An adaptive, inexact gradient-based algorithm
for multidisciplinary design optimization

Bingran Wang®, Anugrah Jo J oshy?, and John T. Hwangi
University of California, San Diego, La Jolla, CA, 92093

Large-scale multidisciplinary design optimization problems often involve thousands of de-
sign variables and tens of thousands of state variables. If formulated using a simultaneous
analysis and design architecture, these optimization problems would have tens of thousands
of optimization variables and tens of thousands of equality constraints. Such problems can
be particularly difficult to solve even with a gradient-based approach. This paper presents
an adaptive, inexact quasi-Newton algorithm for solving large-scale multidisciplinary design
optimization problems using a simultaneous analysis and design architecture. This algorithm
is novel in two ways. First, this algorithm uses new inexactness criteria that are easy to compute
and can be used with any Krylov solver with or without a preconditioner. Second, this algo-
rithm adaptively chooses the stopping criteria for the Krylov solver that makes the best use of
its performance. This algorithm is applied to an equality-constrained cantilever bar problem
with up to 3,000 design variables. We observe that this algorithm is robust and that it yields
a reduction greater than 50% in terms of the total Krylov iterations, compared with the exact
quasi-Newton method.

I. Introduction

Multidisciplinary design optimization (MDO) uses numerical optimization methods to solve complex engineering
design problems that involve coupled numerical models. A typical MDO problem is the conceptual design of an
aircraft [1-3]. For an aircraft design problem, disciplines such as aerodynamics, structures, and controls are tightly
coupled. Optimizing the design of an aircraft as a whole requires an integrated optimization framework that considers
how the different disciplines interact with each other. MDO has also been applied to other complex engineering
design problems for electric aircraft [4], eVTOL aircraft [S], wind turbines [6, 7], launch vehicles [8], satellites [9] and
automobiles [10, 11].

For a complex engineering design problem like the aircraft design, the optimal design is only insightful when the
accuracy of the engineering model is sufficient. For disciplines like structures and aerodynamics, sufficient accuracy can
only be achieved by using high-fidelity FEM and CFD solvers, which require a significant number of design variables
and state variables in the MDO problem. For a large-scale MDO problem with thousands of design variables, the
numerical optimization is often carried out using a gradient-based approach. Gradient-based algorithms scale better
than the gradient-free algorithms; however, they require an efficient and accurate approach to calculate the derivatives.
NASA’s OpenMDAO software framework [12] enables a gradient-based approach using analytic derivatives to solve
for large-scale MDO problems. In OpenMDAO, the analytic derivatives are calculated by using the unified derivative
equation [13], which unifies the chain rule, adjoint method, and other derivative computation methods.

Simultaneous analysis and design (SAND) is a widely used architecture to formulate an MDO problem. SAND
solves the residual equations and the optimization problem at the same time by treating the state variables as optimization
variables and the residual equations as equality constraints. The SAND architecture is effective for small-size problems,
but its performance degrades when the problem has large number of design variables and much larger number of
state variables. In SAND, a large-scale MDO problem with, e.g., 1,000 design variables and 10,000 state variables, is
formulated as an optimization problem with 11,000 optimization variables and 10,000 equality constraints. Using a
Newton-type optimization algorithm could involve solving a 21,000 x 21,000 Karush—Kuhn-Tucker (KKT) system,
which takes significant computing time to solve to a tight tolerance. One way to accelerate the computation is to solve to
a much looser tolerance in intermediate optimization iterations, i.e., apply an inexact Newton approach.

*Ph.D Student, Department of Mechanical and Aerospace Engineering, ATAA Student Member.
TPh.D Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member.
* Assistant Professor, Department of Mechanical and Aerospace Engineering, AIAA Member.

In current inexact Newton methods, an inexact tolerance is computed, and the Krylov solver for the KKT system
terminates at the first iteration in which the tolerance is satisfied. We see two problems for the current inexact Newton
methods. First, the majority of the inexact methods use a forcing parameter criterion to compute the inexact tolerance;
however, they do not guarantee a descent direction at each iteration. For those methods that guarantee a descent
direction (e.g., the inexact Lagrange-Newton-Krylov-Schur (LNKS) method [14]), the inexactness criteria used are only
applicable to a specific preconditioner. Second, the Krylov solver stops as soon as the inexactness tolerance is met,
regardless of the convergence rate of the Krylov solver. However, in many cases, running the Krylov solver for a small
number of additional iterations would result in a significantly more accurate solution.

We propose an adaptive, inexact quasi-Newton algorithm for large-scale equality-constrained MDO using the SAND
architecture. There are two key features of this algorithm. First, this algorithm uses the new criterion we derived to
compute the inexact tolerance. This tolerance assures a descent direction on the augmented Lagrangian merit function
at each iteration. Additionally, the new criteria are easy-to-compute and applicable to any Krylov solver with or without
a preconditioner. Second, in this algorithm, we adaptively select the stopping criteria for the Krylov solver based on its
convergence rate to capitalize whenever convergence rate is high. This general approach is also applicable to interior
point methods for large-scale inequality-constrained MDO.

This paper proceeds as follows. In Sec. II, we provide some background on MDO architecture, existing quasi-Newton
methods, and current inexact quasi-Newton methods. In Sec. III, we present our proposed algorithm. In Sec. IV, we
demonstrate the effectiveness of our algorithm on a cantilever bar optimization problem.

I1. Background

A. MDO architecture

In the MDO field, the term MDQO architecture is used to refer to the method through which the multidisciplinary
coupling is addressed and how the optimization problem is solved [15]. The two most widely used MDO architectures
are multidisciplinary feasible (MDF) [16] and simultaneous analysis and design (SAND) [17]. MDF and SAND are
equivalent to the reduced-space method and the full-space method from PDE-constrained optimization.

In the reduced-space method, only design variables x are treated as optimization variables, and the state variables
y are computed by Y (x), which is an explicit computation of the discipline states. The reduced-space optimization
problem (considering only equality constraints, without loss of generality) is given by

min (x.Y(x)

st. C(x,Y(x))=0 (1)
with R(x,Y(x)) =0,

where x € R" are the optimization variables, ¥ : R” — R is the objective function, C : R" — R™ is the vector-valued
constraint function, and R : R¥ — R¥ is the vector-valued residual function.

In the full-space method, both x and y are treated as optimization variables. Instead of evaluating Y (x), the
discipline residual equations (R(x, y) = 0) are treated as equality constraints of the optimization problem. The full-space
optimization problem is

min ¥ (x,y)
x,y

st. C(x,y)=0 2)
R(x,y) =0.

Comparing these two methods, the full-space method results in a higher-dimensional optimization problem, as it has
both x and y as optimization variables. Thus, it takes more iterations for the optimization problem to converge than in
the reduced-space method. In contrast, the reduced-space method requires more computation in each iteration as y must
be solved via the interdisciplinary equality constraints.

Another architecture of interest is the strong unification of reduced space and full space (SURF) method proposed
by Joshy and Hwang [18, 19]. The SURF method is based on a full-space architecture, and provides a hybrid version of
reduced-space and full-space methods. Using a full-space or SURF architecture to solve a large-scale MDO problem
results in a high-dimensional equality-constrained optimization problem, that necessitates a gradient-based method and
provides the motivation for the inexact approaches investigated here.

B. Existing quasi-Newton methods
We now consider a general equality-constrained optimization problem (without distinguishing between full-space
and reduced-space formulations):

min ¥ (x)
* 3)
st. C(x)=0.
The Lagrangian function is defined as
L(x,2) =F(x)+2"Cx), 4)

where A € R is vector of Lagrange multipliers. For conciseness, we introduce the following nomenclature:

g(x) =0, % (x)
N(x):=0,C(x)
M(x,2) =0, L(x,).

The first-order optimality conditions state that at a local minimum, the gradients of the Lagrangian function are equal to

zero; that is,

g +N'A
C(x)

0, L(x,)

At each iteration in Newton methods, we first compute the search direction for the optimization variables and Lagrange
multipliers by solving the Karush—Kuhn—Tucker (KKT) system, which is given by

[BXL(x, /l)l

le (or b =0). 4)

g+ N2
C(x)

M(x,1) Nx)T
N(x) 0

Px
Pa

l (or Ap = =b), (6)

where p,. and p, are the search directions for the design variables and the Lagrange multipliers, respectively. The
matrix A is called the KKT matrix. Solving (6) requires us to evaluate a Hessian matrix M (x, 1), which is expensive.
Typically, the model only provides accurate first-order derivatives; therefore, we use quasi-Newton approaches that
approximate the Hessian matrix using recursive updates, e.g., the Broyden—Fletcher—Goldfarb—Shanno (BFGS) formula.
These updates typically ensure hereditary positive definiteness of the Hessian matrix.

Once the search directions are obtained, we consider a line search method to find an acceptable step to update x and
A. This strategy globalizes the quasi-Newton method, meaning it will converge to a local minimum from any starting
point. Another commonly used globalization strategy is the trust region method. For interested readers, summaries of
trust region methods used for equality constrained optimization can be found in the literature [20-22].

The line search algorithm must achieve a sufficient decrease in the augmented Lagrangian merit function, given by

$(x,) = F(x) + AT Clx) + gC(x)TC(x), %)

where p € R is a non-negative penalty parameter. Choosing the penalty parameter is crucial for the line search algorithm.
Furthermore, the merit function is only exact when the penalty parameter is large enough, meaning the minimum for the
merit function is also the minimum for the Lagrangian function. However, having a large penalty parameter would
affect the convergence rate of the quasi-Newton algorithm, especially at the early iterations when the current point is not
close to the minimum point. Gill et al. [23] suggest to keep it as small as possible and only increase it to assure the
global convergence conditions.

We bound the penalty parameter in the same way as in the Lagrange-Newton-Krylov-Schur (LNKS) method [14], to
ensure a descent direction. A search direction p is a descent direction if

V¢T p <0. (3)
For the augmented-Lagrangian merit function, we have

Vo p=(g+N a+pN") p,+N'p, ©)
= —gTMg - chc + ch/,.

Since M is calculated as a positive-definite matrix in quasi-Newton methods. A descent direction is ensured if the
penalty parameter p satisfies

T
¢ DPa

T
c C

o> (10)

We consider a simple backtracking Armijo line search method to find the update step @, in which o € (0, 1] is chosen
to satisfy the Armijo condition, given by

¢(xk +ap§,/lk +apﬁ) < (])(xk,/lk) +ak)7V¢(xk,/lk)Tpk. (11)

Then, the optimization variables and the Lagrange multipliers are updated as
k+1 k
X p

Pa
We refer to this line-search based quasi-Newton algorithm as the exact quasi-Newton method, an outline of this algorithm
is shown in Alg. 1.

xk

/lk (12)

Algorithm 1 Exact quasi-Newton method

1: loop

2: Evaluate ¢, g, N at x¥

3: Assemble A and p*

4: Solve Akpk =p*

5 Update p to ensure a descent direction
6

Find o* viaa backtracking line search method
k k
X Dx
k

A)2
8: Update M via the BFGS formula

k+1

+a'k

7: Update el =

k

C. Current Inexact Quasi-Newton Methods

The quasi-Newton method has been successfully applied in various PDE-constrained optimization problems and
MDO problems. The main challenge of applying the quasi-Newton method to a very large-scale problem is to find an
efficient way to solve the linear KKT system in (6). The KKT matrix contains a mixture of first-order and second-order
gradient information. Even when the Hessian matrix is positive definite, the larger KKT matrix is indefinite and is often
ill-conditioned, which makes solving the KKT system difficult.

When the KKT system is large in size (say, 10,000 x 10,000 or larger), Krylov iterative solvers are preferred over
direct solvers. Widely used Krylov methods include the classic conjugate gradient (CG) method, biconjugate gradient
stabilized (BiCGStab) method [24] and generalized minimal residual (GMRES) method [25]. Note that the CG method
requires the KKT matrix to be positive definite. This can be satisfied by adding a small number to the diagonal elements.
In many cases, a preconditioner is used to increase the convergence rate of the Krylov solver. With a preconditioner, the
KKT system becomes

P 'Ap=pP7'p, (13)

where P is a preconditioner.

The effectiveness of a preconditioner is usually case-dependent. For instance, the active-set sequential quadratic
programming (SQP) algorithm, SNOPT [26], uses a CG method without a preconditioner. In contrast, LNKS [14]
uses a preconditioner equivalent to the block LU factorization. Other possible preconditioners include block Jacobi,
incomplete LU, and incomplete Cholesky.

Even with a preconditioner, a Krylov solver can still take tens or hundreds of iterations to solve the large-scale KKT
system. One way to accelerate it is to solve the KKT system inexactly, which may take significantly fewer iterations. We
define the residual vectors r as

r=Ap-b. (14)

When we solve the KKT system exactly, we stop the Krylov solver when the norm of the residuals becomes small,
e.g. ||l < le — 14. When we solve it inexactly, the tolerance is less tight, e.g. ||7|| < le — 6, which may save tens of
iterations of the Krylov solver. The most commonly used inexactness criterion is

Il < alirll 15)

where 7 € [0, 1) is the forcing parameter that is chosen differently from iteration to iteration. This criterion has been
used in many full-space Lagrange-Newton algorithms for solving PDE-constrained optimization problems [27, 28].
However, this criterion does not guarantee that the search direction calculated is a descent direction for the augmented
Lagrangian merit function, and the performance of this criterion differs from case to case. The inexactness criteria used
in the inexact LNKS method [14] ensure a descent direction on the augmented Lagrangian merit function. However, it
assumes a particular LU-equivalent preconditioner and these criteria are not easy to compute.

II1. Methodology
In our proposed method, we follow the line-search-based quasi-Newton algorithm outlined in Alg. 1, and the KKT
system is solved inexactly. New inexactness criteria are used to compute the inexact tolerances in our new algorithm
that adaptively chooses the stopping criteria for the Krylov solver.

A. New inexactness criteria
We first present the inexactness criteria we derived that ensures a descent direction. When we solve the KKT system
inexactly with or without a preconditioner, the search direction we compute satisfies

T
§+N ﬁl + [”l (or Ap = —b +7). (16)

C ra

M NT
N 0

Px
Pa
We refer to p as the inexact search direction. We want to ensure that the inexact search direction is a descent direction
for the augmented Lagrangian merit function, which means

vl p < 0. (17)
We can express V¢ as a function of p, 7 and 7,
Vo' p=(g+N A+ pN o) o+’ py
:(_Mﬁx_NTﬁ/l+rx)Tﬁx+chNﬁx+CTﬁ/l (18)
= —ﬁIMTﬁx +r§ﬁx +ch(r/1 —o)+ (2" -)P,

To ensure a descent direction, we can set

—pM 5+l <0 (19)
and
ch(r/,—c)+(20—r/l)TﬁA<O. (20)
We choose r, as
lrell < i 1) (|5 1)
to satisfy (19). We write (20) as
pc! (¢ - ry) > (2c - r/l)Tﬁ/l. (22)

We satisfy (22) in two steps. At first, we choose r, to ensure
! (c—ry >0, (23)
this can be satisfied by choosing ||r/l|| < |lc]l. Then we choose p as

T ~ T
2cpy—Para

24
CT(C—I’/I) 9

o>

Note that at the & th iteration, we do not know | before we solve the KKT system. Therefore, in our method, we

approximate it as

k

Px

K k-1

4| = 77| (25)
Using these criteria we derived, in our algorithm, we set the tolerances for the Krylov solver at k th optimization iteration
as

4 < i) 571
. (26)
A <nlien. ne .,
and the penalty parameter is chosen to satisfy
20T gk — phT &
o> I o S < S/ (27)

e’ (c - rf)

B. Adaptive Stopping Criteria for Krylov Solver

For the inexact quasi-Newton methods, we can think of the inexactness as a trade-off between efficiency and accuracy.
Tighter tolerance can lead to more accurate search direction but it takes more time for the Krylov solver to converge.
For all of the current inexact quasi-Newton methods, the Krylov solver stops when the inexact tolerance is satisfied.
However, in some cases, we observe a large convergence rate at the iteration where the inexact tolerance is satisfied, and
by running the solver for a few additional iterations, the norm of residuals can decrease dramatically, resulting in a much
more accurate search direction.

In practice, the convergence of the Krylov solver differs from case to case, it depends on the dimension of the
problem and also the preconditioner used to solve the KKT system. We want to propose a general idea that also considers
the convergence rate and adaptively selects the stopping criteria for the Krylov solver.

The earliest iteration our algorithm stops is when the inexact tolerance (the tolerance used for the inexact method)
is first satisfied. The latest iteration our algorithm stops is when the exact tolerance (the tolerance used for the exact
method) is first satisfied. In this way, at each optimization iteration, the number of iterations our Krylov solver takes is
always in between that of the regular inexact method and exact method. We refer to the inexact tolerance as the upper
bound tolerance and exact tolerance as the lower bound tolerance.

We define a value n; as the number of extra Krylov iterations we are willing to afford in order to get an exact
search direction. At the jth Krylov solver iteration when the upper bound tolerance is satisfied, we measure the current

a

’rj _ZH and estimate the required number of additional iterations it takes to satisfy the lower bound tolerance as n,. If the

7/

convergence rate of ||r|| by fitting a linear regression using the values from the previous three iterations,

>

expected number of additional iterations is more than what we can afford, meaning n, > n,, we stop the Krylov solver
at the current iteration. If not, the Krylov solver proceeds one more iteration, and reduce n; by 1. The Krylov solver
terminates when either the lower bound tolerance is satisfied or n; < n,. The outline of the algorithm is in Alg. 2.

Algorithm 2 Krylov solver with adaptive stopping criteria

1: Specify the number of extra iterations we can afford as n,.
2: while lower bound tolerance is not satisfied do
3: if upper bound tolerance is satisfied then
4 Estimate the convergence rate using Hrj H , Hrj -1 H , Hrj _ZH
5: Estimate the number of extra iterations required to meet the lower bound tolerance, 1,
6: if n, > n; then
7: stop
8: end if
9: end if
10: ny=ny—1

—
—_

Update r using the Krylov method.

One difficulty with Alg. 2 is defining a heuristic for ;. From our numerical experiments with the algorithm, if
solving the exact KKT system takes 30-40 Krylov iterations, it is effective to define n| as n; = 30 — j, where j is the
current iteration number.

C. Adaptive inexact quasi-Newton algorithm
The complete outline of the adaptive inexact quasi-Newton algorithm is shown in Alg. 3.

Algorithm 3 Adaptive inexact quasi-Newton method

1: Specify the lower bound tolerance

2: loop

3: Evaluate ¢, g, N at x¥

Assemble A¥ and b¥

Compute the upper bound tolerance as in (26)
Solve Akpk ~ bk using Alg. 2

Update p to satisfy (27)

find o via a backtracking line search method
k+1 k k

X X
9: update = +aF p;;
Pa

Ak+1 ﬂk
10: update M via the BFGS formula

® 0k

IV. Numerical Results
We use a cantilever bar design optimization problem to demonstrate the effectiveness of our algorithm. In this
problem, we optimize the thickness (height) distribution of a cantilever bar under a load assuming a circular section.
The cantilever bar is assumed to have a non-linear stress strain behavior, and is subject to an equality constraint to bound
the volume of the cantilever bar. The optimization problem can be formulated as

. T
mi:n q d
st. V(h) =v, (28)
with K(h,d)d = q,

where £ is the thickness distribution vector; d is the displacement vector; ¢ is the force vector; <V is the function that
computes the volume of the cantilever bar; v, is the allowable volume; %K is the function that computes the stiffness
matrix.

This problem is solved using three quasi-Newton (QN) methods, all using the full-space formulation. In the
exact-QN method, we use a generic quasi-Newton method described in Alg. 1. In the inexact-QN method, we use
the inexact quasi-Newton method with the inexact tolerance in (26). In the adaptive-inexact-QN method, we use the
adaptive inexact quasi-Newton method we proposed as in Alg. 3, with a pre-selected #,. For all three methods, we add a
small number on the diagonal elements of the KKT matrix, and the KKT systems are solved using the CG method with
an LU preconditioner.

Table 1 shows the results for various problem sizes. The results are also plotted in Figure 1. The total number
of optimization iterations, total number of CG iterations and the total optimization time are compared for exact-QN,
inexact-QN, and adaptive-inexact-QN methods. For this problem, the total CG iterations for the inexact methods are 2-3
times less than the exact method. However, for the 1000-element and 1500-element cases, the total computing time of
the inexact methods are slightly greater than the exact method. This is because, for problem sizes not large enough, the
time spent to perform one CG iteration is small, and for the inexact methods, they require extra time to compute for the
inexact tolerance in each optimization iteration. Therefore, applying inexact methods does not give any benefits for this
size of the problem.

In the larger problems, with 2000 and 3000 elements, inexact methods take 15% - 30% less computing time than the
exact method. Comparing the inexact-QN method with the adaptive-inexact-QN method, the inexact-QN method takes
around two times more optimization iterations to converge than the adaptive-inexact-QN method. In the inexact-QN

Table 1 Comparison of results of the exact-QN, inexact-QN and adaptive-inexact-QN methods applied to the
cantilever bar optimization problem of various problem sizes.

Design State KKT matrix Method Optimization Total CG Time (s)
variables variables size iteration iterations

1000 1002 3006 x 3006 exact-QN 139 2852 154
inexact-QN 131 944 160

adaptive-inexact-QN 129 933 156

1500 1502 4506 x 4506 exact-QN 186 4445 557
inexact-QN 209 1765 610

adaptive-inexact-QN 179 1585 602

2000 2002 6006 x 6006 exact-QN 184 4705 1532
inexact-QN 316 2537 1309

adaptive-inexact-QN 166 1558 1068

3000 3002 9006 x 9006 exact-QN 226 6803 3868
inexact-QN 448 3305 3520

adaptive-inexact-QN 207 2288 3117

method, we only use the inexactness tolerance as the stopping criteria for the CG solver, this tolerance guarantees that
the search direction is a descent direction, but it does not assure a good convergence rate; this could result in taking more
optimization iterations to converge. In adaptive-inexact-QN, we use the inexact tolerance with the adaptive stopping
criteria algorithm. The adaptive stopping criteria ensure the robustness of the inexact method as it also makes the best
use of the CG solver’s performance.

For the 3000-element case, the inexact-QN method takes 10% less time than the exact-QN method, and the
adaptive-inexact-QN method takes 20% less time than the exact-QN method. In our implementation, the majority of the
running time is spent on model evaluations. A better metric to demonstrate the effectiveness of our algorithm is to look
at the total computing time for solving the KKT system, which is directly related to the total number of CG iterations.
The inexact-QN method takes 50% less CG iterations than the exact-QN method, while the adaptive-inexact-QN method
takes 65% less CG iterations than the exact-QN method.

For all the cases with different number of elements, the three quasi-Newton methods converged to the same solution.
Figure 2 shows the thickness distribution of the initial design and the optimized design when the bar is modeled with
1000 elements. The convergence history of the three methods for the 3000-element case is shown in Figure 3.

1 —e— exact-QN
6%103 —e— inexact-QN
—e— adaptive_inexact-QN

4507 —— exact-oN
—— inexact-QN
400 4 —— adaptive_inexact-QN

4x10°

3x10% w 10°

Time

CG iterations
N
o}
U

Opt. iterations

—e— exact-QN
—e— inexact-QN
—e— adaptive_inexact-QN

1000 1250 1500 1750 2000 2250 2500 2750 3000 1000 1250 1500 1750 2000 2250 2500 2750 3000 1000 1250 1500 1750 2000 2250 2500 2750 3000
Number of elements Number of elements Number of elements

(a) Total optimization iterations (b) Total CG iterations (c) Total optimization time

Fig. 1 Comparison of the three methods across various number of elements

0.52 1 821

0.6 -

0.51 4
0.5 -

0.4 4

0.50 4

Thickness
Thickness

0.3+

0.49 4
0.2 4

0.48 - 83

0.0 4

T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Lengthwise position Lengthwise position

(a) Initial Design (b) Optimized Design

Fig. 2 Thickness distribution plots of the initial and optimized designs for the cantilever bar optimization
problem with 1000 elements.

10° A —— exact-QN —— exact-QN
—— inexact-QN 102 —— inexact-QN
5 —— adaptive_inexact-QN —— adaptive_inexact-QN
10° A
lOD 4
£ 2
- (g =
E 10 8 192
= ‘%
2 @
=] 10-2 w
1074 4
-4]
10 1075 4
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Number of CG iterations Number of CG iterations
(a) Optimality convergence history (b) Feasibility convergence history

Fig.3 Convergence history with number of CG iterations for the 3000-element case.

V. Conclusion

We presented an adaptive, inexact quasi-Newton algorithm for solving equality-constrained MDO problems using
the SAND architecture. With the SAND architecture and other similar full-space methods, the size of the KKT system
that must be solved in each iteration of the optimization algorithm is large, and thus preconditioned Krylov solvers are
often used. We derived a new method to compute inexactness criteria for these iterative solvers, in a manner that ensures
a descent direction for the line search. We also proposed a method for adaptively selecting the stopping criteria in a
manner that takes into account the convergence rate of the Krylov solver—thus, going beyond the minimum requirement
to guarantee a descent direction when the convergence rate is high.

We applied this adaptive, inexact quasi-Newton algorithm to a cantilever bar thickness optimization problem with a
controllable problem size. We compared the traditional quasi-Newton method to the inexact quasi-Newton method with
the descent-direction guarantee, and to the adaptive, inexact quasi-Newton method that considers both the descent-
direction guarantee and convergence rate. In terms of total number of CG iterations, the inexact quasi-Newton method
achieves a 50% reduction and the adaptive, inexact method achieves a 65% reduction for the problem configuration with
3000 elements, which is the largest one considered.

A limitation of these results is that they are obtained solely from optimization problems with only equality constraints.
In the case of inequality-constrained optimization, this approach does not generalize directly to sequential quadratic

programming; however, it extends naturally to interior point methods for inequality-constrained problems. The expected
significance of this work is the potential to make the SAND architecture and similar full-space methods feasible in a
wider class of problems by reducing the cost of solving the larger systems that arise.

VI. Acknowledgments
The first author was partially supported by the First Year Fellowship from the Department of Mechanical and
Aerospace Engineering at the University of California San Diego. The second author was supported by the National
Science Foundation under grant no. 1917142.

References
[1] Ashley, H., “On making things the best-aeronautical uses of optimization,” Journal of Aircraft, Vol. 19, No. 1, 1982, pp. 5-28.

[2] Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I., “Multidisciplinary optimization methods for aircraft preliminary
design,” 5th symposium on multidisciplinary analysis and optimization, 1994, p. 4325.

[3] Antoine, N. E., and Kroo, I. M., “Framework for aircraft conceptual design and environmental performance studies,” AIAA
Jjournal, Vol. 43, No. 10, 2005, pp. 2100-2109.

[4] Hwang,J. T., and Ning, A., “Large-scale multidisciplinary optimization of an electric aircraft for on-demand mobility,” 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1384.

[5] Ha, T. H., Lee, K., and Hwang, J. T., “Large-scale multidisciplinary optimization under uncertainty for electric vertical takeoff
and landing aircraft,” AIAA Scitech 2020 Forum, 2020, p. 0904.

”

[6] Kenway, G., and Martins, J. R., “Aerostructural shape optimization of wind turbine blades considering site-specific winds,
12th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2008, p. 6025.

[7] Ning, A., and Dykes, K., “Understanding the benefits and limitations of increasing maximum rotor tip speed for utility-scale
wind turbines,” Journal of physics: conference series, Vol. 524, IOP Publishing, 2014, p. 012087.

[8

—

Balesdent, M., Bérend, N., Dépincé, P., and Chriette, A., “A survey of multidisciplinary design optimization methods in launch
vehicle design,” Structural and Multidisciplinary optimization, Vol. 45, No. 5, 2012, pp. 619-642.

[9] Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R., “Large-scale multidisciplinary optimization of a small satellite’s
design and operation,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, 2014, pp. 1648-1663.

[10] McAllister, C. D., and Simpson, T. W., “Multidisciplinary robust design optimization of an internal combustion engine,” J.
Mech. Des., Vol. 125, No. 1, 2003, pp. 124-130.

[11] Kodiyalam, S., Yang, R., Gu, L., and Tho, C.-H., “Multidisciplinary design optimization of a vehicle system in a scalable, high
performance computing environment,” Structural and Multidisciplinary Optimization, Vol. 26, No. 3-4, 2004, pp. 256-263.

[12] Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A., “OpenMDAOQO: An open-source framework for
multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075-1104.

[13] Hwang, J. T., and Martins, J. R., “A computational architecture for coupling heterogeneous numerical models and computing
coupled derivatives,” ACM Transactions on Mathematical Software (TOMS), Vol. 44, No. 4, 2018, pp. 1-39.

[14] Biros, G., and Ghattas, O., “Parallel Lagrange—Newton—Krylov—Schur methods for PDE-constrained optimization. Part II: The
Lagrange—Newton solver and its application to optimal control of steady viscous flows,” SIAM Journal on Scientific Computing,
Vol. 27, No. 2, 2005, pp. 714-739.

[15] Martins, J. R., and Lambe, A. B., “Multidisciplinary design optimization: a survey of architectures,” AIAA journal, Vol. 51,
No. 9, 2013, pp. 2049-2075.

[16] Cramer, E. J., Dennis, J. E., Jr, Frank, P. D., Lewis, R. M., and Shubin, G. R., “Problem formulation for multidisciplinary
optimization,” SIAM Journal on Optimization, Vol. 4, No. 4, 1994, pp. 754-776.

[17] Haftka, R. T., “Simultaneous analysis and design,” AIAA journal, Vol. 23, No. 7, 1985, pp. 1099-1103.

10

(18]

(19]

[20]

(21]

(22]
(23]

[24]

[25]

[26]

(27]

(28]

Joshy, A. J., and Hwang, J. T., “A new architecture for large-scale system design optimization,” AIAA AVIATION 2020 FORUM,
2020, p. 3125.

Joshy, A.J., and Hwang, J. T., “Unifying Monolithic Architectures for Large-Scale System Design Optimization,” AIAA Journal,
2021, pp. 1-11.

Byrd, R. H., Schnabel, R. B., and Shultz, G. A., “A trust region algorithm for nonlinearly constrained optimization,” SIAM
Journal on Numerical Analysis, Vol. 24, No. 5, 1987, pp. 1152-1170.

Powell, M., and Yuan, Y., “A trust region algorithm for equality constrained optimization,” Math. Program., Vol. 49, No. 1,
1991, pp. 189-211.

Celis, M. R., “A trust region strategy for nonlinear equality constrained optimization,” Tech. rep., 1985.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., “Some Theoretical Properties of an Augmented Lagrangian Merit
Function.” Tech. rep., STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB, 1986.

Van der Vorst, H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear
systems,” SIAM Journal on scientific and Statistical Computing, Vol. 13, No. 2, 1992, pp. 631-644.

Paige, C. C., and Saunders, M. A., “Solution of sparse indefinite systems of linear equations,” SIAM journal on numerical
analysis, Vol. 12, No. 4, 1975, pp. 617-629.

Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM
review, Vol. 47, No. 1, 2005, pp. 99-131.

Yang, H., Hwang, F.-N., and Cai, X.-C., “Nonlinear preconditioning techniques for full-space Lagrange—Newton solution of
PDE-constrained optimization problems,” SIAM Journal on Scientific Computing, Vol. 38, No. 5, 2016, pp. A2756-A2778.

Hicken, J., and Alonso, J., “Comparison of reduced-and full-space algorithms for PDE-constrained optimization,” 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, p. 1043.

11

	Introduction
	Background
	MDO architecture
	Existing quasi-Newton methods
	Current Inexact Quasi-Newton Methods

	Methodology
	New inexactness criteria
	Adaptive Stopping Criteria for Krylov Solver
	Adaptive inexact quasi-Newton algorithm

	Numerical Results
	Conclusion
	Acknowledgments

