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ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has affected millions of people 

around the world. In Colombia, 1.65 million cases and 43,495 deaths were reported in 2020. The 

exacerbation of poverty is a critical consequence of the pandemic, particularly in low- and 

middle-income countries. Schools have been closed in many places around the world to slow 

down the spread of SARS-CoV-2 and particularly in Latin America. In Bogotá, Colombia, public

schools were closed in March 2020 and stayed closed for in-person instruction for the rest of the 

year, except for some schools that were open as a pilot for testing policies. To reconcile these 

two priorities in health and fighting poverty, we estimated the impact of school reopening for in-

person instruction in 2021. We used an agent-based model of SARS-CoV-2 transmission, 

considering social contact. The model includes schools that represent the set of private and 

public schools in terms of age, enrollment, location, and size. The model is calibrated to the daily
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number of deaths in Bogotá. We simulated school reopening at different capacities, assuming a 

high level of face-mask use, and evaluated the impact on the number of deaths in the city. We 

evaluated the impact of reopening schools based on grade and multidimensional poverty index. 

We found that school reopening, based on a correct use of face masks at 75% in >8 years of age, 

at 35% capacity had a small impact on the number of deaths reported in the city during a third 

wave, assuming that overall mobility in the city was similar to the mobility during November, 

2020. The increase in deaths was smallest when only pre-kinder was opened, and largest when 

secondary school was opened. Even at larger capacities, the impact on the number of deaths of 

opening pre-kinder was below 10%. Reopening other grades above 50% capacity could 

substantially increase the number of deaths in the city. Reopening schools based on their 

multidimensional poverty index resulted in a similar increase in the number of deaths, 

irrespective of the level of poverty of the schools that were reopened. We conclude that the 

impact of schools reopening for in-person instruction is lower for pre-kinder grades and the 

magnitude of additional deaths associated with school reopening can be minimized by adjusting 

capacity in older grades.

INTRODUCTION

The COVID-19 pandemic has caused many deaths around the world and in Colombia. As of 

January 2021, more than 53 thousand COVID-19 deaths had been reported in Colombia. In 

Bogotá alone, more than 12 thousand people died in the same period. Several interventions have 

been put in place to curb the spread of SARS-CoV-2, such as city-wide and partial lockdowns, 

mandatory use of face masks, contact tracing, and school closures [1]. Although interventions 

such as lockdowns can lead to drastic, albeit temporary, reductions in COVID-19 incidence, they

also have negative impacts in society, especially in vulnerable communities [2,3]. In general, 

these closures disproportionately affect populations in lower socio-economic groups [4–6]. For 

instance, the ability of children to learn can be affected by school closures, since virtual learning 

requires guidance from parents. School closures can also increase the risk of harm by being out 

of school, such as domestic violence [7].

Schools are important for transmission of respiratory pathogens [8,9], but the magnitude 

of their contribution to SARS-CoV-2 transmission is still unclear. School-aged children who are 
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infected with SARS-CoV-2 have a lower chance of developing symptoms of COVID-19, and 

those who develop symptoms mostly experience milder clinical outcomes [10–12]. However, 

even if the risk of severe outcomes in children is lower, schools remain a potential source of 

transmission, which could have downstream effects in the community. In this regard, some 

limited evidence suggests that children under 10 years of age may be less susceptible to infection

[13–15], but the evidence is not conclusive [13]. On the other hand, some studies suggest that 

children in secondary school could play a much more important role in transmission [16]. In fact,

some studies suggest that secondary schools could have contributed to the spread of SARS-CoV-

2 earlier in the pandemic [14,17,18].

School reopening in the second semester of 2020 in various countries provided additional

information about the impact of schools on COVID-19 dynamics. Some studies suggest that 

outbreaks within schools can be controlled, while others have shown some outbreaks linked to 

schools. In Israel, large outbreaks were reported just 10 days after reopening [19]. In contrast, 

school reopening in England during summer 2020 showed that outbreaks in schools were 

uncommon and strongly related to the local incidence [20]. Similarly, the European CDC 

concluded that community transmission affected in-school incidence, but that school staff did not

have a higher risk than other occupations [21]. In the United States, a study of 11 schools in 

North Carolina concluded through contact tracing that only 32 infections were acquired within 

schools and that adults were not infected by children [22]. A study in Mississippi showed 

evidence that attending in-person school or child care was not associated with increased risk of 

testing positive for SARS-CoV-2, but participating in social gatherings was [23]. However, 

given the lower probability of developing symptoms in children, it is difficult to assess the 

contribution of school reopening in specific communities. Hence, the risk of reopening schools 

should be evaluated in the local context.

Models are an important tool to understand the dynamics of infectious diseases and to 

plan public health interventions. Mathematical models have been used to estimate the potential 

burden of COVID-19 around the world [24–26]. The transmission of SARS-CoV-2 can be 

heterogeneous across demographic and geographic characteristics of the population. For 

instance, early non-pharmaceutical interventions implemented to curb the impact of COVID-19 

required the ability of people to stay at home for a prolonged period, creating heterogeneous 
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contact patterns in the population, with a potentially higher contact rate in lower income settings.

In contrast to compartmental models, agent-based models are capable of incorporating different 

levels of heterogeneity in transmission due to various factors, such as contact rates or adherence 

to public health interventions. For instance, in Chile, a stochastic mechanistic model has shown 

that early lockdowns were effective to reduce the impact of COVID-19 in Santiago de Chile, but 

they disproportionately benefited wealthier communities while penalizing vulnerable populations

[2]. Within the context of school reopenings, various models suggest that the risk of reopening 

schools could be minimized with the use of interventions such as reduced class size, face-mask 

wearing, contact reduction by clustering students [27–31]. Importantly, these models agree that 

the risk of reopening is higher for older ages. In this study, we evaluate the impact of school 

reopening in the local context of Bogotá, Colombia, with the use of a stochastic agent-based 

model of COVID-19 dynamics calibrated to demographic, geographical, education 

characteristics, and epidemiological information of the city. We evaluated the impact of opening 

schools by grade and by the school-specific multidimensional poverty index, as well as of 

opening at different capacities on different dates.

RESULTS

Our model captured the daily trends of deaths reported in Bogotá over time, space, and age (Figs.

1A-D, S12). To capture the increase in transmission from December to January, an increase in 

community contacts of 61% was required (95% CI: 60%-65%) in addition to the increased 

mobility (Fig. S2). The model slightly underestimated the magnitude of the second peak in 

January. Compared to 127 reported deaths, the model estimated 103 (95% CrI: 74-145). In 

addition, the model captured trends of cumulative and age-stratified deaths by localities (Figs. 

S3, S4). Although the model reproduced the dynamics in most of the localities, it underestimated

the number of deaths in some localities with older populations, such as Chapinero and 

Teusaquillo. Overall, the model underestimated the deaths in the older age-group (80+). Another 

validation point was the infection attack rate, which was estimated as 31.6% (95% CrI:31%-

31.8%) by the first week of November in 2020 (Fig. 1B), compared to 30% (95%CI: 27%-33%) 

reported from serological studies during the same period [32]. Our results suggest that this 30% 

attack rate varied from different regions across the city with the south-west areas having higher 

attack rates (40%) than the north-east areas (10%-20%) (Fig. S5).
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Figure 1. Model fit to data in Bogotá, Colombia. Assumption of lower (50%) susceptibility in <10 years. 
A) Model fit to daily incidence of deaths. Black dots show the official data, and gray lines show the 
median estimate of the model with the 95% CrI represented by gray-shaded curves. B) Model estimates of
attack rate in time represented by gray line (median) and shaded area (95% CrI). The point and arrows 
show the median estimates and CI of official serological study in Bogotá. C) Estimated reproduction 
number in time. D) Estimated attack rate in time for different age groups.

Based on the assumptions adopted, our model projections show that in the event that 

schools reopened at full capacity and with no control measures at the end of January, a third 

wave of COVID-19 could occur, but its impact could be modulated by reducing in-person 

capacity. Our model estimated a total of 5356 deaths (95% CrI:4951-5690) from February to 

August 31, 2021, compared to 1906 deaths (95% CrI: 1779-2133) in the event that all schools 

remained closed (Fig. 2). Delaying the date of school reopening reduced the peak of the number 

of deaths projected within the simulation period for scenarios of high capacity but had a 

negligible effect on scenarios of low capacity (Fig. 5A,D). At full capacity, our projections 

suggest that reopening on January 25 would have a higher peak of deaths (90 per day) than 

delaying school reopening to February 25 (78 deaths per day) and March 25 (73 deaths per day). 

Similar differences were observed at 75% capacity with the highest number of deaths per day (55

deaths per day) reported in the baseline scenario of reopening in January 25, 2021, followed by 

48 deaths reopening delayed 1 and 2 months (Fig. 5B,E). In contrast to the full capacity scenario,

at 35% the model projections showed that schools alone would not produce a significant increase

in the overall number of deaths or the proportion of people infected (Fig. 5C,F). Although 

delaying school reopening had an impact in the maximum number of daily deaths, the final 

percentage of people infected was around 60% for all three dates (Fig. 5D), suggesting that the 

cumulative contribution of school reopening remained the same.

The age of students attending in-person school also affected the projected death toll of 

COVID-19 in the city. If only children under 6 years of age (pre-K) attended in-person school, a 

total of 1889 deaths were estimated (95% CrI:1764-2188) at 35% maximum capacity, which was

a negligible difference from the baseline scenario of all schools closed. Compared to this 

baseline scenario, reopening pre-K grades at full capacity resulted in an increase of <200 

additional deaths in the whole city (Figs. 3A, 4, S13). Scenarios with older students attending in-

person school impacted the total number of deaths at different levels depending on the operating 
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capacity. For instance, about 144 additional deaths were estimated when primary school 

reopened at 50%. In contrast, secondary schools had to operate at a more restricted capacity of 

35% to avoid substantially increasing the number of deaths in the city. In fact, at 50% capacity in

secondary schools, more than 400 additional deaths were estimated. In the scenario of secondary 

schools operating at 75% capacity, the model projected a large increase of more than 1600 

additional deaths in Bogotá, in comparison to the baseline scenario of schools closed. 

Furthermore, in the scenario in which students of all ages were able to attend in-person school at 

some capacity (75% pre-K, 35% primary, 35% secondary), the model projected 431 additional 

deaths, compared to the closed scenario. At the same level of capacity in pre-K and secondary, 

but increasing primary capacity to 50%, the number of additional deaths increased to 736. 

Increasing primary capacity further to 75% resulted in more than 1700 additional deaths. Across 

all scenarios, the dynamics in time showed that the magnitude of a third wave of infections could

have a similar or greater magnitude than the previous two when schools opened at full capacity 

and no control measures were implemented (Fig. 4). Finally, assuming current levels of testing 

capacity, the positivity of PCR showed an association with the magnitude of future outbreaks 

(Fig. S13), which suggested that levels under 10% had a low impact on the city-wide health care 

system, whereas levels of at 15% or above were correlated to a third wave of large enough 

magnitude that could put the health system under pressure (Fig. S13).

Policies of reopening based on the multidimensional poverty index of schools (MPI, high 

MPI = high poverty in schools) did not show an appreciable difference in the number of deaths 

(Figs. S6A, S9, S10). Overall, reopening schools with the highest MPI had a smaller impact on 

the number of deaths, but differences among schools were small. These results contrast with the 

impact of COVID-19 being much higher in lower income areas in the south-west of the city (Fig.

S5). At full capacity, these areas might be more insensitive to school reopening given the large 

proportion of individuals already infected in those areas.

Figure 2. Projected impact of school reopening in Bogotá, Colombia. Assumption of lower (50%) 
susceptibility in <10 years. A) Daily incidence of deaths for two extremes: a scenario in which there were 
no public health interventions (green), and a scenario with the current public health interventions and 
assuming schools remain closed for the remainder of the simulation period. B) Daily incidence of deaths 
in two reopening scenarios: all K-12 schools reopen at full capacity (red). C) Estimated attack rate for the 
four scenarios considered. D) Estimated reproduction number for the four scenarios considered. All the 
scenarios were simulated until August 31, 2021.
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Figure 3. Total cumulative deaths under different school reopening strategies from January 25 to August 
31, 2021. A) Cumulative deaths of scenarios in which schools reopen by grades with an assumption of 
lower (50%) susceptibility in <10 years. B) Cumulative deaths of scenarios in which schools reopen by 
grades with an assumption of equal susceptibility for all ages. From left to right, the first group of bars 
show exclusive reopening by grade groups in which the other grades remain closed. The fourth group of 
bars (pre-K+primary) represents a scenario in which pre-K primary and primary reopen at different 
capacities but secondary remains closed. The last group shows a scenario in which all grades go to in-
person school at some level, with pre-K fixed at 75%, secondary fixed at 35%, and primary varying from 
35% to 100%. Blue dots show the median estimate of the same scenario with higher mobility in the city 
when schools reopen. In all scenarios, we assumed long-term protection after SARS-CoV-2 infection.

Figure 4.  The impact of school reopening strategies in time. Each column shows a different capacity 
level. Top panel shows the median daily incidence of deaths for each reopening strategy based on grades. 
Bottom panel shows the estimated attack rate for each of the reopening scenarios. Vertical black line 
shows the timing of school reopening (January 25, 2021). All scenarios were simulated up to August 31, 
2021. Assumption of lower (50%) susceptibility in <10 years.

Figure 5.  The impact of delaying school reopening. Each column shows a different capacity level. Red 
lines represent a scenario in which all schools remain closed, blue lines represent K-12 schools open, 
green and purple lines show scenarios of delaying school reopening by 1 and 2 months, respectively. Top 
panel shows the median estimate of daily incidence of deaths. Bottom panel shows the median estimate of
attack rates for each scenario. Vertical black line shows the initial date of school reopening (January 25, 
2021). All scenarios were simulated up to August 31, 2021. Assumption of lower (50%) susceptibility in 
<10 years.

We evaluated our results under alternative assumptions of city-wide mobility, 

infectiousness and susceptibility to SARS-CoV-2. In the event that school reopening increased 

the mobility to baseline levels, our results suggest an increase in the impact of reopening at any 

level under the strategies of reopening by grades or MPI of schools (Fig. 3, S6). The increase 

was uniform across all scenarios considered. For instance, reopening pre-K grades increased the 

number of deaths from 1889 to 2287 at 35% capacity, while pre-K (75%) + primary (35%) + 

secondary (35%) increased from 2337 to 3008 deaths. Similar increments were observed for the 

scenarios of reopening by socioeconomic status. In our simulations, school reopening was not 

the only cause for a third wave in the city. Higher levels of city-wide mobility not linked with 

schools resulted in an increased death toll at the city level, even when schools remained closed 

(from 1906 to 2292 deaths). Consequently, the ability of schools to provide continuous in-person

teaching could also depend on the overall community levels of mobility. Our simulations showed

that it is possible for schools to reopen without a significant increase in the burden of COVID-19
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at the city level, but decision makers should evaluate tolerable levels of risk coming from 

activities in schools and the community. Our results were robust to different assumptions of 

infectiousness and susceptibility to SARS-CoV-2 infection (Fig. S11). The impact of reopening 

strategies based on income and grades remained similar to our main assumption of susceptibility 

(Fig. 3B, S6B, S14), although the total number of deaths was slightly higher. When schools 

reopened at full capacity, 4030 additional deaths were estimated with the model, in comparison 

to 3450 additional deaths with the baseline assumption of susceptibility. In addition, when 

asymptomatics were assumed to be 75% as infectious as symptomatic individuals 

[Johannson2021_JAMA], the impact of school reopening was lower (Fig. S7). Compared to the 

2642 deaths estimated under the baseline assumption of infectiousness, at 75% pre-K capacity, 

50% primary, and 35% secondary, 2265 total deaths (95%CI: 1989-2910) were estimated.

DISCUSSION

We evaluated the impact of school reopening strategies in Bogotá during the first semester of 

2021, using an agent-based model that includes heterogeneity in transmission, behavior, and 

adoption of NPIs, which was calibrated to historic trends of COVID-19 in the city. Our 

calibration results showed that restrictions in mobility and interactions had an impact in reducing

the impact of COVID-19 in the health system. Under an assumption of no public health 

interventions, we observed a large outbreak with a peak of around 600 deaths per day, and an 

attack rate close to 75%, which was similar to attack rates observed in unmitigated outbreaks in 

South America [33]. Furthermore, in these hypothetical scenarios, our model suggests that 

reduction of control measures could lead to a third outbreak, even with schools closed. Our 

model projections suggest that school reopening may lead to a substantial increase in SARS-

CoV-2 transmission which could lead to a third wave of COVID-19 in Bogotá, Colombia, but 

this effect can be mitigated by managing the school capacities in older grades, and increasing 

control measures. These results are consistent with other modeling studies suggesting that 

younger grades could have a lower impact in transmission than older grades [27,28,34].

Our results suggest that reopening schools for in-person instruction at full capacity could 

result in a third wave of equal or greater magnitude than the first two waves, but the impact on 

the city-wide dynamics was different depending on the age of students. Particularly, the model 
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showed that reopening pre-K, even at almost full capacity, may not lead to a substantial increase 

in the overall deaths in the city, given a combination of factors such as lower susceptibility, the 

total number of students, and the limited contacts of younger children outside of school. The 

modeling results were insensitive to the assumptions on susceptibility to infection of younger 

children, suggesting that the reduced effect of lower grades may be caused by the population size

and their contact patterns. Previous studies have shown that contact patterns in primary school 

children are more concentrated in their own grades, as opposed to secondary school children who

have more contacts outside their grades [35]. The implications of these results are important for 

decision makers in public health and the education sector, given that prioritizing the capacity of 

in-person instruction for younger ages could reduce the risk of a third wave due to school 

reopening.

Importantly, monitoring the success of these reopening strategies at the school and city-

level could be crucial to reduce the risk of a third wave of COVID-19 in the city. Our calibrated 

model showed that PCR positivity in the whole city had a relationship with transmission. Based 

on current testing capacity, and after the second wave, at less than 10% of PCR positivity, our 

results suggest that it may be safe for school reopening with minimal impact in the total number 

of deaths. In contrast, levels of 10-15% could be indicative of a moderate third wave, and levels 

greater than 15% could indicate a third wave large enough to put the health system under high 

pressure.

An important factor for increased transmission of SARS-CoV-2 is the level of mixing in 

the community. Increased levels of mixing could result in a third wave of COVID-19 in the city, 

and may have caused the second wave. In fact, we found that the level of mixing needed in the 

model to reproduce the peak in December related to Christmas and New Year’s Eve holidays 

was greater than any other over the year. These high mixing rates in the community (household 

to household and family visits) over December resulted in a large and rapid second wave. Similar

patterns may be observed over other holidays such as Easter break, but we have not included that

assumption in our model. A third wave in Bogotá during the school opening is related to both an 

increase in mixing patterns within schools and an accompanying increase in community 

transmission outside school.
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The burden of COVID-19 has been heterogeneous across parts of the city, with a larger 

impact in neighborhoods of lower socioeconomic status. This is not unique to Bogotá. Studies 

have shown that vulnerable communities are less able to comply with public health interventions 

that reduce mobility, increasing the burden of COVID-19 in such communities [2]. Our data-

driven approach allowed the model to reproduce this geographic heterogeneity, highlighting the 

importance of heterogeneity in SARS-CoV-2 transmission, as well as the importance of using 

models that are capable of reproducing this heterogeneity. Nonetheless, strategies that involved 

reopening schools based solely on their socioeconomic status were found to have negligible 

differences in projected burden. This can be explained by a combination of factors. First, the 

MPI of each school is a metric of the level of poverty of the students attending the school, who 

do not necessarily live near the school. Instead, students come from different neighborhoods 

across the city, increasing the probability of infections from high transmission areas being 

imported in schools located in neighborhoods with low transmission levels. Another factor 

affecting the small differences in reopening schools by MPI is that students who come from 

neighborhoods with lower socioeconomic status live in areas with a higher burden of COVID-19,

which increases their probability of having been already exposed to the virus. Our results suggest

that the risk of reopening schools from different socioeconomic levels is similar but that students

from low-income areas may have a higher risk of contracting the virus in their communities due 

to increased exposure. Nonetheless, these students and their families are impacted the most from 

the school closures.

Similar to other studies, our results suggest that during the early months of the pandemic 

in Bogotá, school closures may have contributed to reducing the impact of COVID-19 in the city

[17]. The risks of reopening schools should be balanced with the negative societal outcomes of 

long-term school closures. Our model showed that schools could play a role in a third wave of 

COVID-19 at high levels of in-person capacity. However, the city-wide impact of school 

reopening could be greatly reduced by using reduced capacity and having control measures in 

place. Although in all but the most stringent of cases, we observed an increase in the total deaths,

the highest impact of school reopening was found when capacity was high, which resulted in 

transmission within schools extending to the rest of the community in the city [27].
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LIMITATIONS

Our study was set in January 2021 to understand the potential impact of school reopening. 

Although several other factors have affected the course of COVID-19 in the city, our study 

focuses on the effect of school transmission in the local context. In total, 16,000 deaths were 

reported in the period of February 2021 - August 2021 with schools partially opened and 

operating at lower capacity than other activities in the city. Although the magnitude of the third 

wave was higher than our scenarios, the magnitude of this wave has been attributed to the 

circulation of the ’mu’ variant [36], which was not included in this study. 

The evaluation of the impact on COVID-19 dynamics caused by school reopening 

depends on the epidemiological context. Hence, the predicted effectiveness of interventions to 

reduce transmission will often depend on whether the intervention reduces the reproduction 

number below 1, which can be sensitive to the model’s parameters [37]. This effect means that, 

for example, the level at which school reopening capacity is optimized can be difficult to 

precisely quantify. Our qualitative results should, however, be robust to this effect, and we 

further mitigate it by exploring a range of scenarios. A caveat to this is that in our calibration, the

reproduction number with schools fully opened was substantially greater than 1; if instead, the 

calibration led to a reproduction number below 1 with schools fully opened, then the impact of 

school closures would clearly be substantially reduced. 

Another limitation of our study is that although our model is a representation of the city 

including high resolution demographic and geographical data, it is unable to reproduce the full 

range of heterogeneities in the school system. For instance, we assumed classes are undertaken in

classrooms and not outdoors. This could ignore potential benefits of schools with the capacity to 

set up outdoor classrooms. Similarly, the model simplifies school structures across 

socioeconomic status, which in reality may have different characteristics.

Various assumptions were made in our model. Importantly, we assumed that children 

under 10 years of age are 50% less susceptible than older ages[15]. However, more studies are 

needed to determine whether children are in fact less susceptible than adults [13]. We also 

evaluated the impact of school reopening under the assumption of equal susceptibility for 

children and adults. Even under this assumption, younger grades consistently had a lower impact 

on transmission than older ones. However, the overall impact of school reopening was slightly 
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higher under the assumption of equal susceptibility. We also assumed that children are able to 

transmit SARS-CoV-2 at the same level as adults. Although children are less symptomatic than 

adults [11], published studies suggest that children could be as infectious as adults [13,38,39]. 

We also evaluated a scenario in which relative to symptomatic infections, asymptomatic 

infectiousness was slightly lower (75%). Under this assumption there was a reduced impact of 

school reopening. This reduction was proportionally larger for scenarios of low or moderate 

capacity, but at higher capacities the reduction was lower. The ability of children to transmit the 

virus emphasizes the importance of face-mask adherence, maintaining physical distancing in 

schools, and other interventions, such as controlling capacities in schools.

Another assumption made in the model is that levels of mobility would increase up to 

levels seen in November, 2020. However, the model does not include adaptive behaviors, such as

parents changing schedules in the case that their children attend in-person school, which could 

have an impact on mobility and contacts across the city. Mobility could also increase by students

using public transportation to go to school, which was not included in the model. Hence, 

mobility could increase even more than levels seen in November 2020. Consequently, we 

assumed a scenario with higher mobility up to baseline pre-pandemic levels. At this level of 

mobility, deaths increased slightly and uniformly across all scenarios studied. Although we are 

unable to project the full extent of future mobility and levels of contacts within the city, this 

result highlights the importance of continuing control measures in the city to maintain acceptable

levels of transmission when schools reopen.

We considered a reduced set of possible reopening strategies to focus on quantifying the 

impact of school capacity by age and socioeconomic status. Another strategic aspect not 

considered is the effect of face-mask adherence within school, which has been explored in 

similar analyses of school reopening[30]. Instead, we set the baseline level of face-mask 

adherence to 75%, based on city surveys. Furthermore, we did not consider reactive interventions

to control the spread of SARS-CoV-2 within schools, such as contact tracing, classroom 

closures, or individual school closures. Another simplification of the school reopening strategy is

that we simulated uniform mandates and compliance with public health measures across the city.

The reality is that some schools would be able to enforce interventions more than others. 

Nonetheless, our simulations represent an average of the city-wide reopening strategy. In 
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general, our results highlight the importance of controlling school capacity at different levels 

depending on the school grades.

Another limitation of the model is the quality of the data used to calibrate the model. We 

focused on daily number of deaths because death reports are more reliable than case data. 

Nonetheless, the number of deaths in the city can also be underreported as it has been estimated 

in other countries[40]. To increase the reliability of our model calibration, we validated the 

model to other data types not included in the calibration, such as the infection attack rate . We 

used this calibrated model of COVID-19 in Bogotá to evaluate scenarios of school reopening, 

but our results do not represent predictions of the future course of the epidemic in the city. 

Instead of predicting the course of the epidemic, we used a large-scale agent-based model of 

SARS-CoV-2 transmission that incorporates multiple data types to better understand the 

potential impact of schools in the COVID-19 dynamics in the city under different hypothetical 

strategies of school reopening. The reopening strategies evaluated in this study does not include 

reactive measures that schools could take to reduce the impact of outbreaks once they are 

identified. This means that our results could underestimate the impact of school reopening in 

some aspects and overestimate it in others. Although in the school opening scenarios we have 

assumed the current mobility levels will increase up to November levels and a scenario of high 

mobility with baseline levels of mobility, the model is unable to estimate the levels of contacts 

outside schools increased for other reasons and what would be the impact on intra-school 

transmission.

The model results strongly depend on the quality of the synthetic population incorporated

in the model. A limitation of the model is that our synthetic population does not incorporate all 

potential group quarters where populations at risk could live, such as informal nursing homes, or 

monasteries. Incorporating additional sources of data to inform the synthetic population could 

improve the model’s ability to reproduce the dynamics of COVID-19 in localities where it 

currently underestimates its impact. Furthermore, the overall structure of the synthetic population

underestimates the population under 20 years of age. This implies that our model simulations 

could underestimate the number of infections in this group age in the city. Although, a younger 

population would result in a lower overall fatality rate due to COVID-19.
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The model does not explicitly include the potential impact of public transportation or 

school’s transportation. Finally, the model does not include potential impact of waning immunity

or other variants with increased transmission or immunity escape capacities, and does not include

potential vaccination scenarios.

METHODS

Data

Demographic data was obtained from IPUMS-International, and the city planning secretary of 

Bogotá [41,42]. Demographic data on long-term care facilities were obtained from the Census 

and the ministry of health [43,44]. We manually geo-located these institutions using google 

maps.

Information about the number of schools, their capacity by age, and geo-location were 

obtained from the city’s Secretary of Education, which also provided us with a list of the 

Multidimensional Poverty Index (MPI) for each school. The MPI of each school represented the 

level of poverty of its students, not the location of the school. For institutions of superior 

education, we obtained a list with capacities from the national Ministry of Education [45] and 

manually geo-located them using google maps. We obtained data-sets for workplaces, including 

the number of workers and geo-location of each formal and informal workplace in the city, from 

the Secretary of Education.

We used publicly available data to approximate trends in the adoption of public-health 

interventions, such as lockdowns and the use of face masks. For lockdowns, we used the Google 

Mobility Reports [46] on the time-varying proportional change of people staying at home since 

March, 2020. We later adjusted the magnitude of this time-series to fit the model. To 

approximate the geographical variation of lockdown compliance, we combined the time-varying 

trends from Google Mobility Reports with data from the Grandata project[47], which includes 

changes in mobility by day at the census-tract level (Unidad Catastral) but were not as frequently

updated as the reports from Google. The adoption of face masks was approximated using data 

from google trends on the specific search terms ‘tapabocas’ and ‘mascarilla’ from February until 

October, 2020[48]. Assuming that people who bought masks would subsequently wear them, we 
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computed the cumulative interest in those terms and used a scaling factor in the calibration step 

to estimate the proportion of people wearing face masks over time.

We used daily incidence data on deaths from the surveillance system of the National 

Institute of Health (INS) [49]. We also used data stratified by age and locality in Bogotá from the

city’s Secretary of Health, to validate the model performance. Serological studies were also used 

to compare model performance [32].

Description of agent-based model

We modeled the dynamics of SARS-CoV-2 transmission with an agent-based model using a 

modified version of the platform FRED[50], which was originally developed to simulate 

influenza pandemics at the University of Pittsburgh. This version of the model has been 

described elsewhere [30]. This model has also been used previously to simulate COVID-19 

dynamics in school reopening in Indiana [30] and to forecast the weekly incidence of death in 

seven states in the United States as well as to study the impact of non-pharmaceutical 

interventions [51,52]. In our model, each inhabitant of Bogotá is modeled as an agent who has a 

set of daily activities, such as school attendance or commuting to work (Fig. S1). Transmission 

of the pathogen can occur when an infectious person visits the same place a susceptible person 

visited the same day. We assumed that proportion of the overall infectious people in the city 

would visit long-term care facilities, potentially infecting their residents. Finally, the probability 

of transmission partly depends on the number of effective contacts that a person has for each 

location type. These numbers of contacts were assumed to be those previously calibrated values 

to influenza for each location type [50].

Transmission and disease progression is based on a modified SEIR model. Latency and 

infectious periods were drawn from distribution calibrated to the average generation interval in 

Singapore [53]. The probability of developing symptoms increases with age [10]. Similarly, the 

probability of death increases with the age [54]. We assume that agents who recover from 

infection acquire long-term immunity. We assumed children and adults have the same capacity 

to transmit the virus to others upon exposure, although they were less likely to develop 

symptoms. We assumed that asymptomatic and symptomatic infectious individuals had a similar 

probability of infecting a susceptible agent upon exposure, but relaxed this assumption in an 

alternative analysis in which asymptomatic infectiousness was set to 75% that of symptomatic 
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infections [55]. Based on limited evidence on children susceptibility, we assumed two 

possibilities i) that children under 10 years of age were 50% less susceptible to infection 

compared to older children and adults ii) that children have the same susceptibility to infection as

adults [14].

Non-pharmaceutical interventions were incorporated in the model to modify agents’ 

behavior to curb the burden of COVID-19. We simulated lockdowns by restricting agents’ 

mobility to their household and local community based on daily reports of human mobility in the

city[46]. The effect of people wearing face masks was included in the model by reducing the 

probability of transmission of an susceptible individual upon exposure. The efficacy of this 

measure was determined as the lower bound of the odds ratio from estimates of SARS-CoV 

efficacy in non-health care settings (aOR: 0.73)[56]. The temporal trends of people wearing face 

masks was adjusted from google trends on specific search of face masks in Bogotá (‘tapabocas,’ 

‘mascarilla’) [48]. The proportion of people wearing face masks depended on the specific 

location and the age of the agent. Only people older than 7 were eligible to wear a face mask. For

workplace and community, temporal trends from google trends were adjusted with a scaling 

factor in the calibration step. We assumed that people did not wear face masks in their 

households. In the event that schools reopen, we assumed that 75% of students older than 7 years

of age would properly wear face masks.

The model includes schools that represent the set of private and public schools in Bogotá 

in terms of age, enrollment, location, and size. Transmission of the virus in schools can occur 

because of contacts inside the classroom or with the rest of the school [50]. We assumed that for 

a person in the school, the number of contacts in the classroom is double the number of contacts 

with the rest of the school. The size of each classroom was determined by age in agreement with 

the average size by grade in the city schools. The model also includes the population of teachers.

Synthetic population

We created a synthetic population that matches geographical and demographic characteristics of 

the population in Bogotá. We used publicly available micro-data from the IPUMS-International 

database [41]and used an iterative proportional fitting algorithm using the simPop package in R 

to fit age, household-composition, and population size by each census tract unit (Unidad 

Catastral) [57]. We also included long-term care facilities in the model based on data from the 
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ministry of health. The synthetic population was fit to census-tract data and it also represents the 

city-wide population by age and household population (Fig. S8A,B). The geographical density 

Bogotá is distributed in neighborhoods and localities, which contain several neighborhoods. The 

population density by census tract is shown in figure S8C. Also, the precise location of 

households, schools, and workplaces is shown in figure S8D. We focused on the urban localities 

and omitted the locality of Usme, which is mainly rural.

In the synthetic population, students in pre-K, primary, and secondary school were 

assigned to school based on data from the Secretary of Education for each grade. Students were 

assigned to a school in three sequential steps. First, for each student, a list of schools with 

availability for the student’s age was created. Then, we used data from the Secretary of 

Education to determine a matrix of locality of residence vs locality of school. Based on this 

matrix, we selected a locality to assign the student’s school. Third, we assigned the school of the 

student based on two criteria, if the locality is the same as the student’s household, we assign the 

student to the closest school with availability, if the locality is not the student’s household 

locality, we assigned the school at random within that locality. For students in higher education, 

such as universities, we obtained a list of institutions with their student capacity from the 

Ministry of Education [45]. We randomly assigned students in higher education institutions 

based on their capacity.

Workers were assigned to workplaces based on a data set of formal and informal 

workplaces. This database included the number of workers and geo-location of the workplace. 

We used a mobility survey in Bogotá to create a matrix of locality of household vs locality of 

workplace. Based on this matrix, we assigned workers to workplaces based on distance and 

capacity.

Model initialization and calibration

To reproduce the timing of SARS-CoV-2 importation in Bogotá, we initialized the model based 

on international and domestic importations in the city using case fatality risk and locally reported

death data. Detailed description of these methods are described elsewhere [30,58]. We fitted a 

GAM to the mobility trends from the percentage change on mobility for places of residence, and 

assumed that future mobility would increase up to values observed in November, 2020. We 

defined the maximum mobility in the city as 0% of people sheltering in place and the minimum 
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mobility in the reports as 100% of people sheltering in place. Then, we scaled these trends based 

on a scaling factor that we calibrate. We adjusted the numerical values of six model parameters 

to reproduce the daily incidence of deaths in Bogotá. Namely, the scaling factor for imported 

infections, a scaling factor for importation of infections to long-term care facilities, the 

probability of transmission upon exposure, the adherence with shelter-in-place and face-mask 

recommendations, and a percentage increase of community contact during the holidays. We 

calculated the likelihood of the model given the observed daily incidence of deaths for 2,000 

simulations of the model with combinations of these parameters, θ⃗, using a sobol design 

sampling algorithm with the sobolDesign function in R [59,60]. We then sampled from these 

2,000 parameter sets based on their likelihood, which was calculated as

L ( θ⃗∨D t )=Negative Binomial (r , p ), where Dt is the daily incidence of death on day t  and r and

p are size and probability parameters, respectively. We informed r and p using the conjugate 

prior relationship between a beta prior and negative binomial likelihood.

We validated the model with data excluded from the calibration process. Serological 

studies were carried out in Bogotá between October 26th and Novebmer 17th, 2020 to estimate 

the proportion of the population infected with SARS-CoV-2 [32]. We estimated daily attack rate 

in our model and compared the values to the serological study.

We also contrasted our model to the daily positive rate of PCR and antigen tests. We 

assumed perfect specificity and sensitivity of 0.85 for PCR [61] and 0.75 for antigen tests [62]. 

The proportion of positive tests were calculated as

P (P∨T )=sensitivity (P (C∨T )+P ( I∨T ) )+(1−specificity )P (U∨T ) ,

where T refers to PCR or antigen tests administered, C to symptomatic infections, I to 

asymptomatic or pre-symptomatic infections, and U to uninfected individuals. As explained 

elsewhere [30], P(C|T) can be expressed as

P (C∨T )= P (C )
P (C )+r (1−P (C ) )

,

where r=P (T ∨¬C )/P (T ∨C ). P(I) and P(U) can be written as
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P (I ∨T )= rP (I )
P (C )+r (1−P (C ))

and

P (U∨T )= rP (U )
P (C )+r (1− P (C ) )

.

School reopening scenarios

We simulated different school reopening scenarios with the aim of evaluating the impact on 

COVID-19 dynamics in the city at different levels of in-person school attendance. To inform 

public policy, we based our scenarios on discussions with the Secretary of Education of Bogotá. 

We focused on different attendance levels with different priorities based on age. Also, we 

simulated scenarios in which young children had priority of in-person attendance to provide 

scenarios in which single mothers with young children could go to work. Similarly, we designed 

scenarios in which we incremented the in-person attendance of older students, given that these 

students could be at risk of unemployment and poverty. We also focused on reopening strategies 

based on the MPI and geographical location of schools.

We simulated reopening strategies of grades including, pre-K, primary, and secondary 

school. We modeled varying degrees of school capacity by modulating the probability of a 

student to go to school on a specific day. In the model, reduced capacity does not imply greater 

physical distancing within schools. We varied the capacity of reopening for in-person students 

from 35% to 100% for each set of grades. We also evaluated the impact of reopening pre-K and 

primary schools together at similar capacity levels from 35% to 100%. Finally, we simulated a 

scenario in which students from all ages were able to attend in-person school at some level with 

100% pre-K, 50% primary school, and secondary school capacity varying from 35% to 100%.

The multidimensional poverty index (MPI) is an international measure of poverty that 

includes monetary poverty metrics and other acute deprivations in health and living standards 

[63]. We used an adjusted MPI for each school, which represents the overall intensity of poverty 

in the school’s students. Then, we sorted schools based on their MPI and student population size,

and grouped the schools based on their population quartile in four groups (MPI Q0-Q1, Q1-Q2, 
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Q3-Q4) from lower to higher MPI index. To estimate the effect of MPI of schools in school 

reopening, we simulated exclusive reopening for each of the four determined groups.

We also simulated extreme scenarios of school reopening in which schools remain at 

their current level of attendance or they are open at full capacity. Finally, we evaluated the 

impact of delaying school reopening by 1 or 2 months from the initially planned reopening 

(January 25, 2021). In all simulations, we evaluated the impact of reopening schools as the total 

number of deaths reported in the city from January 25 to August 31, 2021.
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