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Abstract—Many speech separation and enhancement methods
take advantage of time-frequency sparsity by assuming that
only one speech source in a mixture has nonzero power at
each time and frequency. This “on/off” model is valuable for
systems with more sources than microphones, but many methods
that use it do not benefit from the spatial diversity of systems
with large numbers of microphones. This work considers the
high/low model, in which one source is strongest at each time-
frequency index but all sources have nonzero power. A time-
varying enhancement method using the high/low model com-
bines the benefits of sparsity and spatial diversity and scales
automatically with the number of microphones, resembling a
time-frequency mask for underdetermined systems and a linear
filter for overdetermined systems. The model is demonstrated
using real-room data with up to 10 speech signals and between
1 and 160 microphones.

Index Terms—Microphone arrays, speech enhancement, source
separation

I. INTRODUCTION

In many audio signal processing applications, a system
must process individual speech signals from a mixture. Speech
separation and enhancement algorithms [1] typically belong to
one of two categories: Systems with one or a few microphones
rely on data-driven models of speech, while systems with
many microphones can separate sounds spatially. Relatively
few algorithms use both signal models and spatial information,
especially for large arrays. As microphones proliferate in
human environments, there is a need for methods that can
scale from one to hundreds of sensors.

In principle, if the number of microphones exceeds the
number of sources, and if the acoustic channel is known and
fixed, then the source signals can be recovered using a linear
time-invariant filter. In practice, it is helpful to have more mi-
crophones to improve robustness against noise, reverberation,
and parameter estimation errors. If the number of microphones
is smaller than the number of sources—or too small to be
robust—then linear time-invariant filters are not enough.

Many underdetermined algorithms rely on sparsity. In the
time-frequency (TF) domain, speech mixtures exhibit W-
disjoint orthogonality [2]: At every TF index, most of the
energy of the short-time Fourier transform (STFT) of the
mixture can be attributed to one source. Therefore, a separation
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Fig. 1. A time-varying multichannel filter switches between several static
filters at each time-frequency index. Each filter is designed for one “high”
source and several “low” sources.

system can assign each TF sample to a single talker, a
process known as time-frequency masking. Underdetermined
methods differ in how they classify the dominant source.
Single-microphone systems typically rely on compositional
models [3] or machine learning algorithms [4] to decompose
magnitude spectra. For small arrays, the DUET method [5] and
its variants [6]–[9] use spatial information to cluster samples.
Some authors have used spatial features as inputs to learning-
based classifiers [10]. For mixtures of more than a few sources,
multimicrophone methods can model multiple simultaneously
active sources at each TF index [11]–[14].

In the literature, sparse models are most popular for un-
derdetermined separation systems with more sources than mi-
crophones, and have sometimes been used to estimate source
statistics for linear beamforming [15], [16]. However, even
large microphone arrays could benefit from sparsity: If a set of
sources can be ignored at a given TF index, then more degrees
of freedom are available to improve robustness against noise
and channel estimation errors. Likewise, time-varying methods
could leverage spatial diversity to reduce the distortion and
artifacts that occur when signals do not obey the W-disjoint
orthogonality assumption and when classifiers make errors.
As large microphone arrays become more practical and data-
driven TF separation methods become more powerful, it is
important to develop algorithms that combine the benefits of
both sparisty and spatial diversity.

This work presents the high/low model, a generalization
of the on/off signal model that motivates TF masks and
other sparse methods. Instead of assuming that one sound
source contributes all energy at each TF index, the model
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assumes that one source contributes more than the others. This
subtle distinction has negligible effect in single-microphone
systems, but a large impact as the number of microphones
increases. A time-varying system using the model prioritizes
the dominant source, but also attempts to process the weaker
sources. The proposed system, shown in Fig. 1, resembles
a conventional TF mask in single-microphone systems and
a linear time-invariant filter for many-microphone systems,
scaling gracefully between the two extremes.

The proposed model is conceptually related to soft masks,
which multiply each TF sample by a value between 0 and 1,
for example based on estimated speech presence probability
[17]. However, soft masks are often single-channel postfilters,
whereas the proposed time-varying filter changes the spatial
pattern of the beamformer at each TF index. It shares the
computational advantage of masks since it switches between
a finite number of states rather than calculating a new filter
at each TF index. The high/low model has previously been
applied to underdetermined systems to better preserve binaural
cues [18] and to aggregate information from asynchronous
distributed sensors [19]. However, these papers focused on
applications rather than the model itself and did not consider
larger arrays. This paper motivates the high/low model based
on empirical data, uses it to derive a time-varying discrete-state
speech enhancement filter, and analyzes performance scaling
with array size in real-room experiments using both ideal
parameters and estimates based on established blind source
separation techniques.

II. MULTIMICROPHONE SPEECH ENHANCEMENT

A. Time-frequency mixing and enhancement
Consider a mixture of N speech signals captured by M

microphones. Let s[t, f ] = [s1[t, f ], . . . , sN [t, f ]]T be the
vector of STFTs of the speech signals, let x[t, f ] 2 CM

be the vector of STFTs of the microphone signals, and let
z[t, f ] 2 CM be the vector of STFTs of the non-speech noise
signals at the microphones. For simplicity, this work assumes
the multiplicative transfer function model,

x[t, f ] = A[f ]s[t, f ] + z[t, f ], (1)

for all frequency indices f , where A[f ] 2 CM⇥N is a matrix
of acoustic transfer functions or relative transfer functions. We
assume that an estimate of A[f ] is available, for example from
a set of pilot signals or a blind source separation algorithm.

The desired output y[t, f ] 2 CJ of the enhancement system
is a linear time-invariant combination of the source signals:

y[t, f ] = G[f ]s[t, f ], (2)

where G[f ] 2 CJ⇥N is a matrix of desired responses. In a
source separation system, G would be an N ⇥ N identity
matrix, while in a binaural remixing system [20], it would
be a 2 ⇥ N matrix whose columns are head-related transfer
functions. The system estimates y[t, f ] from x[t, f ] using a
time-varying filter W[t, f ] 2 CJ⇥M . The output ŷ[t, f ] is

ŷ[t, f ] = W[t, f ]x[t, f ], (3)

For brevity, we omit the frequency index f in the remainder
of the paper; all variables are functions of frequency.

In this work, we restrict our attention to the linear minimum-
mean-square-error estimator, also known as a multichannel
Wiener filter (MWF). Suppose that each TF sample sn[t]
is a zero-mean random variable with time-varying variance
rn[t], that z[t] is a zero-mean random vector with full-rank
covariance matrix Rz, and that the speech signals and noise
are mutually uncorrelated. Let Rs[t] = diag{r1[t], . . . , rN [t]}.
If the channel matrix and variances are known, the MWF is

W[t] = GRs[t]A
H
�
ARs[t]A

H +Rz

��1
. (4)

B. The on/off model and time-frequency masks
The spectra of speech signals vary rapidly over time, so

a system using the time-varying MWF (4) would need to
estimate a different set of rn[t] parameters and recompute the
filter at each TF index. We can simplify the problem using
the orthogonality property [2]: At each [t, f ] there exists a
dominant source n⇤[t] 2 {1, . . . , N} such that

��sn⇤[t][t]
��2 � |sn[t]|2, n 6= n⇤[t]. (5)

Assuming that the non-speech noise is also much weaker than
the dominant signal, this property implies that

x[t] ⇡ An⇤[t]sn⇤[t][t], (6)

where An is the column of A corresponding to source n.
This property can be incorporated into the statistical mixing

model by selecting binary values for rn[t]:

rn[t] =

(
ron,n, if n⇤[t] = n,

0, otherwise.
(7)

We call this the on/off model. The MWF (4) under the on/off
model is W[t] = W(n⇤[t]), where

W(n) = Gnron,nA
H

n

�
Anron,nA

H

n
+Rz

��1
. (8)

In the single-microphone case, the output is

ŷ[t] = Gn⇤[t]
ron,n⇤[t]

ron,n⇤[t] + rz
x[t]. (9)

This system applies a scalar TF mask to the single-microphone
input and then applies the desired response for source n⇤[t].
Because the output at each TF index is parallel to a single
column of G, the components of all non-dominant sources
present in x[t] will have incorrect processing applied, which
can introduce distortion even with an error-free source activity
classifier. For example, in a binaural system, the non-dominant
source components would be presented with the interaural cues
of the dominant source.

III. SPEECH ENHANCEMENT WITH THE HIGH/LOW MODEL

A. The high/low model
Systems designed using the on/off model, even those with

multiple microphones, ignore the N � 1 inactive sources at
each TF index. A system with many microphones could at-
tempt to process the non-dominant sources as well. To account
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Fig. 2. Empirical distribution of “high” and “low” signal levels at each time-
frequency index for an anechoic mixture of eight speech signals. Levels are
scaled so that the average mixture power is 0 dB at each frequency.

for all sources while still only performing one classification
at each TF index, we can replace the on/off model with the
high/low model.

At each TF index, there is still a single dominant source,
as in (5). However, the signal variances are given by

rn[t] =

(
rhigh,n, if n⇤[t] = n,

rlow,n, otherwise,
(10)

where rhigh,n is the variance of sn[t] when it is the dominant
source and rlow,n is its variance when it is not dominant.

To see why the high/low model makes sense, consider the
empirical distribution of speech energy shown in Fig. 2. This
plot was generated from a mixture of eight quasi-anechoic
speech recordings from the VCTK dataset [21] using 64 ms
STFT windows. While the dominant source has consistently
strong energy, non-dominant sources have a wide distribution
of energy. The non-dominant sources are often negligible,
fitting the on/off model, but sometimes they contribute sub-
stantial energy to the mixture. Further empirical results on
high/low ratios are discussed in Sec. IV-A below.

The on/off model is a special case of the high/low model
where rlow,n = 0 for all n. Meanwhile, if rhigh,n = rlow,n for
all n, we have a time-invariant signal model and the resulting
filter will be time-invariant. Thus, the ratio can be used to
tune the system behavior and need not match the empirical
high-to-low ratio for the mixture.

B. Discrete-state enhancement filter
The high/low model provides the same computational ad-

vantage as the on/off model: Rather than estimating N un-
constrained variance parameters at each TF index, the system
needs only classify the dominant source n⇤[t]. Thus, the
enhancement filter is given by W[t] = W(n⇤[t]) where

W(n) =

0

@rhigh,nGnA
H

n
+

X

m 6=n

rlow,mGmAH

m

1

AR�1
x,n

(11)

and

Rx,n = rhigh,nAnA
H

n
+

X

m 6=n

rlow,mAmAH

m
+Rz (12)

for n = 1, . . . , N . The time-varying filter switches between
N fixed filters which can be computed in advance, so that the
computational complexity of enhancement is no greater than it
would be with the on/off model. The system can be used with
any source activity classifier, including spatial methods such
as DUET and data-driven methods such as neural networks.

C. Scaling with array size

The advantage of the high/low model over the on/off model
is its scaling with array size. Let us consider several regimes
for different array sizes. First, consider the single-microphone
case with M = 1 and A = 1T . The filters become

W(n) = Gn

rhigh,n
rhigh,n +

P
m 6=n

rlow,m + rz

+
X

m 6=n

Gm

rlow,m

rhigh,n +
P

` 6=n
rlow,` + rz

(13)

for n = 1, . . . , N . If the high-low ratio and signal-to-noise
ratio are large, then ŷ[t] ⇡ Gn⇤[t]x[t], which is a conven-
tional time-frequency mask. The filter changes dramatically
between states, which might introduce distortion and artifacts,
especially if the classifier makes errors or the signals do not
obey the assumed model.

Next, suppose that there are multiple microphones, but
not enough to perfectly separate the speech sources, either
because M < N or because z[t] is nonnegligible. For con-
creteness, consider a single-target enhancement system with
G = [1, 0, . . . , 0]. At time-frequency indices with n⇤[t] = 1,
we can apply the Sherman-Morrison-Woodbury formula [22]
to find

W(1) = rhigh,1[t]A
H

1 R�1
x,1 (14)

=
AH

1

⇣P
N

m=2 rlow,mAmAH

m
+Rz

⌘�1

r�1
high,1 +AH

1

⇣P
N

m=2 rlow,mAmAH
m
+Rz

⌘�1
A1

.

(15)

For large rhigh,1, W(1) resembles a minimum-variance
distortionless-response beamformer. Similar analysis can be
applied when n⇤[t] 6= 1 to show that the beamformer attempts
to place a null over the dominant source while applying unity
gain to the target signal s1[t]. Thus, a classification error would
not strongly affect the gain applied to the target. The filter
accounts for every sound source in the mixture even though
it cannot perfectly separate them.

Finally, consider the overdetermined case where M > N
and the noise power is negligible. If A has full column rank,
then we can apply the Woodbury identity to the MWF (4) to
find

W[t] = G(R�1
s [t] +AHR�1

z A)�1AHR�1
z . (16)

If the speech-to-noise ratio is large—that is, in the limit as
rn[t] ! 1 for n = 1, . . . , N—the filter becomes

W[t] = G
�
AHR�1

z A
��1

AHR�1
z , (17)
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Fig. 3. Empirical high/low ratio for mixtures of different numbers of anechoic
speech sources as a function of frequency.

TABLE I
EMPIRICAL HIGH/LOW RATIOS (DB)

Talkers 2 4 6 8 10

Anechoic 19 19 18 19 19
Small room (T60 ⇡ 250 ms) 20 19 20 20 20
Large room (T60 ⇡ 780 ms) 22 20 20 21 20

which is a linear time-invariant filter that separates the sources
using a left inverse of A. Notably, this filter does not depend
on the relative source powers; instead, it fully separates the
speech sources and uses any extra degrees of freedom to
reduce noise. Because this overdetermined filter changes little
between states, it does not depend on accurate source activity
classification and does not produce the distortion and artifacts
that plague many time-varying enhancement methods.

IV. EXPERIMENTS

A. Empirical analysis of high/low ratios
The sparsity properties of speech signals in the STFT

domain have been well studied. Speech energy is most con-
centrated with frame size around 60 ms [23]. The W-disjoint
orthogonality assumption works well for three or four sources,
but there is greater overlap for mixtures of many sources [5].
The accuracy of the high/low model and the ratio between
states should similarly depend on the number of talkers.

To study high/low ratios with real speech signals, mixtures
were generated using quasi-anechoic speech from the VCTK
dataset [21]. Figure 3 shows the ratio between the mean
dominant-source power and the mean non-dominant-source
power for mixtures of different numbers of sources as a
function of frequency with an STFT frame size of 64 ms. The
ratio is generally larger at high frequencies, but only by a few
decibels, and does not vary strongly with N . Table I shows the
ratio averaged across frequencies for the same speech sources
convolved with impulse responses recorded in different rooms.
Despite the different acoustic conditions, the mean ratio varies
little between rooms or with the number of sources.

B. Multimicrophone speech enhancement
To study the performance scaling of speech separation and

enhancement systems using the high/low model, experiments

1 2 4 8 16 32 64 128
4

6

8

10

12

MWF

Mask

On/off
High/low

N = 10
Ideal filter & classifier

Number of microphones

SD
R

im
pr

ov
em

en
t(

dB
)

1 2 4 8 16 32 64 128
2

4

6

8

MWF

Mask

On/offHigh/low

N = 3
Blind filter & classifier

Number of microphones

SD
R

im
pr

ov
em

en
t(

dB
)

Fig. 4. Speech enhancement performance using arrays of different sizes. Top:
Ideal filter and classifier separating ten sources. Bottom: Estimated filter and
learning-based classifier separating three sources.

were performed using real-room data with ten sound sources
captured by 160 microphones in wearable and tabletop array
devices throughout a large conference room [24]. Speech data
from the VCTK dataset was convolved with 32 ms truncated
room impulse responses and mixed with spatially uncorrelated
speech-shaped noise. The mixtures were processed by several
separation systems: a static MWF, a binary mask, a discrete-
state multimicrophone filter using the on/off model (8), and
a discrete-state filter using the high/low model (11) with a
ratio of 15 dB. The desired response was a separating matrix
G = diag(A1,1, . . . , A1,N ) using microphone 1 as a reference.
The filter sequence was applied separately to the different
signal components so that the contribution of each source to
the output could be quantified.

Figure 4 shows performance measured using the average
output signal-to-distortion-ratio (SDR):

SDR =
1

N

NX

n=1

10 log10

P
t,f

|yn[t, f ]|2P
t,f

|ŷn[t, f ]� yn[t, f ]|2
. (18)

The top panel shows results for an ideal filter separating all 10
sources. It was designed using measured transfer functions and
a ground-truth classifier n⇤[t, f ] = argmaxn |sn[t, f ]|2. The
bottom panel shows results for a non-ideal filter separating 3
sources, averaged over 100 random combinations of sources
and permutations of microphones. It was designed using
transfer function estimates from the AuxIVA blind source
separation algorithm [25], which was initialized using the
nearest microphone to each source. To classify the dominant
source at each TF index, the filter uses the Asteroid [26] imple-
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mentation of the single-microphone deep clustering algorithm
trained on the wsj0-3mix dataset [4]. Note that the model
was trained under different acoustic conditions, so it makes
relatively frequent errors; the average SDR improvement using
the classifier alone was around 4 dB. On the other hand,
because it does not use spatial features for classification, it
is not affected by errors in the acoustic channel estimate.

When the number of microphones is smaller than the
number of sources, the time-varying methods outperform the
static MWF, which cannot separate all sources at once. The
performance of the static filter improves with the number of
microphones, while the performance of the binary mask—
which does not use information from multiple microphones—
does not. The spatial filter with the on/off model does improve
with M because it performs a projection that reduces noise and
interference, but it does not specifically target the interfering
speech sources. The filter with the high/low model performs
well for both small and large M because it can take advantage
of both sparsity and spatial diversity. Notably, the high/low
system matches the performance of the static MWF for large
M even when using the error-prone learning-based classifier.

V. CONCLUSIONS

As large and distributed microphone arrays become
widespread, there is a need for source separation and en-
hancement methods that can scale to take advantage of greater
spatial diversity. The high/low model allows systems to take
advantage of both spatial diversity from large arrays and time-
frequency sparsity. It is a versatile model that can be applied to
both small arrays, for which the enhancement system behaves
like a mask, and large arrays, for which it behaves like a spatial
filter. Because it can be used with any source activity classifier,
it is a promising tool to incorporate model-based separation
methods into multimicrophone systems.
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