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Increased availability of high-quality customer information has fueled interest in personalized pricing strate-
gies, i.e., strategies that predict an individual customer’s valuation for a product and then offer a price
tailored to that customer. While the appeal of personalized pricing is clear, it may also incur large costs in
the form of market research, investment in information technology and analytics expertise, and branding
risks. In light of these trade-offs, our work studies the value of personalized pricing strategies over a simple
single price strategy.

We first provide closed-form lower and upper bounds on the ratio between the profits of an idealized
personalized pricing strategy (first-degree price discrimination) and a single price strategy. Our bounds
depend on simple statistics of the valuation distribution and shed light on the types of markets for which
personalized pricing has little or significant potential value. Second, we consider a feature-based pricing
model where customer valuations can be estimated from observed features. We show how to transform our
aforementioned bounds into lower and upper bounds on the value of feature-based pricing over single pricing
depending on the degree to which the features are informative for the valuation. Finally, we demonstrate how
to obtain sharper bounds by incorporating additional information about the valuation distribution (moments

or shape constraints) by solving tractable linear optimization problems.
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1. Introduction
Over the last decade, increased availability of customer information has fueled interest in
personalized pricing strategies. At a high-level, these strategies combine customer data with
machine learning and optimization tools to predict an individual customer’s willingness to
pay and then customize a price for that customer. This customized price is often delivered
as a discount to a universal, posted price via a mobile application or other channel.

The appeal of personalized pricing is clear — If a seller could accurately predict individ-
ual customer valuations, then it could (in principle) charge each customer exactly their
valuation, increasing profits and market penetration. Given this appeal, grocery chains

(Clifford 2012), department stores (D’Innocenzio 2017), airlines (Tuttle 2013), and many
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other industries (Obama 2016) have begun experimenting with personalized pricing. More-
over, within the operations community, there has been a surge in research on how to
practically and effectively implement personalized pricing strategies (e.g., Aydin and Ziya
(2009), Phillips (2013), Bernstein et al. (2015), Chen et al. (2015), Ban and Keskin (2017)).

Unfortunately, implementing any form of price discrimination, including personalized
pricing, may be costly and/or difficult. A firm would need to engage in price experimenta-
tion and market research, invest in information systems to store customer data, and build
analytics expertise to transform these data into a personalized pricing strategy (see Arora
et al. (2008) for an extensive discussion). Moreover, price discrimination tactics involve
serious branding risks and potential customer ill-will, and, in some markets, may be of
questionable legality. Finally, personalized pricing may impact competitors’ (Zhang 2011)
and manufacturers’ (Liu and Zhang 2006) behavior.

In light of these tradeoffs, in this work we complement the existing operations literature
on how to implement personalized pricing by quantifying when personalized pricing offers
significant value. Specifically, for a single-product monopolist, we provide various upper
and lower bounds on the profit ratio between personalized pricing and a simple single price
strategy. We consider two different strategies: (i) idealized personalized pricing (PP), i.e.,
charging each customer exactly their willingness to pay, and (ii) feature-based personalized
pricing (XP), i.e., charging each customer a price based on their observed feature data. For
both personalization strategies, we benchmark the profit against the simple single price
(SP) strategy that offers one price uniformly to all customers. The bounds we develop on
the profit ratios between personalized pricing and single pricing can guide managers in
assessing the upside of personalized pricing in potential markets. For example, in settings
where an upper bound is close to one, we know that any form of price discrimination
necessarily has limited value, while in settings where a lower bound is far from one, we are
guaranteed the value of personalized pricing is significant.

With full-information about the customer valuation distribution, computing the exact
ratio between personalized pricing over single pricing is straightforward; there is no need
for bounding. However, in our opinion, a firm not currently engaging in personalized pricing
is unlikely to know the full valuation distribution. Indeed, it is not necessary to learn this
distribution to price effectively (Besbes et al. 2010, Besbes and Zeevi 2015) and learning
it may be difficult since real-world distributions are typically complex and irregular (see,

e.g., Celis et al. (2014) for a discussion in an auction setting).
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Consequently, we focus instead on parametric bounds that depend on a few statistics
of the valuation distribution. On the one hand, we believe these statistics are more easily
estimated by a seller not currently engaging in personalized pricing than the full valuation
distribution. For example, in data-poor settings, managers may be able to estimate simple
statistics such as the mean based on domain knowledge or comparable products, but may
find it impossible to accurately specify an entire distribution. Even in data-rich settings, no
non-parametric density estimator using n data points converges in mean-integrated squared
error (MISE) at a rate faster than O(n~%/%), while a simple sample moment converges to its
true moment in mean-squared error at a rate of O(n™') Van der Vaart (2000, Chapt. 24). On
the other hand, and perhaps more importantly, parametric bounds based on these statistics
provide structural insights into the types of markets where the value of personalized pricing
is potentially large or minimal. These structural insights can guide practitioners weighing
the benefits of price discrimination for a particular market against the aforementioned
drawbacks.

More specifically, in the first part of the paper, we prove upper and lower bounds on the
profit ratio between idealized personalized pricing and single pricing. Notice that idealized
personalized pricing as we define it is often called first-degree price discrimination in the
economics literature, and observe that it upper bounds the profit of any other price dis-
crimination strategy. We prove upper and lower bounds that are tight, closed-form, and
depend on simple properties of the valuation distribution. Specifically, our upper bounds
depend on three unit-less statistics of the valuation distribution: (i) the scale, which is the
ratio of the upper bound of the support to the mean, (ii) the margin, which we define as
the margin of a unit sold at a price equal to the mean valuation, and (iii) the coefficient of
deviation, which is the mean absolute deviation over twice the mean. Knowing these three
quantities is equivalent to knowing the mean, support, and mean absolute deviation of the
distribution. Our upper bounds are tight in the sense that we give an explicit valuation
distribution for which the value of personalized pricing over single-pricing matches the
bound. The precise form of the tight distribution depends on the relevant parameters, but
consists of a mixture of Pareto and two-point distributions. Perhaps surprisingly, we also
find that our upper bound is maximal for intermediate values of the coefficient of deviation

and approaches one as the coefficient deviation increases with all other parameters fixed.
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We complement our upper bounds with lower bounds that depend on the coefficient of
deviation and mild shape assumptions on the valuation distribution such as i) unimodality
or ii) unimodality and symmetry. We also show that without any shape assumptions, no
non-trivial lower bound is theoretically possible. To the best of our knowledge, our lower
bounds yield the first provable separation between personalized pricing and single price
strategies for a generic class of distributions. Indeed, our lower bounds provide precise
conditions for when increased heterogeneity in the market guarantees increased value in
personalized pricing. Together our bounds yield strong conditions for identifying which
markets are ripe for personalized pricing and which are well-served by a single price.

Idealized personalized pricing is not implementable in practice as it assumes the monop-
olist can perfectly predict each customer’s valuation. Hence, we also study an alternate
pricing strategy that we call feature-based pricing, where the seller observes a feature
vector (sometimes called a context) for each customer which the seller can use to (imper-
fectly) predict the customer’s valuation and offer a custom price. This strategy more closely
resembles price discrimination strategies implemented in practice. We prove a theorem that
relates lower and upper bounds on the profit ratio of feature-based pricing over single pric-
ing to the profit ratio of idealized personalized pricing over single pricing (discussed above).
The relationship between these two ratios is driven by the degree to which the observable
contexts are informative for the unknown customer valuation, as measured by the size of
the residual error when predicting valuations. More specifically, our bounds depend on
the mean absolute deviation of this residual error. Our bounds make precise the intuition
that when the contexts are very informative, feature-based pricing performs comparably
to first-degree price discrimination, but when contexts are uninformative, feature-based
pricing offers little benefit over single-pricing. Moreover, our bounds show how one can
decompose the value of feature-based pricing strategies into the potential benefits of perfect
personalization and the losses from less than perfectly informative features.

In the last part of our paper, we then show how to generalize our work to other moments
besides the coefficient of deviation. Specifically, we provide an algorithmic procedure to
compute essentially tight bounds on the value of idealized personalized pricing over single
pricing given any generalized moment of the valuation distribution, such as the variance or
quantile information. The key ideas leverage infinite-dimensional linear optimization dual-

ity and a careful discretization argument to generate a tractable optimization formulation
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suitable for off-the-shelf software. We show that when using variance (coefficient of varia-
tion), our bounds have the same insights and structure as the ones derived in closed-form
for the case of coefficient of deviation.

We summarize our contributions below:

1. We prove closed-form, tight upper bounds for the value of idealized personalized pric-
ing over single-pricing when the scale, margin, and coefficient of deviation of the
valuation distribution are known (cf. Theorems 1 and 2). When these upper bounds
are small, this suggests the value of any personalized pricing strategy is rather limited.

2. We prove closed-form lower bounds on the value of idealized personalized pricing
that rely on necessary shape assumptions such as unimodality or unimodality and
symmetry (cf. Theorem 3). In the latter case, our bound is tight for any specified
coefficient of deviation. Our lower bounds provide guarantees on how much increased
value personalized pricing can provide as a function of the market heterogeneity.

3. We then consider the more practical feature-based pricing, and generate lower and
upper bounds on its value in comparison to the ideal case and single pricing (cf. Theo-
rems 4 and 5). These bounds make explicit the relationship between the informational
value of the features, and the value of feature-based pricing in a market. The proof
fundamentally utilizes the previously derived bounds from the ideal case.

4. Finally, we provide a general methodology for computing essentially tight upper and
lower bounds on the value of personalized pricing over single pricing when addi-
tional or different moment information is known about the valuation distribution. Our
methodology also allows for shape assumptions such as unimodality without losing
computational tractability (cf. Theorems 6, 7, and 8).

In the interest of reproducibility, open-source code for computing all of our bounds and

reproducing all of our plots is available at BLINDED FOR REVIEW.

1.1. Connections to Existing Literature

The study of price discrimination tactics has a long history in economics dating back
at least to Robinson (1934). Historically, the economics literature has focused on how
various forms of price discrimination affect social welfare (see, e.g., Narasimhan (1984),
Schmalensee (1981), Varian (1985), Shih et al. (1988) or Bergemann et al. (2015), Cowan

(2016), Xu and Dukes (2016) for more recent results). In contrast to these works, we take an
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operational perspective, focusing on the individual firms relative profits under first-degree
price discrimination and other forms of pricing.

Previous authors have also studied the value of personalized pricing over single pricing
under different distributional assumptions. Barlow et al. (1963) prove that if the valuation
distribution has monotone hazard rates (MHR), the value of personalized pricing is at most
e~ 2.718. In experiments, we show this bound is generally loose even when the assumption
is satisfied (c.f. Fig. 2). Tamuz (2013) shows that if the ratio of the geometric mean over
the mean of the valuation distribution is at least 1 — §, then the value of personalized
pricing is at most (1 —2363)%, while Medina and Vassilvitskii (2017), shows the value
of personalized pricing over single pricing is at most 4.78 + 2log(1 + C?), where C is the
coefficient of variation of the valuation distribution. These two bounds are not tight in
dependence on 6 and C, respectively. By contrast, our analogous upper bounds rely on
coefficient of deviation and are proven to be tight for all possible values. We also stress
that these existing results all pertain to upper bounds on the value of personalized pricing.
To the best of our knowledge, we are the first to develop lower bounds for the value of
personalized pricing over single-pricing and the first to develop bounds on the value of
feature-based pricing over single-pricing.

As mentioned above, idealized personalized pricing (first-degree price discrimination) is
an idealized strategy. In practice, firms implement some form of third-degree price dis-
crimination such as the feature-based pricing strategy we consider. Indeed, the operations
literature contains many examples of (implicit or explicit) third-degree price discrimination
strategies including intertemporal pricing (Su (2007), Besbes and Lobel (2015)), opaque
selling (Jerath et al. (2010), Elmachtoub and Hamilton (2017)), rebates/promotions (Chen
et al. (2005), Cohen et al. (2017)), markdown optimization (Caro and Gallien (2012), Ozer
and Zheng (2015)), product differentiation (Moorthy (1984), Choudhary et al. (2005)),
dynamic pricing and learning (Cohen et al. (2016), Qiang and Bayati (2016), Javanmard
and Nazerzadeh (2016)), and many others.

By contrast, the focus of our work is not on “how to price discriminate” but rather the
value of price discrimination. Our results shed insight into on when the value of such price
discrimination tactics may be high and worth pursuing, and when the value may be low
and not worthwhile. Huang et al. (2019) also studies the value of personalized pricing,
but in a social network. There, all customers are identical except for their position in the

network, and the proven bounds are asymptotic in the size of the (random) graph.
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Finally, we contrast our work to several recent works that study how to set a single-price
near-optimally given limited distribution information such as the support (Cohen et al.
2015), mean and variance (Chen et al. 2017, Azar et al. 2013), or a neighborhood containing
the true valuation distribution (Bergemann and Schlag 2011). Indeed, these works support
our earlier claim that it is not generally necessary to learn the whole valuation distribution

in order to price effectively, but are very different in perspective from our work.

2. Model and Preliminaries

We consider a profit-maximizing monopolist selling a product with per unit cost c. A ran-
dom customer’s valuation for the product is denoted by the non-negative random variable
V ~ F. The mean valuation E[V] is denoted by u. For convenience we shall assume V'
has at most countably many point masses. We shall also define F(p) :=P(V > p), which
is the probability that a customer shall purchase a product if priced at p. ! Since it is
never profitable to sell to customers with valuations less than ¢, assume without loss of
generality, that V' > ¢ almost surely. We consider a spectrum of three pricing strategies for

the monopolist:

1) Single Pricing (SP): In the single pricing strategy, the monopolist offers the product
to all customers at the same price p. Thus, the probability that a customer purchases is
given by F(p), and the seller’s corresponding expected profit is (p—c)F(p). Let Rgp(F, c) :=

max,{(p — ¢)F(p)} denote the seller’s maximal expected profit under single-pricing.

2) Feature-Based Pricing (XP): In the feature-based pricing strategy, the monopolist
observes a feature vector X for each customer before offering a price, but does not directly
observe their valuation V. Based on X, the seller offers a customized price p(X), and
the customer purchases with probability P(V > p(X) | X). Given a joint distribution Fxy
of (X,V), let Rxp(Fxv,c) :=maxy.) E[(p(X)—c)I(V >p(X))] denote the optimal profit

under feature-based pricing.

3) Idealized Personalized Pricing (PP): In the idealized personalized pricing strategy,
the monopolist can potentially offer a different price to each customer and has full knowl-

edge of each customer’s valuation. Since V' > ¢, it is optimal to offer each customer precisely

Tt is traditional to assume that if a customer values a product exactly at the price, then a purchase is made. F(:)
thus includes the P(V/ :j)7 and is not the complementary CDF of V. Note however that since V' has countable many
point masses, that f;f F(t)dt= f:" P(V > t)dt for any z1 < x2.
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their valuation and, thus, the total revenue earned is E[V] = u. Let Rpp(F,c):=pu—c
denote the seller’s maximal expected profit under idealized personalized pricing.

By construction, Rgp(F,c) < Rxp(Fxy,c) < Rpp(F,c). Given F and ¢, we define the

Rpp(F,c)

Rop(Fo) " The value of feature-

value of idealized personalized pricing over single-pricing as
based pricing over single-pricing is defined similarly. When F'; Fxy, and ¢ are clear from

context, we sometimes omit them and write, e.g., 773—’;1;

2.1. The Lambert-W Function

Many of our closed-form bounds involve W_;(-), the negative branch of the Lambert-W
function. Although the Lambert-W function is pervasive in mathematics, it is somewhat
less common in the pricing literature. We refer the reader to Corless et al. (1993) for a

thorough review of its properties and provide a brief overview in Section A.

3. The Value of Idealized Personalized Pricing over Single Pricing
In this section, we provide upper and lower bounds on the value of idealized personalized
pricing over single pricing using simple statistics and/or shape assumptions of the valuation
distribution F. The statistics we shall consider are scale (S), margin (M), and coefficient
of deviation (D) defined respectively as
itk [ F)=1} e o EIV—ul
7 It 2p

These three statistics are unit-less and can be thought of as (rescaled) measurements of

S:

the maximal valuation, per unit cost, and mean absolute deviation. More specifically, S is
the ratio of the largest valuation in the market to the average valuation. By construction,
S > 1, and measures the maximal dispersion of valuations. We stress that S might be
infinite when valuations are unbounded, and, indeed, all of our closed-form bounds below
will still be valid in this setting. By contrast, M = “776 € [0,1], and can be interpreted as
the margin of a unit sold at a price equal to the mean valuation. Finally, by construction,
D € [0,1] since E[|V — u|] < E[|V|] + 1 = 2u by the triangle inequality. Note D is the
(rescaled) mean absolute deviation of V. Mean absolute deviation (MAD) is a common
measure of a random variable’s dispersion, similar to standard deviation. Intuitively, D
measures the overall level of heterogeneity in the market.

Next, we introduce a transformation that reduces the problem of bounding the value of
personalization for a product with ¢ >0 and g > 0 to an equivalent problem with ¢=0

and p = 1. This reduction is used repeatedly throughout the paper.
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LEMMA 1 (Reduction to Zero Costs and Unit Mean). LetV ~ F, and let the dis-
tribution of V.:= ——(V —¢) be denoted by F.. Then,

p—c

Rpp(F,c) _ Rpp(Fe,0)
RSP(F7 C) RSP(ch O) .

Moreover, if the scale, margin, and coefficient of deviation of F are S, M and D, respec-
tively, then the mean, scale, margin, and coefficient of deviation of F, (with no marginal
cost) are p.=1, S. = %, M.=1, and D.= %, respectively.

We sometimes refer to V. ~ F,. as the standardized valuation distribution.

3.1. A First Upper Bound

Rpp
Rsp

The key to the bound is that Rgp(F,0) directly yields a bound on the tail behavior of F.
Indeed, for any price p > 0, pF(p) < Rsp(F,0) by definition, and thus F(p) < Rsp(F,0)/p.

We begin by first providing an upper bound on using only the scale S and margin M.

We use this result repeatedly below, terming it the pricing inequality:

— Rsp(F,0
F(x) < M, YV > 0. (Pricing Inequality)
x

This inequality drives Theorem 1 below.

THEOREM 1 (Upper Bounding %—’;’: using S and M). For any F with scale S >1

and margin M >0, we have

% <-W_4 (e(SJr_—]\Aj—l)) .

Moreover, this bound is tight.
Proof. First, suppose c=0and = 1. Then, Rpp =1 and M = 1. Since u =1, F(S) =0,

ie., 0<V <S5, as. Using the tail integral formula for expectation, we have that

Rpp:/osf(:z:)d:c (1)

S
g’RSP—i—/ F(z)dx (0<Rsp <) (2)
Rsp
® Rsp
<Rsp-+ / ——dx (Pricing Inequality) (3)
Rsp T

R
=Rsp+ Rsplog (5£> (since Rpp=1).
Rsp
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Rearranging this inequality yields

P <1+log (s@) (4)

SP Rsp

We next use properties of W_;(-) to simplify Eq. (4). Exponentiating both sides yields,

R 1 _R -1 _Rpp
R};g < eSR = —< RPPe Rgg — > —RPP Sp
Rsp eS ~ Rgp eSS~ Rgp

Since =5 € [~1/e,0) and the function W_;(-) is non-increasing on this range, applying it

to both sides of (5) and multiplying by -1 yields

rer < (5): ©)

which proves the bound when ¢=0 and =1, since M =1.

To prove tightness, it suffices to construct a nonnegative random variable V ~ F with

=1 and scale S, such that Rgp(F,0) = ﬁl) For convenience, define o = o _(171),
- eS —1\es
and notice, by definition of W_,(-),
1 1 1 (6] 1-1 (6] 1 1 S
——€ a &&= —=e a <— 1 <—>:1——<:>—:1 1 — . 7
Se af S e\s a ! o8 (a) ™)
Next consider a random variable with
1if z € (0,q],

Fs(z)=
2 if z € (o, 5], 0 otherwise.

Observe that Fs has mean 1, since

M:/Osﬁs(x)dx:amlog (g) _ <1+10g (g)) _q,

by Eq. (7). By inspection, Fs has scale S. Finally, for any = € (o, S], 2Fs(z) = «, and for
any other z, zFg(x) < a. Hence, Rgp(F,0) = o, and, thus, the bound is tight for Fg.

For a general ¢ >0 and p # 1, use Lemma 1 to transform to a standardized valuation
distribution with ¢=0, u.=1, M.=1, and S, = M. Lemma 1 and Eq. (6) then imply

that gg }1: ((53 21; g E?g 8)) < -W_ ( ) Replacing S. proves the upper bound. Create a

tight distribution by scaling Fs, (defined above) by p — ¢ and shifting by c. O
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Figure 1 Bounds and Tight Distribution from Theorem 1.

Bound on Rpp/Rsp
o w S
Bound on Rpp/Rsp

Bound on Rpp/Rsp

25 5.0 75 10.0 0.25 050 075 1.00 0.25 0.50 0.75 1.00 0 i p) 3 1

Scale (S) Margin (M) %

Note. The first panel shows the bound in Thm. 1 when M =1 and as S varies from 1 and 10. The second panel
shows the bound in Thm. 1 when S =5 and as M varies from 0.1 and 1.0. The third panel shows the bound in Thm. 1
as # varies from 0.1 and 1.0. The fourth panel shows the tight distribution of Thm. 1 when M =1 and S =5.

The described tight distribution in the proof is a truncated Pareto distribution on [« S|
for some « € [¢,S], which satisfies Fg(x) oc 1/x on its support (see rightmost panel of
Fig. 1). In the auction literature, this distribution is sometimes called the “equal-revenue”
distribution, since all prices in [«, S| yield the same single-pricing profit. Thus, one optimal
pricing strategy for this distribution is to price at p=a and sell to all customers.

In the first three panels of Figure 1, we plot the bound of Theorem 1 as a function of
S, M, and the fraction #, since the bound only depends on this ratio. Intuitively, as
the scale increases, valuations become more dispersed and personalization offers greater
potential value, as seen in the first panel. On the other hand, increasing the margin with
a fixed mean is equivalent to decreasing the cost per unit. As discussed above, under the
tight distribution, an optimal single-pricing strategy is to price at p = «, which has the
same market share as idealized personalized pricing. Thus, in the second panel, as margin
increases, the profits of both idealized personalized pricing and single pricing increase at
the same rate, and their relative ratio decreases. We stress that this behavior crucially
depends on the properties of the tight distribution.

REMARK 1. Many of our subsequent proofs utilize techniques similar to the proof of
Theorem 1. Consequently, we highlight some of its high-level features before proceeding.
First, the proof is centered around an integral representation of a moment of V' (in this
case ) in terms of F (cf. Eq. (1)). The key step is to point-wise upper bound F(z) at each
x. For  <Rgp, the tightest bound possible is simply 1 (cf. Eq. (2)). For x > Rgp, we use
the Pricing Inequality (cf. Eq. (3)). The tight distribution is constructed by constructing a
valid CDF that simultaneously makes each of these point-wise bounds tight. The remaining

steps are simple algebraic manipulation. Thus, the three key elements are an integral
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representation in terms of the cCDF, point-wise bounds on the cCDF, and identifying a

single distribution which simultaneously matches all point-wise bounds. 0

3.2. Upper Bound Incorporating the Coefficient of Deviation

A drawback of Theorem 1 is that the bound becomes vacuous as the scale S — co. The
issue is that S, alone, cannot distinguish between markets where most customers have
relatively similar valuations (which may be relatively low or high) and markets where
customer valuations vary widely. We next provide sharper upper bounds on the value of
idealized personalized pricing by incorporating a measure of the market’s heterogeneity,
i.e., the coefficient of deviation D.

Intuitively, when D is small, we expect most valuations to be close to u, and, hence,
the value of personalization to be small. By contrast, when D is large, we expect larger
dispersion in valuations, and, hence, the potential value of personalization to be larger.

This intuition is not entirely correct as we shall see below. In fact, when D is very large
and S is finite, there is a boundary effect; F' is approximately a two-point distribution
concentrated near ¢ and uS, and single-pricing strategies are very effective. A single price
can be used to capture the high valuation customers, while the low valuation customers
are simply ignored since their potential profitability is near zero. Consequently, for very
large D, the value of personalization is, in fact, low.

This qualitative description is formalized in Theorem 2 which upper bounds the value
of personalization in terms of S, M, and D. The theorem partitions the space of markets
into three distinct regimes depending on the magnitude of D and provides distinct bounds
for each regime. Specifically, we define the three regimes by

(L) Low Heterogeneity: 0 < D <y,
(M) Medium Heterogeneity: 6; < D <y
(H) High Heterogeneity: oy < D <y,

where dp,0),0y are constants that depend on M and S:

Mlog (577 Mlog (*577)
- - 5 M = 1\
W, (ﬁ) 1+log(5+]\z\§ 1)

M

5o M(S—1)
e M—1

The following lemma states that these regimes form a true partition and is proved in

Section B.3 of the appendix.
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LEMMA 2 (Partitioning the Range of D). Given F with scale S and margin M, the
coefficient of deviation of F satisfies 0 < D <déy. Moreover, 0 <o <oy <dg.

Equipped with Lemma 2, we can state Theorem 2, the main upper bound of this section.

THEOREM 2 (Upper Bounding 77%—’;1: using S, M, and D). For any F with scale
S >1, margin M >0, and coefficient of deviation D, we have the following:
a) If 0 <D <y, then

Rpp(Fic) _ -Wo (%e_1>

Low Het it
Rsp(F,c) — _ D (Low Heterogeneity)

b) If 6 < D <4y, then
Rep(Fie) _ Mlog (4)

(Medium Heterogeneity)

RSP(F,C) - D

c) If 6 < D <y, then
RPP(F,C) -1 . '
Rep(Fo) = V- . (High Het ;
Rsp(F,c) — W 6(%)(1 _ %) (Hig eterogeneity)

Moreover, for any S, M, D there exists a valuation distribution F with scale S, margin M

and coefficient of deviation D such that the corresponding bound is tight.

Theorem 2 gives a complete, closed-form upper bound on the value of personalized
pricing for any distribution in terms of its scale, margin, and coefficient of deviation. The
bound is defined piecewise, but is continuous (cf. Fig. 2). Note that the bound captures the
intuition that the value of personalization increases as D increases for small to moderate
D, but also captures the boundary behavior as D becomes very large. Recall that since
Rpp upper bounds the value of any price-discrimination strategy, when D is either very
small or very large and the bound is close to 1, Theorem 2 suggests that there is limited
benefits to any price-discrimination strategy.

The maximal point in Fig. 2, at the transition between the low and medium regimes,
corresponds to the bound in Theorem 1. Moreover, when S is infinity, 0, =&y =dg =1
and the low heterogeneity bound (which does not depend on S) always pertains. Like The-
orem 1, Theorem 2 is a tight bound. The distributions which achieve the bounds depends
on the regime but is not unique. See Fig. EC.2 for typical examples and Lemma EC.3 in

the appendix for explicit formulas.
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Figure 2 Value of Idealized Personalized Pricing vs. the Coefficient of Deviation
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Note. The left panel plots the bound from Theorem 2 as a function of D with S =4 and M = 1. The middle panel
plots the inverse of this bound, which we note is convex. The right panel shows Theorem 2 as a surface plot, where
D ranges over [0,1], and S ranges over [1.1,4]. The dashed contour is the uniform bound for MHR distributions,
e~ 2.718, from Barlow et al. (1963) and Hartline et al. (2008).

We also observe that our bound in the right panel of Figure 2 can be significantly above
or below e, the uniform bound proven for monotone hazard rate (MHR) distributions in
Barlow et al. (1963) and Hartline et al. (2008). In summary, although the value of person-
alized pricing can be large in some settings, our refined analysis based on D characterizes
precisely markets which necessarily have a low value of personalized pricing.

Sketch of Proof of Theorem 2: The proof of Theorem 2 utilizes the same basic tech-
nique as in Theorem 1 and outlined in Remark 1, however instead of being centered around
an integral representation of the mean, the proof is centered around two convenient rep-
resentations of the coefficient of deviation. To that end, we now establish two integral

representations of D in terms of F(x).

LEMMA 3 (Integral Representations of D). For any F with scale S and margin M,
the coefficient of deviation D satisfies
S+M-1_ Mo
D = / F(uz+c)dz = / 1 —F(px+c)dx. (8)
M 0
The proof then proceeds separately for each regime. In the Low (Medium) Heterogeneity
regime we start with the second (first) identity of Lemma 3 and proceed similarly to
Remark 1. The High Heterogeneity bound is also derived in this way, starting with the
second identity of Lemma 3 but using a different bounding of the cCDF which is tighter
when D is large. For the full details of the proof see Section B.2.

Single-Pricing Guarantee: An alternative interpretation of Theorem 2 is that the recip-
rocal of the bound is a tight guarantee on the performance of single-pricing relative to
idealized personalized-pricing. In other words, the single-pricing strategy is guaranteed

to earn at least the given percentage of the idealized personalized pricing profits. This
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perspective, i.e., interpreting single-pricing as an approximation to idealized personalized
pricing, is common in the approximation algorithm literature.

We plot this guarantee, i.e., the reciprocal of the bound in Theorem 2, in the middle
panel of Fig. 2. Perhaps surprisingly, the reciprocal is convex as a function of D (our
original function was neither convex nor concave). We prove this formally in Lemma EC.5.

Asymptotics: Finally, from a theoretical point of view, one might seek to characterize
the value of personalized pricing as D approaches its extreme values D — 0 or D — dp.
In particular, we will see in Section 4.1 that the first limit also provides insight into the

performance of certain third-degree price discrimination tactics. These limits are below:

COROLLARY 1 (Asymptotic Behavior). For any S, M, D, let 1/a(D,M,S) denote
the bound from Theorem 2. Then,

a) As D —0, 1 D D
— 122 40(2).
a(S,M,D) M M
b) ASD—)(SH,

1 B S+M—1\/ D D
a(S,M,D)_1+\/2 Vo M+O(5H M)'

3.3. Lower Bounds on the Value of Personalized Pricing

In this subsection, we complement our upper bounds on the value of personalized pricing
with closed-form lower bounds. Such lower bounds are helpful in identifying when person-
alized pricing strategies can guarantee increased revenues. Unfortunately, when only S, M,
and D are given, only a vacuous lower bound exists, i.e., no lower bound strictly greater
than 1 can be proven. Consider the following two-point distribution in Example 1 where
%ISDP =1 for any S, M, and D.

XAMPLE =1 FOR A WO-IFOINT ISTRIBUTION iven o, , an , reca
E 1R§P 1 Two-P D . Gi S, M, and D 11

that D < é‘,{fi 11 by Lemma 2. Define the two point distribution

. 1—-M with probability £
) pa-Mmy-m . . D
DM with probablhty 1-— M

and let F' be the corresponding cdf. One can confirm directly that E[V] =1 and the
M(S—1)

coefficient of deviation of V' is D. Furthermore, D < g773— implies S > %)M so that
the scale of V' is at most S. Finally, one can confirm that pricing at D(IDL) earns a
profit of M =1—c=Rpp(F,c). Hence, %‘;’P—gFC;—l O
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To avoid these pathological two-point distributions, we require additional assumptions
about the distribution’s shape. We study two such assumptions below.

DEFINITION 1. A random variable V is unimodal with mode m if F(t):=P(V >t) is a
concave function on (—oo,m| and convex on (m, o).

DEFINITION 2. A random variable V' is symmetric about point m if P(V € [m —xz,m]) =
P(V € [m,m+ x]) for all > 0.

These two definitions generalize the usual notions definitions of unimodality and symmetry
for random variables that admit densities to allow for point masses.

We utilize these shape assumptions to prove non-trivial, parametric lower bounds on the
value of personalized pricing over single-pricing in Theorem 3. These bounds yield strict
separation between the revenue of idealized personalized pricing and a single price strategy
for a general class of distributions based on the level of heterogeneity in the market. The
bounds describe markets where one is guaranteed that personalized pricing improves upon

single-pricing.

THEOREM 3 (Lower Bounding %—’;ﬁ using D). Consider a wvaluation distribution

V ~ F, with margin M >0 and coefficient of deviation D.

Rpp(Fic) 1
RSP(F’C) - 1—2% :

% there exists a unimodal and symmetric distribution such that this bound is tight.
b) If V is unimodal and

D Rpp(F,
o 0< D <L thep Reelbd > 1

a) If V is unimodal and symmetric, then

Moreover, for every value of

sp(Fe) — 1-L-
l 2 RPP(F,C) 8%
o ;<4 <1, then Reap(FO) > (H%)Q.

Moreover, if % =0, this bound s tight, and, as % tends to 1, there exists a family of

unimodal valuation distributions such that this bound is asymptotically tight.

Theorem 3 gives optimal (near-optimal), closed-form lower bound on the value of per-
sonalized pricing for any symmetric & unimodal (unimodal) distribution in terms of its
margin and coefficient of deviation. We prove part (a) of Theorem 3 below. The proof of
part (b) is similar, and we relegate it to Appendix B.4 for brevity.

Proof of Theorem 3(a). First suppose ¢ =0 and g = 1. Symmetry implies that the mode
equals p (which equals 1) and 1 < .S <2. Moreover, by Lemma EC.4 in Appendix B.4, we
have D < 0.25 for any symmetric, unimodal distribution. Now, consider two cases based

on the optimal single-price p*.
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Case 1: p* > 1. Define the function G(z) = F(x) for all # € (1,2], and G(1) := lim,y; F(t).

These functions agree everywhere except perhaps at 1 if V' has a point mass at 1. Moreover,

by unimodality, G(x) is convex on [1,2].
Next, by symmetry about 1, G(1) = lim,; F/(£) <1 and since S <2, G(2) =F(2)=0. In
particular, this implies p* < 2. Thus, writing p* as a convex combination,

Gp") = G(2-p) 1+ —1)-2) < 2-p)G)+ (" -1G2) < (2-p")

N | =

Hence,
_ _ 1
Rsp = p'F(p") = p'G(p") < p"(2-p")/2 < max 2(2-2)/2 = 5.

Finally, since D < .25, Rgp <1/2<1-2D, and F£E >

1-2D"

Figure 3  Geometric Proof of Theorem 3(a).

)
— a1 o
2!

_ b\
7(1) R, ...

C1

2

Note. The revenue of a single pricing using price p* < 1 (shaded rectangle) is depicted relative to the area under a

symmetric unimodal ¢cCDF (solid line). The proof relates this rectangle to the area of regions a1, az,b1,b2,c1, and ca.

Case 2: p* < 1. Referring to Fig. 3 note that Rgp = p*F(p*) is the area of the shaded
rectangle. Re-express this quantity as the area of the unit-square (dashed rectangle in

figure) minus the area of the regions ay,as,by,ba,c1, and cy. Formally,
RSP =1- Area(a1 U b1 U Cl) - Area(ag U b2 U Cg),

because the regions are disjoint.
Next, by unimodality, F is concave on [0, 1], hence Area(a;) > Area(as) and Area(b;) >
Area(by). Moreover, by symmetry, limy F'(t) > 1, hence Area(c;) > Area(cy), and, in sum,

Area(a; U by Ucy) > Area(ay U by U ¢3). Substituting above shows Rgp < 1 — 2Area(as U
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by U ¢y). Finally, by Lemma 3, D =1 — fo x)dx. Referring to Fig. 3, this shows that

D = Area(as Ubs Ucg). Substituting above shows Rgp < 1—2D, which implies 7 RPP > ﬁ.

To show the bound is tight we construct a distribution that is a mixture of a pomt mass

at 1 and a uniform random variable on [0, 2], namely,

- 1 with probability 1 —4D
0 =
Unif[0,2] with probability 4D.

E[Vo—1|]
2

By inspection, V; is symmetric, unimodal, satisfies E[Vp] =1 and = D and pric-

ing at 1 earns revenue 1 — 2D. Hence, for V), 2—’;1; = 1_12 5. This completes the proof for
standardized valuation distributions.
For general ¢ and pu, apply Lemma 1 to transform to a standardized distribution V.~ F..

From above, the value of personalized pricing for V. is at least . Replace D.=D/M

12D

to prove the bound, and scale V; by (u— ¢) and shift by ¢ to form a tight distribution. [

4. From First-Degree to Third-Degree Price Discrimination
As mentioned in the introduction, idealized personalized pricing is unachievable in practice.

Here we study a more realistic form of personalized pricing termed feature-based pricing.

4.1. Feature-Based Pricing
In feature-based pricing, the seller predicts the customer valuation V' from a set of observed
customer features, X. From a practical point of view, feature-based pricing approximates
a host of third-degree price discrimination strategies in common use. For example, student
discounts are a form of feature-based pricing where X is binary and indicates if the cus-
tomer is a student. More generally, in online retailing settings, sellers often have access
to rich contextual information for each customer from their cookies such as demograph-
ics, browsing history, etc., that can be used to personalize the offered price via a custom
coupon. Clearly, if one can perfectly predict V' from X, feature-based pricing is equivalent
to idealized personalized pricing. Typically, however, X is not rich enough to predict V
perfectly, entailing some loss in profits.

Formally, let the random variable p(X) :=E[V | X] and define the residual ¢ :=V —E[V|
X]. By construction, E[e | X] =0 almost surely, i.e., the noise term always has conditional

mean (0. More importantly, when X is very informative for V, we expect € to be “small”.
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In this sense, the size of € measures the degree to which X can be used to predict V.
Intuitively, one might think of € as the residual in a non-parametric regression of V" on X.

A first, perhaps obvious, observation is that given X, it is not optimal to price at E[V‘X].
To the contrary, one should price at the optimal price for the conditional distribution Fy x.

Thus, for any joint distribution Fxy, we have
Rxp(Fxv,c) =E[Rsp(Fyx,c). (9)

The main results of this section are bounds on the ratio between feature-based pricing
(Rxp) and a single pricing strategy (Rsp) that depend explicitly on the degree to which

X is informative for V' as measured by the size of the residual ¢ (more specifically, %;”)
To this end, we first bound the ratio between R xp and Rpp in terms of the magnitude of

. . . E
the residual noise €. For convenience, we define D, := %

THEOREM 4 (Feature-Based Pricing vs. Idealized Personalized Pricing).
Suppose that V = u(X) + € where the residual € is independent of X and let D, = ]EQH;H.
a) Then,

Rxp(Fxv,c) ~ a(S,M,D,.)’

where a(S, M, D) denotes the reciprocal of the bound in Theorem 2.
b) If, additionally, € is unimodal and symmetric, then,

RPP(F,C) > 1

Rxp(Fxv,c) — 1— QWDG'

Notice that when X is very informative for V', D, is small, and thus the first part of The-
orem 4 implies Rpp offers limited benefits over Rxp. Correspondingly, when X does not
contain much information about V', the second part guarantees (idealized) personalized
pricing earns significantly more than feature-based pricing under some additional assump-
tions. As an example, we note that Gaussian noise is unimodal and symmetric, so that the

second part of the theorem applies.

We leverage Theorem 4 to bound %;’: = %1; - 77%’};’: by bounding the second term.

THEOREM 5 (Feature-Based Pricing vs. Single Pricing). Suppose V = u(X) + €
with € independent of X. Let D, = ]EQ“—E”.
n

@) Then, Ryp(Fe) _  1-%  Rpp(Fo)

RSP(F,C) - —W_l <£> : RSP(F7C)'
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b) If, additionally, € is unimodal and symmetric, then

RXP(F,C) 2De RPP(F,C)
Rsp(F,c) = ( B M)' Rsp(F,c)’

The proof for Theorem 5 is immediate. Note we have used the (looser) low-heterogeneity

bound of Theorem 2 in place of «(S, M, D.). As noted in the proof of Theorem 2, this

bound pertains to all D and is strongest when D is small. Since we expect one to be
interested in feature-based pricing mostly in settings with relatively informative features
X, we state the bound with this simpler constant. Moreover, we have used Theorem 3(a)
to form the upper bound which requires symmetry of e. With minor modifications, one
can instead use Theorem 3(b) which does not require symmetry but increases the constant
beyond ﬁ

Intuitively, Theorem 5 decomposes the benefits of feature-based pricing into those stem-
ming from pure price discrimination and those (losses) stemming from prediction error.
From a theoretical point of view, this result highlights that the value of personalized pricing
(Ree) s the fundamental mathematical quantity for study. Indeed, using Theorem 5, we

Rsp
can plug-in any bounds on X2 and obtain corresponding bounds on R—Xﬁ' These include

Rsp Rs

the bounds developed in Section 3 above and the bounds developed in Section 5 below.
Although we focus on feature-based pricing in this paper, we also suspect that %—’;i may
be a primitive “building block” when studying other forms price discrimination.

From a more practical point of view, Theorem 5 allows a seller who is currently using
a single-pricing strategy and considering switching to a feature-based pricing strategy
to assess the potential benefits of the switch. The key issue is the informativeness (as
measured by D,) of the features X that the seller currently has or hopes to obtain. If
these features are not sufficiently informative, the second part of the theorem shows there
is little value to the switch. On the other hand, if one intends to collect additional features
on the customers, Theorem 5 also indicates how informative those features must be to
guarantee a desired fraction of idealized personalized-pricing profits. From Theorem 5(a),
we see that to be guaranteed to halve the relative performance gap between personalized
pricing and feature-based pricing, one needs to reduce the size of € by a factor of 4. Loosely,

this corresponds to collecting features X which allow one to predict V four times more

accurately. 2

Rsp’
where we have used the fact that (14 +/2D¢/M +o(y/De/M))~' =1~ +/2D./M + o(r/D./M). Rearranging shows
RP%;FEXP <+/2D¢/M + o(v/D¢). Hence reducing D. by a factor of 4 halves the relative performance gap.

2 More specifically, using Corollary 1, we can rewrite Theorem 5(a)) as % > (1 — 2D /M + o(w/De/M)) Rpp




A. Elmachtoub, V. Gupta, and M. Hamilton: The Value of Personalized Pricing 21

5. Bounds Based upon General Moments

Rpp(Fi)
Rsp(Fic)

In Section 3 we developed upper and lower bounds for based upon the coefficient of
deviation. Although the coefficient of deviation is amenable to closed-form analysis, bounds
using other statistics are of interest. In this section we compute upper and lower bounds
on the value of personalized pricing over single-pricing for other statistics while possibly
imposing shape constraints (such as unimodality) on F'. Via Theorem 5, these bounds can
be transformed into bounds on the value of feature-based pricing over single-pricing.
Specifically, throughout the section we assume F' satisfies a single moment constraint

of the form E[h(V)] = u; for some known, fixed function h(-) and constant py,. Examples

include:

e Coefficient of Deviation: When h(v) = |”2;“| and p, = D, this constraint ensures
the coefficient of deviation of F'is D, generalizing our analysis from Section 2.

e Coefficient of Variation: When h(v) = (”;—5‘)2 and py, = C?, this constraint ensures
the coefficient of variation of F'is C.

e Geometric Mean: When h(v) = —log(v/p) and p, = —log(B/u), this constraint
ensures the geometric mean of F' is B i.e., exp(E[log(V)]) = B. As mentioned, the
value of personalized pricing given the geometric mean has previously been studied
(in a different context) by Tamuz (2013).

e Incumbent Price: When h(v) =1(v > pu) and u; = q, this constraint ensures that a
fraction ¢ of the market purchases at price pu. Here, pu might represent an incumbent
price that has been used historically.

The key idea of our approach is to formulate an optimization problem over probabil-
ity measures to explicitly compute the value of personalized pricing. Similar ideas have
been used to develop generalized Chebyshev inequalities (Bertsimas and Popescu (2005),
Popescu (2005)).

Before delving into the details of our formulations, we summarize the main insights via
a numerical example in Fig. 4. In each panel we compare upper (solid lines) and lower
bounds (dashed lines) on the value of personalized pricing assuming no shape constraints
(red lines), unimodality (green-dashed line), and unimodality with a mode at m =1 (blue
lines). The four panels correspond to the four examples of moment functions A(-) described
above. In all panels, we take S =2, M =.9, and = 1. Since S = 2, the maximal deviation

achievable by any unimodal distribution is only .25 (achieved by a uniform distribution),
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Figure 4 Upper and Lower Bounds on Rpp/Rsp Given Various Shape Constraints. In all panels p=1, S =2
and M =.9. The incumbent price pp = .8 in panel (d). We plot upper (solid lines) and lower (dashed lines) bounds
assuming no shape constraints (red), unimodality (green) and unimodality with mode m =1 (blue). Bounds are
annotated by their corresponding theorem. Panels plot bounds in terms of different possible moments of the

valuation distribution.

not 1. Thus, we restrict the plot in first panel to this range. Similar restrictions apply to
the other moment functions and other three panels. Panel (d) uses an incumbent price of
pu=.8.

Overall, as was seen in Section 3.3, enforcing shape constraints significantly strengthens
the bounds, especially for intermediate values of heterogeneity. In the first panel, we have
added the bound from Theorem 3 (b) for comparison. The gap between the “Unimodal”
curve (green dashed line, computed from Theorem 3 (b)) and the “Unimodal (m =1)”
(blue dashed line, computed from Theorem 8) arises because Theorem 3 holds for all scales
S and possible locations of the mode, m while Theorem 8 is parameterized by S and m.
All four panels show similar qualitative behavior.

We stress that these are only 4 examples of moment functions A(-). In Sections 5.2
to 5.4 below, we formulate generic optimization problems to compute bounds for any h(-).

We believe these formulations provide a general framework for managers to assess the
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value of personalization under different a priori assumptions on valuations. Naturally, the
computational complexity of these optimization problems hinges on the particular moment
function h(-) and shape constraints. To streamline exposition, we defer all discussion of

tractability until Section 5.5 where we also argue that the 4 examples above are tractable.

5.1. Reduction to Standardized Valuations
Notice that if E[h(V)] = p, then E[R(V.)] =0 where h(t) := h(uM(t — 1) + u) — py and
V. is the standardized valuation distribution of Lemma 1. Hence, to bound the value of
personalized pricing with a moment constraint defined by h, it suffices to bound the value
of personalized pricing for a standardized valuation distribution satisfying a moment con-
straint defined by a standardized function h. For example, the corresponding standardized
functions for our four examples above are: i) h(t) = M |t — 1| /2 — D for the coefficient of
deviation ii) h(t) = M?(t — 1)?> — C? for the coefficient of variation iii) h(t) = —log(M (t —
1) +1) +1log(B/p) for the geometric mean and iv) h(t) =T{M(t—1)+1>p} —q. We use
this reduction to the standardized distribution V, and standardized moment function h(-)
repeatedly in what follows.

Finally, with some loss of generality, we assume throughout this section that S < oo as

it simplifies many of our formulations.?

5.2. Upper Bounds Based upon General Moments

Consider the optimization problem

2 :zy{%ﬂ Yy (10)

Se
s.t. / dP, =1, dP,>0, Yve][0,S,]
0

Se Se Se
/ vdP, =1, / h(v)dP,=0, y> p/ I(v>p)dP,, Vpel0,S,].
0 0 0

The decision variables here are P,, which represents the distribution of V. (a standardized
valuation distribution), and y, which represents the single-pricing profit. The first two
constraints ensure that P, is a valid probability measure. The next two constraints ensure
P, has mean 1, and P, satisfies the moment constraint. Finally, the last (infinite) family of

constraints ensures that y is at least the revenue achieved by pricing at p for any p € [0, S].

3 The case of S =00 can be handled with similar techniques, albeit somewhat more tedious calculations.
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At optimality, y will equal the optimal single price revenue. Therefore, 1/z* is a tight
upper bound on the value of personalized pricing for a standardized valuation distribution
satisfying E[h(V,)] = 0. From our remarks in Section 5.1, 1/2* can then be used to bound
the value of personalized pricing for a general valuation distribution.

Unfortunately, since Problem (10) has both an infinite number of variables P, for v €
[0,S.] and an infinite number of constraints (indexed by p € [0,S.]), it is not clear how to
solve it. A first thought might be to discretize Eq. (10) by restricting P, to have (fixed)
finite, discrete support and only enforcing the semi-infinite constraint on some grid. The
resulting value, however, is not a valid lower bound on Rgp, and, hence, its reciprocal does
not upper bound the value of personalized-pricing.

Theorem 6 below provides an alternate approach by discretizing the dual of (10) which

does yield a valid bound. See Appendix B.7 for details.

THEOREM 6 (Upper Bounding VoPP for General Moments). Let F' be any val-
uation distribution with scale S, margin M and mean p that satisfies E[h(v)] = pn for a
fized, known h(-) and constant pu,. Let 0 =py <p; < ... <pn_1 <py = % be a dis-

cretization of the interval [0, %] and define

2y = max 0+ X\ (11)
N N
S+M-—-1
sl Qi=1 Q=20 O+ h——Fpr—+X (h(Su)—uh)SijQj ,
j=0 7=0
k-1

9+/\1U+)\2<h(ﬂM(v_1)+M)_/~Lh> < ijj? vve[pk—hpk)a ]{le,,N

<
Il
o

Then, %’;’; <1/z¢<1/zy.

5.3. Upper Bounds Based upon General Moments under Unimodality

We next compute upper bounds on the value of personalized pricing under a general
moment constraint and assuming F' is unimodal with mode m (we call such a distribution
m-unimodal). We focus on the case of unimodality as it seems most relevant for pric-
ing applications, however, our techniques can be applied to other shape constraints that
describe a convex class of distributions, e.g., symmetric distributions, by leveraging the

appropriate representation theorems from Popescu (2005).
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We adapt our argument in Theorem 6 by leveraging Lemma 4.2 of Popescu (2005). The
key idea is that any m-unimodal distribution can be represented as a mixture of uniform
distributions supported on [t,m] for ¢ < m, uniform distributions supported on [m,¢] for
t > m, and a Dirac distribution at m. More formally, let Unif[t,m] denote the uniform
distribution on [t,m] if ¢ <m and the uniform distribution on [m,t] otherwise. Then, if
V. is standardized valuation distribution that is m.unimodal, then there exists random
variable 7 ~ M supported on [0, S.| such that V, ~; W where W |7 ~ Unif[r, m.].

Using this representation of m-unimodal distributions, we can formulate our optimiza-
tion problem by reparameterizing in terms of the mixing distribution M. Specifically,
observe that if Y; ~ Unif[t,m|, then E[Y;] = (¢t +m)/2, and

;

0 if p > max(m,t)

1 if p < min(m, t) _ L "h
P(Y, > p) == Glp, m, 1) = E[R(Y)] = H(tm) = { "

I(m>p) ifm=t, h(m)

% otherwise.

\

Consequently, using our representation of V. as a mixture distribution, E[V,.] = E[W] =
E[(T +m.)/2], and E[h(V,)] = E[W(W)] = E[H (7, m.)] by conditioning on 7.
We can then write an analogue of Eq. (10) when V. is m.unimodal as
ZHme = 1ynM€ Y (13)

S S S
c c t c c
s.t. / th = 1, th 2 O, / +2m th = 1, / H(t, mc)th = 0,
0 0 0

Sc
yZp/ G(p,me,t)dM;, Vpe|[0,S.].
0

Here M is the distribution of 7, i.e., the mixing distribution over the requisite uniform
distributions, and the constraints ensure the mixture distribution satisfies the moment

constraints, similar to Problem 10. Using the dual to this optimization problem, we prove:

THEOREM 7 (Upper Bounding VoPP under Unimodality). Let F be any m-
unimodal valuation distribution with scale S, margin M, and mean p that satisfies

E[h(v)] = pn for a fized, known h(-) and constant py,.

if m#t,

otherwise.
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Let m. := %LM, and 0=py<p; <...<pn Sﬂ]\\j L be a discretization of [0, %]
such that pj« =m. for some j*. Let z;‘\}mc denote the optimal value of
sup O+ (2—m,) (14)
0,20,Q
N
st Q>0, Y Q;=1,
§=0
9+/\1mc—|—/\2( ijij

O(me—1t) + At(me —t) + Ao /mc (h(pM(s—1)+p) —pn)ds

Z m _t Z ij] pj Vte[plwpk-i-l)a kZOa"'7j*_17

j=k+1

Ot —m.) + At(t—m.) — A2 /7 (h(pM(s—1)+p) — pp)ds

* k

IN

J=i*+1

Then, @—1/2*’”0 <1/23™.

5.4. Lower Bounds Based upon General Moments under Unimodality
We next complement the upper bounds of the previous section by lower bounds. For many
moment functions h(-), we can adapt the argument underlying Example 1 to construct
a two-point distribution satisfying the given moment constraint for which the value of
personalized pricing over single pricing is 1 (see Section B.8 for discussion of our four
examples). Consequently, we focus below on the cases where V' is m-unimodal to derive
more informative bounds.

Using the same mixture distribution representation of a unimodal distribution from the
previous section, we claim that for a standardized, m.unimodal valuation distribution
pricing at p earns at most

Se
r™e(p) :==sup / pG(p, me,t)dM,
0

dM

S S S
c c t c c
s.t. / th = 1, th Z O, / +2m th = 1, / H(t, mc)th = 0,
0 0 0

where G(-) and H(-) were defined in Eq. (12). As in Problem (13), M, describes the relevant
mixing distribution. Unlike in the previous section, the objective here maximizes the single
pricing profit for pricing at p. Thus, the value of personalized pricing over single pricing

. R 1
satisfies B2 = .
Rsp ~— maxueo,s.) " (P)

ijj(t_mC)+ Z ijj(t_pj)7 Vte(pkvpk+l]7 k:]*+177N_1
=0
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By combining a duality argument with a careful discretization of the prices, we can lower
bound the value of personalization. Since the techniques and results are quite similar to
those in the previous section, we simply summarize the main result and relegate the precise

formulations and proofs to Appendix B.9.

THEOREM 8 (Lower Bounding VoPP under Unimodality). Let F be any m-

unimodal valuation distribution with scale S, margin M, and mean p that satisfies
E[h(v)] =0 for a fized, known h(-). Let m, := m—_MJ}MM, and fix any 0 <6 < 1. Then,

;Me

773—’;’ > g™ where vy is non-increasing in 6 and tight in the limit 6 — 0. Moreover, 1}
1 S+M-—-1 . . .
%1 optimization problems. Each of these N

problems has three decision variables 6, A1, Ao, and at most 2 semi-infinite constraints of

the form

can be evaluated by solving N :=[1+

arH(t,m.)+ast >az Vte([l,u], and ast®+ast+ a6/ (h(uM(s—1)+p) — pp)ds > a7 Vte[l,u,
¢
(15)

where a; 1 =0,...7 are (known) affine functions of 0, and [l,u] C [0, &HM1=1].

5.5. Computational Tractability

Thus far we have not discussed the computational tractability of problems described in
Theorems 6 to 8. Each of these problems has a small number of variables and simple
constraints, and, additionally, a small number of semi-infinite constraints. For example,

Problem (11) has the constraint (indexed by v)

o

-1
O+ Nv+ X (h(uM(v—1)+p)—pp) <> piQj, YU E [pr_1,pr)-
J

Il
=)

Semi-infinite constraints are well-studied in the robust optimization literature (Ben-
Tal and Nemirovski 2000, Ben-Tal et al. 2015). For many classes of h(-), they are both
theoretically and practically tractable. In some cases, classical results yield explicit, convex
reformulation of these semi-infinite constraints in terms of a finite number of variables and
constraints. These reformulations can then be passed directly to off-the-shelf solvers.

For general h(-) that might not admit a simple reformulation, such constraints are still
computationally tractable if one can separate efficiently over the constraint. In the example
above, this amounts to finding an optimizer of

max Av+ Ao (h(uM (v —1)+ p) — pp) (16)

VE[Pr—1,Pk]
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for a given k, \;, and Ay. Such a subroutine can be used with constraint-generation to solve
the optimization problems in Theorems 6 to 8 as a linear optimization problems efficiently
(see Bertsimas et al. (2016) for details). Fortunately, for many h(-), an optimizer is often
available in closed-form.

To illustrate these ideas, Propositions EC.1 to EC.4 in Appendix B.10 show that each
of the above optimization problems is tractable for the four cases considered either by i)
using techniques from the robust optimization literature to reformulate the relevant semi-
infinite constraints or ii) by showing we can separate over the constraint in closed-form or

via bisection search.

6. Conclusions

Increasingly rich consumer profiles enable retailers to price discriminate among customers
at finer and finer granularity for increased profits. However, such price discrimination
strategies entail upfront investment costs in the form of information technology, analytics
expertise, and market research. Motivated by this trade-off, we provide a framework to
quantify the benefits of personalized pricing in terms of the features of the underlying mar-
ket. In particular, we exactly characterized the value of personalized pricing over posting
a single price for all customers in terms of the scale, coefficient of deviation, and margin
of the valuation distribution in closed-form.

Using our closed-form bounds, we are also able to bound the value of certain third-
degree price discrimination tactics that more closely mirror current practice. Specifically,
we show how to transform our previous bounds on idealized personalized pricing into more
practical bounds on the value of feature-based pricing over single price strategies. We also
show how to incorporate alternative moment information for sharper bounds by solving
tractable optimization problems.

Overall, we believe that our results provide a rigorous foundation for analyzing pricing
strategies in the context of personalization. Our results can be used both by researchers
attempting to design algorithms for personalized pricing, as well as by managers seeking
to implement or improve their pricing strategies. Future research directions might include
computing the value of personalized pricing directly from data, especially in the presence

of censoring or competition.
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Online Appendix: The Value of Personalized Pricing
Appendix A: A Primer on the Lambert-W Function
The general (multi-valued) Lambert-W function W(z), is defined as a solution to
W(x)e"® =g,
When z € [—1/e,0), this equation has two distinct real solutions. The branch W_; () gives the solution that

lies in (—oo, —1]. The other branch Wy(-) gives the solution in [—1,00), but is not be needed in our work.

Both branches are illustrated in the left panel of Fig. EC.1.

Figure EC.1 The Lambert-W Function.

-5.0

W(z)
Wi(—z/e) .

Wi () -
0 1 2 3 4 5 0.00 0.25 0.50 0.75 1.00
X X

Note. The left panel shows the two real branches of the Lambert-W function, Wy () (dashed black), and W_(+)

(solid). Our bounds depend upon the W_;(-) branch (rescaled), as shown in right panel, and which can be upper and
lower bounded via Chatzigeorgiou (2013) (dotted).

To build intuition, we encourage the reader to think of W_;(-) as analogous to the natural logarithm,
log(+). Indeed, like W_ (), log(z) is defined as a solution to an equation, namely, '°8(*) = z. For a handful
of values, both W_;(-) and log(-) can be evaluated exactly. For example, W_;(—1/e) = —1, log(1) = 0,
and lim, .o W_;(z) = lim,_,log(z) = —oco. For most values, however, both functions must be evaluated
numerically. Fortunately, numerically evaluating W_;(+) is no more difficult than evaluating log(-).

Moreover, the natural logarithm provides simple bounds on W_;(+). Indeed, Chatzigeorgiou (2013) proves

that for 0 <z <1,
1 \Plog(1/z) —log(1/z) < W_, (—%) 11— /2log(1/x) — glog(l/x). (EC.1)

(Recall W_4(-) is defined on [—1/e,0), so that this inequality spans its domain.) The right panel in Fig. EC.1

IN

illustrates these bounds and shows they are quite tight.
Appendix B: Omitted Proofs
B.1. Proof of Lemma 1
Proof. First note the profit from personalized pricing under valuation distribution F' is Rpp(F,c) =
E[V]—c=p—cand under F, is Rpp(F.,0) =E[-(V —c)]—0 = 1. Hence, it suffices to show that Rsp(F,c) =

I

(4 —€)Rsp(F,,0) to prove the first statement. Observe that

Rsp(F,c) :m;cmx(pfc)]P’(V >p)

V— —
:max(p—c)]P’< czp C)
) p—c p—c

V— _
=max (u— c)qP < ¢ > q) (Making the substitution p=c q)
q H—c p—c

=(p—c)Rsp(F.,0).
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For the last statement of the theorem, note that p,. = E[ﬁ(V —0o)]=1,M,=1-0/p.=1,

o _inf{k | F.(k)=1} _ S(f{k | F(k)=1}—¢) 4 (inf{k: | F(k)=1} _c) S—14M
o e a 1 S p—c 7 pw) o M

and

\%4

p, = EIVe = el B[] Epvoe— ool

24t 2 B 2(p—c)/u
This completes the proof. O

<o

B.2. Proof of Theorem 2
Proof. For simplicity, we first consider the special case when ¢ =0 and p =1 and treat each regime of D
separately. In this setting Rpp =p =1 and M =1. We follow the general technique of Theorem 1. Starting

with the second identity of Lemma 3,

L Rk 1 Rep 1
D= 1-F(x)dz> 0 dz+ 1-— o dz, (EC.2)
0 0 % PP T

where we have pointwise upper bounded F(z) by 1 for x € [0, gii ] and used the Pricing Inequality for

x € [F52,1]. Evaluating the integrals yields,

7-\J‘SP ) 7?fSP <RSP >
D>1- + lo . EC.3
= ( Rer)  Rer °\Rep (EC.3)

We next use properties of W_;(-) to rewrite the inequality. For brevity, let oo = 77:—121; Then,

D>1—-a+alog(a) <= D —1>a(log(a) — 1)

D-1
— > elog(a)fl(log(a) _ 1) (using a—e- elog(a)—l).
e

Since D € [0, 1], the left hand side is between —1/e and 0, and since e > 0 the right hand side is greater than
-1/e. Applying W_;(+) to both sides (and recalling this function is non-increasing) yields

W71 (Dgl) >

1
D—-1 «

D—-1 —1
W_1< >glog(a)—1 = eV )Soz
e

(EC.4)

e

Rsp~ D-1 7~

where the penultimate implication follows from the definition of W_;(+), and the last line follows from the

Rpp < W_, (D_l)

= (EC.5)

definition of . We stress Eq. (EC.5) holds for all D and coincides with the Low Heterogeneity bound when
c=0,pu=1
Similarly, we can bound the cCDF in the first identity in Lemma 3 to yield an alternate bound. Specifically,

s s

— RSP dx RSP
D= F(x)dx < — = log(S).
/1 ( ) “Ji Rep 2z Rpep g( )

Rpp < IOg(S)
Rsp~ D
Again, Eq. (EC.6) holds for all D and coincides with the Medium Heterogeneity bound.

Rearranging yields,
(EC.6)

The High Heterogeneity bound can be derived similarly, using a different bounding of the cCDF which
is tighter when D is large. We defer the details to the next subsection and only state the result in Lemma

EC.1 below.
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LemMmaA EC.1 (High Heterogeneity Bound when ¢=0 and p=1). If D > §y,, then,

77;1:; <w, (S(l‘iD)) . (BC.7)

To summarize, Egs. (EC.5) and (EC.6) hold for all 0 < D < g and Eq. (EC.7) holds for all §,; < D < dy.

These results are sufficient to prove that the bounds from the theorem are valid. For completeness, however,
the next lemma further proves that in each regime, the bound for that regime is the strongest of the applicable

bounds.

LeMMA EC.2 (Strongest Bound by Regime).

a) The function
-W_ (*FTD) _ log(S)
1-D D’

is negative for D € (0,481), is positive for D € (61,,dx], and has a unique root at D = §y,.

D

b) The function
log(S) -1
Do —ph—+ l‘1<eS(1—D))’

has a unique oot at D = dy; and is non-negative for all D € [0,dy].

A consequence of Lemma EC.2 is

e When D €[0,6;], Eq. (EC.5) dominates Eq. (EC.6).
e When D € (01,0)], Eq. (EC.6) dominates Eq. (EC.5).

e When D € (6y,05], Eq. (EC.7) dominates Egs. (EC.5) and (EC.6).
This concludes the proof that the bounds are valid when ¢=0 and pu=1.

For a general ¢ >0 and p > 0, we transform the problem to one in which ¢=0 and g =1 using Lemma 1
and apply the results from Egs. (EC.5) to (EC.7) using the new S., M, and D.. Simplifying proves that the
bounds are valid for general ¢ and p.

It only remains to establish that the bounds are tight. We use the same technique as in Theorem 1.
Namely, in each regime, given S, M, D, and u, we construct a cCDF that makes all pointwise bounds on the
c¢CDF simultaneously. A difference from Theorem 1 is that the integral representations of D in the proof of
Theorem 2 do not determine F over its whole domain [0, Sy]; they only span [0, u], or i, S] depending on
the regime. This introduces some freedom in constructing the cCDF on the remaining segment and causes
the tight distributions to be non-unique. We defer the details to Lemma EC.3 in the section subsection for

brevity. O

B.3. Omitted Details, Proofs, and Lemmas for Theorem 2

We now provide proofs for the lemmas necessary to complete the proof of Theorem 2.
Proof of Lemma 2. Consider the case when ¢ =0 and g =1, which implies that M = 1. We first prove
that D < {§y and that there exists an F' whose coefficient of deviation is exactly . To this end, consider an

arbitrary random variable V, and define the new random variable V with two-point support

— JE[V|V <1]  with probability P(V <1)
E[V|V >1] with probability P(V >1).
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By construction, E[V]=E[V] = 1. Furthermore,

E[|v—1|] :|v—1\ | Vg}mvgnm[w—u | V>1}1P>(V>1)

:1—V|Vg1]JP>(V§1)+1E[V—1 | V>1}1P>(V>1)

E

E

(1—E[V | Vng]P’(Vgl)—i—(]E[V|V>1}—1)IP(V>1)
E

7 1],

i.e., both V and V have the same coefficient of deviation. Thus, to find a distribution with maximal coefficient
of deviation, it suffices to consider two-point distributions.
We compute such a distribution explicitly via the following optimization problem:
1
Smax q(1—a)+(1—a)(y—1)
x,Y,q

st. gz+(1—qy=1

0<z<1<y<S 0<qg<1,

where the objective is the coefficient of deviation of a distribution with mass ¢ at x <1 and mass 1 — ¢

at y > 1. The constraint ensures that the mean is 1. In particular, this constraint implies ¢ = % for any

(1=z)(2y—1)
y—x

feasible solution, whereby the objective simplifies to . This function is decreasing in x, whereby

the optimal solution is * =0, y* = S and ¢* = 251 with optimal value 5%. Note £+ = dy since M = 1.
Next we show 0 <, < §,; <dy. Notice that 6, = % is the ratio of two positive terms. Thus, it is
- eS
positive. To show &;, < d,,, note that, since S >1,
el+log(S)
1+log(S) > 1 = ——,
g(5) = -5
which, after rearranging, implies
-1
—(1+1og(9)) e~ (I Flos(8) < =
eS
Applying W_;(-) to both sides and noting this function is decreasing shows

—(1+1og(S) =W, (;;)

which implies

5, —_1os(5) . log(8) _ .
-W_1(z2) ~ L+log(5) ’
as was to be shown.
To show 0, <y, observe that since S > 1, 0 <log(S) < S — 1, which implies that
50y = log(.S) < S—1
1+log(S) — 14(S-1)

is an increasing function for x > 0. This completes the proof in the case ¢c=0 and p=1.

:6Ha

x

14=x
For general ¢ >0 and p > 0, first apply Lemma 1 to obtain an instance with zero cost and unit mean with

since x +—

corresponding parameters D.,S., and M.. From the previous arguments, we have that 0 < D, < % and

log(Sec) log(Sc) Sc—
0= W,l(gslc) = 1+4log(Sc) < Se

D.=2 and §, = SHM=L, O

L Transform back to the original parameters to prove the lemma, noting that
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Proof of Lemma 3. Let V ~ F and note,
0=E[V - =E[(V-p)"]|-E[(p-V)"] = E[(V—-p)'=E[(r-V)"].

Moreover, E[|V — u|] = E[(V — p)T] + E[(p — V)], hence, combining with the above yields E[|V — u|] =
2E[(V — )] =2E[(up — V)]. We use these two identities to re-express D. From the first equality and the

tail integral formula for expectation,

1 S-‘rM*li

) n(S—1)
D:iE[(V*“m:%/O }P((Vfu)*Zt)dt:;/O P(VZ,[Lth)dt:/M F(ux + c)dx,

where the last line follows from the change of variables u +t — ux 4 c¢. Similarly, using second equality and
the tail integral formula for expectation,

D:iE[(y—V)Jr]:i/()wP((u—V)+>t)dt:i/0McIP’(V<,u—t)dt:/0 F(uz + c)dz,

where the last line follows from the change of variables y —t — ux + c. a

Proof of Lemma EC.1. We follow the same strategy as previous two regimes bounds. Note that when
the coefficient of deviation is high, the probability that V is “close” to 1 is low, since p = 1. Formally, we
claim that

P(V>t)<1-D Vte(L,S). (EC.8)

To prove the claim, note that D = E[(1—V)*] <P(V < 1), where the equality is Lemma 3 and the inequality
uses (1— V)T <1. Rearranging proves P(V >1) <1— D, which in turn implies Eq. (EC.8).
We use this inequality when pointwise bounding our integral representation. Specifically, for any 1 <ty < .5,

we have

s
D= / P(V >t)dt (Lemma 3)
1
to

:/ MV>Q+/SMV>ﬂﬁ

1 to

fo S Rgp dt .. .
< (1-D)dt+ — (Eq. (EC.8) and Pricing Inequality)
1 w Rep t
R S
= (to—1)(1— D)+ —L1log () . (EC.9)
Rep to

e e . . o R 1 . . R 1
Minimizing over tq yields to = maxq1, R}S;; ) } We next argue that D > §,; implies 1 < Rii oy SO
P 1

Rs
Rpp (1-D)"

Recall by Eq. (EC.6) 222 < 10e(%) for all values of D and, in particular, we have that for D € [d,;,dy],
Rsp D

Rpp < log (S) < log(5)

that the unique minimizer is tg =

=1+1log(S).

Further D > 6,, = —22%)_ implies that 14 log(S) < —L-. Combining shows
1+log(S) 1-D
Rpp < 1 — 1< RSP 1 ’
Rep ~1-D =Rpp (1—-D)

which confirms that tg = Ty (171 By is the unique minimizer.
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Plugging in this value ¢y = RiP L~ into Eq. (EC.9) yields:

Rpp (1-D)
Rsp  Rsp S(1-D)
1< + lo .
Rep  Rpp 0\ Rez

We next use properties of the Lambert-W function to simplify this equation. For notational convenience

define v = X2 Then,
PP

1<a+alog (S(l;D)) — 1<a(l+log(S(1—D))—log(a)) (EC.10)

<— —1>a(log(a) —log (eS(1 — D))).

Note o = e!o8(®) = glog(e)~log(¢S(1-D)) . ¢ . §(1 — D). Substituting above proves

-1

> log(a)—log(eS(1-D)) 1 —1 S(1—D )
a2 (1og() ~1og (eS(1 ~ D)
The left hand side is between —1/e and 0 by inspection. The function W_, (+) is non-increasing on this range,

so that applying W_; () to both sides yields

Wi <eg(1iD)) < log(a) —log(eS(1 — D)) <= a>eS(1—D)- " (esim) (EC.11)

Rpp <_ -1 e—W,l(
RSP B €S(1fD)

= SEEDy)

Finally, from the definition of W_,,

- —=W_ - - —-1\e5(1—-D)
eS(1—D) ! (eS(l—D))e ’
. . . . . R _
which we use to simplify the last inequality to obtain 22 < —W_, <WiD)) O

Proof of Lemma EC.2. First consider part a). Recalling that —W_,(—1/e) =1, we confirm directly that

the given function is negative as D | 0 since it is continuous. Notice further that —W_;(+) is an increasing
_ _1-D

function (cf. Fig. EC.1), whereby % is an increasing function, while log(S)/D is a decreasing

function. It follows that the given function has a unique root, and it suffices to show this root is ; to

complete the proof. To this end, write,

W (-22) _losts) 1D _ o (57
Ty = = W1<— . >—10g(5 )
— 1 ;D _ log (S%) - exp (log (S%)) (deﬁnition of Lambert—W)
— _ézs%l _l(ﬁ(S) (simplifying)
L 108(8)) —log(S) ing S = exp [~ 1285
— = < > ) 5 (using ST =exp D )
1\  log(9) :
— w, (_S) _ - loel (Applying W_4())
1
e D—_ Og(S)l =4,
Wor (=35)

This completes the proof of part a).
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To prove part b), first observe that

W (_eS(llD)) - _loglgS) = _65(11— Dy = _logzgS) P (‘10%5)) ’

because the function y — ye? is the inverse of W_;(-) and is non-increasing on the domain of W_,(-), i.e.,

[-1/e,0). Simplifying the righthand inequality yields,

D—1

%glog(s%).s 5

Now make the substitution log (S %> — y so this last inequality is equivalent to —71 <ye?. One can confirm
by differentiation that y — ye? has a unique minimizer at y = —1, and, thus, this last inequality holds for all y.
This proves the function defined in part b) is nonnegative everywhere. Moreover, it has a root at y = 1 which
corresponds to log (S%) = —1. Simplifying shows this condition is equivalent to D =1log(S)/(1+1log(S)) =

dar, as was to be proven. [

We next explicitly describe the distributions which make Theorem 2 tight. By Lemma 1, it suffices to
consider the case where ¢ =0 and p=1. The general case can be handled by scaling and shifting the below

tight distributions:

LemMmA EC.3 (Tight distributions).
-1
D-1
a) Suppose D €[0,6.], and let of, = (Wl()) . Then, there is a random variable V with cCDF

D1
1 if0<z<ay

= QTL ifoa, <x<1 . .

Fr(x)= 1Og(Ds)z flez<s (Tight cCDF, Low Heterogeneity)
0 otherwise,

and this random variable has scale S, coefficient of deviation D, and mean 1 and satisfies Eq. (EC.5)

with equality.

b) Suppose D € [5,0x], and let ayy = —2=. Then, there is a random variable V with cCDF

log(s) *
ifx=0,
— o G -1 ifxe(0, eS'"D) , _ ,
Fy(z)= el if e [6317%75] (Tight cCDF, Medium Heterogeneity)
0 otherwise,

and this random variable has scale S, coefficient of deviation D, and mean 1 and satisfies Eq. (EC.6)

with equality.

~1
¢) Suppose D € [0nr,05], and let ay = (—W,l (ﬁ)) . Then, there is a random variable V' with

cCDF
1 if £=0,
= 1-D ifze (0, 24] . . .
Fy(x)= 1D Tight ¢cCDF, High Het t
u(®) en if v € (2455, 5) (Tight ¢ igh Heterogeneity)
0 otherwise,

and this random variable has scale S, coefficient of deviation D, and mean 1 and satisfies Eq. (EC.7)

with equality.
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Figure EC.2 Tight distributions for Theorem 2

1.00 1.00{@ 1.00{@
Low Deviation Medium Deviation High Deviation
D =% ~0.188 D =940 (0.478 D = i 0,665
0.75 2 0.75 2 0.75 2 i
— o B
20.50 =0.50 =
| = & (9 0.504
0.25
G\ " MJ’\
0.004 . . | ! | ! ! ! I ] | | | ]
0 i 2 3 A 0 1 2 3 A 0 1 2 3 A
X X X

Note. S=4, py=1 and M =1. In all three regimes, a worst-case distribution can be constructed from a mixture
of a two-point distribution and truncated Pareto distributions; what differs between the regimes is the placement
and sizes of these components. We show in the course of proving Theorem 2 that any price along the truncated
Pareto section is an optimal price for the single-pricing strategy. These results generalize a folklore result that the
Pareto distribution represents the worst-case valuation distribution when S and D are unrestricted to the case where
these values are known. Note that the distribution varies by regime and is non-unique. See Lemma EC.3 for explicit

formulas.

Proof of Lemma EC.3. Intuitively, F;, F,;, and Fj each make all the pointwise bounds on the cCDF
the integral representation of D used in the proofs of Egs. (EC.5) to (EC.7) tight, simultaneously. Thus,
they will make the overall bound tight. See Figure EC.2 for examples of these tight distributions.

To prove the lemma formally, we will prove that F',, F), and Fy are valid cCDFs, each with mean 1,
scale S, and coefficient of deviation D, and that Rsp(F1,0) =ar, Rsp(Far,0) =y and Rpp(Fu,0) = ay,
respectively. The lemma then follows directly from the definition of «y, ay and ay since Rpp(Fr,0) =
Rpp(Fy,0)=Rpp(Fu,0)=p=1.

a) (Low Heterogeneity) Note that replacing a by v, and the inequality by equality in Eq. (EC.4) and

then following the implications backwards proves that o satisfies
D=1-a;+aglog(ar).

We next prove F is a valid cCDF. By inspection, we need only prove F is non-increasing, i.e., that
ayp > D/log(S) < 1/ay <log(S)/D. This inequality follows directly from Lemma EC.2 since D € [0, 4],
and the left-hand side is low-heterogeneity bound while the right side is the medium heterogeneity bound.
This proves F, is valid.

Next, write

o 1 o S .
/ Fp(x)dx :/ FL(x)dx—i—/ Fr(x)dex=ap —aplog(ar)+ D=1,
0 0 1
where the last equality uses the identity proven above for a,. Thus, F, has mean 1. By Lemma 3, its

coefficient of deviation is
1 . aj, 1
/ 1—FL(a:)dx:/ 0dw+/ 1—% dr=1—ap+arlog(a,)=D, (EC.12)
0 0 ay,

again using the identify for ;. By inspection, it has scale S.

Finally, any price « € [ay,, 1] earns profit «;, while any price x € [0, ;) earns profit strictly less than «;.
Any price z € (1, 5] earns profit D/log(S) which is at most a;, as we noted when proving that F, is valid.
Thus, Rsp(FL,0) =y, which proves that a random variable V with cCDF F, will satisfy Eq. (EC.5) with
equality.
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b) (Medium Heterogeneity) To prove that Fy is a valid cCDF, it suffices to show that eS1-1 < S,
which is equivalent to 1 > ﬁ. Rewrite this last inequality as ﬁ > 1, and recall from Step 1 of the proof
of Theorem 2 that ﬁ is an upper bound on the value of personalization and, thus, must be at least 1.

Next, write

11

=3 eS D S
/ FM(x)de/ F}\{(.ﬁ)dl"ﬁ‘/ . FM(x)dxzoaM—Fon log (}lesl> :1,
0 0 e € D

s'™D
where the last equality uses the definition of a,,. It follows that F',; has mean 1, and, by inspection, scale

S. Write, <
/ Fy(x)dr =aylogS =D,
1

to conclude from Lemma 3 that F,, has coefficient of deviation D. Finally, observe that any price = €
[eSlf%,S] earns profit a,,, while any other price earns strictly less profit. Thus, Rsp(Fas,0) = ayy, com-
pleting this part of the lemma.

¢) (High Heterogeneity) To prove Fy is a valid cCDF, it suffices to show that a /(1 — D) < S. Note
that by Lemma EC.1, 1/ay is an upper-bound on the value of personalization, whereby oy is necessarily at
most 1. Moreover, for the Lambert-W function defining a to be well-defined, we must have that ﬁ <1
which implies S(1 — D) > 1. Thus, ay <1< .S5(1 — D) which implies that oy /(1 — D) < S and that F'y is a
valid cCDF.

Next write,
S 2 H s
/ F(m)dx:/l D(l—D)dx—l—/ M iy
0 0 % xT
S
=ay+aylog| —(1-D)]. (EC.13)
(€954

We claim this last quantity equals 1. Indeed, from the definition of W_;(-), ay =eS(1 — D)« eW*1(65<IiD)>.
Then, replace a by oy and the inequality by equality in Eq. (EC.11) and follow the implications backwards
to Eq. (EC.10), proving the claim. Thus, F'5 has mean 1, and, by inspection, has scale S.

To compute its coefficient of deviation, we first claim that oy /(1 — D) > 1. Indeed, recall that

log(S) D log(.S) 1
D>6y=—"—"— <1 < < < .
=M= T T log(S) 8915 D ~1-D
It follows that
> ]
1-D =aH D (653 =

where the last inequality follows from Lemma EC.2. Now compute

1
/ 1—Fy(x)dr =D,
0

whereby Fj has coefficient of deviation D by Lemma 3.

1
/ 1 — F(x)dz = D.
0
It remains to check that Rsp(F,0) = ay, which we verify directly by observing that any price x € [{, S]

obtains profit ay any any other price obtains profit no more than ay. O
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B.4. Proof of Theorem 3

Part (a) of the theorem was proven in the main text, except for the following lemma:

LemMA EC.4 (Maximum Deviation for Symmetric, Unimodal Distributions). Suppose V ~ F
is symmetric, unimodal and supported on [0,S] with mean p=1. Then the mean absolute deviation of V is

at most i. Moreover, this bound is tight for uniform random variable on [0,2].

Proof. Note by unimodality, V' may have at most one point mass, located at 1. Define the function
G(z) = F(z) for x €[0,1) and G(1) =limy; F(x). Note, since V is unimodal, F'(z) and G(x) are convex on
[0,1].

Now, by Lemma 3,

since the two functions differ only at one point. Then, by convexity

D < /Ol:cG(O)+(1—:c)G(1)dw = G(l)/ol(l—x)dx :%G(l),

where the first equality uses G(0) = F(0) = 0. Finally, by symmetry, G(1) := lim,y; F(z) < 1, whereby D <

.25. The tightness for the uniform is immediate. (]

Next we prove part (b).

Proof of Theorem 3(b). First consider a standardized valuation distribution where ¢=0 and p=1. Fix
F, D, let m be the mode of F, and suppose p* is the revenue maximizing single price. The proof will proceed
in four cases depending on the sizes of m and p*.

(Case 1: m>1, p*<1) By Lemma 3,1 —D = fol F(z)dx. Thus,

*

p 1
Rsp = pF(p*) < / F(x)dr < / F(z)dr = 1-D,
0 0

where the first inequality follows since F is decreasing and the second inequality follows because p* < 1. This

; : Rpp 1
implies e 21D

(Case 2: m >1, p* > 1) Since m > 1, F(z) is concave on [0,1]. Hence, for any = € [0,1), F(z) > (1 —
o)F0)+2F(1)=(1—2)+z2F(1)=1—2(1—F(1)).
Thus, by Lemma 3,

and, hence,

F(1) < 1-2D. (EC.14)

Now since p* > 1,

ol

Rsp :F(p*) +("-1)

=F(p" )+ @ -1

(r")
(r")

el
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< + / ’ F(x)dx (F(x) is decreasing)
< F(l)—l—D1 (p* >1 and Lemma 3 )
<(1-2D)+D (Eq. (EC.14))
=1-D.

Thus in this case Pi > 5

(Case 3: m <1, p* <m) Much like in Case 1, since p* <m <1 it follows that

s

Rsp(F) = p*F(p*) < /OP F(x)dr < /O F(z)=1-D,

. . . Rpp
which implies e 2 T p-

(Case 4: m <1, p* >m) Let [(z) = F(p*) — f(p*) (x — p*) be the tangent line of F'(x) at p*. This line equals

0 at p* + f((p)) Since p* is an optimal price, it satisfies the first order condition d%pf(p) =F(p)—pf(p)=0

Thus l;((p*)) =p* and the root of I(z) is actually p* + 1;((5)) =2p*.

Thus, I(z) passes through the points {(m,l(m)),(2p*,0)}, and we may equivalently rewrite l(x) =
2Um)pZ=lm)z Hence, we also have the identity F(p*) =1(p*) = Lk

2p* —m 2p*—m "

Now define the parameter A := fo x)dz. The proof will proceed in two additional sub-cases depending
on the size of .
(*)?

2p* —m

(Sub-case 4(a): A > %) Notice, because p* > m, we have p* < 2p* —m, which implies that < 2p*—m.

Thus, we can upper bound Rgsp by
Rsp = p'F(p*) = (p*)Q
< U(m)(2p" —m)

I
[N}
s\w
i)
&
Q.

)
-~
g\
&

)

I
E)

<
*
N1
3
N———

< Z/Wf(x)dx (I(z) < F(x) for x € (m,0))
= 2(1— ).

Finally, since A > 2/3, it follows that Rgp < 2(1 — )\) <
A< fo z)dz =1— D, and it follows that RPP > 5
(Sub-case 4(b): A< 2)

Write Rgp(F) as the sum before the mode and after the mode

2 < \. Thus, in this subcase X2 > +. Since m < 1,
SP

D

Rsp(F)=mF(p") + (" —m)F(p"). (EC.15)
The first term on the right hand side of Eq. (EC.15) is bounded by
mE(p*) =mF(m) mi(p )
mE(m)
F(p* — — m_
< )\mi(p ) (since F(z) is decreasing = mF(m) §/ F(m)dm)
mE(m) 0
< /\éip i ('since [(m) < F(m) and I(p*) = F(p"))
m
- (EC.16)
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The second term on the right hand side of Eq. (EC.15) is bounded by

(p* —m) F(p*) =1(m) ( . %) W

_ (/f l(x)dx) W (z(m)(p* - :/:,,* l(x)dx)
§(1A)W ( :p*l(:c)g/mooF(x)dxl))
—(- A)W. Fp*) = ;;sz;l (EC.17)
Thus we can upper bound Risp by combining Eqs. (EC.16) and (EC.17)
Rsp(F) < A2pf’: —+(1-2) 2(’;;’7*;;;) = p*(zgpﬁ@%; 2) < max p(%z;pn_l(rz); 2)

This last optimization problem is differentiable in p. As p — oo, the objective tends to % At p=m, the

objective becomes A. There is one critical point obtained by differentiation at p = M >m since A <2/3.

(2—
8(1- >\)

At the critical point, the objective is For 0 < X <2/3, this value always exceeds A and %, and hence
this is the optimum.

Thus in this subcase 7;”’ > 8(172 Further, sincem <1, A < f x)dx =1— D and it follows that
SP (2—=X) 0

(1+D)2

Combining all cases and sub-cases gives 77:—’;13 > min{ T W} which yields the desired bound.

731313 —

The tightness at D =0 is immediate since the only feasible distribution is a point mass at m and
To prove the asymptotic tightness as D — 1, we construct a family of unimodal distributions {V;} indexed
by d such that as 6 — 0, the coefficient of deviation of Vs tends to 1, and the value of personalized pricing

tends to 2. Namely,
v Unif[0, ¢] with probability 1 — 4§
*7 ] Unif[s, 2 1] with probability 4.
By inspection, each distribution in this family is unimodal with mode § and E[V] = 1. To see the deviation
tends to 1 as d tends to 0 consider the lower uniform component of Vs i.e. lim;s_,o+ E[|Vs — 1|] > lims_, 0+ (1 —
§)(1 — 6/2) = 1. Furthermore, pricing at + — 152 earns revenue (3 — :50)P (V3> 1 - 122) = (4 — 128)2,

Taking the limit as 0 tends to 0 yields revenue 1/2 and thus value of personalized pricing of 2 matching the

above lower bound. [

B.5. Other Omitted Results and Proofs from Section 3

LemMA EC.5 (Convexity of the Single-Pricing Guarantee). For any S, M,and D, let oS, M, D)
denote the reciprocal of the bound on the value of personalized pricing in Theorem 2. Then «(S,M,D) is a

convex function in D.

Proof of Lemma EC.5. Let us fix S and M, and define «(D) := (S, M, D). Fix any D, Dy, with 0 <
D, < Dy <y, and any t € [0,1]. We will show that a(tD; + (1 —t)Dy) <ta(D;)+ (1 —t)a(Ds) to prove the

theorem.
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By Theorem 2, there exists random variables V; ~ F; and V5 ~ F5 each with scale S and margin M such

that the coefficient of deviation of F; is Dy, the coefficient of deviation of Fy is Ds, a(D1) = % and
Rsp(Fa,c)
a(D2) = Rpp(F2,c)”

Since both V; and V5 have the same margin and cost, they also have the same mean p =

be a Bernoulli random variable with parameter ¢, and let V=XV, + (1— X))V, where X, V;,V, are sampled
independently. Note that V has mean w, margin M, and scale S. Furthermore, the coefficient of deviation
of V is
- 1
D= (E[XVa+ (- X))
1 1
:IPleo—IE[ - ] P(X = ~—E[ - } EC.1
( )2u Vi —pl| +P( O)2u Vo — (EC.18)

To conclude the proof, write

taD1) (1= 0a(Da) = 722 EET 4 (-7
tRsp(F1,¢)+ (1 —t)Rsp(Fa,c)
B Rpp(F,c)
Rsp(F,c)
N RPP(FaC)
> a(D)

—a(tDy + (1—1)Dy).

The first equation follows from the definitions of F, and F5. The second equation follows from the fact that
the personalized pricing strategy yields p — ¢ for Fy, Fy, and F. The first inequality follows from the fact
that the optimal single price for 1% yields revenue of at most Rgp(Fi,c) for the market corresponding to V3
and at most Rgp(Fs,c) for the market corresponding to V. The second inequality follows Theorem 2. The
last equality follows from Eq. (EC.18). O

Proof of Corollary 1. Note that Eq. (EC.1) shows that

W_, (—%) =1++/2log(1/x)+O(log(1l/x)) asz—1.

Substituting this expression into the bounds in the low heterogeneity and high heterogeneity regimes proves

the result. O

B.6. Omitted Proofs from Section 4
Proof of Theorem 4.
Part a) Using Eq. (9), write Rxp = max,.) E[p(X)I(x(X) 4 € > p(X)], where the maximization is taken

over all (measurable) functions of the features representing the pricing policy. We lower bound this quantity
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by constructing a feasible pricing policy. Let py € argmax,>o pP(¢+ € > p), where p = E[V]. We consider
the feasible pricing policy that offers price pg + 1(X) — 1 to a customer with features X. Then,
Rxp = E[(po+u(X) — w)I(s(X) + € = po + u(X) — )]
= E[(po + u(X) = )Il(s+ €= po)]
= Elpol(p+e=po)] +E[u(X) = p)I(1 + € > po)].
The first expectation equals Rgp(F,+c,¢) by choice of pg. By independence, the second expectation is
E[u(X) — p)] P(u+ € > po) = 0 since E[u(X)] = p. Thus, we have shown Rxp(F,¢) > Rep(F, 4, ).
Finally, applying Theorem 2 to the random variable u + ¢, we can bound Rgp(F,ic,c) > (u—c) -

a(S,+e, M, D.), where S, is the scale of 1+ e. Notice, by independence of € and X, S, < S. Hence we
further lower bound this quantity by (1 — ¢)a(S, M, D,.) to complete the first part.

Part b) Write
RXP(F7C):E[RSP(F\/‘X7C)] :/ RSP(Ft+e;c)fp,(X)(t)dt7 (EClQ)
where we have used the fact that Fyx = F,(x)+. because X and € are independent. Now applying Theo-

rem 3(a) to the random variable t + € yields,

m €
Rsp(Frer) < (1~ ) (12 ) = -0 (1- L) = t- gl

; (t—c)
Substituting into the integral above shows

Rer(Fie) < [ (t=c=BlJl) fuoo Ot = (u-0)=Elel] = (u-0)- (1= 77 ).

Noting Rpp = it — ¢ and rearranging completes the proof. O

>

B.7. Omitted Proofs from Sections 5.2 and 5.3.

Proof of Theorem 6. Based on the reduction described in Section 5.1, it suffices to upper bound the value
of personalized pricing for a standardized distribution with standardized moment function & (-). We do this

by providing a lower-bound on Eq. (10). Following Shapiro (2001), the dual to Eq. (10) is

sup O+ X\
G,A,d(@p
Se
s.t. / dQ,=1, dQ,>0, (EC.20)
0

Sc
0+ \v+ Aoh(v) — / pl(v>p)dQ, <0, Vve]|0,S,.]
0
Here, Q, is a probability measure defined on p € [0, S.]. By weak-duality, any feasible solution to problem
(EC.20) yields a valid lower bound to Rsp. To form such a feasible solution to (EC.20), we constrain
@, to be supported only on {pg,...,px} (noting py = S.) and denote the corresponding point masses as
Qo,Q1,...,Qxn. Then, the value of (EC.20) is at least

Zyi=max 0+
0,2,Q

N
st Y Q;=1, Q>0
=0

N
0+ Av+Ah(v) = Y pI(v>p;)Q; <0, Yo €[0,5.] . (EC.21)

=0
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Notice that the sum of indicators in Eq. (EC.21) is constant over v € [py_1,ps). Thus, we can rewrite this
constraint of Eq. (EC.21) as N + 1 separate sets of constraints:

k—1

0+ Mo+ Xh(v) <> p;Q;, YvEI[pr_1,p1), k=1,...,N,
=0

=
N
0+ AiSe+c+Ah(S) <D pQ;
5=0
Replacing Eq. (EC.21) with these N 41 sets of constraints, and then substituting in the definitions of S, and
h(-) provides a lower bound on the personalized-pricing revenue. Taking a reciprocal completes the proof.

O

Proof of Theorem 7. Based on the reduction described in Section 5.1, it suffices to upper bound the
value of personalized pricing for a standardized distribution with standardized moment function h(-). We
do this by lower bounding Eq. (13). Note that if V' is m-unimodal, then the standardized distribution V, is
m.-unimodal.

Using the fact that f:“ dM, = 1, we can replace the constraint fOS“ “medM, = 1 by the constraint
f;“ tdM; =2 — m,. Then, following Shapiro (2001) the dual to Eq. (13) with this constraint replaced is

sup 0+ A1 (2—m,) (EC.22)
9,2,Q
Se
St 04 Mt + A H(t,m,) < / pG(p,me,t)dQ, Vte (0,5, (EC.23)
Se 0
dQ,>0, [ dg,=1.

0
Again, by weak duality, any feasible solution to this problem lower-bounds z*™<. We restrict Q to discrete
distributions supported on the given discretization over p (noting py = S.), and denote the corresponding
point masses as Qg,Q1,...,Q~. The last two constraints then become Q > 0 and Zj'v:o Q;=1

Constraint (EC.23) can also be written as the following three (families) of constraints

0+ Mt+XNoH(t,me) <Y pG(pjme,t)Q; VEE [prypryr) k=0,...,5" =1, (EC.24a)
j=0

0+ im+ A H(m.,m,.) < ijG(pj,mmmC)Qj, (EC.24b)
7=0
N

0+ t+ X H(t,,m) <Y p,Gpjmet)Q; VEE (proprsr] k=35"+1,...,N—1. (EC.24c)
j=0

These three cases correspond to whether ¢ is less than, equal to, or greater than the mode. We further
simplify these constraints.
Consider Eq. (EC.24a), fix some k and note that necessarily p, <t < psy1 <m. Split the sum as

k * N

J
ijG(pj7mcvt)Qj+ Z ij(pj7mcat)Qj+ Z ijjG(pj7mcat)-

=0 j=k+1 j=j*+1
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In the first sum, p; <t, in the second sum, ¢t < p; <m,, and in the third sum, m. < p;. Consequently, by the

definition of G(-), we can rewrite these three sums as

ZpJQg + Z —1q,.

j=k+1

Plugging this expression back into Eq. (EC.24a) and multiplying through by (m, —t) yields,

%
J

G(mc—t)—i-)\lt(mc—t)—i—)\g/mc s)ds < ZPJQJ —t)+ Z p;Q;(me—p;), VtE€ [pr,prt+1), (EC.25)

J=k+1
for all k=0,...,5*—1.
Next consider Eq. (EC.24b) and use that H(m.,m.) = h(m,) and G(p,m.,m.)=1(m. > p) to rewrite it

as

04 A\ym. + Aah(m.) < ZpJQ] (EC.26)

Finally consider Eq. (EC.24c), fix some k and note that necessamly Me <P, <t < pry1. Split the sum as

3* k N
ijG(pj7mc7t)Qj+ Z P;G(pj,me, 1)Q; + Z ;G (p;,me, 1)Q;.

j=0 J=j*+1 j=k+1
In the first sum, p; < m,, in the second sum, m. < p; <t, and in the third sum, ¢ < p;. Hence, by the

definition of G(-), we can rewrite these three sums as

ijcm Z Q.

J=j*+1

Plugging this expression back into Eq. (EC.24¢) and multiplying through by (¢ —m.)yields

me 3
O(t —m,) + Mt(t —m.) — Aa h(s)ds <> p;Q;(t—m Z p;Q;(t—p;), Vte (pe,prsa), (EC.27)
t j=0 j=j*+1
for all k=j*+1,...,N —1. Combining these three families of constraints and substituting in the definitions
of S, and h(-) completes the proof. O

B.8. Omitted Examples from Section 5.4

In this subsection, we show that in the absence of shape constraints on the distribution, only vacuous lower
bounds on the value of personalized pricing exist for the four moments described in Section 5. Recall that
when h(v) corresponds to the coefficient of deviation, in Example 1 we explicitly constructed a distribution
with margin M, scale at most S, coefficient of deviation D, and value of personalized pricing equal to 1. We

next discuss the other three cases.

ExampLE EC.1 (VAcUOUS LOWER BOUND FOR COEFFICIENT OF VARIATION). Let h(v) = (“;75)2 and
fix S>1, M <1, and C. We shall construct a random variable V' with margin M, p =1, and scale at most
S such that E[R(V)] = C?, and g}; = 1. Specifically, let V' be the two-point distribution

2

C
1—M  with probability 7
V= )
1+<  with probablhty

M2
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and let F be the corresponding cdf. One can confirm that E[V] =1 and E[h(V)] = C?. By Theorem 1 of

Bhatia and Davis (2000), any random variable V' with mean 1 and supported on [c, S] satisfies:
C*=E[(V-1)?]<(S—1)M.

Thus, the scale of V satisfies 1+ %12 <1+ 8 —1=S5. Finally, observe that a single price at 1+ %2 earns a

_ Rpp(Fo) _
profit of 1 — ¢ and hence, R;’i(ﬂc) =1. 0
ExampLE EC.2 (VAcuous LOWER BOUND FOR GEOMETRIC MEAN). Let h(v) = —log (ﬁ) and fix

M <1 and B. We shall construct a random variable V' with margin M such that E[h(V)] = —log (f) and
pnw=1. We let V' be the two-point distribution

1+ L with probability 1 —e

V_ {1 — M  with probability e

and let F' be the corresponding cdf, where € € (0, 1) shall be determined later. One can confirm that E[V] =1

Rpp(Fe) _q
Rsp(F,.c) :

What remains is to show that there exists an e such that E[h(V)] = —log (%), which reduces to

eM
l1—e

and that single pricing at 1+

yields a profit of 1 — ¢ and hence

1 _ 1—e
E“M) . (EC.28)

B=(1-M)*
-y (5
Note that the RHS of (EC.28) is a continuous function which equals 1 when € =0 and equals 1 — M when

e = 1. Moreover, by Jensen’s inequality and V' >1— M almost surely, it must be that B € [1 — M, 1]. Thus,
there exists an e that solves (EC.28). O

ExampLE EC.3 (VAcuoUs LOWER BOUND FOR INCUMBENT PRICE). Let h(v) = I{v > pu} and fix
M <1,p>1—M,and q € [0,1]. We shall construct a random variable V' with margin M such that E[h(V)] =¢
and p=1. We let V' be the two-point distribution

Vo {1 - M with probability 1 — ¢
1—-M+%  with probability ¢
and let F be the corresponding cdf. One can confirm that E[V] = 1. In order for this distribution to be valid
with margin M, we must satisfy the fact that pricing at p yields a profit of at most Rpp(F,c)=1—c=M,

ie. (p—c)g=((p+M —1)qg < M. From this inequality, it follows that p e (1 —M,1— M + %] and E[h(V)] =q.

Rpp(Fe) _ 1 0

Finally, one can confirm that single pricing at 1 — M + % yields a profit of M and thus Ror (F.o)

B.9. Omitted Proofs from Section 5.4

Rep — 1 Unfortunately,

Rsp maxpe(o,s.] 7" (p)

this maximization is not concave. Hence, to form a bound, we discretize the price space. The next lemma

Recall we have shown in the main text that when V, is m, unimodal,

quantifies the error induced from such a procedure.

LEMMA EC.6 (Error from Geometric Price Ladder). Let F, be a standardized valuation distribution
with scale S,. Fiz 0<d<1 and let N=[1+ %1. Let po=0, and p; =8(146)’~* for j=1,...,N, so
that {p;}}_ discretize the interval [0, Ss]. Define r; := max;.o<;j<n p;P(Ve > p;). Then,

ry < Rep(F.,0) < max(d, (14+9)r3).
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Proof of Lemma EC.6. The first inequality follows because the price ladder restricts the feasible region
and hence reduces the possible single-pricing revenue. For the second, let p* be the optimal single price and
let k& be such that p, < p* < piy1. We consider two cases: If k=0, then Rgp(F,,0) =p*P(V, > p*) <p; =6.
Alternatively, if k£ > 1, then,

RSP(Fcao) = p*P(‘/c Zp*) < pk+1P(‘/c Zpk) < (1+5)ka(Vc Zpk) < (1+5)T§-

Combining yields the lemma. O
Notice by inspection, the error from this discretization decreases as § — 0 and is tight in the limit. We

next leverage Lemma EC.6 together with duality to prove Theorem 8.

Proof of Theorem 8. Based on the reduction described in Section 5.1, it suffices to lower bound the value
of personalized pricing for a standardized distribution with standardized moment function h(-). Note that if
V' is m-unimodal, then the standardized distribution V, is m.-unimodal.

Now consider the geometric price ladder described in Lemma EC.6. By that lemma, we have
Rsp — max(d, (1+0)max;.ocicn 7™ (p;))

*,Me

=T

This bound clearly improves as 6 — 0 and is tight in the limit. Thus it only remains to prove that r<(p;)
can be evaluated as an optimization problem for each j.
Since fosc dM, =1, we can replace the constraint fOS“ HmedM, =1 by fOS“ tdM, = 2 — m. in the definition
of r™e(p;). Then, by duality, we have
rme(p;) = 19n£ 0+ X (2—m,)
st. 0+ N H(t,m.)+ Aot > p;G(pj,me,t) t€][0,5.]
We consider three cases based on the value of p;:

Case i) p; < m.. Separate the semi-infinite constraint into two constraints depending on whether ¢ € [0, p,],

t € (p;,S.] and use the definition of G(p;, m.,t) to write it as

0+ M H(t,m,) + st > p, (H) te[0,p).
0+ M H(t,m.)+ Aot > p, t € [pj, S
Multiply the first of these constraints through by m.—¢ > 0 and combine to obtain the optimization problem
re(py) = lgnf 0+ A2(2—m.)

Me

st. O(m.—1t)+ A\ h(s)ds + Aat(m.—t) > p;(m.—p;) Vt€0,p;],
t
9+)\1H(t,mc)+)\2t 2 p; Vte[pj,SC].
Both constraints are special cases of Eq. (15).

Case ii) p; =m.. In this case we separate the semi-infinite constraint into two constraints depending on

whether t € [0,m,.) or t € [m.,S.], and use the definition of G(m.,m.,t) to write
9+A1H(t,m0)+)\2t20 Vt e [O,mc]
0+ X H(t,m.)+ Aot >m, VteE[m,,S.],
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where we have used continuity to close the half-open interval. Substituting above yields the optimization

problem
rme(m.) = lenf 0+ X2(2—m.)
st. O+ XN H(t,m.)+ Xt >0 Vte[0,m,]
0+ X H(t,m.)+ Aot >m, VteE[m,,S.].
Both constraints are special cases of Eq. (15).

Case iii) p; >m, We now consider two cases depending on whether ¢ € [0,p;] or ¢t € (p;,S.]. Again, split

the semi-infinite constraint and use the definition of G(p;,m.,t) to write

O+ i H(t,m.)+ Xt >0 Vtel0,p,]

t—m;
9+)\1H(t,mc)+)\2t2pj (t:),]) VtG[pJ,SC]

Multiply the second constraint through by ¢ —m,. > 0, and combine to show that
(o) =inf 0+ Xa(2—m)
st. O+ NH(t,m.)+ Xt >0 Vtel[0,p;]
Ot —m.)— X\ /mc h(s)ds + Aot(t —m.) >p,(t—p;) VtE[p;,S.].
Both constraints are special cases of Eq. (15t).

These three cases thus complete the proof. O
B.10. Omitted Proofs from Section 5.5

In this section, we prove that each of our mathematical programming bounds on the value of personalized
pricing is computationally tractable for the four cases considered in the main text.

For clarity, recall the standardized moment function A(t) := h(uM (t — 1) + i) — p,,. Using this function to
simplify notation, we see that the optimization problem in Theorem 6 can be solved as a linear optimization

problem with constraint generation if we can identify an optimizer of

max  a;v+ axh(v) (EC.29)

vE[pk Pr+1)

for every a € R? and k.
Moreover, the optimization problem in Theorem 7 can be solved as a linear optimization problem with

constraint generation if we can identify an optimizer of
me

max a1t+a2t2+a3/ h(s)ds (EC.30)

t€[pr.pry1] t

for every a € R? and k.
Finally, the optimization problem in Theorem 8 can be solved as a linear optimization problem with

constraint generation if we can identify an optimizer for each of

min a;H(t,m.)+ast and  min a1t2+a2t+a3/ h(s)ds, (EC.31)
t

te(l,u] te(l,u]

for any a € R? and [l,u] C [0, S]. Notice this second optimization is of the same form as Eq. (EC.30).
Thus to prove that our mathematical programming bounds are computationally tractable for our four
previous examples, it suffices to give optimization procedures for each of these problems for the corresponding

standardized moment functions h(-).
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ProprosITION EC.1 (Tractability of VoPP Optimizations for Coefficient of Deviation).
Suppose h(t)=M |t —1|/2— D. Then,
a) For each a € R? and k, an optimizer to Eq. (EC.30) can be found in closed-form.

b) For any a € R® and [l,u] with —oco <1 <u < 0o, optimizers to the two problems in Eq. (EC.31) can be
found by bisection search and in closed-form, respectively.
In other words, the problems in Theorems 7 and 8 can each be solved efficiently as a linear optimization with

constraint generation.

REMARK EC.1. Note that for the special case of h(t) =M |t — 1| /2 — D, Theorem 6 is superceded by the
closed-form bound Theorem 2, and, hence, omitted above. O
Proof of Proposition EC.1.
Part a): An optimizer to Eq. (EC.30) occurs either at an endpoint py, p._1, or else at a critical point, i.e.,

solutions to Z—; + %t = 2|t — 1| — D. We first seek roots where ¢ < 1. There is at most one such root, given

by t<1 = W, but only if this value is less than equal to 1. Otherwise, there is no root less than 1.
We next seek roots for ¢t > 1. Again, there is at most one such root, given by t>1 = 22D —a3M g oply if

4ao—az M

this value is great than or equal to 1. Otherwise there is no root greater than one.
In summary, an optimizer is one of py, pr_1, t<1 (if t<1 <1) or t>1 (if t>1 > 1), and can be identified by

simply checking the feasibility and comparing these (at most) 4 values.

Part b): Consider the first of the two optimization problems. Notice that if Y; ~ Unif[t, m.]|, we can write
Y =t + (m, — t)¢ with & ~ Uniform[0, 1]. Hence, we can rewrite H(t,m.) = E[h(t + (m. — t)¢)]. Since h(:)
is convex, it follows that H(t,m,) is convex in t; h(t 4 (m, — t)¢) is the composition of a convex and affine
function, and expectations preserve convexity.

We conclude that if a <0, the first optimization problem is the minimization of a concave function, and
the optimum occurs at an end point {l,u}. If a > 0, then it is the minimization of a convex function. The
optimum occurs either at an end point {l,u}, or else at t* solving 0,H(t,m.) +b/a =0. Such a ¢t* can be
found by bisection search.

A procedure for solving the second problem was given in Part a). O

ProprosITION EC.2 (Tractability of VoPP Optimizations for Coefficient of Variation).
Suppose h(t) = M?(t —1)> — C2. Then,

a) Problem (11) can be solved explicitly as a (finite) convex second order cone problem.

b) For each a € R® and k, an optimizer to Eq. (EC.30) can be found in closed-form.

c¢) For any a € R® and l,u € R, optimizers to the two problems in Eq. (EC.31) can be found by bisection
search and in closed-form, respectively.

In other words, the problems in Theorems 6 to 8 are each computationally tractable.

REMARK EC.2. Notice in Part a), we do not use separation. The problem is an explicit second order cone

problem that can be passed to off-the-shelf software. [
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Proof of Proposition EC.2.

Part a): Since h(-) is continuous, it suffices to reformulate the semi-infinite constraint
k-1
A1v + Agh(v) < ZP]Q]' —0, YU € [pr_1,pl;
=0

Since v € [pr_1,Pk) <= (vV—pi_1)(v—pi) <0, we can use the definition of h(-) to rewrite the k*" constraint

as

o

0—) piQ; =0 < min —A\v— A M3 (v —1)2

vi(v—pg_1)(v—py)<0

o

=
The (possibly non-convex) minimization on the right is an example of a quadratic optimization problem
in which quadratic forms in the objective and in the constraint are simultaneously diagonalizable. Such
problems were studied in Ben-Tal and Den Hertog (2014) which shows they can be equivalently written as
convex, second order cone problems. Indeed, applying the results of that paper shows the k*" constraint is

equivalent to the constraints

&
(Y + A2 M*)py_1pr — x>0 — ZP;‘Q;‘ +Xo(M? —C?)
=0

Aypwy > 22 (EC.32)
26 =2 o M? — Ny — (yx + Ao M) (pr_1 +Dr)

Ly Yk 207 y+)‘2M220a

with the auxiliary variables xy, Y, 2,. This formulation is always convex (Constraint (EC.32) is a rotated
second-order cone constraint; see Boyd and Vandenberghe (2004)). Performing this transformation for each

of the semi-infinite constraints yields a (convex) second order cone representation, proving the theorem.

Part b): Again, an optimizer of Eq. (EC.30) occurs either at endpoint py, pr_1, or else at a crit-

ical point, ie., a solution to &L + %t = M?(t — 1)> — C?. This equation has two roots, given by

aztazM2Ey/a3+as(a1+2a2+a3C2) M2
azM?

. These roots can only be optimizers of Eq. (EC.30) if they lie within
[Pk, Prtr1]. Hence there are at most 4 possible optimizers, and we can identify an optimizer in closed form by

comparing their objective values.

Part c): Consider the first of the two optimization problems. The same convexity argument that applied
in the case of Proposition EC.1 applies here unchanged. Hence, when a; < 0, an optimum occurs at an
end point of {l,u}. If a; > 0, then an optimum occurs either at this end point or else the solution t* to
O0,H(t*) + as/a; =0 which can be obtained by bisection.

A procedure for solving the second problem was given in Part b). (I

ProrosiTION EC.3 (Tractability of VoPP Optimization with Geometric Mean). Suppose
h(t)=—log(M(t—1)+1)+log(B/u). Then,
a) Problem (11) can be solved by solving two explicit (finite) convex optimization problems. Alternatively,
for any k, Ay and \a, an optimizer of Eq. (EC.29) can be found in closed-form. Hence, Problem (11)

can also be solved efficiently by constraint generation as a linear optimization problem.
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b) For each a € R3 and k, an optimizer to Eq. (EC.30) can be found in closed-form, and hence Problem (14)

can be solved efficiently by constraint generation as a linear optimization problem.

¢) For any a € R3 and l,u € R, optimizers to the two problems in Eq. (EC.31) can be found by bisection

search and in closed-form, respectively.

Proof of Proposition EC.3.
Part a): We formulate two separate convex optimization problems corresponding to the cases where the
optimal A >0 and Ay <0 and note that the solution to Problem (11) is the better of these two objective
values.

] Al’l) + Azh(’l))

is the maximization of a convex function, and hence the maximum occurs at one of the two endpoints. Hence,

To formulate an optimization problem when A; > 0, notice that when Ay >0, max,c[p, _, »,

we can simply replace the k™ semi-infinite constraint by two linear constraints, namely,

k—1 k—1
APkt + Ah(pe_1) < ijij APk + Aah(py) < p;Q;.
=0 =0

Applying this transformation for each k and adding the constraint Ay > 0 yields our first convex optimization
problem (in fact a linear optimization problem).

To formulate an optimization problem when Ay <0, use the definition of h(-) to write

max  Av+Ah(v) <= —|\o]log(B/p) + max A+ |As|log (Mv+ (1 - M))

VE[pr—1.Pk]

st. v=w, wEe [pr_1,px]-

By Lagrangian duality, we relax the equality constraint yielding

max (A1 — B)v + 2| log (Mv+ (1 — M)) max Byw
v + w

st. veR s.t. we [pk,l,pk]
The second optimization can be solved in closed form yielding max(8,ps_1, BrPr), which is convex in 3. The

first optimization can also be solved explicitly by looking at the first-order condition yielding
M|\ 1-M
|>‘2|(10g(5k|)2\1)_1>+(ﬁk_>\1) i it B> A,

and infinity otherwise. Substituting back, shows we can equivalently write the k*® semi-infinite constraint

when Ay <0 as

B> A1, A <0,

k-1
(log (5]\:[')\)2\1) - 1) + (Bk — A1) ! &M +max(Bxpr—1, Bpr) < jzzopg'@j-

These constraints are convex. Making this transformation for each k yields the convex optimization problem

for the case Ay <0. Taking the better of these two optimization problems yields a solution to Problem (11).
To prove the last statement about Problem 77, notice that an optimum must occur either at a critical
point or an endpoint {py_1,px}. Differentiating, we see the only critical point is 1 — 1/M + as/aq, if this

value is in [p,_1,pi]. Comparing these (at most) three values yields an optimizer.
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Part b): Again, an optimizer occurs either at an endpoint {py_1, ps} or a critical point. Using the definition

of h(t), critical points satisfy a; 4+ 2ast = —as log(

unique critical point —a;/2as if this value is in [py_1,ps)-

When ¢ # 0, we rewrite this equation as

2
202t log(Mt+1— M) =
as

Make the substitution y <~ Mt+1— M yielding,

2a5y ay 2a9
22 o) =lou(B /) - 22+ 22

1

)

20/23

< yexp (

2a2y 2a2y
ex
a3M P a3M

This equation implies that

2a5y
= W*
CL3M (

)-

20,23
asMp

CLgMpJ

1

2&2 1
ex —_ | = =
P as M
20,2 1
exXp g M —1

log(B/p) — =*.

2a2y \
CL3M B

)-

B
I

a1

as

exp (

2(12 1 1
as M

where the implication follows by exponentiating both sides. Finally multiplying both sides by =

u).

2

)

a2

ai
asg

)

yields

M(t—1)41)+aslog(B/u). When az = 0, this yields the

where W, denotes any branch of the Lambert-W function. It follows that y only admits a real-valued solution

2a9B 2ag (L_
faMp,e p( as M

1) = ) > —1. Furthermore, if this value lies within [—

i, 0), y admits two solutions,

corresponding to the —1 and 0 branches of the function. If this value is non-negative, y admits only one

solution, corresponding to the 0 branch. Transforming back to ¢ yields at most two critical points:
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where we have indicated when the critical point is defined. Checking these at most 4 points yields an

optimizer.

Part c): Consider the first of the two optimization problems. The same convexity argument that applied

in the case of Proposition EC.1 applies here unchanged. Hence, when a; <0, an optimum occurs at an end

point of {l,u}. If a; > 0, then an optimum occurs either at this end point or else the unique solution ¢* to

O, H (t*,m.) + az/a; =0 which can be obtained by bisection.

A procedure for solving the second optimization problem was given in Part b).

O

ProOPOSITION EC.4 (Tractability of VoPP Optimizations for Incumbent Price). Suppose h(t) =
{M(@t—1)+1>p}—q for some p€0,5] and g €[0,1]. Then,

a) Problem (11) can be solved as an explicit linear optimization problem.

b) For each a € R® and k, an optimizer to Eq. (EC.30) can be found in closed-form, and, hence, Prob-

lem (14) can be solved efficiently by constraint generation as a linear optimization problem.

¢) For any a € R3 and l,u € R, optimizers to the two problems in Eq. (EC.31) can be found in closed-form,

respectively.
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In other words, the problems in Theorems 7 and 8 can each be solved efficiently as a linear optimization with

constraint generation.

REMARK EC.3. Notice in Part a), we do not use separation. The problem is an explicit linear optimization
problem that can be passed to an off-the-shelf software.

Proof of Proposition EC.4. Throughout, let vo = 2% + 1, so that h(y) =I{M(y—1)>p—1} —q=1{y >
Vo } —q.

Part a): Fix some k and consider the corresponding semi-infinite constraint in Eq. (11):

vE[pr—1,PK)

k-1
max 04+ Av+I{v>v} — g < ijQj,
=0

If vo & [pr_1,Dr), then the objective function on the left is a linear function, and we can replace this

constraint with the two linear constraints corresponding to the end points:

k-1
O+ XNpe_1+XI{pr_1 >vo} — Aag < ijQﬁ
j=0

k-1
0+ Aipe + Xol{pr > vo} —Aoq < ZP;‘Q;‘~
j=0

On the other hand, if vy € [px_1,pi), then the objective function on the left is a piecewise linear function
with one breakpoint. In general, there may be a discontinuity at this breakpoint. Hence we can replace the
semi-infinite constraint by four constraints: the two constraints above corresponding to the endpoints and

two additional constraints corresponding to the values v =wvg and v T vg:

k—1 k—1
9+)\1U0+A2(1—Q)§ij@j’ 9+)\1U0—)\2(J§Zp;‘Q;‘-
j=0 j=0

Making these replacements for each k yields an explicit linear optimization problem.

Part b): Again, an optimizer of Eq. (EC.30) occurs either at endpoint py, pry1, or else at a critical point.

When a3 =0, the unique critical point is at —2‘%, if this value occurs in [py, prt1). When az # 0, a critical

point occurs when Z—; + %t =T{t > vo} — q. We have two cases depending on the value of the indicator:

If t > vg, then a critical point occurs when Z—; + %t =1—gq,ie,att; = 2% (1 —q— Z—;), provided ay # 0,
t1 € [pr, Pr+1) and t; > vg. Otherwise, there is no such critical point.

If t < g, then a critical point occurs when Z—; + %t = —q, i.e., at tg = 72% (qu Z—;), provided ag # 0,

to € [pr, Pr+1) and tg < vg. Otherwise, there is no such critical point.

Checking these at most 4 values yields an optimizer.

Part c): Consider the first of the two optimization problems in Eq. (EC.31). By definition,

H(tamc) = ]E[h(}/;)] = P(YtZUO)*q = G(”Oamcat)fqa

where we now Y; ~ Unif[m,,t]. Moreover, this last function is non-decreasing in ¢. Hence, we see that an
optimum of the first problem in Eq. (EC.31) either occurs at an endpoint or, if axa; <0, in the interior. We
add the two endpoints £, u to the set of potential optimizers and next search for potential optimizers on the

interior. To this end, we assume asa; < 0.
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Notice that h(t) is continuous whenever ¢ # v,, Hence, by the fundamental theorem of calculus, we can

differentiate Eq. (12) when ¢ # vg, yielding

O (t.m) = o h(t) + oy [ = O Slmel Z S,

me.—t me—t
This implies, for t # vy,

al_ : (G(vo,me,t) —I{t > vo}) + as,

O (a1 H(t,m,) +aqt) = -

which, by inspection, is not well-defined when t = m,. Thus, we conclude that, excluding the points vg and

m,, any potential optimizer in the interior must satisfy - (G(vo,m,t) —I{t > vo}) + a2 = 0. We add both
vy and m, to the set of potential optimizers and restrict attention in the remainder to solutions of this
equation.

Multiplying through by (m. —t) shows such critical points must satisfy
G (v, me,t) =I(t > vo} + Z—Q(tfmc). (EC.33)
1

Notice this equation is piecewise continuous in t. We solve it by considering 6 cases corresponding to all
combinations of the two branches of the indicator and the 3 branches which define G(-) where m, #t.
Case 1: vg <t.

Subcase i) max(m,,t) <wvg. This subcase is impossible since we assume vg <1.

Subcase ii) vy < min(m,,t). Here Eq. (EC.33) reduces to 1 = ¢2(t —m,) + 1, whose only solution is
t =m,. Since we already added m, as a potential maximizer, we ignore this case.

Subcase iii) min(m,,t) < vy < max(m,,t) and m, # t. Since vg < t, it follows that m,. < wvg <t and

m, < t. Then Eq. (EC.33) reduces to tt__::fc = 22 (t—m,) + 1. Since ¢ # m. by assumption, we can multiply
through and solve for ¢, yielding

a
tlyg:mci *l(mc—’l]()).
a2

We disregard t5 since m, <t by assumption. Thus, we add t; to the set of potential optimizers.
Case 2: vg >t.

Subcase i) max(m,,t) <wvo. Equation (EC.33) reduces to 0= £2(t —m,), whose only solution is ¢ =m.
Since we already added m, as a potential maximizer, we ignore this case.

Subcase ii) vy < min(m,,t). This case is impossible since we assume vg > t.

Subcase iii) min(m.,t) < vy < max(m.,t) and m, # t. Since vy > t, it follows that t < vy < m.. Simplifying
Eq. (EC.33) gives

me.—vy _ G2

= t—m.).
m.—t al( m)

Again, since t # m,, we can multiply through and solve for ¢ yielding two roots

t3,4:m:|: ﬂ(UO—T'I’LC).
ag

We disregard t3 since t < m, and add t4 to the set of potential optimizers.

In summary, we have shown that an optimizer to the first problem in Eq. (EC.31) occurs at one of the
following points: {l, Uy Mgy Vo, Mg + 4 /Z—;(mC —Ug), Me — 4 /Z—;(vo — mc)} . Checking these at most 6 points
thus yields an optimizer.

A procedure for solving the second problem in Eq. (EC.31) was given in Part b).



