The second type of barrier functions is given by a scalar

function B with a prescribed sign on the initial set Xo and

with the opposite sign on the unsafe set Xu. Without loss of

generality, we can assume that B and (Xo, Xu) satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo.
(3)

In this case, safety is guaranteed when the zero-sublevel set

K := {x ∈ R
n : B(x) ≤ 0} (4)

is forward pre-invariant. The first characterization of for-

ward pre-invariance dates back to the work of Nagumo in

[11], where tangent-cone-based conditions are proposed; see

Section V-A for more details. Note that the computation

of a tangent cone to a general set is not always a trivial

task. Fortunately, when the set K satisfies (4), it is possible

to formulate sufficient conditions for forward pre-invariance

using only the barrier candidate B and the right-hand side

of (1), F . Such sufficient conditions are usually expressed in

terms of an inequality constraining the variation of B along the

solutions to the system (1). In [2, Proposition 2], the condition

〈∇B(x), η〉 ≤ 0 ∀η ∈ F (x), ∀x ∈ R
n (5)

is used. Condition (5) has been relaxed in the literature in

different ways. According to our previous work in [12], the

inequality in (5) does not need to hold on the entire R
n to



guarantee forward pre-invariance. It is enough to guarantee

that

〈∇B(x), η〉 ≤ 0 ∀η ∈ F (x), ∀x ∈ U(K)\K, (6)

where U(K) is any open neighborhood around the (closed)

set K. Furthermore, according to [13, Theorem 1], when F is

locally Lipschitz and ∇B(x) 6= 0 for all x in the boundary of

K denoted ∂K, the inequality in (5) can be relaxed to hold

only on the boundary of K; namely, it is enough to assume

〈∇B(x), η〉 ≤ 0 ∀η ∈ F (x), ∀x ∈ ∂K. (7)

The non-positiveness required in (5) and (6) can be relaxed

using uniqueness functions, or, minimal functions; see Section

V for more details. It is important to note that conditions (5),

(6), and (7) require continuous differentiability of the barrier

function candidate B. Similar conditions can be formulated

when B is only locally Lipschitz or only lower semicontinu-

ous, using appropriate tools; see [12]. In the most general case

where B is not necessarily smooth, the aforementioned con-

ditions can be replaced by the following solution-dependent

monotonicity property:

(?) Along each solution φ to (1) starting from

xo ∈ U(K)\int(K) and such that φ([0, T ], xo) ⊂
U(K)\int(K), for some T > 0 , the map t 7→ B(φ(t, xo))
is nonincreasing on [0, T ]. •

The second type of barrier functions in (3) has been applied to

multi-robots collision avoidance in [14], [15], adaptive cruise

control in [16], and bipedal walking in [17].

Finally, a notion equivalent to safety, named conditional

invariance, is studied and characterized in [18], [19], [20],

[21] using Lyapunov-like conditions. Roughly speaking, a set

Xs ⊂ R
n is conditionally invariant with respect to a set Xo ⊂

Xs if the solutions starting from Xo never leave the set Xs.

Connections between Lyapunov-like conditions guaranteeing

conditional invariance and the more recent conditions using

barrier functions are discussed in Section V-D.

B. Motivation

Many existing tools to certify safety for control systems

are based on the search of a controller and the corresponding

barrier function that certifies safety for the resulting closed-

loop system [22], [23], [24]. By solving the converse safety

problem, in this case, one can be assured that a barrier function

exists when the control system can be rendered safe. Generally

speaking, given a safe system (1) with respect to (Xo, Xu),
the converse safety problem pertains to showing the existence

of a barrier function candidate B : Rn → R satisfying (3) and

verifying conditions guaranteeing safety, such as those in (5),

(6), (7), and (?). To the best of our knowledge, [25], [26], and

[27] are the only existing works treating the converse safety

problem via barrier functions. We review these results next.

The converse safety result proposed in [25] applies when F
is single valued and continuously differentiable. Furthermore,

it assumes that there exists a continuously differentiable func-

tion V : Rn → R that is strictly decreasing along the solutions

to (1); namely, V and F satisfy

〈∇V (x), F (x)〉 < 0 ∀x ∈ R
n. (8)

Under these conditions, safety with respect to (Xo, Xu) is

shown to imply the existence of a continuously differentiable

barrier function candidate B satisfying (5). Note that this result

does not apply when system (1) admits a limit cycle. Indeed,

for systems with limit cycles, it is not possible to find a

function V such that (8) holds; see Example 6.

In [26], a geometric point of view is adopted using Morse-

Smale theory when system (1) is defined on a smooth and com-

pact manifold. The right-hand side F is assumed to be single

valued and smooth. Also, the sets Xo and Xu are assumed to

be compact and disjoint. In the study in [26], a robust safety

notion (see Definition 17) is introduced, for which necessary

and sufficient conditions using barrier functions are proposed.

Furthermore, in the converse safety result in [26], the strictly

decreasing function V assumed to exist in [25] is replaced by

the existence of a Meyer function; see [26, Definitions 7 and

8] for more details.

Finally, in [27], a converse robust safety result that does

not assume existence of V : Rn → R such that (8) holds nor

the existence of a Meyer function is established when F is

smooth and single valued. According to the latter reference,

system (1) is robustly safe with respect (Xo, Xu) if, for some

ε > 0, the perturbed system

ẋ ∈ F (x) + εB x ∈ R
n, (9)

where B ⊂ R
n is the closed unit ball centered at the origin,

is safe with respect (Xo, Xu). It is shown in [27] that when

additionally the closures of the sets Xo and Xu are disjoint,

and the set R
n\Xu is bounded, robust safety of system (1)

with respect to (Xo, Xu) is equivalent to the existence of a

barrier function candidate satisfying (3) and such that

〈∇B(x), F (x)〉 < 0 ∀x ∈ ∂K.

To the best of our knowledge, providing necessary and suffi-

cient conditions for safety, or robust safety, without restricting

the class of systems (1), are not available in the literature.

Furthermore, as we show in this paper, safe systems may not

admit a barrier function with the properties assumed in the

literature. In fact, Example 1 presents a system as in (1) that

is safe with respect to (Xo, Xu) ⊂ R
n × R

n, where F is

single valued and smooth, but does not admit a barrier function

candidate B : Rn → R, function of x only, that is continuous

and satisfies any of the sufficient conditions for safety in (5),

(6), (7), and (?). This fact motivates the new class of barrier

functions introduced in this paper.

C. Contributions

This paper makes the following contributions:

1) We formulate a safety problem in terms of time-varying

barrier functions, that are not necessarily smooth, and

propose necessary and sufficient conditions for safety

without assuming existence of V : Rn → R such that

(8) holds, the existence of a Meyer function, or bounded-

ness of the set Rn\Xu. Allowing for nonsmooth barrier

functions is justified by the lack of existence of smooth

scalar functions satisfying (3) for some scenarios of sets



(Xo, Xu) as shown in Example 5. Furthermore, time-

varying barrier functions are motivated by the existing

converse Lyapunov theorems for stability, where time-

varying Lyapunov functions are constructed for systems

with a stable origin [28], [29], [30], [31], [32].

2) In Section IV-A, inspired by the converse Lyapunov

stability theorem in [28], given initial and unsafe sets

(Xo, Xu), we construct a time-varying barrier function as

a marginal function of an appropriately defined reachable

set over a given finite window of time, along the solu-

tions to (1), and starting from a given initial condition.

We show that such a barrier function guarantees safety

provided that (1) is safe with respect to (Xo, Xu).
3) Furthermore, we show that this barrier function inherits

the regularity properties of the proposed reachable set

when this one is viewed as a set-valued map [33]. As

a result, when F satisfies mild regularity conditions,

we show that safety of (1) with respect to (Xo, Xu) is

equivalent to the existence of a lower semicontinuous

time-varying barrier function; see Theorem 2.

4) In Section IV-B, when in addition F is locally Lipschitz,

we establish Lipschitz continuity of the proposed reacha-

bility map using Filippov Theorem [34, Theorem 5.3.1].

As a result, using the dependence of the constructed

barrier function on the reachability map, we conclude that

safety is equivalent to the existence of a locally Lipschitz

time-varying barrier function; see Theorem 3.

5) In Section IV-C, inspired by the converse Lyapunov sta-

bility theorem in [29], we build upon the barrier function

constructed in Section IV-B to conclude the existence

of a barrier function that is continuously differentiable

provided that F is single valued and continuously dif-

ferentiable; see Theorem 4. As observed in [30], Lya-

punov stability of the origin is equivalent to conditional

invariance with respect to a sequence of compact sets

{(Xoi, Xsi)}
∞
i=0 that converges to the origin. However,

extending the converse stability result in [29] to the

context of safety is not straightforward and offers many

technical challenges. Those challenges are due to the

fact that the sets Xo and R
n\Xu are not necessarily

bounded, Xo is not necessarily forward pre-invariant, and

the solutions to the system are not necessarily bounded.

Preliminary version of this work is in [35], where only dif-

ferential equations are considered and the proofs are omitted.

Furthermore, the current paper includes more examples and a

more detailed comparison to the existing literature.

The remainder of the paper is organized as follows. Prelim-

inary notions are in Section II. The converse safety problem

using time-varying barrier functions is formulated in Section

III. The main results are in Section IV. A comparison to

existing literature is in Section V. Finally, conclusion and

future work are in Section VI.

Notation. Let R≥0 := [0,∞), N := {0, 1, . . .}, and N
∗ :=

{1, 2, . . . ,∞}. For x and y ∈ R
n, x> denotes the transpose

of x, |x| the Euclidean norm of x, and 〈x, y〉 := x>y denotes

the scalar product between x and y. For a set K ⊂ R
n, we

use cl(K) to denote its closure and |x|K := infy∈K |x − y|
to define the distance between x and the set K. For O ⊂ R

n,

K\O denotes the subset of elements of K that are not in O.

By B, we denote the closed unite ball centered at the origin.

By F : Rn ⇒ R
n, we denote a set-valued map associating

each element x ∈ R
n into a subset F (x) ⊂ R

n. For a set-

valued map F : Rn ⇒ R
m, domF denotes the domain of

definition of F and F−1(x) denotes the reciprocal image of

F evaluated at x. For a continuously differentiable function

B : Rn → R, ∇B(x) denotes the gradient of B evaluated at x.

Finally, by Ck(K), with k ∈ N, we denote the class of k−times

differentiable functions on K where the k−th derivative is

continuous on K (when K = R
n, we only write Ck).

II. PRELIMINARIES

A. Set-Valued and Single-Valued Maps

We start this section by recalling the following continuity

notions for set-valued and single-valued maps.

Definition 1 (Semicontinuous set-valued maps): Consider a

set-valued map F : K ⇒ R
n, where K ⊂ R

m.

• The map F is said to be outer semicontinuous at

x ∈ K if, for every sequence {xi}
∞
i=0 ⊂ K and for

every sequence {yi}
∞
i=0 ⊂ R

n with limi→∞ xi = x,

limi→∞ yi = y ∈ R
n, and yi ∈ F (xi) for all i ∈ N,

we have y ∈ F (x); see [36, Definition 5.9].

• The map F is said to be lower semicontinuous (or,

equivalently, inner semicontinuous) at x ∈ K if for each

ε > 0 and yx ∈ F (x), there exists U(x) satisfying the

following property: for each z ∈ U(x) ∩K, there exists

yz ∈ F (z) such that |yz − yx| ≤ ε; see [37, Proposition

2.1].

• The map F is said to be upper semicontinuous at x ∈ K
if, for each ε > 0, there exists U(x) such that for each

y ∈ U(x) ∩K, F (y) ⊂ F (x) + εB; see [38, Definition

1.4.1].

• The map F is said to be continuous at x ∈ K if it is both

upper and lower semicontinuous at x.

Furthermore, the map F is said to be upper, lower, outer

semicontinuous, or continuous if, respectively, it is upper,

lower, outer semicontinuous, or continuous for all x ∈ K.

•
Definition 2 (Semicontinuous single-valued maps): Consider

a scalar function B : K → R, where K ⊂ R
m.

• The scalar function B is said to be lower semicontinuous

at x ∈ K if, for every sequence {xi}
∞
i=0 ⊂ K such that

limi→∞ xi = x, we have lim infi→∞B(xi) ≥ B(x).
• The scalar function B is said to be upper semicontinuous

at x ∈ K if, for every sequence {xi}
∞
i=0 ⊂ K such that

limi→∞ xi = x, we have lim supi→∞B(xi) ≤ B(x).
• The scalar function B is said to be continuous at x ∈ K

if it is both upper and lower semicontinuous at x.

Furthermore, B is said to be upper semicontinuous, lower

semicontinuous, or continuous if, respectively, it is upper

semicontinuous, lower semicontinuous, or continuous for all

x ∈ K. •
Definition 3 (Locally bounded set-valued maps): A set-

valued map F : K ⇒ R
n, with K ⊂ R

m, is said to be locally

bounded if, for any x ∈ K, there exist U(x) and β > 0 such

that |ζ| ≤ β for all ζ ∈ F (y) and for all y ∈ U(x) ∩K. •



Definition 4 (Locally Lipschitz set-valued maps): The set-

valued map F : K ⇒ R
n, with K ⊂ R

m, is said to be locally

Lipschitz if, for each nonempty set Ko ⊂ K, there exists k > 0
such that, for all (x1, x2) ∈ Ko ×Ko,

F (x1) ⊂ F (x2) + k|x1 − x2|B, (10)

or, equivalently,

dH(F (x2), F (x1)) ≤ k|x2 − x1|, (11)

where dH(X1, X2) is the Hausdorff distance between the sets

X1 ⊂ R
m and X2 ⊂ R

m; namely,

dH(X1, X2) := max

{

sup
x∈X1

|x|X2
, sup
x∈X2

|x|X1

}

. (12)

•
Definition 5 (Locally Lipschitz functions): A function F :

K ⇒ R
n, with K ⊂ R

m, is said to be locally Lipschitz if, for

each nonempty set Ko ⊂ K, there exists k > 0 such that, for

all (x1, x2) ∈ Ko ×Ko,

|F (x1)− F (x2)| ≤ k|x1 − x2|. (13)

•
Definition 6 (Epigraph of functions): Given a scalar function

B : Rn → R, its epigraph is given by

epiB := {(x, r) ∈ R
n × R : r ≥ B(x)} . (14)

•
Definition 7 (Regular sets and functions): A set K ⊂ R

n

is said to be regular if TK(x) = CK(x) for all x ∈ K, where

TK and CK are the contingent and the Clarke tangent cones

of K at x, respectively, and given by

TK(x) :=

{

v ∈ R
n : lim inf

h→0+

|x+ hv|K
h

= 0

}

. (15)

CK(x) :=

{

v ∈ R
n : lim sup

y→x,h→0+

|y + hv|K
h

= 0

}

. (16)

Furthermore, a locally Lipschitz function B : R
n → R is

regular if epiB is regular. •
Remark 1: The definition of regular functions used in

this paper is equivalent to the definition used in [39]; see

Proposition 7.3 therein. •

B. Proximal Subdifferential and Clarke Generalized Gradient

In this section, we recall from [39] the tools to certify safety

using nonsmooth barrier function candidates.

Definition 8 (Proximal normal cone): Given a set S ⊂ R
n,

the proximal normal cone NP
S associated with S evaluated at

x ∈ cl(S) is given by

NP
S (x) := {ζ ∈ R

n : ∃r > 0 so that |x+ rζ|S = r|ζ|} . (17)

•
Definition 9 (Proximal subdifferential): The proximal subd-

ifferential of a lower semicontinuous function B : Rn → R is

the set-valued map ∂PB : Rn ⇒ R
n such that, for all x ∈ R

n,

∂PB(x) :=
{

ζ ∈ R
n : [ζ> − 1]> ∈ NP

epiB(x,B(x))
}

. (18)

Moreover, each vector ζ ∈ ∂PB(x) is said to be a proximal

subgradient of B at x. •
Remark 2: Using [39, Theorem 2.5], we conclude that

∂PB(x) = {ζ ∈ R
n : ∃U(x), ∃ε > 0 : ∀y ∈ U(x)

B(y) ≥ B(x) + 〈ζ, y − x〉 − ε|y − x|2
}

. (19)

Furthermore, when B ∈ C2, we conclude that ∂PB(x) =
{∇B(x)}. Moreover, the latter equality holds also when B is

only C1 provided that ∂PB(x) 6= ∅. •
Definition 10 (Clarke generalized gradient): Let B : Rn →

R be locally Lipschitz. Let Ω be any subset of zero measure

in R
n, and let ΩB be the set of points in R

n at which B fails

to be differentiable. The Clarke generalized gradient at x is

defined as

∂CB(x) := co
{

lim
i→∞

∇B(xi) : xi → x, xi /∈ ΩB , xi /∈ Ω
}

.

(20)

•
Remark 3: Definition 10 is equivalent to the original defini-

tion of the Clarke generalized gradient in [39]; see Theorem

8.1 therein. •

C. Safety and Set-Invariance in Differential Inclusions

First, we recall the concept of solution to (1).

Definition 11 (Concept of solution): A function φ :
domφ → R

n, where domφ is of the form [0, T ] or [0, T )
for some T ∈ R≥0 ∪{+∞}, is a solution to (1) starting from

xo ∈ R
n if t 7→ φ(t, xo) is locally absolutely continuous and

satisfies (1) for almost all t ∈ domφ. •
A solution φ starting from xo ∈ R

n is forward complete if

domφ is unbounded, and it is maximal if there is no solution

ψ starting from xo such that ψ(t, xo) = φ(t, xo) for all

t ∈ domφ and domφ is a proper subset of domψ. Finally,

the system (1) is said to be forward complete if each of its

maximal solutions is forward complete.

Next, we consider a set Xu ⊂ R
n denoting the unsafe region

of the state space, a set Xo ⊂ R
n denoting the set of initial

conditions – namely, the region that the solutions start from –

and a set Xs denoting the safe set. Without loss of generality,

we assume that Xo ∩Xu = ∅, Xo ⊂ Xs, and Xs ∩Xu = ∅.

Definition 12 (Safety): System (1) is said to be safe with

respect to (Xo, Xu) if, for each solution φ to (1) starting from

xo ∈ Xo, we have φ(t, xo) ∈ R
n\Xu for all t ∈ domφ. •

Definition 13 (Conditional invariance [18]): A set Xs ⊂ R
n

is conditionally invariant with respect to a set Xo ⊂ Xs for

system (1) if, for each solution φ starting from xo ∈ Xo, we

have φ(t, xo) ∈ Xs for all t ∈ domφ. •
Definition 14 (Forward pre-invariance): A set Xs ⊂ R

n

is forward pre-invariant for (1) if, for each solution φ to (1)

starting from xo ∈ Xs, we have φ(t, xo) ∈ Xs for all t ∈
domφ. •

The safety and the conditional invariance notions are related

as follows: system (1) is safe with respect to (Xo, Xu) if

and only if the set Xs := R
n\Xu is conditionally invariant

with respect to Xo for (1). Safety generalizes the forward pre-

invariance notion: forward pre-invariance of a set Xs ⊂ R
n is

equivalent to safety with respect (Xs,R
n\Xs). Note that, the



prefix “pre” in forward pre-invariance is used to accommodate

maximal solutions that are not complete. For example, if a

solution φ to (1) starts from xo ∈ Xs and has a finite-time

escape while remaining in Xs, then such a solution may still

satisfy φ(t, xo) ∈ Xs for all t ∈ domφ, but with domφ
bounded and open to the right.

III. THE CONVERSE-SAFETY PROBLEM FORMULATION

Generally speaking, converse safety theorems identify

classes of dynamical systems for which safety is equivalent to

the existence of a smooth barrier function satisfying (3) plus

a sufficient condition for safety. According to the following

(counter) example, for the system in (1) that is safe with

respect to (Xo, Xu), it is not always possible to find a barrier

function candidate B : Rn → R, function of x only, that is

continuous and such that both (3) and (?) hold.

Example 1: Consider the system in (1) with x ∈ R
2,

F (x) :=















[

−x2 + rx1 sin(1/r)
2

x1 + rx2 sin(1/r)
2

]

if x 6= 0

0 otherwise,

(21)

and r := |x|. The system is safe with respect to the sets

Xo := {0} , Xu := R
2\Xo. (22)

Indeed, the safety property, in this case, is equivalent to

forward invariance of the origin (which coincides with Xo).

Forward invariance of the origin holds since the origin is an

equilibrium point for system (21). However, we show below

that it is not possible to find a barrier candidate B, function

only of x, that is continuous, nonincreasing along the solutions

to the system, and at the same time having a value at the

origin that is strictly smaller than all the values elsewhere as

(3) requires.

In polar coordinates, system (21) can be rewritten as

ṙ = (r2/2) sin(1/r)2, θ̇ = 1. (23)

Furthermore, from (23), it follows that the origin is surrounded

by (countably) infinitely many limit cycles centered at the

origin, denoted by Qi, i ∈ N. Moreover, the radius of the

limit cycles monotonically converges to zero as i → ∞ and

the trajectories starting from the interior of the annulus formed

by each two circles Qi+1 and Qi are spirals that leave Qi+1

and approach Qi. Figure 1 depicts such limit cycles as well

as solutions starting from different initial conditions.

Now, assume the existence of a continuous function B
that is nonincreasing along the solutions to (21) and positive

definite. Furthermore, for a sequence of points {xi}
∞
i=0 with

xi ∈ Qi, the sequence {B(xi)}
∞
i=0 converges to zero, and

is strictly positive. Hence, there exists a strictly positive and

monotonically decreasing subsequence {B(xik)}
∞
k=0 that also

converges to zero. As a result, there exist (l1, l2) ∈ N×N and

ε > 0 such that B(xl1)−B(xl2) = ε. We assume, further and

without loss of generality, that l2− l1 = 2 (the same reasoning

is valid if l2 − l1 > 2). Next, using the continuity assumption

on B and the properties of solutions to (21), it follows that

for any ε1 > 0 we can find T > 0 and two initial conditions
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Fig. 1. Solutions to system (21) starting from different initial conditions.

xo and xo1 in the interior of the annulus formed by Ql2 and

Ql2−1 and, respectively, in the interior of the torus formed by

Ql2−1 and Ql1 such that

max {|B(xo)−B(xl2)|, |B(xo1)−B(φ(T, xo))|,

|B(xl1)−B(φ1(T, xo1))|} ≤ ε1,

where φ and φ1 are the solutions to (21) starting from xo and

xo1, respectively. Now, having

ε =B(xl1)−B(xl2) = B(xl1)−B(φ1(T, xo1))+

B(φ1(T, xo1))−B(xo1) +B(xo1)−B(φ(T, xo))+

B(φ(T, xo))−B(xo) +B(xo)−B(xl2)

and using the fact that B does not increase along the solutions

to system (21), we obtain

ε =B(xl1)−B(xl2) ≤ |B(xl1)−B(φ1(T, xo1))|+

|B(xo1)−B(φ(T, xo))|+ |B(xo)−B(xl2)| ≤ 3ε1.

The latter fact yields to a contradiction since ε is fixed and ε1
can be made as small as possible, that is, for ε1 = ε/4, we

obtain ε ≤ 3ε/4 which is a contradiction. Hence, though it is

safe, an autonomous barrier function does not exist. �

This example is inspired from [32, Page 82] and [31, Page

46], where the existence of Lyapunov functions for (non-

asymptotically) stable systems is analyzed.

To handle the lack of existence of smooth barrier functions

for safe systems, we introduce the following time-varying

barrier function candidate notion.

Definition 15 (Time-varying barrier function candidate): A

scalar function B : R≥0 × R
n → R is a time-varying barrier

function candidate for safety with respect to (Xo, Xu) if

B(t, x) > 0 ∀(t, x) ∈ R≥0 ×Xu, (24)

B(t, x) ≤ 0 ∀(t, x) ∈ R≥0 ×Xo. (25)

•
Using time-varying barrier functions, we will be able to

address the following converse safety problem.



Problem 1 (Converse safety problem): Given sets

(Xo, Xu) ⊂ R
n × R

n, with Xo ∩ Xu = ∅, show that

the system in (1) is safe with respect to (Xo, Xu) if and

only if there exists a time-varying barrier function candidate

B : R≥0 × R
n → R, with the best possible regularity1, such

that

(??) Along each solution φ to (1) starting from xo ∈
U(K)\int(K) and remaining in U(K)\int(K), the map

t 7→ B(t, φ(t, xo)) is nonincreasing, where

K := {(t, x) ∈ R≥0 × R
n : B(t, x) ≤ 0} . (26)

•
Note that the property in (??) requires the computation of

the solutions to (1). However, depending on the regularity of

the function B and of the map F , as shown in [40], it is

possible to use the following infinitesimal conditions that are

necessary and sufficient to conclude (??).

• When B is continuously differentiable, (??) is satisfied if

〈∇B(t, x), [1 η>]>〉 ≤ 0

∀η ∈ F (x), ∀(t, x) ∈ U(K)\K.
(27)

When additionally F is locally Lipschitz, (27) is equiva-

lent to (??).

• When B is locally Lipschitz and F is locally bounded,

(??) is satisfied if

〈ζ, [1 η>]>〉 ≤ 0 ∀ζ ∈ ∂CB(t, x), ∀η ∈ F (x),

∀(t, x) ∈ U(K)\K,
(28)

where ∂CB is the Clarke generalized gradient of B (see

Definition 10). When additionally F is locally Lipschitz

and B is regular according to Definition 7, (28) is

equivalent to (??),

• When B is only continuous and F is locally Lipschitz

with closed images, (??) is satisfied if and only if

〈ζ, [1 η>]>〉 ≤ 0 ∀ζ ∈ ∂PB(t, x), ∀η ∈ F (x),

∀(t, x) ∈ U(K)\K,
(29)

where ∂PB is the proximal subdifferential of B (see

Definition 8).

To solve Problem 1, we start showing that having a time-

varying barrier function candidate verifying (??) is enough

to conclude that the system in (1) is safe with respect to

(Xo, Xu). In particular, note that (??) reduces to (?) when

B is time-independent.

Theorem 1: Given initial and unsafe sets (Xo, Xu) ⊂ R
n×

R
n, system (1) is safe with respect to (Xo, Xu) if there exists a

lower semicontinuous time-varying barrier function candidate

B : R≥0 × R
n → R such that (??) holds. �

Proof. Consider the extended system

(ṫ, ẋ) ∈ (1, F (x)) (t, x) ∈ R≥0 × R
n (30)

and the extended initial and unsafe sets Xoa := R≥0 × Xo

and Xua := R≥0 × Xu, respectively. To use a contra-

diction argument, we assume that there exists a solution

φa := (t, φ) starting from φao := (0, xo) ∈ Xoa that

1By “best regularity” means the strongest smoothness property.

reaches the set Xua in finite time. This implies, using the

continuity of φa, the existence of 0 ≤ t1 < t2 such that

φa([t1, t2], φao) ⊂ U(∂K)\int(K), φa(t1, xao) ∈ ∂K, and

φa(t2, φao) ∈ U(∂K)\K. Hence, B(φa(t1, φao)) ≤ 0 and

B(φa(t2, φao)) > 0. However, this contradicts (??). �

The challenge in Problem 1 is to prove the reverse direction

of the statement in Theorem 1, namely, necessity of the

existence of a barrier function when (1) is safe. In Section

IV, we prove that result inspired by the converse Lyapunov

theorems for (non-asymptotic) stability in [28], [29], [30].

IV. SOLUTIONS TO THE CONVERSE SAFETY PROBLEM

Given the differential inclusion in (1), we consider the

following mild condition on F .

Assumption 1: The map F : Rn ⇒ R
n is upper semicon-

tinuous, and F (x) is compact and convex for all x ∈ R
n.

•
Assumption 1 is used in the literature to assure existence

of solutions and adequate structural properties for the set of

solutions to differential inclusions; see [33], [34], [39]. When

F is single valued, Assumption 1 reduces to continuity of F .

Remark 4: In some of the existing literature, e.g. [36],

Assumption 1 is replaced by the equivalent assumption stat-

ing that F needs to be outer semicontinuous and locally

bounded with convex images. Outer semicontinuous and lo-

cally bounded set-valued maps are upper semicontinuous with

compact images [41, Theorem 5.19]. The converse is also true

using [36, Lemma 5.15] and the fact that upper semicontinuous

set-valued maps with compact images are locally bounded. •
Next, we define the concept of backward solutions to (1).

Definition 16 (Backward solutions to (1)): A function ψ :
domψ → R

n starting from xo ∈ R
n is a backward solution

to (1) if there exists a solution φ in the sense of Definition 11,

starting from xo, to the system

ẋ ∈ −F (x) x ∈ R
n (31)

such that domφ = − domψ and ψ(t, xo) = φ(−t, xo) for all

t ∈ domψ. •
Furthermore, for the system in (1), we introduce the reach-

ability map R : R× R
n ⇒ R

n as follows:

• For each (t, x) ∈ R≥0 × R
n,

R(t, x) := {φ(s, x) : φ ∈ S(x), s ∈ domφ ∩ [0, t]}, (32)

• For each (t, x) ∈ R<0 × R
n,

R(t, x) := {φ(s, x) : φ ∈ Sback(x), s ∈ domφ ∩ [t, 0]}, (33)

where S(x) is the set of maximal solutions to (1) starting from

x and Sback(x) is the set of maximal backward solutions to

(1) starting from x. In simple words, when t ≥ 0, the set

R(t, x) includes all the elements reached by the solutions to

(1) starting from x over the interval [0, t]. Similarly, when

t < 0, the set R(t, x) includes all the elements reached by the

backward solutions to (1) starting from x over interval [t, 0].
Finally, given system (1) and a set Xo ⊂ R

n, we introduce

the scalar function B defined for each (t, x) ∈ R≥0 × R
n by

B(t, x) = inf{|y|Xo
: y ∈ R(−t, x)}. (34)



Note that the function B in (34) is inspired by the converse

Lyapunov stability theorem in [28]. As we show in this

section, when system (1) is safe with respect to (Xo, Xu), the

function B in (34) becomes a time-varying barrier function

candidate with respect to (Xo, Xu) in the sense of Definition

15. Furthermore, we also show that the scalar function B in

(34) inherits the regularity properties of the reachability map

R.

A. When F Satisfies Assumption 1

In the following result, for system (1) satisfying Assumption

1, we show that the reachability map R is outer semicontinu-

ous, locally bounded, and continuous with respect to time. A

proof is in the appendix.

Proposition 1: Suppose that the system in (1) is forward

complete and F satisfies Assumption 1. Then, the following

hold:

1) The map R is outer semicontinuous and locally bounded.

2) The map t 7→ R(t, x) is continuous for all x ∈ R
n.

�

Along the lines of [38, Theorem 1.4.16], given a set-valued

map Π : Rm ⇒ R
n and a set X ⊂ R

n, we show how the

marginal function f : Rm → R given by

f(z) := inf{|y|X : y ∈ Π(z)} (35)

inherits the regularity of the set-valued map R. A proof is in

the Appendix.

Lemma 1: Consider a locally bounded set-valued map

Π : Rm ⇒ R
n such that Π(z) is nonempty for all z ∈ R

m.

Consider a closed and nonempty set X ⊂ R
n and the marginal

function f : Rm → R in (35). The following hold:

1) If Π is outer semicontinuous, then f is lower semicon-

tinuous.

2) If Π is lower semicontinuous, then f is upper semicon-

tinuous.

3) If Π is locally Lipschitz, then so is f .

�

The following result is a direct consequence of Proposition

1 and Lemma 1.

Proposition 2: Suppose the system in (1) is forward com-

plete and that F satisfies Assumption 1. Consider a closed set

Xo ⊂ R
n and the function B in (34). The following hold:

1) The function B is lower semicontinuous.

2) The map t 7→ B(t, x) is continuous.

�

Proof. The backward solutions to (1) starting from x ∈ R
n

are the forward solutions to (31) starting from x. Furthermore,

having (1) forward complete and F satisfying Assumption 1

implies that (31) is also forward complete and −F satisfies

Assumption 1. Hence, using Proposition 1, we conclude that

the reachability map R is outer semicontinuous and locally

bounded. Next, using the first item in Lemma 1, we conclude

that B is lower semicontinuous.

Furthermore, using Proposition 1, we conclude that the map

t 7→ R(t, x) is continuous; hence, lower semicontinuous. Next,

using the second item in Lemma 1, we conclude that the map

t 7→ B(t, x) is upper semicontinuous. Finally, since we already

showed that B is lower semicontinuous, we conclude that t 7→
B(t, x) is continuous. �

We are now ready to provide a solution to Problem 1 when

F satisfies Assumption 1.

Theorem 2: Suppose the system in (1) is forward complete

and F satisfies Assumption 1. Consider initial and unsafe sets

(Xo, Xu) ⊂ R
n×R

n such that Xo is closed and Xo∩Xu = ∅.

System (1) is safe with respect to (Xo, Xu) if and only if there

exists a lower semicontinuous time-varying barrier function

candidate B : R≥0 × R
n → R, with t 7→ B(t, x) continuous,

such that (??) holds. �

Proof. The sufficiency part follows using Theorem 1. To

prove the necessary part, we use the barrier function candidate

B in (34). Since the set Xo is closed and system (1) is

safe and the system (1) is forward complete, we conclude

that the backward solutions to (1) starting from x ∈ Xu

will neither reach nor converge to the set Xo in finite time;

hence, B(t, x) > 0 for all (t, x) ∈ R≥0 × Xu. Then, (24)

holds. Furthermore, (25) is trivially satisfied under (34). Then,

B is a time-varying barrier function candidate for safety

with respect to (Xo, Xu). Next, we show that the barrier

function candidate B is monotonically nonincreasing along the

solutions to (1). Indeed, consider a solution φ : [t, t+h] → R
n

to (1) starting from xo ∈ R
n at t = 0, for some h > 0.

Note that B(t + h, φ(t + h, xo)) = inf{|y|Xo
: y ∈

R(−t − h, φ(t + h, xo))}. Furthermore, we use the fact that

R(−t, φ(t, xo)) ⊂ R(−t−h, φ(t+h, xo)), which implies that

B(t+ h, φ(t+ h, xo))

= inf{|y|Xo
: y ∈ R(−t− h, φ(t+ h, xo))}

≤ inf{|y|Xo
: y ∈ R(−t, φ(t, xo))} = B(t, φ(t, xo)).

Hence, the barrier function candidate B does not increase

along the solution φ. Hence, (??) holds. Finally, the fact that

B is lower semicontinuous and t 7→ B(t, x) is continuous

follows from Proposition 2. �

Example 2 (Example 1 revisited): Consider system (21) in

Example 1 with the sets (Xo, Xu) as in (22). According to

the proof Theorem 2, the function B : R≥0 × R
2 → R given

by

B(t, x) = φ(−t, |x|), (36)

where φ is the backward solution to ṙ = (r2/2) sin2(1/r)
starting from |x|, is a lower semicontinuous time-varying

barrier function candidate satisfying (??). Indeed, the function

B in (36) coincides with the time-varying barrier function

candidate B in (34). Furthermore, the explicit formula of B
in (36) is given by

B(t, x) =










0 if x = 0,
1
kπ

if 1
|x| = kπ, k ∈ N

∗

1

arc cot(cot( 1
|x| )−

t

2 )+kπ
if 1

|x| ∈ (kπ, (k + 1)π), k ∈ N,

(37)

where cot is the cotangent function and arc cot is its inverse

function; namely, arc cot(cot(x)) = x for all x ∈ (0, π). �



B. When F is Locally Lipschitz

For system (1) with F locally Lipschitz and having closed

images, one can use the well-known Filippov Theorem (see

Lemma 6 in the appendix) to conclude that the reachability

map R is also locally Lipschitz. In this setting, we have the

following result.

Proposition 3: Suppose system (1) is forward complete and

F satisfies Assumption 1 and is locally Lipschitz. Then, R is

locally Lipschitz. �

Next, using Lemma 1, we show that, when F is locally

Lipschitz, B in (34) is locally Lipschitz.

Proposition 4: Suppose that the system in (1) is forward

complete and F is locally Lipschitz with closed images. Let

Xo ⊂ R
n be closed. Then, B in (34) is locally Lipschitz. �

Proof. The backward solutions to (1) starting from x ∈ R
n

are the solutions to (31) starting from x. Furthermore, having

(1) forward complete and F locally Lipschitz and satisfying

Assumption 1 imply that (31) is also forward complete and

−F is locally Lipschitz and satisfies Assumption 1. Hence,

using Proposition 3, we conclude that the reachability map R
is locally Lipschitz. Finally, using the third item in Lemma 1,

we conclude that B is locally Lipschitz. �

We are now ready to present an equivalent characterization

of safety solving Problem 1 when F is locally Lipschitz.

Theorem 3: Suppose the system in (1) is forward complete,

and F satisfies Assumption 1 and is locally Lipschitz. Con-

sider the initial and unsafe sets (Xo, Xu) ⊂ R
n×R

n such that

Xo is closed and Xo∩Xu = ∅. System (1) is safe with respect

to (Xo, Xu) if and only if there exists a locally Lipschitz time-

varying barrier function candidate B : R≥0 × R
n → R such

that (??) holds. �

Proof. The proof of the sufficient part follows via Theorem

1. To prove the necessary part, we consider the barrier function

candidate B in (34). The properties in (24), (25), and (??)

follow as in the proof of Theorem 2. Finally, using Proposition

4 and Lemma 1, we conclude that the candidate B in (34) is

locally Lipschitz. �

In the following result, we provide a characterization of

safety that, rather than using (??), uses an equivalent infinites-

imal condition. Before that, we first introduce the following

lemma relating monotonicity of B to infinitesimal inequalities.

Lemma 2: Suppose the system in (1) is such that F satisfies

Assumption 1 and is locally Lipschitz. Let B : Rn → R be

lower semicontinuous. Then, given an open set O ⊂ R
n, the

monotonicity property

(?′) Along each solution φ starting from xo ∈ R
n and

satisfying φ(domφ, xo) ⊂ O, the map t 7→ B(φ(t, xo))
is nonincreasing; •

is satisfied if and only if

〈ζ, η〉 ≤ 0 ∀ζ ∈ ∂PB(x), ∀η ∈ F (x), ∀x ∈ O. (38)

�

Lemma 2 is a particular case of [40, Corollary 4.13].

Corollary 1: Suppose the system in (1) is forward complete

and F satisfies Assumption 1 and is locally Lipschitz. Con-

sider initial and unsafe sets (Xo, Xu) ⊂ R
n×R

n such that Xo

is closed and Xo∩Xu = ∅. System (1) is safe with respect to

(Xo, Xu) if and only if there exists a locally Lipschitz time-

varying barrier function candidate B : R≥0 × R
n → R such

that

〈ζ, [1 η>]>〉 ≤ 0 ∀ζ ∈ ∂PB(t, x), ∀η ∈ F (x),

∀(t, x) ∈ R≥0 × R
n.

(39)

�

Proof. According to Theorem 3, safety with respect to

(Xo, Xu), when the set Xo is closed, is equivalent to the

existence of a locally Lipschitz time-varying barrier function

B : R≥0 ×R
n → R satisfying (24), (25), and (??). Moreover,

according to the proof of Theorem 2, for each solution φ
to (1) starting from xo ∈ R

n, the map t 7→ B(t, φ(t, xo))
is nonincreasing. This property is equivalent to saying that

property (?′) in Lemma 2 is satisfied while replacing (x,O)
therein by ((t, x), (R×R

n)), which completes the proof since

the function B is continuous. �

Example 3 (Example 1 revisited): Consider system (21) in

Example 1 with the sets (Xo, Xu) as in (22). Since the right-

hand side in (21) is locally Lipschitz and Xo is closed, we

conclude via Theorem 3 that the time-varying barrier function

B in (36) is locally Lipschitz and satisfies (39). �

C. When F is Single Valued and Smooth

In the context of (non-asymptotic) stability of the origin,

Kurzweil in [29] deduced from the Lyapunov function con-

structed in [28], which is similar to (34), the existence of a

Lyapunov function that is C1 everywhere (except at the origin)

under continuous differentiability of F and using the fact that

the origin is an equilibrium point. The compactness of the

origin is an important requirement for the proof in [29] to hold.

Unfortunately, this assumption does not hold when a generic

(not necessarily invariant) set Xo is considered instead of the

origin, as Xo might be unbounded. To handle this situation, we

extend [32, Lemma 48.3] via Lemma 3 and Lemma 4 below,

whose proofs are in the Appendix.

Lemma 3: Consider a continuous function h : R≥0×R
n →

R≥0 and a closed set K ⊂ R
n. Assume that

i) The function h is positive definite with respect to K
uniformly in t; namely, h(t, x) = 0 for all t ≥ 0 if and

only if x ∈ K,

ii) The map t 7→ h(t, x) is nonincreasing for each x ∈ R
n.

Then, for any compact set I ⊂ R
n such that I ∩K = ∅, there

exists a continuous function g : R≥0 × I → R≥0 such that

1) The function g ∈ C1(R≥0 × int(I)),
2) For any (t, x) ∈ R≥0 × I,

1

2
h(t, x) ≤ g(t, x) ≤ 2h(t, x), (40)

3) The map t 7→ g(t, x) is nonincreasing for each x ∈ I.

�

Lemma 4: Consider a continuous function h : R≥0×R
n →

R≥0 and consider a closed set K ⊂ R
n. Assume that i)-ii)

in Lemma 3 hold. Then, there exists a continuous function

g : R≥0 × R
n → R≥0 such that

1) The function g ∈ C1(R≥0 × (Rn\K)),



2) For all (t, x) ∈ R≥0 × R
n,

1

2
h(t, x) ≤ g(t, x) ≤ 2h(t, x), (41)

3) The map t 7→ g(t, x) is nonincreasing for each x ∈ R
n.

�

It should be added that the origin being an equilibrium plays

an important role in [29] to guarantee positive definiteness of

a certain function constructed in the proof. However, such a

function is not necessarily positive definite when the origin is

replaced by a generic closed set. To handle this situation, we

propose a state dependent change in the time scale such that,

in the new time scale, this function becomes positive definite.

Theorem 4: Suppose the system in (1) is forward com-

plete, and F is single valued and continuously differentiable.

Consider initial and unsafe sets (Xo, Xu) ⊂ R
n × R

n

such that Xo is closed and Xo ∩ Xu = ∅. System (1) is

safe with respect to (Xo, Xu) if and only if there exists

a continuous time-varying barrier function candidate B :
R≥0 × R

n → R of class C1 ((R≥0 × R
n)\K), where K :=

{(t, x) ∈ R≥0 × R
n : B(t, x) ≤ 0}, such that

〈∇B(t, x), [1 F (x)>]>〉 ≤ 0

∀(t, x) ∈ (R≥0 × R
n) \K.

(42)

�

Proof. In order to prove the sufficient part of the statement,

we use a contradiction. That is, assume the existence of a

solution φ starting from xo ∈ Xo such that φ(T, xo) ∈ Xu

for some T > 0. The latter fact implies, using (42), that

B(0, φ(0, xo)) ≤ 0 and B(T, φ(T, xo)) > 0. Furthermore,

since t 7→ B(t, φ(t, xo)) is continuous, we also conclude the

existence of 0 ≤ T1 < T such that B(T1, φ(T1, xo)) =
0 and B(t, φ(t, xo)) > 0 for all t ∈ (T1, T ]. Hence,

B(T, φ(T, xo)) − B(T1, φ(T1, xo)) > 0 and using the con-

tinuity of t 7→ B(t, φ(t, xo)), we also conclude the existence

of ε > 0 sufficiently small such that T1 + 2ε < T and

B(T−ε, φ(T−ε, xo))−B(T1+ε, φ(T1+ε, xo)) > 0. However,

since B(t, φ(t, xo)) > 0 for all t ∈ (T1, T ], it follows that

t 7→ B(t, φ(t, xo)) is C1((T1, T )). Hence,

B(T − ε, φ(T − ε, xo))−B(T1 + ε, φ(T1 + ε, xo)) =
∫ T−ε

T1+ε

∂B

∂t
(t, φ(t, xo)) +

∂B

∂x
(t, φ(t, xo))F (φ(t, xo))dt ≤ 0,

which yields to a contradiction.

To prove the necessary part, we first propose to render the

behavior of the system (1) around the set Xo similar to the

behavior of a smooth system around its equilibrium point.

More precisely, by proposing a new time scale, we render the

set Xo unreachable in finite time by the solutions starting from

R
n\Xo. To this end, given an initial condition xo ∈ R

n\Xo,

we propose the following new time scale

τ(t, xo) := t+

∫ t

0

1

V (φ(s, xo))
ds, (43)

where V is any locally Lipschitz and positive definite function

with respect to the set Xo which is differentiable everywhere

outside the set Xo and φ is the solution to (1) starting from xo.

The function V always exists for any given closed set Xo ⊂
R

n and it can be constructed using Lemma 4 by considering

the distance function with respect to Xo to be the function h
therein. Furthermore, we let ψ(τ(t, xo), xo) := φ(t, xo).

As a consequence, the derivative of y with respect to the

new time scale τ satisfies

ψ′(τ, xo) :=
dψ

dτ
(τ, xo) =

dφ

dτ
(t, xo)

=
F (φ(t, xo))
dτ
dt
(t, xo)

=
F (φ(t, xo))V (φ(t, xo))

1 + V (φ(t, xo))
.

(44)

Hence,

ψ′(τ, xo) =
F (ψ(τ, xo))V (ψ(τ, xo))

1 + V (ψ(τ, xo))
. (45)

Note that the solutions to the system

ψ′ =
F (ψ)V (ψ)

1 + V (ψ)
(46)

starting from xo cannot reach Xo when starting outside that

set Xo. Moreover, the set Xo is forward invariant under the

system (46).

Let us now introduce the continuous function h : R≥0 ×
R

n → R≥0 as

h(τ, xo) := inf{|y|Xo
: y ∈ R(τ, xo)}, (47)

where R in this case is the reachable set along the solutions

to the system (46). Using Proposition 4, we conclude that the

function h is locally Lipschitz. Furthermore, since the right-

hand side of (46) is locally Lipschitz, we conclude that h
positive definite with respect to the set Xo. Finally, the map

τ 7→ h(τ, xo) non-increasing for all xo ∈ R
n. Therefore, using

Lemma 4, we conclude the existence of a continuous function

g : R≥0 × R
n → R≥0 which is C1 outside the set Xo, non-

increasing with respect to the first argument, and satisfies

1

2
h(τ, xo) ≤ g(τ, xo) ≤ 2h(τ, xo) ∀(τ, xo) ∈ (R≥0 × R

n).

Next, we introduce the barrier candidate B : R≥0×R
n → R≥0

as

B(t, x) :=







g(τ(t, χ(−t, x)), χ(−t, x))
if χ([−t, 0], x) ∩Xo = ∅,

0 otherwise,
(48)

where χ is the backward solution to (1) starting from x. Note

that when x ∈ Xu, for each t ≥ 0, we have χ([−t, 0], x) ∩
Xo = ∅, hence,

B(t, x) = g(τ(t, χ(−t, x)), χ(−t, x))

≥ h(τ(t, χ(−t, x)), χ(−t, x))/2 > 0.

Contrary, when x ∈ Xo, χ([−t, 0], x) ∩ Xo 6= ∅, hence,

B(t, x) = 0. Furthermore, we show that the candidate B is

non-increasing along the solutions to (1) by showing that

B(t+ h, φ(t+ h, xo)) ≤ B(t, φ(t, xo)) ∀t ≥ 0, ∀h ≥ 0,

and for each solution φ to (1) starting from xo. To this end,

we distinguish two complementary situations.



1) When χ([−(t+ h), 0], φ(t+ h, xo))∩Xo = ∅, it follows

that B(t+ h, φ(t+ h, xo)) = 0 ≤ B(t, φ(t, xo)).
2) When χ([−(t+ h), 0], φ(t+ h, xo))∩Xo = ∅, it follows

that

B(t+ h, φ(t+ h, xo)) = g(τ(t+ h, xo), xo)

= g(τ(t+ h, χ(−t, φ(t, xo))), χ(−t, φ(t, xo)))

≤ g(τ(t, χ(−t, φ(t, xo))), χ(−t, φ(t, xo)))

= B(t, φ(t, xo)).

To obtain the latter inequality, we used the fact that

the function g is non-increasing with respect to its first

argument uniformly in the second.

In order to complete the proof, it remains to show that

B ∈ C1 ((R≥0 × R
n)\K). Indeed, for (t, x) ∈ (R≥0 ×

R
n)\K, we have B(t, x) > 0. Hence, χ([−t, 0], x) ∩ Xo =

∅ and B(t, x) = g(τ(t, χ(−t, x)), χ(−t, x)). Furthermore,

since the function B is continuous, we conclude the exis-

tence of U(t, x) an open neighborhood around (t, x) such

that, for any (t′, x′) ∈ U(t, x), we have B(t′, x′) =
g(τ(t′, χ(−t′, x′)), χ(−t′, x′)) > 0. Next, we note that the

map (τ, x) 7→ g(τ, x) is continuously differentiable on

R≥0 × (Rn\Xo). Furthermore, χ(−t, x) is continuously dif-

ferentiable with respect to its arguments since F ∈ C1, see

[42, Chapter 5]. Moreover, the map (t, x) 7→ τ(t, χ(−t, x))
is C1 provided that χ(−s, x) /∈ Xo for all s ∈ [0, t], which

completes the proof. �

Example 4 (Example 1 revisited): Consider system (21) in

Example 1 with the sets (Xo, Xu) as in (22). Since the right-

hand side in (21) is continuously differentiable, we conclude

using Theorem 4 that system (21) admits a continuous time-

varying barrier function candidate B : R≥0 × R
n → R of

class C1 ((R≥0 × R
n)\K) satisfying (42). In particular, the

function B in (36), given explicitly in (37), corresponds to

such a smooth barrier function. �

V. CONNECTIONS TO RESULTS IN THE LITERATURE

A. Connections to Tangent-Cone-Type Conditions

According to [11], given a closed set K ⊂ R
n, when the

solutions to (1) are unique or when F is locally Lipschitz

according to Definition 4, the set K is forward pre-invariant

if and only if

F (x) ⊂ TK(x) ∀x ∈ ∂K. (49)

Note that (49) involves the contingent cone TK and the map

F on the boundary of the closed set K. However, in general,

as stressed in [34], invariance depends on the values of F
outside K rather than on its boundary. Under mild regularity

properties on F , the external contingent cone EK is used in

[34], and (49) can be replaced by

F (x) ⊂ EK(x) ∀x ∈ R
n\K, (50)

where EK is the external contingent cone of K at x is given

by EK(x) :=
{

v ∈ R
n : lim infh→0+

|x+hv|K−|x|K
h

≤ 0
}

.

Note that conditions (49) and (50) resemble conditions (7)

and (6), respectively. Indeed, in (49) and (50), we are using

the distance function B(x) := |x|K since (4) holds. However,

since the distance function to a set is only locally Lipschitz,

the gradient-based inequalities in (7) and (6) are replaced by

the limits in the definitions of TK and EK in (49) and (50),

respectively.

B. Connections to Results using Barrier Functions

Before comparing our results to the existing literature, we

recall the following useful notions.

• Uniqueness function [12]. A function g : R → R is

said to be a uniqueness function if, for each continuous

function l : R≥0 → R≥0 satisfying l(0) = 0 and, for

some ε > 0,

lim sup
h→0+

l(t+ h)− l(t)

h
≤ g(l(t)) for a.a. t ∈ [0, ε],

it follows that l(t) = 0 for all t ∈ [0, ε].
• Minimal functions [43]. A function g : R → R is said

to be a minimal function if, for each continuous function

l : R≥0 → R≥0 satisfying l(0) ≤ 0 and, for some ε > 0,

lim sup
h→0+

l(t+ h)− l(t)

h
≤ g(l(t)) for a.a. t ∈ [0, ε],

it follows that l(t) ≤ 0 for all t ∈ [0, ε].
• Extended class-K functions [8]. A continuous function

g : R → R is said to be an extended class-K function if

g is strictly increasing and g(0) = 0.

The nonpositive sign required in (27) can be relaxed using

uniqueness functions or minimal functions, as shown in [12]

and [43], respectively. More precisely, for a general time-

varying barrier function candidate B ∈ C1, condition (27) can

be relaxed to

〈∇B(t, x), [1 η>]>〉 ≤ g(B(t, x))

∀η ∈ F (x), ∀(t, x) ∈ U(K)\K,
(51)

where g is either a uniqueness or a minimal function. Fur-

thermore, given a time-independent barrier function candidate

B ∈ C1, according to [22], [23], [8], the following condition

implies forward pre-invariance of the set K in (4):

〈∇B(x), η〉 ≤ g(B(x)) ∀η ∈ F (x), ∀x ∈ U(K), (52)

where the function g is either an extended class-K or a locally

Lipschitz function. Moreover, when F is locally Lipschitz

and the set K is compact, (52) is equivalent to forward pre-

invariance of the set K. This converse result, in addition to

restricting the class of systems (1), requires the existence of a

C1 barrier function candidate. As we show in the following

example, it is possible to find situations where the sets

(Xo, Xu) do not admit a C1 time-independent barrier function

candidate.

Example 5: Let Xu := R
2\Xo and Xo := {x ∈ R

2 :
ρ1(x) ≤ 0, ρ2(x) ≤ 0}, where ρ1 and ρ2 : R

n → R are

C1 functions such that, for each i ∈ {1, 2}, ∇ρi(x) 6= 0
for all x ∈ R

n such that ρi(x) = 0. Furthermore, suppose

there exists xo ∈ R
2 such that ρ1(xo) = ρ2(xo) = 0 and the

vectors ∇ρ1(xo) and ∇ρ2(xo) are linearly independent. For

this choice of (Xo, Xu), we show that it is not possible to find

a C1 barrier function candidate. To arrive to a contradiction,



we assume the existence of B : Rn → R such that Xo :=
{x ∈ R

2 : B(x) ≤ 0}. Assume without loss of generality

that ∇B(xo) 6= 0. Hence, using [38, Proposition 4.3.7], we

conclude that TXo
(xo) = {v ∈ R

2 : 〈∇B(xo), v〉 ≤ 0}.

Moreover, from the construction of Xo using ρ1 and ρ2, we

conclude that

TXo
(xo) = {v ∈ R

2 : 〈∇ρ1(xo), v〉 ≤ 0, 〈∇ρ2(xo), v〉 ≤ 0}.

Now, let y ∈ R
2\{0} be such that 〈∇B(xo), y〉 = 0;

hence, λy ∈ TXo
(xo) for all λ ∈ R. The latter implies that

〈∇ρ1(xo), y〉 = 0 and 〈∇ρ2(xo), y〉 = 0, which contradicts

the fact that the vectors ∇ρ1(xo) and ∇ρ2(xo) are linearly

independent. �

When g is an extended class-K function, the condition in

(52) is a particular case of (6), and thus a particular case of

(27). Furthermore, when g is locally Lipschitz, (52) becomes a

particular case of (51). Indeed, every locally Lipschitz function

is a uniqueness function and a minimal function at the same

time. However, Osgood functions are examples of uniqueness

and minimal functions that are not locally Lipschitz [44], [45].

Finally, imposing the inequality in (52) to hold on U(K)
instead of only on U(K)\K is not necessary to guarantee

safety; however, it becomes useful when using numerical

methods for the (online) design of smooth controllers that

enforce safety [46].

Remark 5: When the barrier function candidate B is locally

Lipschitz, condition (28) can also be relaxed using uniqueness

functions and minimal functions. Furthermore, when B is time

independent, condition (28) reduces to the condition used in

[14, Theorem 2] and [15]. •

C. Connections to Existing Converse Safety Results

Via the following simple example, we illustrate the limita-

tion of the converse safety results in [25], [26], and [27].

Example 6: Consider the system

ẋ =

[

−1 −10
1 0

]

x x ∈ R
2, (53)

and let the initial and unsafe sets be given by

Xo :=
{

x ∈ R
2 : x21 + x22 ≤ 1

}

, Xu :=
{

x ∈ R
2 : x2 ≥ 2

}

.

Note that the set Xo is not forward pre-invariant but the system

(53) is safe with respect to (Xo, Xu). One way to show this

fact consists in verifying (5) using the barrier function candi-

date B(x) := x21/10+x
2
2−1. Note that system (53) admits the

origin as an equilibrium point, which is a trivial limit cycle.

Hence, it is not possible to apply the converse safety result

in [25]. Furthermore, according to the robust safety notion

introduced in [26], which is included below, the system (53)

is robustly safe with respect to (Xo, Xu). However, the system

(53) is not defined on a bounded manifold. Hence, it is not

possible to use the converse result in [26].

Definition 17 (Robust safety [26]): System (1) is said to

be robustly safe with respect to (Xo, Xu) if there exists

Vo := U(Xo) and Vu := U(Xu) such that the vector field

F separates Vo from Vu. In turn, a vector field F is said to

separate a set Vo from a set Vu if F does not join Vo to Vu.

In turn, a vector field F is said to join a set Vo to a set Vu if

one of the following is true.

1) There exists a solution to (1) starting from Vo that reaches

Vu.

2) There is not a succession of singular elements (singular

points and limit cycles) {β1, β2, ..., βN}, N ∈ N, such

that the following properties hold simultaneously:

• A forward solution to (1), starting from Vo, converges

to β1.

• A backward solution to (1), starting from Vu, converges

to βN .

• A broken solution joins β1 to βN ; namely, for each

i ∈ {1, 2, ..., N}, there is xoi ∈ R
n such that the

forward solution to (1) starting from xoi converges to

βi+1 and the backward solution to (1) starting from

xoi converges to βi; see [26] for more details.

•
Finally, note that the system

ẋ ∈

[

−1 −10
1 0

]

x+ εB x ∈ R
2 (54)

is input-to-state stable (ISS) with respect to ε and the sets Xo

and Xu are closed and disjoint. Hence, for ε > 0 sufficiently

small, system (54) is safe with respect to (Xo, Xu). However,

the complement of the set Xu is unbounded. As a result, we

cannot use the converse result in [27]. �

D. Connections to Results on Conditional Invariance

According to [18, Theorem 2], the set Xs is conditionally

invariant with respect to Xo if there exists a continuously

differentiable function V : Rn → R such that the following

three conditions hold:

i) For each x ∈ R
n\Xo and for each yx ∈ Xo satisfying

yx := arg inf{V (x − z) : z ∈ Xo}, we have 〈∇V (x −
yx), η〉 ≤ 0 for all η ∈ F (yx).

ii) There exists a ∈ R such that the function B : Rn → R

given by B(x) := inf{V (x− z)− a : z ∈ Xo} satisfies

B(x) > 0 ∀x ∈ ∂Xs, B(x) ≤ 0 ∀x ∈ ∂Xo. (55)

iii) For each (x, y) ∈ (Rn\Xo)×Xo,

〈∇V (x− y), ηx − ηy〉 ≤ g(V (x− y)− a) (56)

for all (ηx, ηy) ∈ F (x)×F (y), where the scalar function

g is a minimal function (see Section V-B).

The proof of this result is based on showing that, along the

solutions to (1), the function B cannot become positive when

starting from nonpositive values. Indeed, using i) and iii), we

can prove that

〈ζ, η〉 ≤ g(B(x)) ∀ζ ∈ ∂CB(x), ∀η ∈ F (x), ∀x ∈ R
n\Xo.

(57)

Note that ii) along with (57) guarantee forward pre-invariance

of the set K in (4); however, condition (3) is not necessarily

satisfied in this case. Furthermore, ii) and (57) imply that

int(Xs) is conditionally invariant with respect to Xo, when

Xo ⊂ int(Xs).



Next, we present a result that generalizes [18, Theorem

2]. In our result, we distinguish strict conditional invariance,

where the solutions starting from Xo remain in the interior of

Xs, from conditional invariance, where the solutions starting

from Xo remain in Xs. To match the setting in [18], it is

written for a time-independent barrier function candidate.

Theorem 5: Consider the system in (1) such that F satisfies

Assumption 1. Let (Xo, Xs) ⊂ R
n × R

n with Xo ⊂ Xs,

g : R → R be a minimal function, and B : R
n → R be

locally Lipschitz.

1) The set Xs is conditionally invariant with respect to Xo

if

B(x) > 0 ∀x ∈ U(Xs)\Xs, B(x) ≤ 0 ∀x ∈ ∂Xo, (58)

〈ζ, η〉 ≤ g(B(x)) ∀ζ ∈ ∂CB(x), ∀η ∈ F (x),

∀x ∈ U(Xs)\Xo.
(59)

2) The set Xs is strictly conditionally invariant with respect

to Xo ⊂ int(Xs) if (55) holds and

〈ζ, η〉 ≤ g(B(x)) ∀ζ ∈ ∂CB(x), ∀η ∈ F (x), ∀x ∈ Xs\Xo.
(60)

�

Proof. To reach a contradiction and establish item 1

(respectively, item 2), we assume that (58) (respectively, (55))

holds and Xs is not conditionally invariant (respectively,

not strictly conditionally invariant) with respect to Xo. That

is, there exists a solution φ starting from xo ∈ ∂Xo —

thus, B(xo) ≤ 0 — and there exists T > 0 such that

φ(T, xo) ∈ U(Xs)\Xs (respectively, φ(T, xo) ∈ ∂Xs); thus,

φ(T, xo) > 0, and φ((0, T ], xo) ⊂ U(Xs)\Xo (respectively,

φ((0, T ], xo) ⊂ Xs\Xo). Hence, according to [47, Page 7]

and [48], we conclude that, for almost all t ∈ [0, T ],

Ḃ(φ(t, xo)) ≤ sup{〈ζ, φ̇(t, xo)〉 : ζ ∈ ∂CB(φ(t, xo))}

≤ g(B(φ(t, xo))),

with B(xo) ≤ 0 and B(φ(T, xo)) > 0, which yields a

contradiction since g is a minimal function, implying that

B(φ(T, xo)) has to be nonpositive. �

Theorem 5 relaxes condition (3) while assuming that the

inequality in (51) holds in a relatively larger set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose sufficient and necessary conditions

for safety in differential inclusions. Guided by the lack of

existence of autonomous and continuous barrier functions

certifying safety, time-varying barrier functions are proposed,

and their existence is shown to be both necessary as well as

sufficient. The regularity of the proposed time-varying barrier

functions depends on the regularity of the right-hand side of

the system.

Future work pertains to solve Problem 1 for constrained

systems of the form

ẋ ∈ F (x) x ∈ C ⊂ R
n (61)

or, more generally, hybrid systems as in [36]. Although the

sufficient conditions for safety in constrained and hybrid

systems are studied in [12], the converse problem is still

not fully answered in the literature. Indeed, the converse

safety results in [26] and [25] consider only particular cases

of constrained systems, where the sets C, Xo, and Xu are

assumed to be compact, and F is assumed to be at least

continuously differentiable. Furthermore, in [26], the system is

assumed to admit a Meyer function and in [25] (8) is assumed

to hold which, as shown in Example 6, are rather restrictive

conditions to impose. It is important to note that Theorem 2

can already be extended to constrained and hybrid systems;

see [49]. However, to establish the existence of a barrier

function that is continuous or smooth, the problem becomes

more challenging due to the presence of the constraint. In

particular, the regularity properties of the reachability map R,

that allows to conclude Lipschitz continuity and continuous

differentiability of the marginal functions in (34) and (47), are

not necessary satisfied in the constrained case; see [50].

VII. APPENDIX

A. Auxiliary Results

We start this section by introducing the reachability map

Rb : R≥0 × R
n ⇒ R

n, along the solutions to (1), given by

Rb(t, x) := {φ(s, x) : φ ∈ S(x), s ∈ domφ ∩ [0, t],

6 ∃s′ ∈ [0, t] ∩ domφ s.t. s′ > s} . (62)

In words, the set Rb(t, x) includes only the last element

reached by each maximal solution to (1) starting from x over

the interval [0, t].
The following lemma can be found in [33, Theorem 1].

Lemma 5: Suppose that the system in (1) is forward com-

plete and that F satisfies Assumption 1. Then, the following

hold for each t ≥ 0:

1) The map x 7→ Rb(t, x) is outer semicontinuous and

locally bounded.

2) The map x 7→ A(t, x) is outer semicontinuous and locally

bounded, where A : R≥0 × R
n ⇒ S(Rn) is given by

A(t, x) :={φ : φ ∈ S(x), domφ = [0, t]}. (63)

�

The following lemma recalls the well-known Filippov The-

orem that can be found in [34, Theorem 5.3.1].

Lemma 6 (Filippov Theorem): Consider the system in (1)

and suppose that F is locally Lipschitz on a compact set K ⊂
R

n; namely, there exists λ > 0 such that F (y) ⊂ F (x) +
λ|x− y|B for all (x, y) ∈ K ×K. Assume further that F (x)
is closed for all x ∈ R

n. Then, for any (x, y) ∈ K ×K and

t > 0 such that (R(t, x), R(t, y)) ⊂ K×K, each solution φ to

(1) starting from x satisfies |φ(s, x)|Rb(s,y) ≤ exp(λs)|x− y|
for all s ∈ [0, t], where the map Rb is introduced in (62). �

B. Proof of Proposition 1

To prove the first item using Lemma 5, we start showing

outer semicontinuity of Rb in (62). Let (to, xo) ∈ R≥0 × R
n

and let two sequences {(toi, xoi)}
∞
i=0 and {yi}

∞
i=0 be such

that limi→∞(toi, xoi) = (to, xo), yi ∈ Rb(toi, xoi), and

limi→∞ yi = y ∈ R
n. Outer semicontinuity of Rb at



(to, xo) follows if we show that y ∈ Rb(to, xo). To this

end, we introduce t := min{to, inf{toi : i ∈ N}} and

t̄ := max{to, sup{toi : i ∈ N}}. Furthermore, consider a

sequence of solutions {φi}
∞
i=0 to (1) such that each solution φi

starts from xoi, domφi = [0, toi−t], and yi ∈ Rb(t, zi), where

zi := φi(toi− t, xoi). Now, since the sequence {(toi, xoi)}
∞
i=0

is uniformly bounded, the solutions to (1) are forward com-

plete, and since x 7→ A(t̄, x) is locally bounded, we conclude

that the sequence {φi}
∞
i=0 is uniformly bounded. Hence, by

passing to an adequate subsequence, we conclude the existence

of a function φ : domφ → R
n such that limi→∞ φi = φ;

hence, φ(0, xo) = xo and domφ = [0, to − t]. The function

φ is a solution to (1) since the map x 7→ A(t̄, x) is outer

semicontinuous via item 2) of Lemma 5. Furthermore, we note

that limi→∞ zi = limi→∞ φi(toi−t, xoi) = φ(to−t, xo) =: z.

Finally, using the first item in Lemma 5, we conclude that

y ∈ Rb(t, z) ⊂ Rb(to, xo); thus, Rb is outer semicontinuous.

Now, to show outer semicontinuity of R, we con-

sider two sequences {(toi, xoi)}
∞
i=0 and {yi}

∞
i=0 such that

limi→∞(toi, xoi) = (to, xo), yi ∈ R(toi, xoi), and

limi→∞ yi = y ∈ R
n. Outer semicontinuity of (t, x) 7→

R(t, x) at (to, xo) follows if we show that y ∈ R(to, xo).
Having yi ∈ R(toi, xoi), for each i ∈ N, implies the

existence of t′i ∈ [0, toi] such that yi ∈ Rb(t′i, xoi), for

each i ∈ N. By passing to an adequate subsequence, we

conclude the existence of t′ ∈ [0, to] such that t′ = limi→∞ t′i.
Hence, since Rb is outer semicontinuous, we conclude that

y ∈ Rb(t′, xo) ⊂ R(to, xo).
Next, we show that Rb is locally bounded using con-

tradiction. That is, assume the existence of a sequence

{(toi, xoi)}
∞
i=0 such that limi→∞(toi, xoi) = (to, xo) and

∀ε > 0, ∃iε ∈ N s.t. Rb(toi, xoi) 6⊂ εB ∀i ≥ iε. (64)

Note that Rb(toi, xoi) ⊂ Rb(t̄, zi), where zi := φi(toi− t̄, xoi)
and φi is a backward solution to (1) starting from xoi
with domφi = [toi − t̄, 0]. Since the backward solutions

to (1) are the forward solutions to (31), the solutions to

(31) are forward complete, and since x 7→ A(t̄, x) for

the system (31) is locally bounded, we conclude that the

sequence {φi}
∞
i=0 is uniformly bounded. Hence, by passing

to an adequate subsequence, we conclude the existence of

a function φ : domφ → R
n such that limi→∞ φi = φ;

hence, φ(0, xo) = xo and domφ = [to − t̄, 0]. The function

φ is a backward solution to (1) since the map x 7→ A(t′, x)
for (31) is outer semicontinuous. Furthermore, we note that

limi→∞ zi = limi→∞ φi(toi − t′, xoi) = φ(to − t′, xo) =: z.

The later contradicts (64) since, using Lemma 5, x 7→ Rb(t̄, x)
is locally bounded.

Now, we show that R is locally bounded via contradiction.

Assume the existence of a sequence {(toi, xoi)}
∞
i=0 such that

limi→∞(toi, xoi) = (to, xo) and,

∀ε > 0, ∃iε ∈ N s.t. R(toi, xoi) 6⊂ εB ∀i ≥ iε. (65)

This implies the existence of t′i ∈ [0, toi], for all i ∈ N, such

that

∀ε > 0, ∃iε ∈ N s.t. Rb(t′i, xoi) 6⊂ εB ∀i ≥ iε. (66)

By passing to an adequate subsequence, we conclude the

existence of t′ ∈ [0, to] such that t′ = limi→∞ t′i. Having

Rb locally bounded contradicts (66) and, thus, R is locally

bounded.

To prove the second item in Proposition 1, given x ∈ R
n, we

establish continuity of the set-valued map t 7→ R(t, x). Since

t 7→ R(t, x) is outer semicontinuous and locally bounded, it

is enough to show that it is lower semicontinuous. We show

lower semicontinuity of t 7→ Rb(t, x) in (62) via contradiction.

Assume that there exist ε > 0, to ≥ 0, y ∈ Rb(to, x), and a

sequence {toi}
∞
i=0 such that limi→∞ toi = to and, at the same

time,

|y − z| ≥ ε ∀z ∈ Rb(toi, x), ∀i ∈ N. (67)

Consider a maximal solution φ to (1) starting from x such

that φ(to, x) = y and let yi := φ(toi, x). Note that yi ∈
Rb(toi, x). Since the solution φ is continuous, it follows that

limi→∞ |y − yi| = 0, which contradicts (67). Now, to show

lower semicontinuity of t 7→ R(t, x), we assume that there

exist ε > 0, to ≥ 0, y ∈ R(to, x), and a sequence {toi}
∞
i=0

such that limi→∞ toi = to and, at the same time,

|y − z| ≥ ε ∀z ∈ R(toi, x), ∀i ∈ N. (68)

Note that (68) implies the existence of t′ ∈ [0, to] such that

y ∈ Rb(t′, x). Moreover, for each sequence {t′i}
∞
i=0 such that

t′i ∈ [0, toi] and limi→∞ t′i = t′, we have

|y − z| ≥ ε ∀z ∈ Rb(t′i, x), ∀i ∈ N. (69)

However, (69) contradicts lower semicontinuity of the map

t 7→ Rb(t, x). �

C. Proof of Proposition 3

To show that the set-valued map R is locally Lipschitz, we

will first show that the map Rb in (62) is locally Lipschitz. To

that end, we consider (to, xo) ∈ R≥0 × R
n and the set

Ur(to, xo) := {(t, x) ∈ R≥0 × R
n :

t ∈ [0, to + r], |x− xo| ≤ r} , (70)

for some r > 0. Furthermore, let λK > 0 be the Lipschitz

constant of F on the set K := R(Ur(to, xo)). Note that K is

compact since the system is forward complete. Next, we show

the existence of ε > 0 such that, for any ((t1, x1), (t2, x2)) ∈
Ur(to, xo) × Ur(to, xo), for any y1 ∈ Rb([0, t1], x1) there

exists y2 ∈ Rb(t2, x2) such that

|y1 − y2| ≤ε (|x1 − x2|+ |t1 − t2|) . (71)

The latter inequality is enough to conclude that Rb is

locally Lipschitz. Let ((t1, x1), (t2, x2)) ∈ Ur(to, xo) ×
Ur(to, xo), assume without loss of generality that t2 ≥ t1,

and note that both R(t2, x2) and R(t1, x1) belong to the

compact set K. Hence, using Lemma 6, we conclude that

|y1|Rb(t1,x2) ≤ expλK(to+r) |x2 − x1|. Thus, for y′2 :=
argmin

{

y1 − y : y ∈ Rb(t1, x2)
}

, we have |y1 − y′2| ≤
expλK(to+r) |x2 − x1|. Furthermore, for any y2 ∈ Rb(t2 −
t1, y

′
2) and since F is locally bounded, we conclude that

Mr(to, xo) := max{|F (φ(τ, y))| : φ ∈ S(y),

y ∈ R(Ur(to, xo)), τ ∈ [0, to + r]} <∞,



where S(y) is the set of maximal solutions to system (1)

starting from y. Hence, |y2 − y′2| ≤ Mr(to, xo)|t1 − t2| and

|y1 − y2| ≤ |y1 − y′2| + |y′2 − y2| ≤ ε (|x2 − x1|+ |t1 − t2|),
where

ε :=max
{

expλK(to+r),Mr(to, xo)
}

. (72)

Now, to show that the set-valued map R is locally Lip-

schitz, we consider (to, xo) ∈ R≥0 × R
n and the compact

neighborhood Ur(to, xo) introduced in (70). We will show

the existence of ε > 0 such that for any two elements

((t1, x1), (t2, x2)) ∈ Ur(to, xo) × Ur(to, xo), for any y1 ∈
R(t1, x1) we can find y2 ∈ R(t2, x2) such that (71) holds.

Indeed, consider ty1
∈ [0, t1] such that Rb(ty1

, x1) = y1 and

(ty1
, x1) ∈ Ur(to, xo). Hence, there exists y2 ∈ Rb(ty2

, x2)
with ty2

the closest element to ty1
while being in [0, t2].

Note that (ty2
, x2) ∈ Ur(to, xo) and since Rb is locally

Lipschitz, we have |y1 − y2| ≤ ε (|ty1
− ty2

|+ |x1 − x2|) ≤
ε (|t1 − t2|+ |x1 − x2|), where ε is introduced in (72). �

D. Proof of Lemma 1

We prove item 1 by directly showing that B satisfies the def-

inition of lower semicontinuity for scalar functions. That is, for

every sequence {zi}
∞
i=0 ⊂ R

m such that limi→∞ zi = zo, we

show that lim infi→∞ f(zi) = lim infi→∞ miny∈Π(zi) |y|X ≥
miny∈Π(zo) |y|X = f(zo) provided that the set-valued map

Π is outer semicontinuous in which case, since Π is already

locally bounded, inf in f becomes min. Since the map Π is

outer semicontinuous, we conclude that, for all yi ∈ Π(zi)
such that limi→∞ yi = yo ∈ R

n, we have yo ∈ Π(zo).
Choose {yi}

∞
i=0 to be such that yi ∈ Π(zi) and |yi|X =

miny∈Π(zi) |y|X for each i ∈ N. Hence, lim infi→∞ f(zi) =
lim infi→∞ miny∈Π(zi) |y|X = lim infi→∞ |yi|X . Since

the distance function to X is continuous, we conclude

that lim infi→∞ f(zi) = lim infi→∞ miny∈Π(zi) |y|X =
| lim infi→∞ yi|X . Since Π is locally bounded, the sequence

{yi}
∞
i=0 is bounded; hence, lim infi→∞ yi = yo ∈ R

n.

Moreover, by passing to a suitable sub-sequence {yik}
∞
k=0, we

conclude that lim infi→∞ yi = limk→∞ yik = yo. Thus, since

Π is outer semicontinuous, it follows that yo ∈ Π(zo). Finally,

lim infi→∞ f(zi) = |yo|X ≥ miny∈Π(zo) |y|X = f(zo).
We prove item 2 by directly using the definition of upper

semicontinuity for scalar functions. That is, we show that, for

every sequence {zi}
∞
i=0 ⊂ R

m such that limi→∞ zi = zo,

we have lim supi→∞ f(zi) = lim supi→∞ miny∈Π(zi) |y|X ≤
miny∈Π(zo) |y|X = f(zo) provided that the set-valued map Π
is lower semicontinuous. To reach a contradiction, we assume

the existence of a sequence {zi}
∞
i=0 such that limi→∞ zi = zo

and limi→∞ f(zi) > f(zo). The latter implies the existence

of ε > 0 and io ∈ N such that, for all i ≥ io,

f(zi)− f(zo) = inf
y∈Π(zi)

|y|X − inf
y∈Π(zo)

|y|X > ε. (73)

Let zo := arg infy∈Π(zo)
|y|X , and

wi := arg infy∈Π(zi)
|y|X ∀i ∈ N. (74)

Using (73), we conclude that |wi|X−|wo|X > ε. On the other

hand, since the set-valued map Π is lower semicontinuous, it

follows that there exists i1 ∈ N such that, for all i ≥ i1, there

exists w′
i ∈ Π(zi) such that |w′

i − wo| ≤ ε/2. Using (74),

we conclude that, for all i ≥ max {io, i1}, |z′i|X ≥ |zi|X and

|z′i|X − |zo|X ≥ |zi|X − |zo|X > ε. Finally, since the distance

function with respect to the set X is globally Lipschitz, we

obtain, for all i ≥ max {io, i1}, ε/2 ≥ |w′
i − wo| ≥ |w′

i|X −
|wo|X > ε, which yields to a contradiction.

To prove the third item, we consider two elements (z, y) ∈
R

n×R
n and the corresponding two elements (z′, y′) ∈ X×X

such that

|z′|Π(z) = inf
w∈X

|w|Π(z) = inf
w∈Π(z)

|w|X = f(z), (75)

|y′|Π(y) = inf
w∈X

|w|Π(y) = inf
w∈Π(y)

|w|X = f(y). (76)

Using the triangular inequality, we conclude that |y′|Π(z) ≤
|y′|Π(y) + dH(Π(z),Π(y)) and |z′|Π(y) ≤ |z′|Π(z) +
dH(Π(z),Π(y)), where dH(Π(z),Π(y)) is the Hausdorff dis-

tance between the two sets R(z) and R(y) introduced in

(12). Furthermore, using the first equality in (75) and (76),

respectively, we conclude that

|z′|Π(z) ≤ |y′|Π(z) ≤|y′|Π(y) + dH(Π(z),Π(y)), (77)

|y′|Π(y) ≤ |z′|Π(y) ≤|z′|Π(z) + dH(Π(z),Π(y)). (78)

Hence, using (77)-(78) and the second equality in (75) and

(76), respectively, we obtain |f(z) − f(y)| ≤ |Π(z) − Π(y)|.
Finally, when the map Π is locally Lipschitz, using Definition

4, we conclude the existence of λ > 0 such that |f(z) −
f(y)| ≤ |Π(z)−Π(y)| ≤ λ|z − y|. �

E. Proof of Lemma 3

Given a compact set I ⊂ R
n such that I ∩K = ∅ and the

continuous function h, we introduce the sequence {ηk}
∞
k=1

given by

ηk := min{h(t, x) : x ∈ I, t ∈ [0, k]}. (79)

This sequence is strictly positive and nonincreasing.

Next, we propose to partition the set R≥0 using an increas-

ing sequence {ti}
∞
i=0 ⊂ R≥0 that we design as follows:

1) For each interval Tk := [k − 1, k], k ∈ N
∗, we asso-

ciate uk ∈ N
∗. Furthermore, we introduce the sequence

{jk}
∞
k=1 such that j1 := 0 and jk+1 := jk + uk.

2) The subsequence {ti}
u1

i=0 satisfies t0 := 0 and ti+1 :=
ti+

1
u1

for all i ∈ {0, 1, ..., u1−1}. It follows that tu1
= 1.

3) For each k ≥ 2, the subsequence {ti}
jk+uk

i=jk
satisfies tjk =

k− 1 and ti+1 := ti +
1
uk

for all i ∈ {jk, jk +1, ..., jk +
uk − 1}. It follows that tjk+uk

= tjk+1
= k.

4) Under the continuity of h, we choose the parameter uk
such that, for each i ∈ {jk, jk + 1, ..., jk + uk − 1} and

for each x ∈ I, h(ti, x)− h(ti+1, x) = h(ti, x)− h(ti +
(1/uk), x) <

1
4ηk.

Now, we consider a nonincreasing sequence {ζi}
∞
i=0 ⊂ R>0

such that

∞
∑

i=jk

ζi <
1

8
ηk. (80)



Furthermore, using the continuity of h, we conclude the

existence of a sequence of functions {wi}
∞
i=0 such that: Each

wi : R
n → R>0is continuously differentiable on int(I). For

each x ∈ I, the sequence {wi(x)}
∞
i=0 is nonincreasing. For

each i ∈ N,

|h(ti, x)− wi(x)| <
1

2
ζi +

∞
∑

l=i

ζl. (81)

Finally, we construct the function t 7→ g(t, x) by interpolating

the sequence of functions {wi(x)}
∞
i=0 by means of a nonin-

creasing third order polynomial to obtain, for any t ∈ [ti, ti+1]
and i ∈ N, g(t, x) := q(t, ti, ti+1, wi(x), wi+1(x)), where

q(t, ti, ti+1, wi(x), wi+1(x)) := wi(x)+

(wi+1(x)− wi(x))
3(t− ti)

2

(ti+1 − ti)2
−

(wi+1(x)− wi(x))
2(t− ti)

3

(ti+1 − ti)3
.

Note that q is nonincreasing on [ti, ti+1] and

q(ti, ti, ti+1, wi(x), wi+1(x)) = wi(x),

q(ti+1, ti, ti+1, wi(x), wi+1(x)) = wi+1(x),

q̇(ti, ti, ti+1, wi(x), wi+1(x)) = 0,

q̇(ti+1, ti, ti+1, wi(x), wi+1(x)) = 0.

In order to complete the proof, it remains to show that (40) is

satisfied for all (t, x) ∈ R≥0 × I. Without loss of generality,

consider x ∈ I and t ∈ [k − 1, k), for k ∈ {1, 2, ...,∞}.

Assume that t ∈ [ti, ti+1] for some ti ∈ [k − 1, k). Hence,

i ∈ (jk, jk + uk). It follows that g(t, x)−h(t, x) ≤ g(ti, x)−
h(ti+1, x) ≤ |g(ti, x) − h(ti, x)| + h(ti, x) − h(ti+1, x) ≤
∑∞

j=i ζj + 1
2ζi +

1
4ηk < 1

2ηk, where we used the fact that

g(ti, x) = wi(x), (81), and (80). Similarly,

h(t, x)−g(t, x) ≤ h(ti+1, x)− g(ti, x)

≤ |g(ti+1, x)− h(ti+1, x)|+ h(ti, x)− h(ti+1, x)

≤
∞
∑

j=i+1

ζj +
1

2
ζi +

1

4
ηk <

1

2
ηk.

Therefore, |h(t, x) − g(t, x)| ≤ 1
2ηk and h(t, x) − 1

2ηk ≤
g(t, x) ≤ h(t, x) + 1

2ηk. Finally, using (79), we conclude that

ηk ≤ min{h(τ, x) : τ ∈ [0, k]} and, since t ∈ [k − 1, k), it

follows that ηk ≤ h(t, x). �

F. Proof of Lemma 4

We propose to adapt the proof of [32, Lemma 48.3] to the

case where the origin is replaced by a general closed set K ⊂
R

n. For each integer s, we introduce the set

Is :=
{

x ∈ R
n : 2s−3 ≤ |x|2K ≤ 2s+4

}

. (82)

Furthermore, we propose to decompose the set Is into a

sequence of nonempty compact subsets {Ds
i }

N
i=1, where N ∈

{1, 2, ...,∞}, such that Ds
i ⊂ Is for all i ∈ {1, 2, ..., N}.

Furthermore, for each i ∈ {1, 2, ..., N}, there exist a finite

set N s
i ⊂ {1, 2, ..., N} and a compact set D̄s

i including Ds
i

in its interior such that D̄s
i ∩K = ∅, Ds

i ⊂
⋃

j∈N s

i

Ds
j , and

D̄s
i ∩ D̄

s
j = ∅ for all j /∈ N s

i .

The rest of the proof follows in three steps.

1) In the first step, we use Lemma 3 to construct a function

ψs
i : R≥0×D̄

s
i → R≥0 that is nonincreasing with respect

to its first argument, C1 on R≥0 × int(D̄s
i ), and satisfies

(41) for all (t, x) ∈ R≥0 × D̄s
i .

2) In the next step, we consider an open set Os
i ⊂ D̄s

i

that contains Ds
i , and a differentiable function λsi :

R
n → R≥0, which is positive in Os

i and vanishes

outside. Then, we introduce the function ψs(t, x) :=
1

λs(x)

∑N
i=1 ψ

s
i (t, x)λ

s
i (x) with λs(x) :=

∑N
i=1 λ

s
i (x).

Note that, for each x ∈ Is, the previous sum is finite

by construction of the sequence {Ds
i }

N
i=1. Furthermore,

the map t 7→ ψs(t, x) nonincreasing , ψs ∈ C1(R≥0 ×
int(Is)), and satisfies (41) for all (t, x) ∈ R≥0 × Is.

3) In the last step, we consider g(t, x) :=
1

λ(x)

∑+∞
s=−∞ ψs(t, x)λs(x), λ(x) :=

∑+∞
s=−∞ λs(x).

Finally, it is easy to see that for all x ∈ R
n, the previous

sum is finite.

�
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