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Abstract—We introduce a tunable loss function called α-loss,
parameterized by α ∈ (0,∞], which interpolates between the
exponential loss (α = 1/2), the log-loss (α = 1), and the 0-1
loss (α = ∞), for the machine learning setting of classification.
Theoretically, we illustrate a fundamental connection between
α-loss and Arimoto conditional entropy, verify the classification-
calibration of α-loss in order to demonstrate asymptotic optimal-
ity via Rademacher complexity generalization techniques, and
build-upon a notion called strictly local quasi-convexity in order
to quantitatively characterize the optimization landscape of α-
loss. Practically, we perform class imbalance, robustness, and
classification experiments on benchmark image datasets using
convolutional-neural-networks. Our main practical conclusion is
that certain tasks may benefit from tuning α-loss away from log-
loss (α = 1), and to this end we provide simple heuristics for the
practitioner. In particular, navigating the α hyperparameter can
readily provide superior model robustness to label flips (α > 1)
and sensitivity to imbalanced classes (α < 1).

Index Terms—α-loss, Arimoto conditional entropy, robustness,
classification-calibration, strictly local quasi-convexity, general-
ization.

I. INTRODUCTION

In the context of machine learning, the performance of a
classification algorithm, in terms of accuracy, tractability, and
convergence guarantees crucially depends on the choice of
the loss function during training [3], [4]. Consider a feature
vector X ∈ X , an unknown finite-valued label Y ∈ Y , and a
hypothesis h : X → Y . The canonical 0-1 loss, given by
1[h(X) ̸= Y ], is considered an ideal loss function in the
classification setting that captures the probability of incorrectly
guessing the true label Y using h(X). However, since the 0-1
loss is neither continuous nor differentiable, its applicability
in state-of-the-art learning algorithms is highly restricted [5].
As a consequence, surrogate loss functions that approximate
the 0-1 loss such as log-loss, exponential loss, sigmoid loss,
etc. have garnered much interest [6]–[16].

In the field of information-theoretic privacy, Liao et al.
recently introduced a tunable loss function called α-loss for
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α ∈ [1,∞] to model the inferential capacity of an adversary
to obtain private attributes [17]–[19]. For α = 1, α-loss
reduces to log-loss which models a belief-refining adversary;
for α = ∞, α-loss reduces to the probability of error which
models an adversary that makes hard decisions. Using α-loss,
Liao et al. in [17] derived a new privacy measure called α-
leakage which continuously interpolates between Shannon’s
mutual information [20] and maximal leakage introduced by
Isaa et al. [21]; indeed, Liao et al. showed that α-leakage
is equivalent to the Arimoto mutual information [22]. In this
paper, we extend α-loss to the range α ∈ (0,∞] and propose
it as a tunable surrogate loss function for the ideal 0-1 loss
in the machine learning setting of classification. Through our
extensive analysis, we argue that: 1) since α-loss continuously
interpolates between the exponential (α = 1/2), log (α = 1),
and 0-1 (α = ∞) losses and is related to the Arimoto
conditional entropy, it is theoretically an object of interest in
its own right; 2) navigating the convexity/robustness trade-offs
inherent in the α hyperparameter offers significant practical
improvements over log-loss, which is a canonical loss function
in classification, and can be done quickly and effectively.

A. Related Work

The study and implementation of tunable utility (or loss)
metrics which continuously interpolate between useful quan-
tities is a persistent theme in information theory, networking,
and machine learning. In information theory, Rényi entropy
generalized the Shannon entropy [23], and Arimoto extended
the Rényi entropy to conditional distributions [24]. This led to
the α-mutual information [22], [25], which is directly related
to a recently introduced privacy measure called α-leakage [17].
More recently in networking, Mo et al. introduced α-fairness
in [26], which is a tunable utility metric that alters the value of
different edge users; similar ideas have recently been studied
in the federated learning setting [27]. Even more recently in
machine learning, Barron in [15] presented a tunable extension
of the l2 loss function, which interpolates between several
known l2-type losses and has similar convexity/robustness
themes as this work. Presently, there is a need in the ma-
chine learning setting of classification for alternative losses
to the cross-entropy loss (one-hot encoded log-loss) [28]. We
propose α-loss, which continuously interpolates between the
exponential, log, and 0-1 losses, as a viable solution.

In order to evaluate the statistical efficacy of loss functions
in the learning setting of classification, Bartlett et al. proposed
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the notion of classification-calibration in a seminal paper [6].
Classification-calibration is analogous to point-wise Fisher
consistency in that it requires that the minimizer of the
conditional expectation of a loss function agrees in sign with
the Bayes predictor for every value of the feature vector.
A more restrictive notion called properness requires that the
minimizer of the conditional expectation of a loss function
exactly replicates the true posterior [29]–[31]. Properness of
a loss function is a necessary condition for efficacy in the
class probability estimation setting (see, e.g., [31]), but for
the classification setting which is the focus of this work, the
notion of classification-calibration is sufficient. In the sequel,
we find that the margin-based form of α-loss is classification-
calibrated for all α ∈ (0,∞] and thus satisfies this necessary
condition for efficacy in binary classification.

While early research was predominantly focused on convex
losses [6], [8]–[10], more recent works propose the use of
non-convex losses as a means to moderate the behavior of an
algorithm [7], [11], [15], [32]. This is due to the increased
robustness non-convex losses offer over convex losses [15],
[32], [33] and the fact that modern learning models (e.g.,
deep learning) are inherently non-convex as they involve
vast functional compositions [34]. There have been numerous
theoretical attempts to capture the non-convexity of the opti-
mization landscape which is the loss surface induced by the
learning model, underlying distribution, and the surrogate loss
function itself [32], [35]–[41]. To this end, Hazan et al. [35]
introduce the notion of strictly local quasi-convexity (SLQC)
to parametrically quantify approximately quasi-convex func-
tions, and provide convergence guarantees for the Normal-
ized Gradient Descent (NGD) algorithm (originally introduced
in [42]) for such functions. Through a quantification of the
SLQC parameters of the expected α-loss, we provide some
estimates that strongly suggest that the degree of convexity
increases as α decreases less than 1 (log-loss); conversely, the
degree of convexity decreases as α increases greater than 1.
Thus, we find that there exists a trade-off inherent in the choice
of α ∈ (0,∞], i.e., trade convexity (and hence optimization
speed) for robustness and vice-versa. Since increasing the
degree of convexity of the optimization landscape is conducive
to faster optimization, our approach could serve as an alter-
native to other approaches whose objective is to accelerate
the optimization process, e.g., the activation function tuning
in [43]–[45] and references therein.

Understanding the generalization capabilities of learning
algorithms stands as one of the key problems in theoretical ma-
chine learning. A classical approach to this problem consists in
deriving algorithm independent generalization bounds, mainly
relying on the notion of Rademacher complexity [4, Ch. 26]. A
recent line of research, initiated by the works of Russo and Zou
[46] and Xu and Raginsky [47], aims to improve generalization
bounds by considering the statistical dependency between the
input and the output of a given learning algorithm. While there
are many extensions and refinements, e.g., [48]–[54], these
results are inherently algorithm dependent which makes them
hard to instantiate and obfuscates the role of the loss function.
Hence, in this work we rely on classical Rademacher com-
plexity tools to provide algorithm independent generalization

bounds that lead to the asymptotic optimality of α-loss w.r.t.
the 0-1 loss.

There are a few proposed tunable loss functions for the
classification setting in the literature [11], [55]–[57]. Notably,
the symmetric cross entropy loss introduced by Wang et al.
in [55] proposes the tunable linear combination of the usual
cross entropy loss with the so-called reverse cross entropy loss,
which essentially reverses the roles of the one-hot encoded la-
bels and soft prediction of the model. Wang et al. report gains
under symmetric and asymmetric noisy labels, particularly
in the very high noise regime. Another approach introduced
by Amid et al. in [56] is a bi-tempered logistic loss, which
is based on Bregman divergences. As the name suggests,
the bi-tempered logistic loss depends on two temperature
hyperparameters, which Amid et al. show improvements over
vanilla cross-entropy loss again on noisy data. Recently, Li
et al. introduced tilted empirical risk minimization [57], a
framework which parametrically generalizes empirical risk
minimization using a log-exponential transformation to induce
fairness or robustness in the model. Contrasting with this work,
we note that our study is exclusively focused on α-loss acting
within empirical risk minimization. Summing up, the main
distinctions that differentiate this work from related work are
that α-loss has a fundamental relationship to the Arimoto
conditional entropy, continuously interpolates between the
exponential, log, and 0-1 losses, and provides robustness to
noisy labels and sensitivity to imbalanced classes. Lastly, we
note that α-loss has also been recently studied in the context
of generative adversarial networks [58] and boosting [59].

B. Contributions

The following are the main contributions of this paper:
• We formulate α-loss in the classification setting, extend-

ing it to α ∈ (0, 1), and we thereby extend the result of
Liao et al. in [17] which characterizes the relationship
between α-loss and the Arimoto conditional entropy.

• For binary classification, we define a margin-based form
of α-loss and demonstrate its equivalence to α-loss for
all α ∈ (0,∞]. We then characterize convexity and
verify statistical calibration of the margin-based α-loss
for α ∈ (0,∞]. We next derive the minimum conditional
risk of the margin-based α-loss, which we show recovers
the relationship between α-loss and the Arimoto condi-
tional entropy for all α ∈ (0,∞]. Lastly, we provide
synthetic experiments on a two-dimensional Gaussian
mixture model with asymmetric label flips and class
imbalances, where we train linear predictors with α-loss
for several values of α.

• For the logistic model in binary classification, we show
that the expected α-loss is convex in the logistic param-
eter for α ≤ 1 (strongly-convex when the covariance
matrix is positive definite), and we show that it retains
convexity as α increases greater than 1 provided that the
radius of the parameter space is small enough. We provide
a point-wise extension of strictly local quasi-convexity
(SLQC) by Hazan et al., and we reformulate SLQC into
a more tractable inequality using a geometric inequality
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which may be of independent interest. Using a bootstrap-
ping technique which also may be of independent interest,
we provide bounds in order to quantify the evolution of
the SLQC parameters as α increases.

• Also for the logistic model in binary classification, we
characterize the generalization capabilities of α-loss. To
this end, we employ standard Rademacher complexity
generalization techniques to derive a uniform general-
ization bound for the logistic model trained with α-loss
for α ∈ (0,∞]. We then combine a result by Bartlett et
al. and our uniform generalization bound to show (under
standard distributional assumptions) that the minimizer
of the empirical α-loss is asymptotically optimal with
respect to the expected 0-1 loss (probability of error),
which is the ideal metric in classification problems.

• Finally, we perform symmetric noisy label and class
imbalance experiments on MNIST, FMNIST, and CIFAR-
10 using convolutional-neural-networks. We show that
models trained with α-loss can either be more robust
or sensitive to outliers (depending on the application)
over models trained with log-loss (α = 1). Following
some of our theoretical intuitions, we demonstrate the
“Goldilocks zone” of α ∈ (0,∞], i.e., for most appli-
cations α∗ ∈ [.8, 8]. Thus, we argue that α-loss is an
effective generalization of log-loss (cross-entropy loss)
for classification problems in modern machine learning.

Different subsets of the authors published portions of this
paper as conference proceedings in [1] and [2]. Specifically,
results provided in [1] primarily comprise a subset of the
second bullet in the list above, however, this work extends
those published results to α ∈ (0, 1), clarifies the relation-
ship to Arimoto conditional entropy, and provides synthetic
experiments; in addition, results in [2] primarily comprise
a subset of the third bullet in the list above, however, this
work provides a new convexity result for α > 1, provides
SLQC background material including a point-wise statement
and proof of Lemma 1, and utilizes a bootstrapping argument
which significantly improves the bounds in [2]. The remaining
three bullets are all comprised of unpublished work.

II. INFORMATION-THEORETIC MOTIVATIONS OF α-LOSS

Consider a pair of discrete random variables denoted
(X,Y ) ∼ PX,Y . Observing X , one can construct an estimate
Ŷ of Y such that Y − X − Ŷ form a Markov chain. It is
possible to evaluate the fitness of a given estimate Ŷ using a
loss function ℓ : Y × P(Y) → R+ via the expectation

EX,Y

[
ℓ(Y, PŶ |X)

]
, (1)

where Ŷ |X ∼ PŶ |X is the learner’s posterior estimate of Y
given knowledge of X; for simplicity we sometimes abbreviate
PŶ |X=x as P̂ when the context is clear. In [17], Liao et al.
proposed the definition of α-loss for α ∈ [1,∞] in order to
quantify adversarial action in the information leakage context.
We adapt and extend the definition of α-loss to α ∈ (0,∞] in
order to study the efficacy of the loss function in the machine
learning setting.

Definition 1. Let P(Y) be the set of probability distributions
over Y . For α ∈ (0, 1)∪ (1,∞), we define α-loss, denoted by
lα : Y × P(Y) → R+, as

lα(y, P̂ ) :=
α

α− 1

(
1− P̂ (y)1−1/α

)
, (2)

and, by continuous extension, l1(y, P̂ ) := − log P̂ (y) and
l∞(y, P̂ ) := 1− P̂ (y).

Note that for (y, P̂ ) fixed, lα(y, P̂ ) is continuous and mono-
tonically decreasing in α. Also note that l1 recovers log-loss,
and plugging in α = 1/2 yields l1/2(y, P̂ ) := P̂−1(y) − 1.
One can use expected α-loss EX,Y [l

α(Y, PŶ |X)], hence called
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Figure 1: (a) α-loss (2) as a function of the probability for
several values of α; (b) α-tilted posterior (6) for several values
of α where the true underlying distribution is the (20,0.5)-
binomial distribution.

α-risk, to quantify the effectiveness of the estimated posterior
PŶ |X . In particular,

EX,Y

[
l1(Y, PŶ |X)

]
= EX

[
H(PY |X=x, PŶ |X=x)

]
, (3)

where H(P,Q) := H(P ) + DKL(P∥Q) is the cross-entropy
between P and Q. Similarly,

EX,Y [l
∞(Y, PŶ |X)] = P[Y ̸= Ŷ ], (4)

i.e., the expected α-loss for α = ∞ equals the probability of
error. Recall that the expectation of the canonical 0-1 loss,
EX,Y [1[Y ̸= Ŷ ]], also recovers the probability of error [4].
For this reason, we sometimes refer to l∞ as the 0-1 loss.

Observe that α-loss presents a tunable class of loss functions
that value the probabilistic estimate of the label differently
as a function of α; see Fig. 1(a). In the sequel, we find
that, when composed with a sigmoid, l1/2, l1, l∞ become
the exponential, logistic, and sigmoid (smooth 0-1) losses,
respectively. While we note that there may be infinitely many
ways to continuously interpolate between the exponential, log,
and 0-1 losses, we observe that the interpolation introduced by
α-loss is monotonic in α, seems to provide an information-
theoretic interpretation (Proposition 1), and also appears to
be apt for the classification setting which will be further
elaborated in the sequel. The following result was shown by
Liao et al. in [17] for α ∈ [1,∞] and provides an explicit
characterization of the optimal risk-minimizing posterior under
α-loss. We extend the result to α ∈ (0, 1).

Proposition 1. For each α ∈ (0,∞], the minimal α-risk is

min
PŶ |X

EX,Y

[
lα(Y, PŶ |X)

]
=

α

α− 1

(
1− e

1−α
α HA

α (Y |X)
)
,

(5)
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where HA
α (Y |X) :=

α

1− α
log
∑
x

(∑
y
PX,Y (x, y)

α
)1/α

is

the Arimoto conditional entropy of order α [60]. The resulting
unique minimizer, P̂ ∗

α , is the α-tilted true posterior

P̂ ∗
α(y|x) =

PY |X(y|x)α∑
y
PY |X(y|x)α

. (6)

The proof of Proposition 1 for α ∈ [1,∞] can be found in
[17] and is readily extended to the case where α ∈ (0, 1) with
similar techniques. Through Proposition 1, we note that α-loss
exhibits different operating conditions through the choice of
α. Observe that the minimizer of (5) given by the α-tilted
distribution in (6) recovers the true posterior only if α = 1,
i.e., for log-loss. Further, as α decreases from 1 towards 0, α-
loss places increasingly higher weights on the low probability
outcomes; on the other hand as α increases from 1 to ∞,
α-loss increasingly limits the effect of the low probability
outcomes. Ultimately, we find that for α = ∞, minimizing
the corresponding risk leads to making a single guess on
the most likely label, i.e., MAP decoding. See Fig. 1(b)
for an illustration of the α-tilted distribution on a (20,0.5)-
Binomial distribution. Intuitively, empirically minimizing α-
loss for α ̸= 1 could be a boon for learning the minority class
(α < 1) or ignoring label noise (α > 1); see Section VI for
experimental consideration of such class imbalance and noisy
label trade-offs.

With the information-theoretic motivations of α-loss behind
us, we now consider the setting of binary classification, where
we study the optimization, statistical, and robustness properties
of α-loss.

III. α-LOSS IN BINARY CLASSIFICATION

In this section, we study the role of α-loss in binary clas-
sification. First, we provide its margin-based form, which we
show is intimately related to the original α-loss formulation in
Definition 1; next, we analyze the optimization characteristics
and statistical properties of the margin-based α-loss where
we notably recover the relationship between α-loss and the
Arimoto conditional entropy in the margin setting; finally, we
comment on the robustness and sensitivity trade-offs which
are inherent in the choice of α through theoretical discussion
and experimental considerations. First, however, we formally
discuss the binary classification setting through the role of
classification functions and surrogate loss functions.

In binary classification, the learner ideally wants to obtain
a classifier h : X → {−1,+1} that minimizes the probability
of error, or the risk (expectation) of the 0-1 loss, given by

R(h) = P[h(X) ̸= Y ], (7)

where the true 0-1 loss given by 1[h(X) ̸= Y ]. Unfortunately,
this optimization problem is NP-hard [5]. Therefore, the prob-
lem is typically relaxed by imposing restrictions on the space
of possible classifiers and by choosing surrogate loss functions
with desirable properties. Thus during the training phase, it is
common to optimize a surrogate loss function over classifi-
cation functions of the form f : X → R, R = R ∪ {±∞},
whose output captures the certainty of a model’s prediction of

the true underlying binary label Y ∈ {−1, 1} associated with
X [1], [3], [4], [6]–[9], [61]. Once a suitable classification
function has been chosen, the classifier is obtained by making
a hard decision, i.e., the model outputs the classification
h(X) = sign(f(X)), in order to predict the true underlying
binary label Y ∈ {−1, 1} associated with the feature vector
X ∈ X . Examples of learning algorithms which optimize
surrogate losses over classification functions include SVM
(hinge loss), logistic regression (logistic loss), and AdaBoost
(exponential loss), to name a few [3]. With the notions of
classification functions and surrogate loss functions in hand,
we now turn our attention to an important family of surrogate
loss functions in binary classification.

A. Margin-based α-loss

Here, we provide the definition of α-loss in binary classifi-
cation and characterize its relationship to the form presented
in Definition 1. First, we discuss an important family of loss
functions in binary classification called margin-based losses.

A loss function is said to be margin-based if, for all x ∈ X
and y ∈ {−1,+1}, the loss associated to a pair (y, f(x)) is
given by l̃(yf(x)) for some function l̃ : R → R+ [6]–[9], [28].
In this case, the loss of the pair (y, f(x)) only depends on the
product z := yf(x), the (unnormalized) margin [61]. Observe
that a negative margin corresponds to a mismatch between the
signs of f(x) and y, i.e., a classification error by f . Similarly,
a positive margin corresponds to a match between the signs
of f(x) and y, i.e., a correct classification by f . We now
provide the margin-based form of α-loss, which is illustrated
in Fig. 2(a).

Figure 2: (a) Margin-based α-loss (8) as a function of the
margin (z := yf(x)) for α ∈ {0.3, 0.5, 0.77, 1, 1.44,∞};
(b) Minimum conditional risk (14) for the same values of α.

Definition 2. For α ∈ (0, 1) ∪ (1,∞), we define the margin-
based α-loss, l̃α : R → R+, as

l̃α(z) :=
α

α− 1

(
1−

(
1 + e−z

)1/α−1
)
, (8)

and, by continuous extension, l̃1(z) = log(1 + e−z) and
l̃∞(z) = (1 + ez)−1.

Note that l̃1/2(z) = e−z . Thus, l̃1/2, l̃1, and l̃∞ recover
the exponential, logistic, and sigmoid losses, respectively.
Navigating the various regimes of α induces different op-
timization, statistical, and robustness characteristics for the
margin-based α-loss; this is elaborated in the sequel. First,
we discuss its relationship to the original form in Definition 1,
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which requires alternative prediction functions to classification
functions called soft classifiers.

In binary classification, it is also common to use soft
classifiers g : X → [0, 1] which encode the conditional
distribution, namely, g(x) := PŶ |X(1|x). In essence, soft
classifiers capture a model’s belief of Y |X [1], [4], [34].
Similar to the classification function setting, the hard decision
of a soft classifier is obtained by h(x) = sign(g(x)− 1/2).
Log-loss, and by extension α-loss as given in Definition 1,
are examples of loss functions which act on soft classifiers.
In practice, a soft classifier can be obtained by composing
a classification function with the logistic sigmoid function
σ : R → [0, 1] given by

σ(z) =
1

1 + e−z
, (9)

which is generalized by the softmax function in the multiclass
setting [34]. Observe that σ is invertible and σ−1 : [0, 1] → R
is given by

σ−1(z) = log

(
z

1− z

)
, (10)

which is often referred to as the logistic link [31].
With these two transformations, one is able to map clas-

sification functions to soft classifiers and vice-versa. Thus,
a loss function in one domain is readily transformed into a
loss function in the other domain. In particular, we are now
in a position to derive the correspondence between α-loss in
Defintion 1 and the margin-based α-loss in Definition 2, which
generalizes our previous proof in [1].

Proposition 2. Consider a soft classifier g(x) = PŶ |X(1|x).
If f(x) = σ−1(g(x)), then, for every α ∈ (0,∞],

lα(y, g(x)) = l̃α(yf(x)). (11)

Conversely, if f is a classification function, then the soft
classifier g(x) := σ(f(x)) satisfies (11). In particular, for
every α ∈ (0,∞],

min
g

EX,Y (l
α(Y, g(x))) = min

f
EX,Y (l̃

α(Y f(X))). (12)

Therefore, there is a direct correspondence between α-loss
in Definition 1 and the margin-based α-loss which is used in
binary classification.

Remark 1. Instead of the fixed inverse link function (9), it
is also possible to use any other fixed inverse link function,
or even inverse link functions dependent on α; indeed, it is
possible to derive many such tunable margin-based losses
this way. However, the margin-based α-loss as given in
Definition 2 allows for continuous interpolation between the
exponential, logistic, and sigmoid losses, and thus motivates
our choice of the fixed sigmoid in (9) as the inverse link.

The following result, which quantifies the convexity of
the margin-based α-loss, will be useful in characterizing the
convexity of the average loss, or landscape, in the sequel.

Proposition 3. As a function of the margin, l̃α : R → R+ is
convex for α ≤ 1 and quasi-convex for α > 1.

Recall that a real-valued function f : R → R is quasi-
convex if, for all x, y ∈ R and λ ∈ [0, 1], we have that
f(λx + (1 − λ)y) ≤ max {f(x), f(y)}, and also recall
that any monotonic function is quasi-convex (see e.g., [62]).
Intuitively through Fig. 2(a), we find that the quasi-convexity
of the margin-based α-loss for α > 1 reduces the penalty
induced during training for examples which have a negative
margin; this has implications for robustness that will also be
investigated in the sequel.

B. Calibration of Margin-based α-loss

With the definition and basic properties of the margin-based
α-loss in hand, we now discuss a statistical property of the
margin-based α-loss that highlights its suitability in binary
classification. Bartlett et al. in [6] introduce classification-
calibration as a means to compare the performance of a
margin-based loss function relative to the 0-1 loss by in-
specting the minimizer of its conditional risk. Formally, let
ϕ : R → R+ denote a margin-based loss function and let
Cϕ(η(x), f(x)) = E[ϕ(Y f(X))|X = x] denote its condi-
tional expectation (risk), where η(x) = PY |X(1|x) is the true
posterior and f : X → R is a classification function. Thus,
the conditional risk of the margin-based α-loss for α ∈ (0,∞]
is given by

Cα(η(x), f(x)) = EY [l̃
α(Y f(X))|X = x]. (13)

We say that ϕ : R → R+ is classification-calibrated if, for all
x ∈ X , its minimum conditional risk

inf
f :X→R

Cϕ(η(x), f(x))

= inf
f :X→R

η(x)ϕ(f(x)) + (1− η(x))ϕ(−f(x)), (14)

is attained by a f∗ : X → R such that

sign(f∗(x)) = sign(2η(x)− 1). (15)

In words, a margin-based loss function is classification-
calibrated if for each feature vector, the minimizer of its
minimum conditional risk agrees in sign with the Bayes
optimal predictor. Note that this is a pointwise form of Fisher
consistency [6], [8].

The expectation of the loss function ϕ, or the ϕ-risk, is
denoted Rϕ(f) = EX [Cϕ(η(X), f(X))]; this notation will
be useful in the sequel when we quantify the asymptotic
behavior of α-loss. Finally, as is common in the literature [6],
[7], we omit the dependence of η and f on x, and we also
let C∗

ϕ(η) = Cϕ(η, f
∗) for notional convenience. With the

necessary background on classification-calibrated loss func-
tions in hand, we are now in a position to show that l̃α is
classification-calibrated for all α ∈ (0,∞].

Theorem 1. For α ∈ (0,∞], the margin-based α-loss l̃α is
classification-calibrated. In addition, its optimal classification
function is given by

f∗α(η) = α · σ−1(η) = α log

(
η

1− η

)
. (16)
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See Appendix A for full proof details. Examining the
optimal classification function in (16) more closely, we ob-
serve that this expression is readily derived from the α-tilted
distribution for a binary label set in Proposition 2. Thus,
analogous to the intuitions regarding the α-tilted distribution
in (6), the optimal classification function in (16) suggests that
α > 1 is more robust to slight fluctuations in η and α < 1
is more sensitive to slight fluctuations in η. In the sequel, we
find that this has practical implications for noisy labels and
class imbalances.

Upon plugging (16) into (13), we get the next result which
specifies the minimum conditional risk of l̃α for α ∈ (0,∞].

Corollary 1. For α ∈ (0,∞], the minimum conditional risk
C∗

α(η) of l̃α is equal to
α

α−1

(
1− (ηα + (1− η)α)1/α

)
α ∈ (0, 1) ∪ (1,+∞),

−η log η − (1− η) log (1− η) α = 1,

min{η, 1− η} α→ +∞.

(17)

Remark 2. Observe that in (17) for α = 1, the minimum
conditional risk can be rewritten as

C∗
1 (η) = −η log η − (1− η) log (1− η) (18)

= H(Y |X = x), (19)

where H(Y |X = x) is the Shannon conditional entropy for
a Y given X = x [63]. For α ∈ (0, 1) ∪ (1,+∞), also note
that in (17), the minimum conditional risk can be rewritten as

C∗
α(η) =

α

α− 1

[
1− (ηα + (1− η)α)1/α

]
(20)

=
α

α− 1

[
1− e

1−α
α HA

α (Y |X=x)
]
, (21)

where HA
α (Y |X = x) = 1

1−α log
(∑

y PY |X(y|x)α
)

is the
Arimoto conditional entropy of order α [60]. Finally, observe
that EX [C∗

α(η(X))] recovers (5) in Proposition 1.

Finally, note that the minimum conditional risk of the
margin-based α-loss is concave for all α ∈ (0,∞] (see
Fig. 2(b)); indeed, this is known to be a useful property for
classification problems [7]. Therefore, since the margin-based
α-loss is classification-calibrated and its minimum conditional
risk is concave for all α ∈ (0,∞], it seems to have reasonable
statistical behavior for binary classification problems. We now
turn our attention to the robustness and sensitivity tradeoffs
induced by traversing the different regimes of α for the
margin-based α-loss.

C. Robustness and Sensitivity of Margin-based α-loss

Despite the advantages of convex losses in terms of nu-
merical optimization and theoretical tractability, non-convex
loss functions often provide superior model robustness and
classification accuracy [1], [7], [11], [15], [32], [33], [61],
[64], [65]. In essence, non-convex loss functions tend to assign
less weight to misclassified training examples1 and therefore

1Convex losses grow at least linearly with respect to the negative margin
which results in an increased sensitivity to outliers. See Fig. 2(a) for α = 1
as an example of this phenomenon.
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Figure 3: Two synthetic experiments each averaged over 100
runs highlighting the differences in trained linear predictors
of α-loss for α ∈ {0.65, 1, 4} on imbalanced and noisy
data, which are compared with the Bayes optimal predictor
for the clean, balanced distribution. Training data present in
both figures is obtained from the last run in each experiment,
respectively. (a) Averaged linear predictors trained using α-
loss on imbalanced data with 2 examples from Y = −1 class
per run. Averaged linear predictors for smaller values of α
are closer to the Bayes predictor for the balanced distribution,
which highlights the sensitivity of α-loss to the minority class
for α < 1. (b) Averaged linear predictors trained using α-loss
on noisy data, which is obtained by flipping the labels of the
Y = −1 class with probability 0.2. Averaged linear predictor
for α = 4 is closer to the Bayes predictor for the balanced
distribution, which highlights the robustness of α-loss to noise
for α > 1.

algorithms optimizing such losses are often less perturbed by
outliers, i.e., examples which induce large negative margins.
More concretely, consider Fig. 2(a) for α = 1/2 (convex)
and α = 1.44 (quasi-convex), and suppose that z1 = −1
and z2 = −5. Plugging these parameters into Definition 2,
we find that l̃1/2(z1) = e1 ≈ 2.7, l̃1/2(z2) = e5 ≈ 148.4,
l̃1.44(z1) ≈ 1.1, and l̃1.44(z2) ≈ 2.6. In words, the difference
in these loss evaluations for a negative value of the margin,
which is representative of a misclassified training example,
is approximately exponential versus sub-linear. Indeed, this
difference appears to be most relevant for outliers (e.g., noisy
or imbalanced training examples) [7], [61].

We explore these ideas with the following synthetic exper-
iment presented in Fig. 3. We assume the practitioner has
access to modified training data which approximates the true
underlying distribution given by a two-dimensional Gaussian
Mixture Model (2D-GMM) with equal mixing probability
P[Y = −1] = P[Y = +1], symmetric means

µX|Y=−1 = (−1,−1)⊺ = −µX|Y=1, (22)

and shared identity covariance matrix Σ = I2. The first
experiment considers the scenario where the training data
suffers from a class imbalance; specifically, the number of
training examples for the Y = −1 class is 2 and the number
of training examples for the Y = +1 class is 98 for every
run. The second experiment considers the scenario where
the training data suffers from noisy labels; specifically, the
labels of the Y = −1 class are flipped with probability
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0.2 and the labels of the Y = +1 class are kept fixed.
For both experiments we train α-loss on the logistic model,
which is the generalization of logistic regression with α-loss
and is formally described in the next section. Specifically,
we minimize α-loss using gradient descent with the fixed
learning rate = 0.01 for each α ∈ {0.65, 1, 4}. Note that
α = 0.65 (lower limit) and α = 4 (upper limit) were both
chosen for computational feasibility in the logistic model; in
practice, the range of α ∈ (0,∞], while usually contracted
as in this experiment, is dependent on the model - this is
elaborated in the sequel. Training is allowed to progress until
convergence as specified by the optimality parameter = 10−4.
The linear predictors presented in Fig. 3 are averaged over 100
runs of randomly generated data according to the parameters
for each experiment.

Ideally, the practitioner would like to generate a linear
predictor which is invariant to noisy or imbalanced training
data and tends to align with the Bayes optimal predictor for
the balanced distribution. Indeed, when the training data is
balanced (and clean), all averaged linear predictors generated
by α-loss collapse to the Bayes predictor; see Fig. 11 in
Appendix D2. However, training on noisy or imbalanced data
affects the linear predictors of α-loss in different ways. In
the class imbalance experiment in Fig. 3(a), we find that the
averaged linear predictor for the smaller values of α more
closely approximate the Bayes predictor for the balanced
distribution, which suggests that the smaller values of α are
more sensitive to the minority class. Similarly in the class
noise experiment in Fig. 3(b), we find that the averaged linear
predictor for α = 4 more closely approximates the Bayes
predictor for the balanced distribution, which suggests that the
larger values of α are less sensitive to noise in the training data.
Both results suggest that α = 1 (log-loss) can be improved
with the use of α-loss in these scenarios. For quantitative
results of this experiment, including a wider range of α’s,
additional imbalances and noise levels, and results using the
F1 score, see Tables VII, VIII, and IX in Appendix D2.

In summary, we find that navigating the convexity regimes
of α-loss induces different robustness and sensitivity charac-
teristics. We explore these themes in more detail on canonical
image datasets in Section VI; theoretical investigations of
the robustness of α-loss can be found in [59]. We now turn
our attention to theoretically characterizing the optimization
complexity of α-loss for the different regimes of α in the
logistic model.

IV. OPTIMIZATION GUARANTEES FOR α-LOSS IN THE
LOGISTIC MODEL

In this section, we analyze the optimization complexity of
α-loss in the logistic model as we vary α by quantifying
the convexity of the optimization landscape. First, we show
that the α-risk is convex (indeed, strongly-convex if a certain
correlation matrix is positive definite) in the logistic model for
α ≤ 1; next, we provide a brief summary of a notion known
as strictly local quasi-convexity (SLQC); then, we provide a
more tractable reformulation of SLQC which is instrumental
for our theory; finally, we study the convexity of the α-risk

in the logistic model through SLQC for a range of α > 1,
which we argue is sufficient due to the rapid saturation effect
of α-loss as α → ∞. Notably, our main result depends on a
bootstrapping argument that might be of independent interest.
Our main conclusion of this section is that there exists a
“Goldilocks zone” of α ∈ (0,∞] which drastically reduces
the hyperparameter search induced by α for the practitioner.
Finally, note that all proofs and background material can be
found in Appendix B.

A. α-loss in the Logistic Model

Prior to stating our main results, we clarify the setting
and provide necessary definitions. Let X ∈ [0, 1]d be the
normalized feature where d ∈ N is the number of dimensions,
Y ∈ {−1,+1} the label and we assume that the pair
is distributed according to an unknown distribution PX,Y ,
i.e., (X,Y ) ∼ PX,Y . For θ̃ ∈ Rd and r > 0, we let
Bd(θ̃, r) := {θ ∈ Rd : ∥θ − θ̃∥ ≤ r}. For simplicity, we
let Bd(r) = Bd(0, r) when θ̃ = 0; also note that all norms
are Euclidean. Given r > 0, we consider the logistic model
and its associated hypothesis class G = {gθ : θ ∈ Bd(r)},
composed of parameterized soft classifiers gθ such that

gθ(x) = σ(⟨θ, x⟩), (23)

with σ : R → [0, 1] being the sigmoid function given by (9).
For convenience, we present the following short form of α-
loss in the logistic model which is equivalent to the expanded
expression in [1]. For α ∈ (0,∞], α-loss is given by

lα(y, gθ(x)) =
α

α− 1

[
1− gθ(yx)

1−1/α
]
. (24)

For α = 1, l1 is the logistic loss and we recover logistic
regression by optimizing this loss. Note that in this setting
⟨yx, θ⟩ is the margin, and recall from Proposition 3 that (24)
is convex for α ∈ (0, 1] and quasi-convex for α > 1 in ⟨yx, θ⟩.
For θ ∈ Bd(r), we define the α-risk Rα as the risk of the loss
in (24),

Rα(θ) := EX,Y [l
α(Y, gθ(X))]. (25)

The α-risk (25) is plotted for several values of α in a
two-dimensional Gaussian Mixture Model (GMM) in Fig. 4.
Further, observe that, for all θ ∈ Bd(r),

R∞(θ) := EX,Y [l
∞(Y, gθ(X))] = P[Y ̸= Ŷθ], (26)

where Ŷθ is a random variable such that for all x ∈ Bd(1),
P[Ŷθ = 1|X = x] = gθ(x).

In order to study the landscape of the α-risk, we compute
the gradient and Hessian of (24), by employing the following
useful properties of the sigmoid

σ(−z) = 1− σ(z) and
d

dz
σ(z) = σ(z)(1− σ(z)). (27)

Indeed, a straightforward computation shows that

∂

∂θj
lα(y, gθ(x)) =

[
−ygθ(yx)1−1/α(1− gθ(yx))

]
xj , (28)

where θj , xj denote the j-th components of θ and x, respec-
tively. Thus, the gradient of α-loss in (24) is

∇θl
α(Y, gθ(X)) = F1(α, θ,X, Y )X, (29)
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where F1(α, θ, x, y) is defined as the expression within brack-
ets in (28). Another straightforward computation yields

∇2
θl

α(Y, gθ(X)) = F2(α, θ,X, Y )XX⊺, (30)

where F2 is defined as

F2(α, θ, x, y) :=gθ(yx)
1−1/αgθ(−yx)

×
(
gθ(yx)−

(
1− 1

α

)
gθ(−yx)

)
. (31)

B. Convexity of the α-risk
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Figure 4: The landscape of α-loss (Rα for α = 0.95, 1, 2, 10)
in the logistic model, where features are normalized, for a 2D-
GMM with P[Y = −1] = 0.12, µX|Y=−1 = (−0.18, 1.49)⊺,
µX|Y=1 = (−0.01, 0.16)⊺, Σ−1 = [3.20,−2.02;−2.02, 2.71],
and Σ1 = [4.19, 1.27; 1.27, 0.90].

We now turn our attention to the case where α ∈ (0, 1]; we
find that for this regime, Rα is strongly convex; see Fig. 4
for an example. Prior to stating the result, for two matrices
A,B ∈ Rd×d, we let ⪰ denote the Loewner (partial) order
in the positive semi-definite cone. That is, we write A ⪰ B
when A − B is a positive semi-definite matrix. For a matrix
A ∈ Rd×d, let λ1(A), . . . , λd(A) be its eigenvalues. Finally,
we recall that a function is m-strongly convex if and only if
its Hessian has minimum eigenvalue m ≥ 0 [62].

Theorem 2. Let Σ := E[XX⊺]. If α ∈ (0, 1], then Rα(θ) is
Λ(α, r

√
d)min

i∈[d]
λi (Σ)-strongly convex in θ ∈ Bd(r), where

Λ(α, r
√
d) :=σ(r

√
d)1−1/α

×
(
σ′(r

√
d)−

(
1− 1

α

)
σ(−r

√
d)2
)
. (32)

Observe that if mini∈[d] λi(Σ) = 0, then the α-risk is
merely convex for α ≤ 1. Also observe that for r

√
d > 0

fixed, Λ(α, r
√
d) is monotonically decreasing in α. Thus, Rα

becomes more strongly convex as α approaches zero.
While Theorem 2 states that the α-risk is strongly-convex

for all α ≤ 1 and for any r
√
d > 0, the following corollary,

which is proved with similar techniques as Theorem 2, states
that the α-risk is strongly-convex for some range of α > 1,
provided that r

√
d > 0 is small enough.

Corollary 2. Let Σ := E[XXT ]. If r
√
d ≤ arcsinh (1/2),

then Rα(θ) is Λ̃(α, r
√
d)mini∈[d] λi (Σ)-strongly convex in

θ ∈ Bd(r) for α ∈
(
0, (e2r

√
d − er

√
d)−1

]
, where

Λ̃(α, r
√
d) := σ(−r

√
d)2−1/ασ(r

√
d)

×

(
1− er

√
d +

e−r
√
d

α

)
. (33)

It could be verified that (e2r
√
d − er

√
d)−1 > 1 whenever

r
√
d < arcsinh (1/2). By inspecting the relationship between

convexity and its dependence on r
√
d, Corollary 2 seems to

suggest that as α increases slightly greater than 1, convexity
is lost faster nearer to the boundary of the parameter space.
Indeed, refer to Fig. 4 to observe an example of this effect for
α increasing from α = 1 to α = 2, and note that convexity is
preserved in the small radius about 0 for α = 2.

Examining the α-risk in Fig. 4 for α = 2 more closely, we
see that it is reminiscent of a quasi-convex function. Recall
that (e.g., Chapter 3.4 in [62]) a function f : Rd → R is
quasi-convex if for all θ, θ0 ∈ Rd, such that f(θ0) ≤ f(θ), it
follows that

⟨−∇f(θ), θ0 − θ⟩ ≥ 0. (34)

In other words, the negative gradient of a quasi-convex func-
tion always points in the direction of descent. While α-loss
(24) is quasi-convex for α > 1, this does not imply that the
α-risk (25) is quasi-convex for α > 1 since the sum of quasi-
convex functions is not guaranteed to be quasi-convex [62].
Thus, we need a new tool in order to quantify the optimization
complexity of the α-risk for α > 1 in the large radius regime.

C. Strictly Local Quasi-Convexity and its Extensions

We use a framework developed by Hazan et al. in [35]
called strictly local quasi-convexity (SLQC), which is a gener-
alization of quasi-convexity. Intuitively, SLQC functions allow
for multiple local minima below an ϵ-controlled region while
stipulating (strict) quasi-convex functional behavior outside the
same region. Formally, we recall the following parameteric
definition of SLQC functions provided in [35].

Definition 3 (Definition 3.1, [35]). Let ϵ, κ > 0 and θ0 ∈ Rd.
A function f : Rd → R is called (ϵ, κ, θ0)-strictly locally
quasi-convex (SLQC) at θ ∈ Rd if at least one of the following
conditions apply:

1. f(θ)− f(θ0) ≤ ϵ,
2. ∥∇f(θ)∥ > 0 and, for every θ′ ∈ B(θ0, ϵ/κ),

⟨−∇f(θ), θ′ − θ⟩ ≥ 0. (35)

Briefly, in [35] Hazan et al. refer to a function as SLQC
in θ, whereas for the purposes of our analysis we refer to a
function as SLQC at θ. We recover the uniform SLQC notion
of Hazan et al. by articulating a function is SLQC at θ for
every θ. Our later analysis of the α-risk in the logistic model
benefits from this pointwise consideration.

Observe that where Condition 1 of Definition 3 does not
hold, Condition 2 implies quasi-convexity about B(θ0, ϵ/κ)
as evidence through (34); see Fig. 5 for an illustration of
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θ′
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−∇f(θ)

θ

Figure 5: An illustration highlighting the difference between
quasi-convexity as given in (34) and the second SLQC con-
dition of Definition 3. If f is quasi-convex, the red angle
describes the possible negative gradients of f at θ with respect
to θ0. If f is SLQC, the blue angle describes the possible
negative gradients of f at θ with respect to θ0 and the given
ϵ/κ-radius ball.

the difference between classical quasi-convexity and SLQC
in this regime. We now present the following lemma, which
is a structural result for general differentiable functions that
provides an alternative formulation of the second requirement
of SLQC functions in Definition 3; proof details can be found
in Appendix B1.

Lemma 1. Assume that f : Rd → R is differentiable, θ0 ∈ Rd

and ρ > 0. If θ ∈ Rd is such that ∥θ − θ0∥ > ρ, then the
following are equivalent:

1. ⟨−∇f(θ), θ′ − θ⟩ ≥ 0 for all θ′ ∈ Bd (θ0, ρ),
2. ⟨−∇f(θ), θ0 − θ⟩ ≥ ρ∥∇f(θ)∥.

Intuitively, the equivalence presented by Condition 2 of
Lemma 1 is easier to manipulate in proving SLQC properties
of the α-risk as we merely need to control ⟨−∇f(θ), θ0 − θ⟩
rather than ⟨−∇f(θ), θ′ − θ⟩ for every θ′ ∈ B(θ0, ϵ/κ).

In [35], Hazan et al. measure the optimization complexity
of SLQC functions through the normalized gradient descent
(NGD) algorithm, which is almost canonical gradient descent
(see, e.g., Chapter 14 in [4]) except gradients are normal-
ized such that the algorithm applies uniform-size directional
updates given by a fixed learning rate η > 0. While NGD
may not be the most appropriate optimization algorithm in
some applications, we use it as a theoretical benchmark which
allows us to understand optimization complexity; further de-
tails regarding NGD can be found in Appendix B1. Indeed,
the convergence guarantees of NGD for SLQC functions are
similar to those of Gradient Descent for convex functions.

Proposition 4 (Thm. 4.1, [35]). Let f : Rd → R, θ1 ∈ Rd,
and θ∗ = argminθ∈Rd f(θ). If f is (ϵ, κ, θ∗)-SLQC at θ for
every θ ∈ Rd, then running the NGD algorithm with learning
rate η = ϵ/κ for number of iterations T ≥ κ2∥θ1 − θ∗∥2/ϵ2
achieves min

t=1,...,T
f(θt)− f(θ∗) ≤ ϵ.

For an (ϵ, κ, θ0)-SLQC function, a smaller ϵ provides better
optimality guarantees. Given ϵ > 0, smaller κ leads to faster
optimization as the number of required iterations increases
with κ2. Finally, by using projections, NGD can be easily

adapted to work over convex and closed sets (e.g., B(θ0, r)
for some θ0 ∈ Rd and r > 0).

D. SLQC Parameters of the α-risk

With the above SLQC preliminaries in hand, we start
quantifying the SLQC parameters of the α-risk, Rα. It can
be shown that for α ∈ (0,∞], Rα is Cd(r, α)-Lipschitz in
θ ∈ Bd(r) where, for α ∈ (0, 1],

Cd(r, α) :=
√
dσ(r

√
d)σ(−r

√
d)1−1/α; (36)

and, for α ∈ (1,∞],

Cd(r, α) :=


√
d
(

α−1
2α−1

)1−1/α (
α

2α−1

)
er

√
d ≥ α−1

α ,
√
dσ(r

√
d)σ(−r

√
d)1−1/α er

√
d < α−1

α .

(37)

Thus, in conjunction with Theorem 2, Corollary 2, and a
result by Hazan et al. in [35] (after Definition 3), we provide
the following result that explicitly characterizes the SLQC
parameters of the α-risk Rα for two separate ranges of α
near 1.

Proposition 5. Suppose that Σ ≻ 0 and θ0 ∈ Bd(r) is fixed.
We have one of the following:

• If r
√
d < arcsinh (1/2), then, for every ϵ > 0, Rα is

(ϵ, Cd(r, α), θ0)-SLQC at θ for every θ ∈ Bd(r) when
α ∈

(
0, (e2r

√
d − er

√
d)−1

]
where Cd(r, α) is given

in (36) and (37);
• Otherwise, for every ϵ > 0, Rα is (ϵ, Cd(r, α), θ0)-SLQC

at θ for every θ ∈ Bd(r) for α ∈ (0, 1].

Thus, by Proposition 4 and (36), the number of iterations
of NGD, Tα, tends to infinity as α tends to zero. This
consequence of the result seems somewhat counterintuitive
because one would expect that increasing convexity (Rα

becomes “more” strongly convex in θ as α decreases, see
Theorem 2 and Fig. 4) would improve the convergence rate.
However, the number of iterations of NGD tends to infinity
as α tends to zero because the Lipschitz constant of Rα,
Cd(r, α) = κ blows up. This phenomenon of the Lipschitz
constant worsening the convergence rate is not merely a fea-
ture of the SLQC theory surrounding NGD. It is also present
in convergence rates for SGD optimizing convex functions,
e.g., see Theorem 14.8 in [4]. Therefore, we find that there
exists a trade-off between the desired strong-convexity of Rα

and the optimization complexity of NGD.
Next, we quantify the evolution of the SLQC parameters of

Rα both in the small radius regime and in the large radius
regime. Since Rα tends more towards the probability of error
(expectation of 0-1 loss) as α approaches infinity, we find
that the SLQC parameters deteriorate and the optimization
complexity of NGD increases as we increase α. Fortunately, in
the logistic model, α-loss exhibits a saturation effect whereby
relatively small values of α resemble the landscape induced by
α = ∞. In order to quantify this effect, we state the following
two Lipschitz inequalities which will also be instrumental for
our main SLQC result.
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Figure 6: An illustration of the saturation phenomenon of α-
loss (Rα for α = 10,∞) in the logistic model for a 2D-GMM
with P[Y = 1] = P[Y = −1], µX|Y=−1 = (−.91, .50)⊺,
µX|Y=1 = (−.27, .20)⊺, Σ = [1.38, .55; .55, 2.18]. Note the
small difference, uniformly over the parameter space, between
R10 and R∞.

Lemma 2. If α, α′ ∈ [1,∞], then, for all θ ∈ Bd(r),

|Rα(θ)−Rα′(θ)| ≤ Ld(θ)

∣∣∣∣α− α′

αα′

∣∣∣∣ , (38a)

∥∇Rα(θ)−∇Rα′(θ)∥ ≤ Jd(θ)

∣∣∣∣α− α′

αα′

∣∣∣∣ , (38b)

where

Ld(θ) :=

(
log
(
1 + e∥θ∥

√
d
))2

2
, (39a)

Jd(θ) :=
√
d log

(
1 + e∥θ∥

√
d
)
σ(∥θ∥

√
d). (39b)

This result is proved in Appendix B2, and it can be applied
to illustrate a saturation effect of α-loss in the logistic model.
That is, let α = 10 and α′ = ∞, then for all θ ∈ Bd(r), we
have that

|R10(θ)−R∞(θ)| ≤ Ld(θ)

10
, (40a)

|∇R10(θ)−∇R∞(θ)| ≤ Jd(θ)

10
, (40b)

where Ld(θ) and Jd(θ) are both given in (39). In words,
the pointwise distance between the α = 10 landscape and
the α = ∞ landscape decreases geometrically; for a visual
representation see Fig. 6.

The saturation effect of α-loss suggests that it is unnecessary
to work with large values of α. In particular, this motivates us
to study the evolution of the SLQC parameters of the α-risk
as we increase α > 1.

Theorem 3. Let α0 ∈ [1,∞], ϵ0, κ0 > 0, and θ0, θ ∈ Bd(r).
If Rα0

is (ϵ0, κ0, θ0)-SLQC at θ and

0 ≤ α− α0 <
α2
0∥∇Rα0(θ)∥

2Jd(θ)
(
1 + r κ0

ϵ0

) , (41)

then Rα is (ϵ, κ, θ0)-SLQC at θ with

ϵ = ϵ0 + 2Ld(θ)

(
α− α0

αα0

)
, (42)

ϵ

κ
=
ϵ0
κ0

1−

(
1 + 2r κ0

ϵ0

)
Jd(θ)(α− α0)

αα0∥∇Rα0
(θ)∥ − Jd(θ)(α− α0)

 . (43)

The proof of Theorem 3 can be found in Appendix B2. The
crux of the proof is a consideration of two cases, dependent
on the location of θ ∈ Bd(r) relative to the ϵ0-plane. The first
case considers θ ∈ Bd(r) such that Rα0(θ) − Rα0(θ0) ≤ ϵ0
and provides the required increase for ϵ to capture such points
as α increases. The second case considers θ ∈ Bd(r) such that
Rα0

(θ) − Rα0
(θ0) > ϵ0 and provides the required decrease

for ϵ/κ to capture such points as α increases. The second case
is far more geometric than the first one, as it makes use of
finer gradient information. As a result, the decrease in ϵ/κ is
more closely related to the landscape evolution of Rα than
the corresponding increase in ϵ. From a numerical point of
view, Proposition 4 implies that reducing the radius of the
ϵ/κ ball about θ0 increases the required number of iterations
(for optimality), and thus reflects the intuition that increasing
α > 1 more closely approximates the intractable 0-1 loss.
While on the contrary, Proposition 4 implies that increasing
the value of ϵ reduces the optimality guarantee itself.

We note that the bounds provided in Theorem 3 are pes-
simistic, but fortunately, we can improve them by employing a
bootstrapping technique - we take infinitesimal steps in α and
repeatedly apply the bounds in Theorem 3 to derive improved
bounds on α, ϵ, and κ. The following result is the culmination
of our analysis regarding the SLQC parameters of the α-risk
in the logistic model. The proof can be found in Appendix B3.

Theorem 4. Let α0 ∈ [1,∞), ϵ0, κ0 > 0, and θ0, θ ∈ Bd(r).
Suppose that Rα0

is (ϵ0, κ0, θ0)-SLQC at θ ∈ Bd(r) and that
there exists gθ > 0 such that ∥∇Rα′(θ)∥ > gθ for every
α′ ∈ [α0,∞]. Then, for every λ ∈ (0, 1), Rαλ

is (ϵλ, κλ, θ0)-
SLQC at θ where

αλ := α0 + λ
α2
0gθ

Jd(θ)
(
1 + 2r κ0

ϵ0

) , (44)

ϵλ := ϵ0 + 2λLd(θ)

(
αλ − α0

αλα0

)
α2
0gθ

Jd(θ)
(
1 + r κ0

ϵ0

) , (45)

ϵλ
κλ

>
ϵ0
κ0

(1− λ). (46)

We now provide three different interpretations and com-
ments regarding the previous result. First regarding the SLQC
parameters themselves, observe from (44) that the bound on
α is improved over Theorem 3 as the factor of 2 in the
denominator in (41) is moved into the parentheses; next, it
can be observed (upon plugging in αλ) that ϵλ in (45) is linear
in λ, which is again an improvement over the first equation
in (42); finally, note that the bound on ϵλ/κλ in (45) is vastly
more tractable and informative than the second expression
in (42). Thus, bootstrapping the bounds of Theorem 3 provides
strong improvements for all three relevant quantities, α, ϵ,
and κ. Next, regarding the extra assumption for Theorem 4
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over Theorem 3, i.e., the existence of a lowerbound gθ on the
norm of the gradient ∥∇Rα′(θ)∥ for all α′ ≥ α0, observe
that this is equivalent to the requirement that the landscape at
θ does not become “flat” for any α′ ≥ α0. In essence, this
is a distributional assumption in disguise, and it should be
addressed in a case-by-case basis. Finally, regarding the effect
of the dimensionality of the feature space, d, on the bounds,
we observe that for θ ∈ Bd(r) and d ∈ N large enough,
Jd(θ) ≈ d∥θ∥ as given in (39). Thus in the high-dimensional
regime, the bound on α, i.e., αλ, is dominated by 1/d. This
implies that the convexity of the landscape worsens as the
dimensionality of the feature/parameter vectors d increases.

While a practitioner would ultimately like to approximate
the 0-1 loss (captured by α = ∞), the bounds presented
in Theorem 4 suggest that the optimization complexity of
NGD increases as α increases. Fortunately, α-loss exhibits a
saturation effect as exemplified in (40) and Fig. 6 whereby
smaller values of α quickly resemble the landscape induced
by α = ∞. Thus, while the optimization complexity increases
as α increases (and increases even more rapidly in the high-
dimensional regime), the saturation effect suggests that the
practitioner need not increase α too much in order to reap the
benefits of the ∞-risk. Therefore, for the logistic model, we
ultimately posit that there is a narrow range of α useful to
the practitioner and we dub this the “Goldilocks zone”; we
explore this theme in the experiments in Section VI.

Before this however, we conclude the theoretical analysis
of α-loss with a study of the empirical α-risk, and we provide
generalization and optimality guarantees for all α ∈ (0,∞].

V. GENERALIZATION AND ASYMPTOTIC OPTIMALITY

In this section, we provide generalization and asymptotic
optimality guarantees for α-loss for α ∈ (0,∞] in the logistic
model by utilizing classical Rademacher complexity tools and
the notion of classification-calibration introduced by Bartlett et
al. in [6]. We invoke the same setting and definitions provided
in Section IV. In addition, we consider the evaluation of α-
loss in the finite sample regime. Formally, let X ∈ [0, 1]d be
the normalized feature and Y ∈ {−1,+1} the label as before,
and let Sn = {(Xi, Yi) : i = 1, . . . , n} be the training dataset
where, for each i ∈ {1, . . . , n}, the samples (Xi, Yi) are
independently and identically drawn according to an unknown
distribution PX,Y . Finally, we let R̂α denote the empirical α-
risk of (24), i.e., for each θ ∈ Bd(r) we have

R̂α(θ) =
1

n

n∑
i=1

lα(Yi, gθ(Xi)). (47)

In the following sections, we consider the generalization
capabilities and asymptotic optimality of a predictor θ ∈ Bd(r)
which is learned through empirical evaluation of α-loss (47).
First, we recall classical results in Rademacher complexity
generalization bounds.

A. Rademacher Complexity Preliminaries

In this section, we provide the main tools we use to derive
generalization bounds for α-loss in the sequel. The techniques
are standard; see Chapter 26 in [4] for a complete discussion.

First, we recall that the Rademacher distribution is the uniform
distribution on the set {−1,+1}. The Rademacher complexity
of a set is as follows.

Definition 4. The Rademacher complexity of a nonempty set
A ⊂ Rn is defined as

R(A) := E
(
sup
a∈A

1

n
⟨σ, a⟩

)
, (48)

where σ = (σ1, σ2, . . . , σn) with σ1, σ2, . . . , σn i.i.d.
Rademacher random variables.

In words, the Rademacher complexity of a set approxi-
mately measures the richness of the set through the max-
imal correlation of its elements with uniformly distributed
Rademacher vectors. The notion of Rademacher complexity
can be used to measure the richness of a hypothesis class as
established in the following proposition.

Proposition 6 (Thm. 26.5, [4]). Let H be a hypothesis class.
Assume that l : X ×Y ×H → R+ is a bounded loss function,
i.e., there exists D > 0 such that for all h ∈ H and for all
(x, y) ∈ (X ,Y) we have that |l(h, (x, y))| ≤ D. Then, with
probability at least 1− δ, for all h ∈ H,∣∣∣Rl(h)− R̂l(h)

∣∣∣ ≤ 2R(l ◦ H ◦ Sn) + 4D

√
2 ln (4/δ)

n
, (49)

where Rl(h) and R̂l(h) denote the true risk and empirical
risk of l, respectively, and2 l ◦H ◦Sn ⊂ Rn which is equal to

{(l(h, (x1, y1)), . . . , l(h, (xn, yn))) : h ∈ H}. (50)

For linear predictors, obtaining a bound on R(l ◦ H ◦ Sn)
is feasible; we now provide two results (in conjunction with
Proposition 6) necessary to derive a generalization bound for
α-loss in the logistic model.

Lemma 3 (Lemma 26.9, [4]). Suppose l̃1, . . . , l̃n : R → R
are r0-Lipschitz functions with common constant r0 ≥ 0. If
l̃ = (l̃1, . . . , l̃n) and A ⊂ Rn, then R(l̃(A)) ≤ r0R(A), where
l̃(A) := {(l̃1(a1), . . . , l̃n(an)) : a ∈ A}.

The previous result, known as the Contraction Lemma,
provides an upperbound on the Rademacher complexity of the
composition of a function acting on a set. For our purposes,
one can think of l̃ = (l̃1, . . . , l̃n) as a margin-based loss
function acting on a training set with n samples - this will be
further elaborated in the sequel. The following result provides
an upperbound on the Rademacher complexity of the set
comprised of inner products between a given parameter vector
drawn from a bounded space and the n-sample training set.

Lemma 4 (Lemma 26.10, [4]). Let x1:n = {x1, . . . , xn} be a
set of vectors each in Rd, and define the following composition
H ◦ x1:n = {(⟨θ, x1⟩, . . . , ⟨θ, xn⟩) : ∥θ∥2 ≤ r}. Then,

R(H ◦ x1:n) ≤
rmaxi∈[n] ∥xi∥2√

n
. (51)

With the above Rademacher complexity preliminaries in
hand, we now apply these results to derive a generalization
bound for α-loss in the logistic model.

2In (49) we present the two-sided version of Theorem 26.5 in [4], which can
be readily obtained via the symmetrization technique.
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B. Generalization and Asymptotic Optimality of α-loss

We now present the following Lipschitz inequality for
the margin-based α-loss (Definition 2) and will be useful
in applying Proposition 6. It can readily be shown that the
margin-based α-loss, l̃α is Cr0(α)-Lipschitz in z ∈ [−r0, r0]
for every r0 > 0, where for α ∈ (0, 1],

Cr0(α) := σ(r0)σ(−r0)1−1/α; (52)

and, for α ∈ (1,∞],

Cr0(α) :=


(

α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α ,

σ(r0)σ(−r0)1−
1
α er0 < α−1

α .
(53)

That is, for α ∈ (0,∞] and z, z′ ∈ [−r0, r0], we have that
|l̃α(z)− l̃α(z′)| ≤ Cr0(α)|z−z′|; see Lemma 6 in Appendix C
for the proof. Lastly, note that for any fixed r0 > 0, Cr0(α)
is monotonically decreasing in α.

With the Lipschitz inequality for l̃α in hand, we are now
in a position to state a generalization bound for α-loss in the
logistic model.

Theorem 5. If α ∈ (0,∞], then, with probability at least 1−δ,
for all θ ∈ Bd(r),∣∣∣Rα(θ)− R̂α(θ)

∣∣∣ ≤ Cr
√
d (α)

r
√
d√
n

+Dr
√
d (α)

√
log
(
4
δ

)
n

,

(54)
where Cr

√
d (α) is given in (52) and (53) and where Dr

√
d (α)

is given by Dr
√
d (α) := 4

√
2

α

α− 1

(
1− σ(−r

√
d)1−1/α

)
.

Note that Dr
√
d(α) is also monotonically decreasing in α

for fixed r
√
d > 0. Thus, Theorem 5 seems to suggest that

generalization improves as α→ ∞. However, because Rα and
R̂α also monotonically decrease in α, it is difficult to reach
such a conclusion. Nonetheless, Corollary 3 in Appendix C
offers an attempt at providing a unifying comparison between
the ∞-risk, R∞, and the empirical α-risk, R̂α.

Lastly, observe that for the generalization result in Theo-
rem 5, we make no distributional assumptions such as those
by Tsybakov, et. al in [66], where they assume the posterior
satisfies a margin condition. Under such an assumption, we
observe that faster rates could be achieved, but optimal rates
are not the focus of this work. Nonetheless, the next theorem
relies on the assumption that the minimum α-risk is attained
by the logistic model, i.e., given α ∈ (0,∞], suppose that

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (55)

where Rα(θ) is given in (25) and Rα(f) = E[l̃α(Y f(X))] for
all measurable f .

Theorem 6. Assume that the minimum α-risk is attained by
the logistic model, i.e., (55) holds. Let Sn be a training dataset
with n ∈ N samples as before. If for each n ∈ N, θ̂αn is a global
minimizer of the associated empirical α-risk θ 7→ R̂α(θ), then
the sequence (θ̂αn)

∞
n=1 is asymptotically optimal for the 0-1

risk, i.e., almost surely,

lim
n→∞

R(fθ̂α
n
) = R∗, (56)

where fθ̂α
n
(x) = ⟨θ̂αn , x⟩ for each n ∈ N and the Bayes risk

R∗ is given by R∗ := min
f :X→R

P[Y ̸= sign(f(X))].

In words, setting the optimization procedure aside, utilizing
α-loss for a given α ∈ (0,∞] is asymptotically optimal with
respect to the probability of error (expectation of the 0-1
loss). Observe that the assumption in (55) is a stipulation
for the the underlying data-generating distribution, PX,Y , in
disguise. That is, we assume that PX,Y is separable by a
linear predictor, which is a global minimizer for the α-risk.
In essence, Theorem 6 is a combination of Theorem 5 and
classification-calibration.

With the statistical, optimization, and generalization con-
siderations of α-loss behind us, we now provide experimental
results in two canonical settings for α-loss in logistic and
convolutional-neural-network models.

VI. EXPERIMENTAL RESULTS

As was first introduced in Section III-C, in this section we
further experimentally evaluate the efficacy of α-loss in the
following two canonical scenarios:
(i) Noisy labels: the classification algorithm is trained on
a binary-labeled dataset that suffers from symmetric noisy
labels, and it attempts to produce a model which achieves
strong performance on the clean test data.
(ii) Class imbalance: the classification algorithm is trained on
a binary-labeled dataset that suffers from a class imbalance,
and it attempts to produce a model which achieves strong
performance on the balanced test data.
Our hypotheses are as follows: for setting (i), tuning α > 1
(away from log-loss) improves the robustness of the trained
model to symmetric noisy labels; for setting (ii), tuning
α < 1 (again away from log-loss) improves the sensitivity
of the trained model to the minority class. In general, we
experimentally validate both hypotheses.

In our experimental procedure, we use the following image
datasets: MNIST [67], Fashion MNIST (FMNIST) [68], and
CIFAR-10 [69]. While these datasets have predefined training
and test sets, we present binary partitions of these datasets
for both settings in the main text, in alignment with our
theoretical investigations of α-loss for binary classification
problems; in Appendix D4, we present multiclass symmetric
noise experiments for the MNIST and FMNIST datasets.
Regarding the binary partitions themselves, we chose classes
which are visually similar in order to increase the difficulty
of the classification task. Specifically, for MNIST we used a
binary partition on the 1 and 7 classes, for FMNIST we used
a binary partition on the T-Shirt and Shirt classes, and finally
for our binary experiments on CIFAR-10 we used a binary
partition on the Cat and Dog classes.

All code is written in PyTorch, version 1.30 [70]. Archi-
tectures learning CIFAR are trained with GPUs, while the
architectures learning MNIST and FMNIST are both trained
with CPUs. Throughout, we consider two broad classes of
architectures: logistic regression (LR) and convolutional neural
networks (CNNs) with one or two fully connected layers
preceded by varying convolutional layer depths (2, 3, 4, and
6) such that we obtain the shorthand CNN X+Y where X is

Authorized licensed use limited to: ASU Library. Downloaded on June 10,2022 at 01:45:17 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3169440, IEEE
Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 13

one of 2, 3, 4, or 6 and Y is one of 1 or 2. For all architectures
learning CIFAR, we additionally use a sigmoid at the last layer
for smoothing. For each set of experiments, we randomly fix a
seed, and for each iteration we reinitialize a new architecture
with randomly selected weights. We use softmax activation
to generate probabilities over the labels, and we evaluate the
model’s soft belief using α-loss on a one-hot-encoding of the
training data.

All (dataset, architecture) tuples were trained with the same
optimizer, vanilla SGD, with fixed learning rates. In order to
provide the fairest comparison to log-loss (α = 1), for each
(dataset, architecture) tuple we select a fixed learning rate from
the set {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}
which provides the highest validation accuracy for a model
trained with log-loss. Then for the chosen (dataset, architec-
ture) tuple, we train α-loss for each value of α using this
fixed learning rate. Regarding the optimization of α-loss itself
which is parameterized by α ∈ (0,∞], in general we find that
searching over α ∈ [.8, 8] for noisy labels and α ∈ [.8, 4] for
class imbalances is sufficient, and we typically do so in step-
sizes of 0.1 or 0.05 (near α = 1) or a step-size of 1 (when
α > 1). This is in line with our earlier theoretical discussions
regarding the “Goldilocks zone” of α-loss, i.e., the gradient
explosion for very small values of α, the increased difficulty of
optimization for large values of α, and the fact that relatively
small values of α closely approximate the ∞-loss.

For all experiments, we employ a training batch size of 128
examples. For all experiments on the MNIST and FMNIST
datasets, training was allowed to progress for 50 epochs; for
all experiments on the CIFAR-10 dataset, training was allowed
to progress for 120 epochs - convergence for all values of α
was ensured for both choices. Lastly, for each architecture we
re-run each experiment 10 times and report the average test
accuracies calculated according to the relative accuracy gain,
which we rewrite for our experimental setting as

rel acc gain % =
|α-loss acc − log-loss acc|

log-loss acc
× 100, (57)

where we use acc to denote test accuracy. Also note that α∗

is chosen as the α over the search range which maximizes the
average test accuracy of its trained models. For more details
regarding architecture configurations (i.e., CNN channel sizes,
kernel size, etc) and general experiment details, we refer the
reader to the code for all of our experiments (including the
implementation of α-loss), which can be found at [71].

A. Noisy Labels

For the first set of experiments, we evaluate the robustness
of α-loss to symmetric noisy labels, and we generate symmet-
ric noisy labels in the binary training data as follows:

1) For each run of an experiment, we randomly select 0-40%
of the training data in increments of 10%.

2) For each training example in the randomly selected group,
we flip the label of the selected training example.

Note that for all symmetric noisy label experiments we keep
the test data clean, i.e., we do not perform label flips on
the test data. Thus, these experiments address the scenario

where training data is noisy and test data is clean. Also note
that during our 10-iteration averaging for each accuracy value
presented in each table, we are also randomizing over the
symmetric noisy labels in the training data.

The results on the binary MNIST dataset (composed of
classes 1 and 7), binary FMINIST dataset (composed of
classes T-Shirt and Shirt), and binary CIFAR-10 (composed
of classes Cat and Dog) are presented in Tables I, II, and III,
respectively. As stated previously, in order to report the fairest
comparison between log-loss and α-loss, we first find the
optimal fixed learning rate for log-loss from our set of learning
rates (given above), then we train each chosen architecture
with α-loss for all values of α also with this found fixed
learning rate. Following this procedure, for the binary MNIST
dataset, we trained both the LR and CNN 2+2 architectures
with a fixed learning rate of 10−2; for the binary FMNIST
dataset, we trained the LR and CNN 2+2 architectures with
fixed learning rates of 10−4 and 5 × 10−3, respectively; for
the binary CIFAR-10 dataset, we trained the CNN 2+1, 3+2,
4+2, and 6+2 architectures with fixed learning rates of 10−2,
10−1, 5× 10−2, and 10−1, respectively.

Regarding the results presented in Tables I, II, and III, in
general we find for 0% label flips (from now on referred
to as baseline) the extra α hyperparameter does not offer
significant gains over log-loss in the test results for each
(dataset, architecture) tuple. However once we start to increase
the percentage of label flips, we immediately find that α∗

increases greater than 1 (log-loss). Indeed for each (dataset,
architecture) tuple, we find that as the number of symmetric
label flips increases, training with α-loss for a value of α > 1
increases the test accuracy on clean data, often significantly
outperforming log-loss. Note that this performance increase
induced by the new α hyperparameter is not monotonic as
the number of label flips increases, i.e., there appears to be
a noise threshold past which the performance of all losses
decays, but this occurs for very high noise levels, which are
not usually present in practice. Recalling Section III-C, the
strong performance of α-loss for α > 1 on binary symmetric
noisy training labels can intuitively be accounted for by the
quasi-convexity of α-loss in this regime, i.e., the reduced
sensitivity to outliers. Thus, we conclude that the results in
Tables I, II, and III on binary MNIST, FMNIST, and CIFAR-
10, respectively, indicate that practitioners should employ α-
loss for α > 1 when training robust architectures to combat
against binary noisy training labels. Lastly, we report two
experiments for multiclass symmetric noisy training labels in
Appendix D4. In short, we find similar robustness to noisy
labels for α > 1, but we acknowledge that further empirical
study of α-loss on multiclass datasets is needed.

B. Class Imbalance

For the second set of experiments, we evaluate the sensi-
tivity of α-loss to class imbalances, and we generate binary
class imbalances in the training data as follows:

1) Given a dataset, select two classes, Class 1 and Class 2,
and generate baseline 50/50 (balanced) data, i.e., such
that |Class 1| = |Class 2| = 2500 training examples. For
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Arch LF % LL Acc % α∗ Acc % α∗ Gain %
0 99.26 99.26 0.95,1 0.00

10 99.03 99.13 6 0.10
LR 20 98.65 99.03 7 0.39

30 97.89 98.96 3.5 1.10
40 92.10 98.53 8 6.98
0 99.83 99.84 4-8 0.01

10 95.27 99.68 6,7 4.63
CNN 2+2 20 87.41 98.72 8 12.94

30 77.56 87.86 8 13.28
40 62.89 66.10 8 5.12

Table I: Symmetric binary noisy label experiment on MNIST
classes 1 and 7. Note that Arch stands for architecture, LF
for label flip, LL Acc and α Acc stand for log-loss accuracy
and α-loss accuracy for α∗, respectively, and that Gain %
is calculated according to (57). Also note that each reported
accuracy is averaged over 10 runs.

Arch LF % LL Acc % α∗ Acc % α∗ Gain %
0 84.51 84.78 1.5 0.32
10 83.80 84.41 2 0.72

LR 20 83.11 83.94 2.5 1.01
30 81.29 83.43 3 2.63
40 74.39 92.02 8 23.69
0 86.96 87.19 1.1 0.27
10 81.14 83.74 5 3.20

CNN 2+2 20 72.96 78.00 8 6.93
30 66.17 69.21 8 4.59
40 57.90 58.56 3 1.15

Table II: Symmetric binary noisy label experiment on classes
T-Shirt and Shirt of the FMNIST dataset.

Arch LF % LL Acc % α∗ Acc % α∗ Gain %
0 80.59 80.68 0.99 0.11

10 79.61 79.89 1.1 0.35
CNN 2+1 20 77.01 77.15 0.99 0.19

30 73.67 74.78 2.5 1.51
40 63.54 68.12 4 7.21
0 85.80 85.80 1 0.00

10 82.92 83.15 0.99 0.28
CNN 3+2 20 77.61 80.88 3 4.21

30 69.53 76.72 5 10.34
40 59.44 67.19 6 13.04
0 87.49 87.59 0.9 0.12

10 83.65 84.69 1.2 1.25
CNN 4+2 20 78.96 81.39 3.5 3.07

30 69.24 75.56 6 9.13
40 59.12 64.53 8 9.15
0 87.31 87.93 1.2 0.70

10 84.91 85.33 2 0.49
CNN 6+2 20 78.92 81.80 6 3.64

30 68.88 77.20 7 12.09
40 58.54 65.16 7 11.32

Table III: Symmetric binary noisy label experiment on
CIFAR-10 classes Cat and Dog.

all experiments ensure that |Class 1|+ |Class 2| = 5000
randomly drawn training examples.

2) Starting at the baseline (2500/2500) and drawing from
the available training examples in each dataset when
necessary, increase the number of training examples of
Class 1 by 500, 1000, 1500, 2000, and 2250 and reduce
the number of training examples of Class 2 by the same
amounts in order to generate training example splits of
60/40, 70/30, 80/20, 90/10, and 95/5, respectively.

3) Repeat the previous step where the roles of Class 1 and
Class 2 are reversed.

Note that the test set is balanced for all experiments with 2000
test examples (1000 for each class). Thus, these experiments
address the scenario where training data is imbalanced and the
test data is balanced. Also note that during our 10-iteration
averaging for each accuracy value presented in each table, we
are also randomizing over the training examples present in
each class imbalance split, according to the procedure above.

The results on binary FMNIST (composed of classes T-
Shirt and Shirt) and binary CIFAR-10 (composed of classes
Cat and Dog) are presented in Tables IV, V, and VI. For this
set of experiments, note that α∗ is the optimal α ∈ [0.8, 4]
(in our search set) which maximizes the average test accuracy
of the minority class, and also note that there are slight test
accuracy discrepancies between the baselines in the symmetric
noisy labels and class imbalance experiments because of the
reduced training and test set size for the class imbalance
experiments. For the binary FMNIST dataset, we trained the
LR and CNN 2+2 architectures with fixed learning rates
of 10−4 and 5 × 10−3, respectively; for the binary CIFAR-
10 dataset, we trained the CNN 2+1, 3+2, 4+2, and 6+2
architectures with fixed learning rates of 10−2, 10−1, 5×10−2,
and 10−1, respectively.

In general, we find that the minority class is almost always
favored by the smaller values of α, i.e., we typically have that
α∗ < 1. Further, we observe that as the percentage of class
imbalance increases, the relative accuracy gain on the minority
class typically increases through training with α-loss. This
aligns with our intuitions articulated in Section III-C regarding
the benefits of “stronger” convexity of α-loss when α < 1 over
log-loss (α = 1), particularly when the practitioner desires
models which are more sensitive to outliers. Nonetheless,
sometimes there does appear to exist a trade-off between how
well learning the majority class influences predictions on the
minority class, see e.g., recent work in the area of stiffness by
Fort et al. [72]. This is a possible explanation for why α < 1
is not always preferred for the minority class, e.g., 30% and
40% imbalance in Table V when Dog is the minority class.
Thus we conclude that the results in Tables IV, V, and VI,
on binary FMNIST and CIFAR-10, respectively, indicate that
practitioners should employ α-loss (typically) for α < 1 when
training architectures to be sensitive to the minority class in
the training data.

C. Key Takeaways

We conclude this section by highlighting the key takeaways
from our experimental results.
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Log-Loss α-Loss
Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50 T-Shirt 85.4 84.31 0.8448 85.7 84.17 0.8441 1.5 0.35
Shirt 83.2 84.31 0.8413 83.4. 84.33 0.8418 0.85 0.24

40 T-Shirt 80.0 83.68 0.8306 80.2. 83.73 0.8313 1.1 0.25
Shirt 77.7 83.88 0.8282 77.7 83.90 0.8284 0.99 0.00

30 T-Shirt 72.9 81.89 0.8010 73.0 81.88 0.8011 0.99 0.14
Shirt 70.8 82.04 0.7977 72.3 82.52 0.8053 0.8 2.12

20 T-Shirt 60.9 77.97 0.7344 61.7 78.20 0.7389 0.8 1.31
Shirt 63.1 79.81 0.7576 64.5 80.40 0.7669 0.8 2.22

10 T-Shirt 43.0 70.50 0.5931 45.2 71.50 0.6133 0.8 5.12
Shirt 55.2 76.97 0.7056 56.0 77.25 0.7111 0.8 1.45

5 T-Shirt 24.6 61.85 0.3920 26.0 62.54 0.4097 0.8 5.69
Shirt 47.5 73.52 0.6421 47.6 73.48 0.6422 0.8 0.21

Table IV: Binary FMNIST Logistic Regression Imbalance Experiments on the T-Shirt and Shirt classes. Note that LL-F1

corresponds to the F1 score of log-loss on the imbalanced class; similarly α∗-F1 corresponds to the F1 score of α∗-loss on
the imbalanced class. See Appendix D1 for a brief review of the definition of the F1 score. The relative % gain is defined
as the relative percent gain (57) on the average minority class accuracy (on test data) of models trained with log-loss vs. the
average minority class accuracy of models trained with α-loss. Note that Ov = Overall. Lastly, observe that for the baseline
(50% imbalance) experiments, we present the accuracy and α∗ for both classes.

Log-Loss α-Loss
Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50 Cat 83.7 83.48 0.8352 87.2 83.86 0.8438 1.1 4.18
Dog 83.3 83.48 0.8345 86.1 84.06 0.8438 0.99 3.36

40 Cat 79.8 83.34 0.8273 82.7 83.39 0.8327 0.95 3.63
Dog 78.4 83.85 0.8292 82.4 83.20 0.8306 2.5 5.10

30 Cat 73.0 81.98 0.8020 74.6 82.40 0.8000 0.99 2.19
Dog 72.0 82.00 0.8091 74.9 83.18 0.8166 1.2 4.03

20 Cat 64.6 78.96 0.7543 66.2 78.85 0.7579 0.8 2.48
Dog 63.1 78.94 0.7498 65.0 79.79 0.7628 0.8 3.01

10 Cat 39.1 68.04 0.5502 41.6 68.88 0.5721 0.9 6.39
Dog 42.1 70.03 0.5842 48.5 72.53 0.6384 0.8 15.20

5 Cat 0.0 50.00 0.0000 9.6 54.48 0.1742 0.8 ∞
Dog 10.0 54.94 0.1816 23.2 61.31 0.3749 0.8 132.00

Table V: Binary CIFAR-10 CNN 4+2 Imbalance Experiments on Cat and Dog classes. Note that LL-F1 corresponds to the
F1 score of log-loss on the imbalanced class; similarly α∗-F1 corresponds to the F1 score of α∗-loss on the imbalanced class.
Note that due to our calculation of Rel % Gain that division by 0 is ∞, and thus absolute % gain for the minority class Cat
at a 5% imbalance is 9.6%.

Overall Performance Relative to Log-loss: The experi-
mental results as evidenced through Tables I to VI suggest that
α-loss, more often than not, yields models with improvements
in test accuracy over models trained with log-loss, with more
prominent gains in the canonical settings of noisy labels and
class imbalances in the training data. In order to remedy the
extra hyperparameter tuning induced by the seemingly daunt-
ing task of searching over α ∈ (0,∞], we find that searching
over α ∈ [.8, 8] in the noisy label experiments or α ∈ [.8, 4] in
the class imbalance experiments is sufficient. This aligns with
our earlier theoretical investigations (Section IV) regarding
the so-called “Goldilocks zone”, i.e., most of the meaningful
action induced by α occurs in a narrow region. Notably in the
class imbalance experiments, we find that the relevant region
is even narrower than our initial choice, i.e., α∗ ∈ [.8, 2.5]
(in our search set) for all imbalances. For the noisy label
experiments, we always find that α∗ > 1 and usually α is
not too large, and for the class imbalance experiments, we
almost always find that α∗ < 1. These two heuristics enable
the practitioner to readily determine a very good α in these
two canonical scenarios. Consequently, α-loss seems to be a

principled generalization of log-loss for the practitioner, and
it perhaps remedies the concern of Janocha et al. in [28]
regarding the lack of canonical alternatives to log-loss (cross-
entropy loss) in modern machine learning.

VII. CONCLUSIONS

In this work, we introduced a tunable loss function called α-
loss, α ∈ (0,∞], which interpolates between the exponential
loss (α = 1/2), the log-loss (α = 1), and the 0-1 loss
(α = ∞), for the machine learning setting of classification. We
illustrated the connection between α-loss and Arimoto condi-
tional entropy (Section II), and then we studied the statistical
calibration (Section III), optimization landscape (Section IV),
and generalization capabilities (Section V) of α-loss induced
by navigating the α hyperparameter. Regarding our main
theoretical results, we showed that α-loss is classification-
calibrated for all α ∈ (0,∞]; we also showed that in the
logistic model there is a “Goldilocks zone”, such that most
of the meaningful action induced by α occurs in a narrow
region (usually α ∈ [.8, 8]); finally, we showed (under standard
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Log-Loss α-Loss
Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50 Cat 84.4 84.30 0.8432 85.2 84.93 0.8497 0.99 0.95
Dog 84.1 84.30 0.8427 87.0 83.91 0.8439 2 3.45

40 Cat 80.3 83.79 0.8320 82.4 84.87 0.8449 0.8 2.62
Dog 81.2 84.91 0.8433 84.0 84.83 0.8470 0.9 3.45

30 Cat 74.2 82.72 0.8111 78.2 83.32 0.8242 0.8 5.39
Dog 73.0 82.92 0.8104 77.2 83.60 0.8248 0.9 5.75

20 Cat 64.6 78.98 0.7545 64.6 78.98 0.7545 1 0.00
Dog 67.4 81.02 0.7803 70.2 81.75 0.7937 0.99 4.15

10 Cat 38.0 67.69 0.5405 41.8 69.34 0.5769 0.85 10.00
Dog 46.4 72.14 0.6248 50.1 73.53 0.6543 0.9 7.97

5 Cat 1.7 50.80 0.0334 13.6 56.26 0.2372 0.8 700.00
Dog 23.7 61.44 0.3807 31.0 64.90 0.4690 0.8 30.80

Table VI: Binary CIFAR-10 CNN 6+2 Imbalance Experiments on Cat and Dog classes.

distributional assumptions) that empirical minimizers of α-
loss for all α ∈ (0,∞] are asymptotically optimal with
respect to the true 0-1 loss. Practically, following intuitions
developed in Section III-C, we performed noisy label and class
imbalance experiments on MNIST, FMNIST, and CIFAR-10
using logistic regression and convolutional neural networks
(Section VI). Furthermore, we showed that models trained with
α-loss can be more robust or sensitive to outliers (depending
on the practitioner’s choice) over models trained with log-loss
(α = 1). Therefore, we argue that α-loss seems to be a prin-
cipled generalization of log-loss for classification algorithms
in modern machine learning. Regarding promising avenues to
further explore the role of α-loss in machine learning, the
robustness of neural-networks to adversarial influence has re-
cently drawn much attention [73]–[75] in addition to learning
censored and fair representations that ensure statistical fairness
for all downstream learning tasks [76].

APPENDIX

A. α-loss in Binary Classification

Proposition 2. Consider a soft classifier g(x) = PŶ |X(1|x).
If f(x) = σ−1(g(x)), then, for every α ∈ (0,∞],

lα(y, g(x)) = l̃α(yf(x)). (58)

Conversely, if f is a classification function, then the set of
beliefs PŶ |X associated to g(x) := σ(f(x)) satisfies (11). In
particular, for every α ∈ (0,∞],

min
g

EX,Y (l
α(Y, g(x))) = min

f
EX,Y (l̃

α(Y f(X))). (59)

Proof. Consider a soft classifier g and let PŶ |X be the set
of beliefs associated to it. Suppose f(x) = σ−1(g(x)), where
g(x) = PŶ |X(1|x). We want to show that

lα(y, PŶ |X=x) = l̃α(yf(x)). (60)

We assume that α ∈ (0, 1)∪(1,∞). Note that the cases where
α = 1 and α = ∞ follow similarly.

Suppose that g(x) = PŶ |X(1|x) = σ(f(x)). If y = 1, then

lα(1, PŶ |X(1|x)) = lα(1, σ(f(x))) (61)

=
α

α− 1

[
1− σ(f(x))1−1/α

]
(62)

= l̃α(f(x)). (63)

If y = −1, then

lα(−1, PŶ |X(−1|x)) = lα(−1, 1− PŶ |X(1|x)) (64)

= lα(−1, 1− σ(f(x))) (65)
= lα(−1, σ(−f(x))) (66)

=
α

α− 1
[1− σ(−f(x))1−1/α] (67)

= l̃α(−f(x)), (68)

where (66) follows from

σ(x) + σ(−x) = 1, (69)

which can be observed by (9). To show the reverse direction
of (60) we substitute

f(x) = σ−1(g(x)) = σ−1(PŶ |X(1|x)), (70)

in l̃α(yf(x)). For y = 1,

l̃α(f(x)) = l̃α(σ−1(PŶ |X(1|x))) (71)

=
α

α− 1
[1− (σ(σ−1(PŶ |X(1|x))))1−1/α] (72)

=
α

α− 1
[1− PŶ |X(1|x)1−1/α] (73)

= lα(1, PŶ |X(1|x)). (74)

For y = −1,

l̃α(−f(x)) = l̃α(−σ−1(PŶ |X(1|x))) (75)

=
α

α− 1
[1− σ(−σ−1(PŶ |X(1|x)))1−1/α] (76)

=
α

α− 1
[1− (1− σ(σ−1(PŶ |X(1|x))))1−1/α]

(77)

=
α

α− 1
[1− PŶ |X(−1|x)1−1/α] (78)

= lα(−1, PŶ |X(−1|x)), (79)

where (77) follows from (69).
The equality in the results of the minimization procedures

follows from the equality between lα and l̃α. As was shown
in [17], the minimizer of the left-hand-side is

P ∗
Ŷ |X(y|x) =

PY |X(y|x)α∑
y
PY |X(y|x)α

. (80)
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Using f(x) = σ−1(PŶ |X(1|x)), f∗(x) = σ−1(P ∗
Ŷ |X(1|x)).

Proposition 3. As a function of the margin, l̃α : R → R+ is
convex for α ≤ 1 and quasi-convex for α > 1.

Proof. The second derivative of the margin-based α-loss for
α ∈ (0,∞] with respect to the margin is given by

d2

dz2
l̃α(z) =

(e−z + 1)1/αez(αez − α+ 1)

α(ez + 1)3
. (81)

Observe that if α ∈ (0, 1], then we have that, for all z ∈ R,
d2

dz2
l̃α(z) ≥ 0, which implies that l̃α is convex [62]. If we

have α ∈ (1,∞], then note that αez −α+1 < 0 for all z ∈ R
such that z < log

(
1− α−1

)
. Thus, the margin-based α-loss,

l̃α, is not convex for α ∈ (1,∞]. However, observe that

d

dz
l̃α(z) =

−(e−z + 1)1/αez

(1 + ez)2
. (82)

Since
d

dz
l̃α(z) < 0 for α ∈ [1,∞] and for all z ∈ R, l̃α

is monotonically decreasing. Furthermore, since monotonic
functions are quasi-convex [62], we have that l̃α is quasi-
convex for α > 1.

Theorem 1. For α ∈ (0,∞], the margin-based α-loss l̃α is
classification-calibrated. In addition, its optimal classification
function is given by

f∗α(η) = α · σ−1(η). (83)

Proof. We first show that l̃α is classification-calibrated for all
α ∈ (0,∞]. Suppose that α ∈ (0, 1]; we rely on the following
result by Bartlett et al. in [6].

Proposition 7 (Thm. 6, [6]). Suppose ϕ : R → R is a convex
function in the margin. Then ϕ is classification-calibrated if
and only if it is differentiable at 0 and ϕ′(0) < 0.

Observe that l̃α is smooth and monotonically decreasing for
all α ∈ (0,∞], and for α ∈ (0, 1], l̃α is convex by Proposition
3. Thus, l̃α satisfies Proposition 7, which implies that l̃α is
classification-calibrated for α ∈ (0, 1).

Now consider α ∈ (1,∞). Since classification-calibration
requires proving that the minimizer of (14) agrees in sign
with the Bayes predictor, we first obtain the minimizer of the
conditional risk for all η ̸= 1/2. We have that

inf
f∈R

Cl̃α(η, f) = inf
f∈R

ηl̃α(f) + (1− η)l̃α(−f) (84)

=
α

α− 1

(
1− sup

f∈R

[
ησ(f)1−1/α + (1− η)σ(−f)1−1/α

])
,

(85)

where we substituted l̃α into (84) and pulled the infimum
through. We take the derivative of the expression inside the
supremum, which we denote g(η, α, f), and obtain

d

df
g(η, α, f) =

(
1− 1

α

)(
1

ef + 2 + e−f

)
×
[
η
(
1 + e−f

) 1
α − (1− η)

(
1 + ef

) 1
α

]
.

(86)

One can then obtain the f∗ minimizing (84) by setting
d

df
g(η, α, f) = 0, i.e.,

η
(
1 + e−f∗

)1/α
= (1− η)

(
1 + ef

∗
)1/α

, (87)

and solving for f∗ we have

f∗α(η) = α log
( η

1− η

)
= α · σ−1(η). (88)

Recall that the Bayes predictor, which is optimal, is given by
hBayes(η) = sign(2η − 1), and notice that the classification
function representation is simply fBayes(η) = 2η− 1. Observe
that for all η ̸= 1/2 and for α ∈ [1,∞) (indeed α < 1 as
well), we have that sign(fBayes(η)) = sign(f∗α(η)). Thus, l̃α is
classification-calibrated for α ∈ (0,∞). Lastly, if α = +∞,
then l̃α becomes

l̃∞(z) = 1− σ(z) =
ez

1 + ez
, (89)

which is sigmoid loss. Similarly, sigmoid loss can be shown
to be classification-calibrated as is given in [6]. Therefore, l̃α

is classification-calibrated for all α ∈ (0,∞].
Finally, note that the proof of classification-calibration

yielded the optimal classification function given in (88) for all
α ∈ (0,∞]. Alternatively, the optimal classification function
can be obtained from Proposition 1 by Liao et al. Specifi-
cally, substitute the α-tilted distribution (6) for a binary label
Y = {−1,+1} into (10) as stated by Proposition 2. Indeed,
we have that

f∗(x) = σ−1(P ∗
Ŷ |X(1|x)) (90)

= log

(
PY |X(1|x)α

PY |X(−1|x)α

)
(91)

= α log

(
η(x)

1− η(x)

)
, (92)

which aligns with (16).

Corollary 1. For α ∈ (0,∞], the minimum conditional risk
C∗

α(η) of l̃α is equal to
α

α−1

(
1− (ηα + (1− η)α)1/α

)
α ∈ (0, 1) ∪ (1,+∞),

−η log η − (1− η) log (1− η) α = 1,

min{η, 1− η} α→ +∞.

(93)
Proof. For α = 1, we recover logistic loss and we know from
[7] and [1] that the minimum conditional risk is given by

C∗
1 (η) = −η log η − (1− η) log (1− η). (94)

Similarly, for α = ∞, we recover the sigmoid loss and we
know from [6] and [1] that the minimum conditional risk is
given by

C∗
∞(η) = min{η, 1− η}. (95)

Thus, we now consider the case where α ∈ (0,∞) \ {1}. The
conditional risk of l̃α is given by

Cα(η, f) = ηl̃α(f) + (1− η)l̃α(−f) (96)

=
α

α− 1

[
1− ησ(f)1−1/α − (1− η)σ(−f)1−1/α

]
,

(97)
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where we substituted (8) into (96). We can obtain the minimum
conditional risk upon substituting (16) into (97) which yields

C∗
α(η) =

α

α− 1
− α

α− 1
(1− η)

(
(1− η)α

ηα + (1− η)α

)1−1/α

− α

α− 1
η

(
ηα

ηα + (1− η)α

)1−1/α

(98)

=
α

α− 1

[
1− (ηα + (1− η)α)1/α

]
, (99)

where the last equation is obtained after some algebra. Finally,
observe that C∗

1/2(η) = 2
√
η(1− η), which aligns with [7].

B. Optimization Guarantees for α-loss in the Logistic Model

Theorem 2. Let Σ := E[XX⊺]. If α ∈ (0, 1], then Rα(θ) is
Λ(α, r

√
d)min

i∈[d]
λi (Σ)-strongly convex in θ ∈ Bd(r), where

Λ(α, r
√
d) :=σ(r

√
d)1−1/α

×
(
σ′(r

√
d)−

(
1− 1

α

)
σ(−r

√
d)2
)
.

(100)

Proof. For each α ∈ (0, 1], it can readily be shown that
each component of F2(α, θ, x, y) is positive and monotonic
in ⟨θ, x⟩, which implies that F2(α, θ, x, y) ≥ Λ(α, r

√
d) > 0.

Now, consider Rα(θ) = E[lα(Y, gθ(X))]. We have

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (101)

= EX,Y [F2(α, θ,X, Y )XX⊺] (102)

⪰ Λ(α, r
√
d)E[XX⊺] (103)

= Λ(α, r
√
d)Σ ⪰ 0, (104)

where we used an identity of positive semi-definite matrices
for (103) (see, e.g., [77, Ch. 7]); for (104), we used the fact
that Λ(α, r

√
d) ≥ 0 and we recognize that Σ is positive

semi-definite as it is the correlation of the random vector
X ∈ [0, 1]d (see, e.g., [78, Ch. 7]). We also note that
mini∈[d] λi (Σ) ≥ 0 (see, e.g., [77, Ch. 7]). Thus, ∇2

θRα(θ)
is positive semi-definite for every θ ∈ Bd(r). Therefore,
since λmin(∇2Rα(θ)) ≥ Λ(α, r

√
d)mini∈[d] λi (Σ) ≥ 0 for

every θ ∈ Bd(r), which follows by the Courant-Fischer
min-max theorem [77, Theorem 4.2.6], we have that Rα is
Λ(α, r

√
d)mini∈[d] λi (Σ)-strongly convex for α ∈ (0, 1].

Corollary 2. Let Σ := E[XX⊺]. If r
√
d < arcsinh (1/2),

then Rα(θ) is Λ̃(α, r
√
d)mini∈[d] λi (Σ)-strongly convex in

θ ∈ Bd(r) for α ∈
(
0, (e2r

√
d − er

√
d)−1

]
, where

Λ̃(α, r
√
d) :=σ(−r

√
d)2−1/α

× σ(r
√
d)

(
1− er

√
d +

1

α
e−r

√
d

)
. (105)

Proof. Let θ ∈ Bd(r) be arbitrary. We similarly have that

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (106)

= EX,Y [gθ(Y X)1−1/α(g′θ(Y X)

−
(
1− 1

α

)
gθ(−Y X)2)XX⊺] (107)

= EX,Y [gθ(Y X)1−1/αgθ(−Y X)(gθ(Y X)

−
(
1− 1

α

)
gθ(−Y X))XX⊺], (108)

where we recall (102) and factored out gθ(−Y X). Considering
the expression in parentheses in (108), we note that this is
the only part of the Hessian which can become negative.
Examining this term more closely, we find that

gθ(Y X)−
(
1− 1

α

)
gθ(−Y X)

=
1

1 + e−⟨θ,Y X⟩ −
(
1− 1

α

)
1

1 + e⟨θ,Y X⟩ (109)

= gθ(Y X)

[
1−

(
1− 1

α

)
1 + e−⟨θ,Y X⟩

1 + e⟨θ,Y X⟩

]
(110)

= gθ(Y X)

[
1−

(
1− 1

α

)
e−⟨θ,Y X⟩

]
. (111)

Continuing, observe that

1−
(
1− 1

α

)
e−⟨θ,Y X⟩ = 1− e−⟨θ,Y X⟩ +

e−⟨θ,Y X⟩

α
(112)

≥ 1− er
√
d +

e−r
√
d

α
≥ 0, (113)

where we lowerbound using the radius of the balls (Cauchy-
Schwarz), i.e., ⟨θ, Y X⟩ ≤ |Y |∥θ∥∥X∥ ≤ r

√
d and the last

inequality in (113) holds if α ≤ e−r
√
d(er

√
d − 1)−1. Thus,

returning to (108), we have that

∇2
θRα(θ)

= EX,Y [gθ(Y X)1−
1
α g′θ(Y X)(1− (1− 1

α
)e−⟨θ,Y X⟩)XX⊺]

(114)

⪰ σ(−r
√
d)2−

1
ασ(r

√
d)

(
1− er

√
d +

e−r
√
d

α

)
E [XX⊺]

(115)

= σ(−r
√
d)2−

1
ασ(r

√
d)

(
1− er

√
d +

e−r
√
d

α

)
Σ ⪰ 0,

(116)

where in (114) we used (111) and the fact as given in (27)
that σ′(z) = σ(z)σ(−z), and in (115) and (116) we use
the upper-bound derived above and the same arguments as
Theorem 2, mutatis mudandis. Thus, if we have the following
bound α ≤ e−r

√
d(er

√
d − 1)−1, then we have that Rα(θ) is

Λ̃(α, r
√
d)mini∈[d] λi (Σ)-strongly convex in θ ∈ Bd(r),

Λ̃(α, r
√
d) :=σ(−r

√
d)2−1/α

× σ(r
√
d)
(
1− er

√
d + α−1e−r

√
d
)
. (117)

Finally, recall that sinh(x) = (ex − e−x)/2 and that
arcsinhx = log (x+

√
x2 + 1). Observe that if we have
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r
√
d ≤ arcsinh (1/2), then e−r

√
d(er

√
d − 1)−1 ≥ 1. Also

note that e−r
√
d(er

√
d − 1)−1 is monotonically decreasing in

r
√
d and that arcsinh (1/2) ≈ 0.48.

Proposition 5. Suppose that Σ ≻ 0 and θ0 ∈ Bd(r) is fixed.
We have one of the following:

• If r
√
d < arcsinh (1/2), then, for every ϵ > 0, Rα is

(ϵ, Cd(r, α), θ0)-SLQC at θ for every θ ∈ Bd(r) when
α ∈

(
0, (e2r

√
d − er

√
d)−1

]
where Cd(r, α) is given

in (36) and (37);
• Otherwise, for every ϵ > 0, Rα is (ϵ, Cd(r, α), θ0)-SLQC

at θ for every θ ∈ Bd(r) for α ∈ (0, 1].

Proof. In order to prove the result, we apply a result by
Hazan, et al. [35] where they show that if a function f is
G-Lipschitz and strictly-quasi-convex, then for all ϵ > 0, f is
(ϵ,G, θ0)-SLQC in θ. Thus, one may view κ as approximately
quantifying the growth of the gradients of general functions.

First, we show that Rα is Cd(r, α)-Lipschitz in θ ∈ Bd(r)
where for α ∈ (0, 1],

Cd(r, α) :=
√
dσ(r

√
d)σ(−r

√
d)1−1/α; (118)

and, for α ∈ (1,∞],

Cd(r, α) :=


√
d
(

α−1
2α−1

)1−1/α (
α

2α−1

)
er

√
d ≥ α−1

α ,
√
dσ(r

√
d)σ(−r

√
d)1−1/α er

√
d < α−1

α .

(119)

Formally, we want to show that for all θ, θ′ ∈ Bd(r),

|Rα(θ)−Rα(θ
′)| ≤ C∥θ − θ′∥, (120)

where C := supθ∈Bd(r)
∥∇Rα(θ)∥. Recall from (29) that

∇θRα(θ) = E[∇θl
α(Y, gθ(X)] (121)

= E[F1(α, θ,X, Y )X], (122)

where from (28) we have

F1(α, θ, x, y) = −ygθ(yx)1−1/α(1− gθ(yx)). (123)

It can be shown that for α ≤ 1,

|F1(α, θ, x, y)| = gθ(yx)
1−1/α(1− gθ(yx)), (124)

is monotonically decreasing in ⟨θ, x⟩. Thus for α ≤ 1,

C =
√
dσ(r

√
d)σ(−r

√
d)1−1/α. (125)

It can also be shown that for α > 1, |F1(α, θ, x, y)| is
unimodal and quasi-concave with the maximum obtained
at ⟨θ, x⟩∗ = log (1− 1/α). If r

√
d ≥ log (1− 1/α), we obtain

upon plugging in ⟨θ, x⟩∗ for α > 1,

C =
√
d

(
α− 1

2α− 1

)1−1/α(
α

2α− 1

)
. (126)

Otherwise, if r
√
d < log (1− 1/α), then, using the local

monotonicity of |F1(α, θ, x, y)|, we obtain for α > 1,

C =
√
dσ(r

√
d)σ(−r

√
d)1−1/α, (127)

which mirrors the α < 1 case. Thus, combining the two
regimes of α we have that Rα is Cd(r, α)-Lipschitz in

θ ∈ Bd(r) for α ∈ (0,∞] where Cd(r, α) is given in (36)
and (37).

Finally when Rα is strongly-convex, this implies that Rα

is strictly-quasi-convex. That is, since Σ ≻ 0, we merely
apply Corollary 2 to obtain strong-convexity of Rα when
α ∈ (0, (e2r

√
d − er

√
d)−1] for r

√
d < arcsinh (1/2). Sim-

ilarly, we apply Theorem 2 to obtain strong-convexity of Rα

for α ∈ (0, 1], otherwise.

1) Fundamentals of SLQC and Reformulation: In this
subsection, we briefly review strictly locally quasi-convexity
(SLQC) which was introduced by Hazan et al. in [35]. Recall
that in [35] Hazan et al. refer to a function as SLQC in θ,
whereas for the purposes of our analysis we refer to a function
as SLQC at θ. We recover the uniform SLQC notion of Hazan
et al. by articulating a function is SLQC at θ for every θ. Our
later analysis of the α-risk in the logistic model benefits from
this pointwise consideration. Intuitively, the notion of SLQC
functions extends quasi-convex functions in a parameterized
manner. Regarding notation, for θ0 ∈ Rd and r > 0, we let
B(θ0, r) := {θ ∈ Rd : ∥θ − θ0∥ ≤ r}.

Definition 3 (Definition 3.1, [35]). Let ϵ, κ > 0 and θ0 ∈ Rd.
A function f : Rd → R is called (ϵ, κ, θ0)-strictly locally
quasi-convex (SLQC) at θ ∈ Rd if at least one of the following
conditions apply:

1. f(θ)− f(θ0) ≤ ϵ,
2. ∥∇f(θ)∥ > 0 and, for every θ′ ∈ B(θ0, ϵ/κ),

⟨−∇f(θ), θ′ − θ⟩ ≥ 0. (128)

Observe that the notion of SLQC implies quasi-convexity
about B(θ0, ϵ/κ) on {θ ∈ Θ : f(θ) − f(θ0) > ϵ}; see Fig. 5
for an illustration of the difference between classical quasi-
convexity and SLQC in this regime. In [35], Hazan et al. note
that if a function f is G-Lipschitz and strictly-quasi-convex,
then for all θ̃1, θ̃2 ∈ Rd, for all ϵ > 0, it holds that f is
(ϵ,G, θ̃1)-SLQC at θ̃2 for every θ̃2 ∈ Rd; this will be useful
in the sequel.

As shown by Hazan et al. in [35], the convergence guaran-
tees of Normalized Gradient Descent (NGD, given in Algo-
rithm 1) for SLQC functions are similar to those of Gradient
Descent for convex functions.

Algorithm 1 Normalized Gradient Descent (NGD)

1: Input: T ∈ N no. of iterations, θ0 ∈ Rd initial parameter,
η > 0 learning rate

2: for t = 0, 1, . . . , T − 1 do
3: Update: θt+1 = θt − η

∇f(θt)
∥∇f(θt)∥

4: Return θ̄T = argmin
θ1,...,θT

f(θt)

Proposition 4 (Thm. 4.1, [35]). Let f : Rd → R, θ1 ∈ Rd,
and θ∗ = argminθ∈Rd f(θ). If f is (ϵ, κ, θ∗)-SLQC at θ for
every θ ∈ Rd, then running the NGD algorithm with learning
rate η = ϵ/κ for number of iterations T ≥ κ2∥θ1 − θ∗∥2/ϵ2
achieves min

t=1,...,T
f(θt)− f(θ∗) ≤ ϵ.
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For an (ϵ, κ, θ0)-SLQC function, a smaller ϵ provides better
optimality guarantees. Given ϵ > 0, smaller κ leads to faster
optimization as the number of required iterations increases
with κ2. Hazan, et al. [35] show that if a function f is G-
Lipschitz and strictly-quasi-convex, then for all ϵ > 0, f is
(ϵ,G, θ0)-SLQC in θ. Thus, one may view κ as approximately
quantifying the growth of the gradients of general functions.
Finally, by using projections, NGD can be easily adapted to
work over convex and closed sets (e.g., B(θ0, r) for some
θ0 ∈ Rd and r > 0).

We conclude this subsection by studying the behavior of
(ϵ, κ, θ0)-SLQC functions on the ball Bd(θ0, ϵ/κ), which is
articulated by the following novel result.

Proposition 8. Let ϵ, κ > 0 and θ0 ∈ Rd. Assume f
is (ϵ, κ, θ0)-SLQC at θ ∈ Rd. If θ ∈ Bd(θ0, ϵ/κ), then
f(θ)− f(θ0) ≤ ϵ. Indeed, if f is (ϵ, κ, θ0)-SLQC on Θ, then

Bd(θ0, ϵ/κ) ∩Θ ⊂ {θ ∈ Θ : f(θ)− f(θ0) ≤ ϵ}.

Proof. Since f is (ϵ, κ, θ0)-SLQC at θ ∈ Rd we have that
at least one condition of Definition 3 holds. Suppose that
Condition 2 holds. In this case, we have that ∥∇f(θ)∥ > 0
and ⟨−∇f(θ), θ′ − θ⟩ ≥ 0 for every θ′ ∈ B(θ0, ϵ/κ). Since
∥θ − θ0∥ < ϵ/κ, choose δ > 0 small enough such that

θ′ := θ + δ∇f(θ) ∈ B(θ0, ϵ/κ). (129)

Thus, we have that

0 ≤ ⟨−∇f(θ), θ′ − θ⟩ (130)
= ⟨−∇f(θ), θ + δ∇f(θ)− θ⟩ (131)
= −δ⟨∇f(θ),∇f(θ)⟩ (132)

= −δ∥∇f(θ)∥2, (133)

which is a contradiction since δ > 0 and ∥∇f(θ)∥ > 0. There-
fore, we must have that Condition 1 of Definition 3 holds, i.e.,
f(θ) − f(θ0) ≤ ϵ. Finally, a continuity argument shows that
f(θ)− f(θ0) ≤ ϵ whenever θ ∈ Bd(θ0, ϵ/κ) ∩Θ.

The following is the formal statement and proof of
Lemma 1, which provides a useful characterization of the gra-
dient of (ϵ, κ, θ0)-SLQC functions outside the set Bd(θ0, ϵ/κ).
Refer to Fig. 7 for a picture of the relevant quantities.

θ0θ

θ′

ρ

−∇f(θ)

ψ ϕ

δ

Figure 7: A companion illustration for Lemma 1 which depicts
the relevant quantities involved. Note that there are three
different configurations of the angles δ, ϕ and ψ. Refer to
Fig. 8 for this illustration.

Lemma 1. Suppose f : Rd → R is differentiable, θ0 ∈ Rd and
ρ > 0. If θ ∈ Rd is such that ∥θ−θ0∥ > ρ and ∥∇f(θ)∥ > 0,
then the following are equivalent:
(1) ⟨−∇f(θ), θ′ − θ⟩ > 0 for all θ′ ∈ Bd (θ0, ρ);
(2) ⟨−∇f(θ), θ′ − θ⟩ ≥ 0 for all θ′ ∈ Bd (θ0, ρ);
(3) ⟨−∇f(θ), θ0 − θ⟩ ≥ ρ∥∇f(θ)∥.

Proof. Clearly (1) ⇒ (2). (2) ⇒ (3): Let θ′ be the point of
tangency of a line tangent to Bd(θ0, ρ) passing through θ, as
depicted in Fig. 7. We define
δ: the angle between θ0 − θ and θ′ − θ;
ϕ: the angle between −∇f(θ) and θ′ − θ;
ψ: the angle between −∇f(θ) and θ0 − θ.

Recall that the inner product satisfies that

⟨u, v⟩ = ∥u∥∥v∥ cos(φu,v), (134)

where φu,v ∈ [0, π] is the angle between u and v. By
continuity and Condition (2),

∥∇f(θ)∥∥θ′ − θ∥ cos(ϕ) = ⟨−∇f(θ), θ′ − θ⟩ ≥ 0, (135)

which implies that ϕ ≤ π
2 . Observe that, by construction, we

have ϕ = ψ+ δ. In particular, we have that ψ ≤ π
2 − δ. Since

cos(·) is decreasing over [0, π], we have that

cos(ψ) ≥ cos
(π
2
− δ
)
= sin(δ). (136)

Since the triangle △θθ′θ0 is a right triangle, we have that
sin(δ) = ρ

∥θ0−θ∥ and thus

cos(ψ) ≥ ρ

∥θ0 − θ∥
. (137)

Therefore, we conclude that

⟨−∇f(θ), θ0 − θ⟩ = ∥∇f(θ)∥∥θ0 − θ∥ cos(ψ) (138)
≥ ρ∥∇f(θ)∥, (139)

as we wanted to prove.
(3) ⇒ (1): For a given θ′ ∈ Bd(θ0, ρ), we define ψ, ϕ and

δ as above. By assumption,

∥∇f(θ)∥∥θ0 − θ∥ cos(ψ) = ⟨−∇f(θ), θ0 − θ⟩ (140)
≥ ρ∥∇f(θ)∥ ≥ 0. (141)

Since cos−1(·) is decreasing over [−1, 1], (140) implies that

ψ ≤ cos−1

(
ρ

∥θ0 − θ∥

)
. (142)

Also, an immediate application of the law of cosines yields

δ = cos−1

(
∥θ0 − θ∥2 + ∥θ′ − θ∥2 − ∥θ′ − θ0∥2

2∥θ0 − θ∥∥θ′ − θ∥

)
. (143)

Since ∥θ′ − θ0∥ < ρ, we have that

δ < cos−1

(
∥θ0 − θ∥2 + ∥θ′ − θ∥2 − ρ2

2∥θ0 − θ∥∥θ′ − θ∥

)
. (144)

A routine minimization argument further implies that

δ < cos−1

√1−
(

ρ

∥θ0 − θ∥

)2
 = sin−1

(
ρ

∥θ0 − θ∥

)
,

(145)
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a)
ϕ ψ

δ

b)
ψ δ

ϕ

c)
δ ϕ

ψ

Figure 8: Three different configurations of the angles δ, ϕ and ψ.

where the equality follows from the trigonometric identity
cos(sin−1(x)) =

√
1− x2. Observe that, in order to prove

⟨−∇f(θ), θ′ − θ⟩ = ∥∇f(θ)∥∥θ′ − θ∥ cos(ϕ) > 0, (146)

it is enough to show that ϕ < π
2 . Depending on the position

of θ′, the angles δ, ϕ and ψ can be arranged in three different
configurations, as depicted in Fig. 8.

a) Since ρ
∥θ0−θ∥ > 0, (142) implies that ψ < π

2 . Therefore,
ϕ < π

2 as ϕ ≤ ψ.
b) Since ρ

∥θ0−θ∥ < 1, (145) implies that δ < π
2 . Therefore,

ϕ < π
2 as ϕ ≤ δ.

c) Since sin−1(x) + cos−1(x) = π
2 , (142) and (145) imply

that ϕ = ψ + δ < π
2 .

Since in all cases ϕ < π
2 , the result follows.

2) Lipschitz Inequalities in α−1 and Main SLQC Result for
the α-risk:

Lemma 2. If α, α′ ∈ [1,∞], then, for all θ ∈ Bd(r),

|Rα(θ)−Rα′(θ)| ≤ Ld(θ)

∣∣∣∣α− α′

αα′

∣∣∣∣ , (147a)

∥∇Rα(θ)−∇Rα′(θ)∥ ≤ Jd(θ)

∣∣∣∣α− α′

αα′

∣∣∣∣ , (147b)

where,

Ld(θ) :=

(
log
(
1 + e∥θ∥

√
d
))2

2
, (148a)

Jd(θ) :=
√
d log

(
1 + e∥θ∥

√
d
)
σ(∥θ∥

√
d). (148b)

Proof. Here, we present proofs for both Lipschitz inequalities.
Proof of First Inequality: For ease of notation, we denote
β = 1/α. Thus, we have that for α ∈ [1,∞], i.e., β ∈ [0, 1],

Rα(θ) = E[lα(Y, gθ(X))] (149)

= E
[

1

1− β

(
1− gθ(yx)

1−β
)]

(150)

= Rβ(θ). (151)

To show that Rα is Lipschitz in α−1 = β ∈ [0, 1], it suffices

to show
d

dβ
Rβ(θ) ≤ L for some L > 0. Observe that

d

dβ
Rβ(θ) = E

[
d

dβ

1

1− β

(
1− gθ(yx)

1−β
)]
, (152)

where the equality follows since we assume well-behaved
integrals. Consider without loss of generality the expression
in the brackets; we denote this expression as

f(β, θ, yx) =
d

dβ

1

1− β

(
1− gθ(yx)

1−β
)
. (153)

It can be shown that

f(β, θ, yx) =
gθ(yx)

1−β log (gθ(yx))

1− β
+

1− gθ(yx)
1−β

(1− β)
2 ,

(154)

and

f(1, θ, yx) =
(log gθ(yx))

2

2
. (155)

In addition, it can be shown that for any y ∈ {−1,+1},
x ∈ [0, 1]d, and θ ∈ Bd(r) that f(β, θ, yx) is monotonically
increasing in β ∈ [0, 1]. Therefore, for any β ∈ [0, 1],
y ∈ {−1,+1}, x ∈ [0, 1]d, and θ ∈ Bd(r),

f(β, θ, yx) ≤ f(1, θ, yx) (156)

=
(log gθ(yx))

2

2
(157)

≤

(
log σ(−∥θ∥

√
d)
)2

2
. (158)

Proof of Second Inequality: For ease of notation, we let
β = 1/α. Since α ∈ [1,∞], β ∈ [0, 1]. Thus, we have that for
α ∈ [1,∞], i.e., β ∈ [0, 1],

∇Rα(θ) = E[F1(α, θ,X, Y )X] (159)

= E[−Y gθ(Y X)1−β(1− gθ(Y X))X], (160)

and we let F̃1(β, θ,X, Y ) := −Y gθ(Y X)1−β(1 − gθ(Y X)).
For any θ ∈ Bd(r) we have

∥∇Rα(θ)−∇Rα′(θ)∥
= ∥E[(F̃1(β, θ,X, Y )− F̃1(β

′, θ,X, Y ))X]∥ (161)

≤ E[|(F̃1(β, θ,X, Y )− F̃1(β
′, θ,X, Y ))|∥X∥] (162)

≤
√
dE[|(F̃1(β, θ,X, Y )− F̃1(β

′, θ,X, Y ))|], (163)

where we used the fact that X has support [0, 1]d for the
second inequality. Here, we obtain a Lipschitz inequality on
F̃1 by considering the variation of F̃1 with respect to β for
any θ ∈ Bd(r), x ∈ [0, 1]d, and y ∈ {−1,+1}. Taking the
derivative of F̃1(β, θ, x, y) with respect to β we obtain

d

dβ
F1(β, θ, x, y) =

d

dβ
− ygθ(yx)

1−β(1− gθ(yx)) (164)

= y(1− gθ(yx))gθ(yx)
1−β log gθ(yx),

(165)
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where we used the fact that
d

dx
a1−x = −a1−x log a. Contin-

uing, we have

y(1− gθ(yx))gθ(yx)
1−β log gθ(yx)

≤ log
(
1 + e∥θ∥

√
d
)
σ(∥θ∥

√
d)σ(∥θ∥

√
d)1−β (166)

= log
(
1 + e∥θ∥

√
d
)
σ(∥θ∥

√
d)2−β (167)

≤ log
(
1 + e∥θ∥

√
d
)
σ(∥θ∥

√
d). (168)

Thus, we have that, for any θ ∈ Bd(r),

∥∇Rα(θ)−∇Rα′(θ)∥ ≤ Jd(θ)|β − β′|, (169)

where β, β′ ∈ [0, 1] (α, α′ ∈ [1,∞]). Therefore, we have that,
for any θ ∈ Bd(r),

∥∇Rα(θ)−∇Rα′(θ)∥ ≤ Jd(θ)

∣∣∣∣ 1α − 1

α′

∣∣∣∣ , (170)

where α, α′ ∈ [1,∞].
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Figure 9: Another illustration highlighting the saturation of α-
loss (Rα for α = 10,∞) in the logistic model for a 2D-GMM
with P[Y = 1] = .5, µX|Y=−1 = [.5, .5], µX|Y=1 = [1, 1],
and shared covariance matrix Σ = [1, .5; .5, 3].

Theorem 3. Let α0 ∈ [1,∞], ϵ0, κ0 > 0, and θ0, θ ∈ Bd(r).
If Rα0

is (ϵ0, κ0, θ0)-SLQC at θ and

0 ≤ α− α0 <
α2
0∥∇Rα0

(θ)∥

2Jd(θ)
(
1 + r κ0

ϵ0

) , (171)

then Rα is (ϵ, κ, θ0)-SLQC at θ with

ϵ = ϵ0 + 2Ld(θ)

(
α− α0

αα0

)
, (172)

ϵ

κ
=
ϵ0
κ0

1−

(
1 + 2r κ0

ϵ0

)
Jd(θ)(α− α0)

αα0∥∇Rα0
(θ)∥ − Jd(θ)(α− α0)

 . (173)

Proof. For ease of notation let ρ0 =
ϵ0
κ0

and ρ =
ϵ

κ
, and

consider the following two cases.

(a) α = .9 loss landscape (b) α = 1 loss landscape

(c) α = 2 loss landscape (d) α = 10 loss landscape

Figure 10: Loss landscape visualizations obtained using [79]
for α ∈ {.9, 1, 2, 10} training a ResNet-18 on the MNIST
dataset. The visualization technique finds two “principal di-
rections” of the model to allow for a 3D plot. We note that
similar themes as theoretically articulated in Section IV for
the simpler logistic model are also evident here; i.e., exploding
gradients for α too small, a loss of convexity (and increasing
“flatness”) as α increases greater than 1, and also a saturation
effect as exhibited by the visual similarity between the α = 2
and α = 10 loss landscapes. This hints at the generality of the
theory presented in Section IV.

Case 1: Assume that Rα0
(θ)−Rα0

(θ0) ≤ ϵ0. Then,

Rα(θ)−Rα(θ0)

= Rα(θ)−Rα0
(θ) +Rα0

(θ)

−Rα0
(θ0) +Rα0

(θ0)−Rα(θ0) (174)

≤ Ld(θ)

(
α− α0

αα0

)
+ ϵ0 + Ld(θ)

(
α− α0

αα0

)
. (175)

Since ϵ0+2Ld(θ)
(

α−α0

αα0

)
= ϵ, we have Rα(θ)−Rα(θ0) ≤ ϵ.

Case 2: Assume that Rα0
(θ) − Rα0

(θ0) > ϵ0. Since
Rα0

is (ϵ0, κ0, θ0)-SLQC at θ by assumption, we have that
∥∇Rα0

(θ)∥ > 0 and ⟨−∇Rα0
(θ), θ′ − θ⟩ ≥ 0 for every

θ′ ∈ B(θ0, ρ0).
Let ρ = ϵ/κ be given as in (42). If ∥θ − θ0∥ > ρ,

∥∇Rα(θ)∥ > 0 and

⟨−∇Rα(θ), θ0 − θ⟩ ≥ ρ∥∇Rα(θ)∥, (176)

then Lemma 1 would imply that Rα is (ϵ, κ, θ0)-SLQC at θ. In
order to show these three expressions, we make ample use of
the following three inequalities: The first is the reverse triangle
inequality associated with ∇Rα and ∇Rα0

, i.e.,

∥∇Rα0
(θ)−∇Rα(θ)∥ ≥ |∥∇Rα(θ)∥ − ∥∇Rα0

(θ)∥|.
(177)

The second is that ∇Rα(θ) is Jd(θ)-Lipschitz in α−1, i.e.,∣∣∣∣ 1α0
− 1

α

∣∣∣∣ Jd(θ) ≥ ∥∇Rα0
(θ)−∇Rα(θ)∥. (178)
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The third follows from a manipulation of (41), i.e.,

∥∇Rα0(θ)∥ > 2Jd(θ)
(
1 + rρ−1

0

)
(α−1

0 − α−1) (179)

> Jd(θ)(α
−1
0 − α−1), (180)

using the fact that α2
0 ≤ αα0 and since rρ−1

0 ≥ 1. With these
inequalities in hand, we are now in a position to complete the
three steps required to show that Rα is (ϵ, κ, θ0)-SLQC at θ.

First, we show that ∥θ−θ0∥ > ρ. Since Rα0 is (ϵ0, κ0, θ0)-
SLQC at θ and Rα0(θ) − Rα0(θ0) > ϵ0 by assumption, we
have by the contrapositive of Proposition 8 that θ /∈ Bd(θ0, ρ0).
Thus, we have that ∥θ− θ0∥ > ρ0. Next, note that ρ is related
to ρ0 by (42). If we can show that ρ0 > ρ, then we have the
desired conclusion. Rearranging the left-hand-side of (179),
we have that

∥∇Rα0
(θ)∥(α−1

0 − α−1)−1 > 2Jd(θ)(1 + rρ−1
0 ), (181)

which can be rewritten to obtain

∥∇Rα0
(θ)∥(α−1

0 − α−1)−1 − Jd(θ) > Jd(θ)(1 + 2rρ−1
0 ).
(182)

Since by the right-hand-side of (179) we have that

∥∇Rα0
(θ)∥(α−1

0 − α−1)−1 − Jd(θ) > 0, (183)

it follows by (182) that

1 >
Jd(θ)(1 + 2rρ−1

0 )

∥∇Rα0(θ)∥(α−1
0 − α−1)−1 − Jd(θ)

. (184)

Thus examining (42) in light of (184), we have that ρ0 > ρ,
which implies that ∥θ − θ0∥ > ρ, as desired.

Second, we show that ∥∇Rα(θ)∥ > 0. Applying (177)
to (178) we obtain

∥∇Rα(θ)∥ ≥ ∥∇Rα0
(θ)∥ − Jd(θ)(α

−1
0 − α−1) > 0, (185)

where the right-hand-side inequality again follows by (179).
Thus, we have that ∥∇Rα(θ)∥ > 0, as desired.

Finally, we show the expression in (176), i.e.,
⟨−∇Rα(θ), θ0 − θ⟩ ≥ ρ∥∇Rα(θ)∥. By the Cauchy-Schwarz
inequality, we have

⟨−∇Rα(θ), θ0 − θ⟩
≥ ⟨−∇Rα0(θ), θ0 − θ⟩ − ∥∇Rα(θ)−∇Rα0(θ)∥∥θ0 − θ∥

(186)

≥ ρ0∥∇Rα0
(θ)∥ − Jd(θ)(α

−1
0 − α−1)2r, (187)

where in (186) we apply Lemma 1 for the first term; for the
second term we use the fact that ∇Rα is Jd(θ)-Lipschitz in
α−1 as given by (178) and the fact that θ0 − θ ∈ Bd(2r).
Continuing from (187), we have that

⟨−∇Rα(θ), θ0 − θ⟩
≥ ρ0∥∇Rα(θ)∥ − Jd(θ)(α

−1
0 − α−1)2r

− ρ0∥∇Rα0
(θ)−∇Rα(θ)∥ (188)

≥ ρ0∥∇Rα(θ)∥ − Jd(θ)(α
−1
0 − α−1)(ρ0 + 2r), (189)

where we first apply the reverse triangle inequality in (177)
and then we use the fact that ∇Rα(θ) is Jd(θ)-Lipschitz in

α−1, i.e., the expression in (178). Rearranging the expression
in (189), we obtain

ρ0∥∇Rα(θ)∥ − Jd(θ)(α
−1
0 − α−1)(ρ0 + 2r)

= ∥∇Rα(θ)∥
(
ρ0 −

Jd(θ)(α
−1
0 − α−1)(ρ0 + 2r)

∥∇Rα(θ)∥

)
(190)

≥ ∥∇Rα(θ)∥

ρ0 − (ρ0 + 2r)Jd(θ)
∥∇Rα0 (θ)∥
( 1
α0

− 1
α )

− Jd(θ)

 , (191)

where we used the inequality in (185). Thus, we finally obtain

⟨−∇Rα(θ), θ0 − θ⟩ ≥ ρ∥∇Rα(θ)∥, (192)

where ρ > 0 is given by

ρ = ρ0

(
1− (1 + 2rρ−1

0 )Jd(θ)

∥∇Rα0
(θ)∥(α−1

0 − α−1)−1 − Jd(θ)

)
, (193)

as desired. Therefore by collecting all three parts, we have by
Lemma 1 that Rα is (ϵ, κ, θ0)-SLQC at θ.

3) Bootstrapping SLQC: Recall that the floor function,
denoted ⌊·⌋ : R+ → N, can alternatively be written as
⌊x⌋ = x− q, for some q ∈ [0, 1).

Lemma 5. Fix θ ∈ Bd(r). Suppose that ρ0 > 0 and there
exists gθ > 0 such that ∥∇Rα′(θ)∥ > gθ for all α′ ∈ [α0,∞].
Given N ∈ N, for each n ∈ [N ] we define

αn = αn−1 +
1

N
, (194a)

ϵn = ϵn−1 + 2Ld(θ)
1

αnαn−1

1

N
, (194b)

ρn = ρn−1 −
(ρn−1 + 2r)Jd(θ)

αnαn−1Gn−1 − Jd(θ)/N

1

N
, (194c)

where Gn−1 := ∥∇Rαn−1(θ)∥. If N > Jd(θ)
(
α2
0gθ
)−1

,
then we have that {αn}Nn=0, {ϵn}Nn=0, and {ρn}Nn=0 are
well-defined. Furthermore, we have that ρn > 0 for all
n ≤

⌊
α2
0gθ(1 + 2rρ−1

0 )−1Jd(θ)
−1N

⌋
.

Proof. For ease of notation, let J := Jd(θ), L := Ld(θ),
and g := gθ. Observe that {αn}Nn=0 is well defined and so
is {ϵn}Nn=0. It can be verified that if N > J

(
α2
0g
)−1

, then
αn−1αnGn−1 − J/N > 0 and thus {ρn}Nn=0 is well defined.
Now we show by induction that ρn > 0 for

n <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
. (195)

By assumption, ρ0 > 0. For the inductive hypothesis,
assume that ρ0, . . . , ρn−1 are non-negative. Observe that, by
definition, we have

ρk − ρk+1 =
(ρk + 2r)J

αkαk+1Gk − J/N

1

N
. (196)

The previous equation and a telescoping sum lead to

ρ0 − ρn =
n−1∑
k=0

(ρk + 2r)J

αkαk+1Gk − J/N

1

N
. (197)
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Since ρk > 0 for all k ∈ [n − 1], we have the following
ordering ρ0 > ρ1 > · · · > ρn and, as a result,

ρ0 − ρn <
(ρ0 + 2r)J

α2
0g − J/N

n

N
. (198)

It can be shown that our choice of n in (195) implies that

ρn > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

n

N
> 0, (199)

which implies that ρn > 0 as desired.

Theorem 4. Let α0 ∈ [1,∞), ϵ0, κ0 > 0, and θ0, θ ∈ Bd(r).
Suppose that Rα0

is (ϵ0, κ0, θ0)-SLQC at θ ∈ Bd(r) and that
there exists gθ > 0 such that ∥∇Rα′(θ)∥ > gθ for every
α′ ∈ [α0,∞]. Then, for every λ ∈ (0, 1), Rαλ

is (ϵλ, κλ, θ0)-
SLQC at θ where

αλ := α0 + λ
α2
0gθ

Jd(θ)
(
1 + 2r κ0

ϵ0

) , (200)

ϵλ := ϵ0 + 2λLd(θ)

(
αλ − α0

αλα0

)
α2
0gθ

Jd(θ)
(
1 + r κ0

ϵ0

) , (201)

ϵλ
κλ

>
ϵ0
κ0

(1− λ). (202)

Proof. For ease of notation, let J := Jd(θ), L := Ld(θ), and
g := gθ. Let λ ∈ (0, 1) be given. For each

N >
1 + 2rρ−1

0

1− λ

2J

α2
0g
, (203)

we define

Nλ =

⌊
λ

ρ0
ρ0 + 2r

α2
0g

J
N

⌋
. (204)

The bootstrapping proof strategy is as follows: 1) For fixed
N ∈ N large enough (as given above), we show by induction
that Rαn

is (ϵn, κn, θ0)-SLQC at θ with ρn = ϵn/κn for
n ≤ Nλ using Lemma 5 and Theorem 3; 2) We take the limit
as N approaches infinity in order to derive the largest range
on α and the strongest SLQC parameters.

First, we show by induction that Rαn
is (ϵn, κn, θ0)-SLQC

at θ with ρn = ϵn/κn for n ≤ Nλ. By assumption, Rα0
is

(ϵ0, κ0, θ0)-SLQC at θ. For the inductive hypothesis, assume
that Rαk

is (αk, ϵk, κk)-SLQC at θ for all k ∈ [n − 1]. In
order to apply Lemma 5 to show that

ρ0 > ρ1 > . . . > ρn > · · · > ρNλ
> Cλ > 0, (205)

for all n ≤ Nλ and for some Cλ > 0, we first show that the
assumptions of Lemma 5 are satisfied. Observe that, by our
assumption on N ∈ N, we have that

N >
1 + 2rρ−1

0

1− λ

2J

α2
0g

>
1 + rρ−1

0

1− λ

J

α2
0g

>
J

α2
0g
, (206)

which is the first requirement of Lemma 5. Next, we want to
show that

n ≤ Nλ <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
, (207)

which is the last requirement of Lemma 5. This is achieved
by observing that

Nλ =

⌊
λ

ρ0
ρ0 + 2r

α2
0g

J
N

⌋
= λ

ρ0
ρ0 + 2r

α2
0g

J
N − q, (208)

for some q ∈ [0, 1) and that⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
=

ρ0
ρ0 + 2r

α2
0g

J
N − w, (209)

also for some w ∈ [0, 1). Note that (207) is equivalent to

(q − w)
1 + rρ−1

0

1− λ

J

α2
0g

< N, (210)

which holds by the fact that N >
1 + rρ−1

0

1− λ

J

α2
0g

in (206) and

q − w ≤ 1. Thus by Lemma 5, we have that

ρn > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

n

N
> 0, (211)

for all n ≤ Nλ. In particular for n = Nλ, we have that

ρNλ
> ρ0 −

(ρ0 + 2r)J

α2
0g − J/N

Nλ

N
(212)

> ρ0

(
1− λ− λJ

α2
0g − J/N

1

N

)
(213)

>
ρ0(1− λ)

2
, (214)

where the second inequality follows by plugging in Nλ and
adding and subtracting λJ/N in the fraction and the last

inequality follows from N >
1 + 2rρ−1

0

1− λ

2J

α2
0g

>
1 + λ

1− λ

J

α2
0g

since 2rρ−1
0 ≥ λ for all λ ∈ (0, 1). Therefore, we have that

Cλ =
ρ0(1− λ)

2
; in other words,

ρ0 > ρ1 > . . . > ρn−1 > ρn > · · · > ρNλ
>
ρ0(1− λ)

2
> 0.

(215)

Also, observe that

αn − αn−1 =
1

N
<

α2
0g

2J(1 + 2rρ−1
0 (1− λ)−1)

, (216)

where the inequality follows from the fact that

N >
1 + 2rρ−1

0

1− λ

2J

α2
0g

>

(
1 +

2rρ−1
0

1− λ

)
2J

α2
0g
. (217)

In particular, (215) and (216) leads to

αn − αn−1 <
α2
0g

2J(1 + 2rρ−1
0 (1− λ)−1)

(218)

<
α2
n−1Gn−1

2J(1 + rρ−1
n−1)

, (219)

where we use the fact that αn ≥ α0 and Gn−1 ≥ g. As
a result, we can apply Theorem 3 to conclude that Rαn is
(ϵn, ρn, θ0)-SLQC at θ with αn, ϵn and ρn given as in (194a).
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In particular by unfolding the recursion, we have that RαNλ

is (ϵNλ
, ρNλ

, θ0)-SLQC at θ with

αNλ
= α0 + λ(1 + 2rρ−1

0 )−1α
2
0g

J
− q

N
, (220)

ϵNλ
= ϵ0 + 2L

Nλ−1∑
n=0

1

αn(αn + 1/N)

1

N
, (221)

ρNλ
= ρ0

Nλ−1∏
n=0

(
1− (1 + 2rρ−1

n )J/N

αn+1αn∥∇Rαn(θ)∥ − J/N

)
, (222)

for some q ∈ [0, 1).
Finally, we take the limit as N approaches infinity in order

to derive the largest range on α and the strongest SLQC param-
eters. Recall that Nλ =

⌊
λ ρ0

ρ0+2r
α2

0g
J N

⌋
= λ ρ0

ρ0+2r
α2

0g
J N − q,

for some q ∈ [0, 1). Thus, we have the following relationship

1

N
=

λρ0α
2
0g

(Nλ + q)(ρ0 + r)J
. (223)

Observe that taking the limit as N approaches infinity is
equivalent to taking the limit as Nλ approaches infinity.

Examining (220) as Nλ approaches infinity, we have that

αλ := lim
Nλ→∞

αNλ
= α0 + λ(1 + 2rρ−1

0 )−1α
2
0g

J
. (224)

Next considering (221), we rewrite to obtain

ϵNλ
= ϵ0 + 2L

Nλ−1∑
n=0

1

αn(αn + 1/N)

1

N
(225)

= ϵ0 +
2L

N

Nλ−1∑
n=0

(
1

α2
n

+
1

N

1

α3
n − α2

n/N

)
, (226)

where we used a partial fraction decomposition. Let µNλ
be

the discrete measure given by

µNλ
=

1

Nλ

Nλ−1∑
n=0

δαn , (227)

where δαn is the point mass at αn. In particular for large N ,
we can write (226) as

ϵNλ
= ϵ0+

2Lλα2
0g

(1 + rρ−1
0 )J

∫
1

x2
dµNλ

(x)+O

(
1

Nλ

)
. (228)

Let µλ denote the uniform measure over (α0, αλ], i.e., the
Lebesgue measure on the interval (α0, αλ]. Note that µNλ

converges in distribution to µλ as Nλ goes to infinity. By
taking limits, (228) becomes

ϵλ = lim
Nλ→∞

ϵNλ
(229)

= ϵ0 +
2Lλα2

0g

(1 + rρ−1
0 )J

αλ∫
α0

1

x2
dx (230)

= ϵ0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1− α0

αλ

)
. (231)

Finally, we consider (222). Observe that from (199) we have

ρNλ
> ρ0 −

(ρ0 + 2r)J

α2
0g − J/N

Nλ

N
(232)

= ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

λ
Nα2

0gρ0

J(ρ0+2r) − q

N
(233)

= ρ0 −
[
Nλρ0α

2
0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J

α2
0g − J/N

)]
, (234)

for q ∈ [0, 1), where we plugged in the definition of Nλ and
simplified. Thus, taking the limit as Nλ approaches infinity
we have that

ρλ = lim
Nλ→∞

ρNλ
(235)

> lim
Nλ→∞

(
ρ0 −

[
Nλρ0α

2
0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J

α2
0g − J/N

)])
(236)

= ρ0(1− λ). (237)

Thus, we conclude that Rαλ
is (ϵλ, κλ, θ0)-SLQC at θ with

αλ := α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
, (238)

ϵλ := ϵ0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1− α0

αλ

)
(239)

ρλ > ρ0(1− λ). (240)

A change of variables leads to the desired result.

C. Rademacher Complexity Generalization and Asymptotic
Optimality

Lemma 6. If α ∈ (0,∞], then l̃α(z) is Cr0(α)-Lipschitz in
z ∈ [−r0, r0] for every r0 > 0, where for α ∈ (0, 1],

Cr0(α) := σ(r0)σ(−r0)1−1/α; (241)

and, for α ∈ (1,∞],

Cr0(α) :=


(

α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α ,

σ(r0)σ(−r0)1−
1
α er0 < α−1

α .
(242)

Proof. The proof is analogous to the proof in Proposition 5.
In order to show that l̃α(z) is Cr0(α)-Lipschitz, we take the
derivative of l̃α(z) and seek to maximize it over z ∈ [−r0, r0].
Specifically, we have that for α ∈ (0,∞],

d

dz
l̃α(z) =

d

dz

α

α− 1

(
1− σ(z)1−1/α

)
(243)

= σ(z)2−1/α − σ(z)1−1/α (244)

= (σ(z)− 1)σ(z)1−1/α (245)

≤ |(σ(z)− 1)σ(z)1−1/α| (246)

= σ(−z)σ(z)1−1/α, (247)

where we used the fact that σ(z) = 1 − σ(−z). If α ≤ 1, it
can be shown that

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α. (248)
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Similarly if α > 1 and if r0 ≥ log (1− 1/α), then it can be
shown that

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α =

(
α− 1

2α− 1

)1−1/α(
α

2α− 1

)
,

(249)

where z∗ = log (1− 1/α). Otherwise for α > 1, if we have
r0 < log (1− 1/α), we obtain using local monotonicity,

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α, (250)

analogous to the case where α < 1. Thus, combining the two
regimes of α, we have the result.

Theorem 5. If α ∈ (0,∞], then, with probability at least 1−δ,
for all θ ∈ Bd(r),∣∣∣Rα(θ)− R̂α(θ)

∣∣∣ ≤ Cr
√
d (α)

r
√
d√
n

+Dr
√
d (α)

√
log
(
4
δ

)
n

,

(251)
where Cr

√
d (α) is given in (52) and (53) and where Dr

√
d (α)

is given by Dr
√
d (α) := 4

√
2

α

α− 1

(
1− σ(−r

√
d)1−1/α

)
.

Proof. By Proposition 2, which gives a relation between α-
loss and its margin-based form, we have

R(lα ◦ G ◦ Sn) = E

(
sup
gθ∈G

1

n

n∑
i=1

σil
α(yi, gθ(xi))

)
(252)

= E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σi l̃
α(yi⟨θ, xi⟩)

)
.

(253)

The right-hand-side of (252) can be rewritten as

E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σi l̃
α(yi⟨θ, xi⟩)

)
= R({l̃α(y1⟨θ, x1⟩), . . . , l̃α(yn⟨θ, xn⟩) : θ ∈ Bd(r)}).

(254)

Observe that, for each i ∈ [n], yi⟨θ, xi⟩ ≤ r
√
d by the Cauchy-

Schwarz inequality since θ ∈ Bd(r) and for each i ∈ [n],
xi ∈ [0, 1]d. Further, by Lemma 6, we know that l̃α(z) is
Cr0 (α)-Lipschitz in z ∈ [−r0, r0]. Thus setting r0 = r

√
d,

we may apply Lemma 3 (Contraction Lemma) to obtain

E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σi l̃
α(yi⟨θ, xi⟩)

)
= R

(
{l̃α(y1⟨θ, x1⟩), . . . , l̃α(yn⟨θ, xn⟩) : θ ∈ Bd(r)}

)
(255)

≤ Cr
√
d (α)R ({(y1⟨θ, x1⟩, . . . , yn⟨θ, xn⟩) : θ ∈ Bd(r)}) .

(256)

We absorb yi into its corresponding xi and apply Lemma 4
to obtain

Cr
√
d (α)R({(y1⟨θ, x1⟩, . . . , yn⟨θ, xn⟩) : θ ∈ Bd(r)})

≤ Cr
√
d (α)

r
√
d√
n
, (257)

which follows since we assume that xi ∈ [0, 1]d for each
i ∈ [n]. In order to apply Proposition 6, it can readily be
shown that for α ∈ (0,∞]

max
z∈[−r

√
d,r

√
d]
l̃α(z) ≤ Dr

√
d (α) , (258)

where Dr
√
d (α) = α

α−1

(
1− σ(−r

√
d)1−1/α

)
. Thus, we

apply Proposition 6 to achieve the desired result.

The following result attempts to quantify the uniform dis-
crepancy between the empirical α-risk and the probability
of error (true ∞-risk); the technique is a combination of
Theorem 5 and Lemma 2. The result is most useful in the
regime where r

√
d ≤ α/

√
n; this prohibits the second term in

the right-hand-side of (259) from dominating the first, which
is the most meaningful form of the bound.

Corollary 3. If α ∈ [1,∞], then, with probability at least
1− δ, for all θ ∈ Bd(r),∣∣∣R∞(θ)− R̂α(θ)

∣∣∣ ≤ σ
(
r
√
d
)(2r

√
d√
n

+ 4

√
2 log (4/δ)

n

)

+

(
log σ(−r

√
d)
)2

2α
. (259)

Proof. Consider the expression, R∞(θ) − R̂α(θ). Since
R̂∞(θ) ≤ R̂α(θ) for all θ ∈ Bd(r), the following holds

R∞(θ)− R̂α(θ) ≤ R∞(θ)− R̂∞(θ) (260)

≤ σ
(
r
√
d
)(2r

√
d√
n

+ 4

√
2 log (4/δ)

n

)
,

(261)

where we applied Theorem 5 for α = ∞. Now, consider the
reverse direction, R̂α(θ)−R∞(θ). For any θ ∈ Bd(r), we add
and subtract R̂∞(θ) such that

R̂α(θ)−R∞(θ)

= R̂∞(θ)−R∞(θ) + R̂α(θ)− R̂∞(θ) (262)

≤ σ
(
r
√
d
)2r

√
d√
n

+ 4

√
2 log

(
4
δ

)
n

+

(
log σ(−r

√
d)
)2

2α
,

(263)

where we apply Theorem 5 for the first term and Lemma 2 for
the second term3 on the maximum value of θ, i.e, ∥θ∥2 = r.
Thus, combining the two cases we have the desired statement
for the corollary.

Theorem 6. Assume that the minimum α-risk is attained by
the logistic model, i.e., (55) holds. Let Sn be a training dataset
with n ∈ N samples as before. If for each n ∈ N, θ̂αn is a global
minimizer of the associated empirical α-risk θ 7→ R̂α(θ), then
the sequence (θ̂αn)

∞
n=1 is asymptotically optimal for the 0-1

risk, i.e., almost surely,

lim
n→∞

R(fθ̂α
n
) = R∗, (264)

3We apply Lemma 2 to the empirical distribution instead of the true distribu-
tion, leading to a bound for the empirical α-risk.
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where fθ̂α
n
(x) = ⟨θ̂αn , x⟩ for each n ∈ N and the Bayes risk

R∗ is given by R∗ := min
f :X→R

P[Y ̸= sign(f(X))].

Proof. We begin by recalling the following proposition
which establishes an important consequence of classification-
calibration. In words, the following result assures that mini-
mizing a classification-calibrated loss to optimality also min-
imizes the 0-1 loss to optimality.

Proposition 9 (Thm. 3, [6]). Assume that ϕ is a classification-
calibrated margin-based loss function. Then, for every se-
quence of measurable functions (fi)

∞
i=1 and every probability

distribution on X × Y ,

lim
i→∞

Rϕ(fi) = R∗
ϕ implies that lim

i→∞
R(fi) = R∗, (265)

where R∗
ϕ := minf Rϕ(f) and R∗ := minf R(f).

By the assumption that the minimum α-risk is obtained by
the logistic model, we have that

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (266)

where Rα(θ) is given in (25) and Rα(f) = E[l̃α(Y f(X))] for
all measurable f . Thus, the proof strategy is to show that

lim
n→∞

Rα(θ̂
α
n) = min

θ∈Bd(r)
Rα(θ), (267)

and then apply Proposition 9 to obtain the result.
Let θα∗ be a minimizer of the α-risk, i.e.,

Rα(θ
α
∗ ) = min

θ∈Bd(r)
Rα(θ). (268)

Observe that

0 ≤ Rα(θ̂
α
n)−Rα(θ

α
∗ ) = In + IIn, (269)

where In := Rα(θ̂
α
n)− R̂α(θ̂

α
n) and IIn := R̂α(θ̂

α
n)−Rα(θ

α
∗ ).

After some straightforward manipulations of Theorem 5, (54)
implies that, for every ϵ > 0,

P
(
|Rα(θ̂

α
n)− R̂α(θ̂

α
n)| > ϵ

)
≤ 4e

−n

(
ϵ−C

r
√

d
(α)2r

√
d/n

4
√

2D
r
√

d
(α)

)2

,

(270)
whenever n is large enough. A routine application of the Borel-
Cantelli lemma shows that, almost surely,

lim
n→∞

In = lim
n→∞

Rα(θ̂
α
n)− R̂α(θ̂

α
n) = 0. (271)

Since θ̂αn is a minimizer of the empirical risk R̂α,

IIn = R̂α(θ̂
α
n)−Rα(θ

α
∗ ) ≤ R̂α(θ

α
∗ )−Rα(θ

α
∗ ). (272)

Again by Theorem 5, for every ϵ > 0,

P
(
|R̂α(θ

α
∗ )−Rα(θ

α
∗ )| > ϵ

)
≤ 4e

−n

(
ϵ−C

r
√

d
(α)2r

√
d/n

4
√

2D
r
√

d
(α)

)2

,

(273)
whenever n is large enough. Hence, the Borel-Cantelli lemma
implies that, almost surely,

lim
n→∞

|R̂α(θ
α
∗ )−Rα(θ

α
∗ )| = 0. (274)

In particular, we have that, almost surely,

lim sup
n→∞

IIn ≤ 0. (275)

Plugging (271) and (275) in (269), we obtain, almost surely,

0 ≤ lim sup
n→∞

[
Rα(θ̂

α
n)−Rα(θ

α
∗ )
]
≤ 0, (276)

from which (267) follows.
For each n ∈ N, let fθ̂α

n
: X → R be fθ̂α

n
(x) = ⟨θ̂αn , x⟩.

Since we have

fθ̂α
n
(x) = σ−1(σ(θ̂αn · x)) = σ−1(gθ̂α

n
(x)), (277)

Proposition 2, (266), and (267) imply that

lim
n→∞

Rα(fθ̂α
n
) = min

θ∈Bd(r)
Rα(fθ) = min

f :X→R
Rα(f) =: R∗

α.

(278)
Since l̃α is classification-calibrated as established in Theo-
rem 1, Proposition 9 and (278) imply that

lim
n→∞

R(fθ̂α
n
) = min

f :X→R
P[Y ̸= sign(f(X))] =: R∗, (279)

as required.

D. Further Experimental Results and Details

-3 -2 -1 0 1 2 3
X1

-3

-2

-1

0

1

2

3

X 2

Balanced Labels

+1 Class
-1 Class
Bayes Optimal [Balanced]

 = .65
 = 1 [Log-Loss]
 = 4

Figure 11: A synthetic experiment highlighting the collapse
in trained linear predictors of α-loss for α ∈ {0.65, 1, 4}
on clean, balanced data. Specifically, α-loss is trained until
convergence under the logistic model for a 2D-GMM with
mixing probability P[Y = −1] = P[Y = +1], symmetric
means µX|Y=−1 = [−1,−1] = −µX|Y=1, and shared co-
variance matrix Σ = I2. Averaged linear predictors generated
by training of α-loss averaged over 100 runs. Training data
present in the figure is obtained from the last run.

1) Brief Review of the F1 Score: In binary classification, the
F1 score is a measure of a model’s accuracy and is particularly
useful when there is an imbalanced class, since it is known to
give more precise performance information for an imbalanced
class than simply using accuracy itself [80]. In words, the F1

score is the harmonic mean of the precision and recall, where
precision is defined as the number of true positives divided by
the number of true positives plus false positives (all examples
the model declares as positive) and where recall is defined as
the number of true positives divided by the number of true
positives plus false negatives (all the examples that the model
should have declared as positive). Formally, the definition of
the F1 score is

F1 =
2

recall−1 + precision−1 =
TP

TP + 0.5(FP + FN)
, (280)
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where tp, fp, fn denote true positives, false positive, and false
negatives, respectively. In practice, tp, fp, and fn are drawn
from the confusion matrix of the model on test data. Note
that the use of the term “positive”, denoting the class name is
arbitrarily chosen; in practice, one lets “positive” class denote
the imbalanced class.

2) Experiments for Section III-C: In this section, we pro-
vide additional synthetic experiments, which follow the same
experiment protocol as Fig. 3. They highlight some of the
main themes of the paper, namely, α∗ < 1 in imbalanced
experiments, α∗ > 1 in noisy experiments, trade-offs between
computational feasibility and accuracy (for both regimes of
α), and the saturation effect.

3) Commentary on Computational Feasibility of α-loss:
In this section, we provide further commentary regarding the
computational feasibility of α-loss. In other words, we provide
further reasoning for our choice of α ∈ [.8, 8] as a sufficient
search space of α in the experiments in Section VI.

For α → ∞, we show through our theoretical landscape
analysis (see Section IV, Theorem 4, and for a visual, Fig. 4)
that the computational complexity increases because gradients
tend to become “flatter”; another (perhaps simpler) way to
see that the gradients become “flatter” is through Fig. 1(a),
where the loss itself has smaller derivatives as α tends to ∞.
Unfortunately, a standard gradient optimizer will get stuck in
such flat regions of the landscape and learning ceases. Indeed
in deep neural networks, the gradients are “back-propogated”
through the network, and if the gradient values are small (as
is often the case for the very large α-losses), learning slows
down or even stops. This motivates our choice of α = 8 as the
upper limiting point of our search space, and we argue that it
is sufficient because of the saturation effect (see (40)).

For α→ 0, we see the opposite effect, i.e., that the gradients
explode as α decreases from 1 (see Proposition 5 with follow-
ing commentary and Fig. 6 for a visual). Indeed, this motivated
the choice of the lower limit of α = 0.65 in Fig. 3(a). This
issue was “pseudo-circumvented” in Tables VII, VIII, and IX
because if there was a NaN, the code would disregard that
run of the experiment for that small α and it wouldn’t factor
into that α’s averaged linear predictor. To give a sense for
how many NaNs occurred, for the 5% imbalance experiment,
α = .4 “NaN-ed” out 51 times out of the 100 runs. Thus, we
argue that α = .8 in general is sufficient as the lower limiting
point of the α search space.

For another visual perspective of these considerations, see
Fig. 10 which was obtained using [79] on a ResNet-18 learning
the MNIST dataset. Interestingly, we see exploding gradients
for α = .9, loss of convexity (and increasing flatness) as α
increases greater than 1, and saturation between α = 2 and
α = 8. Thus, this visualization on a deep neural network
hints at the generality of our theoretical results of the α-loss
landscape in Section IV.

4) Multiclass Symmetric Label Flip Experiments: In this
section, we present multiclass symmetric noisy label experi-
ments for the MNIST and FMNIST datasets. Our goal is to
evaluate the robustness of α-loss over log-loss (α = 1) to
symmetric noisy labels in the training data. We generate noise
in the multiclass training data as follows:

1) For each run of an experiment, we randomly select 0-40%
of the training data in increments of 10%.

2) For each training sample in the selected group, we remove
the true underlying label number from a list of the ten
classes, then we roll a fair nine-sided die over the nine
remaining classes in the list; once we have a new label,
we replace the true label with the new drawn label.

Note that the test data is clean, i.e., we do not flip the labels
of the test dataset. Thus, we consider the canonical scenario
where the labels of the training data have been flipped, but the
test data is clean.

The results of the multiclass symmetric noisy label experi-
ments are presented in Tables X and XI. Note that we use the
same fixed learning rates as the binary symmetric noisy label
experiments in Section VI-A. For the MNIST and FMNIST
datasets with label flips, we find very strong gains in the test
accuracy, which continue to improve as the percentage of label
flips increases, through training α-loss for α > 1 over log-loss
(α = 1). Once label flips are present in these two datasets, we
note that α∗ = 7 or 8 for the CNN 2+2 architecture.

Data Arch LF % LL Acc α* Acc α* Gain %
0 99.16 99.16 1 0.00

10 94.15 99.00 8 5.15
MNIST CNN 2+2 20 85.90 98.84 8 15.06

30 73.54 98.52 8 33.97
40 60.99 97.96 8 60.62

Table X: Multiclass symmetric noisy label experiment on
MNIST. See Table I for descriptions of acronyms.

Data Arch LF % LL Acc α* Acc α* Gain %
0 90.45 90.45 1 0.00
10 84.69 89.81 8 6.05

CNN 2+2 20 77.51 89.27 7 15.18FMNIST
30 67.94 88.10 7 29.67
40 68.28 88.20 8 28.91

Table XI: Multiclass symmetric noisy label experiment on the
FMNIST dataset.
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← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 72.73 72.36 72.57 71.81 71.79 72.46 73.14 73.71 74.10 74.10
2 79.54 79.55 78.51 77.81 76.87 74.13 74.59 75.32 75.71 75.71
5 84.22 83.77 83.48 82.78 82.24 80.68 80.30 80.13 79.71 79.71

↑ 10 87.86 87.54 87.55 87.30 87.09 85.59 85.36 85.08 84.99 84.99
Imb % 15 89.01 88.98 88.74 88.66 88.63 88.32 88.09 88.14 87.97 87.97
↓ 20 90.09 90.11 89.96 89.88 89.79 89.61 89.59 89.73 89.60 89.60

30 91.55 91.36 91.30 91.27 91.24 91.16 91.10 90.90 90.75 90.75
40 92.00 91.97 91.98 91.97 91.98 92.05 92.07 92.08 92.08 92.08
50 92.08 92.09 92.08 92.08 92.08 92.08 92.07 92.06 92.06 92.06

Table VII: Further quantitative results associated with Fig. 3(a) in Section III-C with exactly the same experimental setup.
Values reported in the table are the test accuracy (in %) of a linear predictive model tested on 1 million examples of clean,
balanced synthetic test data. The linear model was learned by averaging models for 100 training examples over 100 runs.
Such models were learned for different imbalance levels of the training data as shown in the table. We found that the Bayes
accuracy of this experiment was 92.14%. In general, we find that α∗ < 1, which aligns with our theoretical intuition. This
contrasts with the notable exception of 1% imbalance, where α∗ > 1, which points towards the usefulness of class upweighting
in addition to employing α-loss for such a highly imbalanced class. Also of note, we find that smaller α is not always better
(see <5% imbalance), which hints at a trade-off between emphasizing the imbalanced class and computational infeasibility
(e.g., exploding gradients) as discussed after Proposition 5. Lastly, we note the closeness between α = 8 and 1010 and ∞;
this follows our theoretical intuition derived from the saturation effect of α-loss as depicted in (40).

← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 0.6261 0.6192 0.6231 0.6084 0.6081 0.6209 0.6338 0.6445 0.6517 0.6517
2 0.7446 0.7448 0.7280 0.7165 0.7007 0.6524 0.6607 0.6739 0.6807 0.6807
5 0.8146 0.8083 0.8040 0.7938 0.7857 0.7619 0.7560 0.7534 0.7467 0.7467

↑ 10 0.8648 0.8605 0.8606 0.8573 0.8545 0.8341 0.8309 0.8270 0.8257 0.8257
Imb % 15 0.8800 0.8797 0.8765 0.8755 0.8751 0.8710 0.8680 0.8687 0.8665 0.8665
↓ 20 0.8937 0.8940 0.8920 0.8910 0.8899 0.8876 0.8872 0.8892 0.8875 0.8875

30 0.9124 0.9100 0.9092 0.9089 0.9084 0.9074 0.9066 0.9040 0.9021 0.9021
40 0.9187 0.9183 0.9184 0.9183 0.9183 0.9195 0.9199 0.9200 0.9201 0.9201
50 0.9207 0.9207 0.9207 0.9208 0.9208 0.9208 0.9207 0.9206 0.9205 0.9205

Table VIII: A twin table of Table VII, except with F1 scores reported. For a brief review of the F1 score, see Appendix D1.
Gains of α∗ < 1 over log-loss (α = 1) are more exaggerated by the F1 score, in particular see 2% and 5% imbalance.

← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 92.18 92.17 92.16 92.17 92.17 92.18 92.16 92.13 92.12 92.12
2 92.06 92.07 92.08 92.09 92.11 92.14 92.14 92.14 92.15 92.15
5 91.34 91.41 91.61 91.68 91.85 92.11 92.12 92.13 92.13 92.13

↑ 10 90.41 90.34 90.53 90.89 91.29 92.01 92.04 92.05 92.06 92.06
Noise % 15 88.45 88.72 89.03 89.53 90.14 91.95 92.02 92.02 92.03 92.03
↓ 20 87.84 86.21 86.52 87.38 88.85 91.17 91.53 91.91 91.46 91.54

30 80.43 80.34 81.48 82.36 83.55 90.15 90.68 90.86 90.98 90.98
40 75.02 75.20 75.11 75.38 75.89 83.00 84.51 85.59 85.82 85.82
50 67.66 67.45 67.26 67.22 67.08 70.61 73.33 75.67 76.89 76.89

Table IX: Further quantitative results associated with Fig. 3(b) in Section III-C with exactly the same experimental setup
(training data with label noise). Values reported in the table are percent accuracy of averaged linear predictors, which were
trained on noisy data, on 1 million examples of clean, balanced synthetic test data. Similarly as in Table VII, we observe a
saturation effect. Further, note that α = ∞ does not always outperform the smaller α’s, in particular, see 20% noise where
α∗ = 8. This hints at a trade-off between α and computational feasibility in the large α regime (α > 1), which also follows
from our theoretical intuition as stated at the end of Section IV.
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