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Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and
South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in
five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in

nglljetic T Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome
Evolution Y oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2),
Triatomines dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All

T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing
Unit (DTU) I (Tcl), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and
sequence divergence analyses of our new data plus all previously published sequence data from those four loci
collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi
DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an
increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range
and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high
genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector
control programs for Chagas disease in southern USA and Mexico.

1. Introduction

Chagas disease is caused by the protozoan parasite Trypanosoma
cruzi, which is transmitted to humans by blood-sucking insects of the
family Reduviidae (Triatominae). This is the most important parasitic
disease in the Americas, with about six to seven million people infected
and 75 million people considered at risk, mostly in Mexico, Central and
South America (WHO, 2019). Between 10 and 30% of infected people
eventually develop illness of the cardiac, gastrointestinal and/or ner-
vous systems, resulting in severe debilitation, economic burden, and
ultimately death (Barrett et al., 2003; Prata, 2001). Chagas is mainly a
vector-borne disease in which the parasite is transmitted when feces
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and/or urine from infected insects contact the skin or oral and/or eye
mucous membranes.

Itis recognized that Chagas disease, traditionally confined to Mexico,
Central and South America, is becoming an important health issue not
only in the USA but also in other countries worldwide (Coura and Vinas,
2010; Lidani et al., 2019; Manne-Goehler et al., 2016; Montgomery
et al., 2014). In the USA, it is estimated that between 250,000 and
300,000 people, mostly individuals born in countries where the disease
is endemic, are infected with T. crugzi (Bern et al., 2019; Bern and
Montgomery, 2009; Manne-Goehler et al., 2016; Montgomery et al.,
2014; Yadon and Schmunis, 2009). These numbers are significant and
emphasize the need for recognition among physicians and public health
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officials, as the parasite can be transmitted through blood transfusion
and congenitally (Manne-Goehler et al., 2015; Parise et al., 2014; Verani
et al., 2010). In addition, both infected triatomines and mammalian
reservoirs of the parasite such as packrats, armadillos, raccoons, skunks,
foxes, mice, opossums, dogs and captive nonhuman primates are plen-
tiful in the USA, particularly in southern states (Aleman et al., 2017;
Barnabe et al., 2001; Beard et al., 2003; Bern et al., 2011; Bern et al.,
2019; Bradley et al., 2000; Curtis-Robles et al., 2018; Elmayan et al.,
2019; Ghersi et al., 2020; Herrera et al., 2019; Hodo et al., 2018; Kjos
et al., 2008; Meurs et al., 1998; Padilla et al., 2021; Pung et al., 1995;
Rodriguez et al., 2021; Roellig et al., 2008; Shender et al., 2016; Van-
dermark et al., 2018; Zecca et al., 2020). Despite this, only a small
((100), but increasing number of autochthonous vector-borne cases of
T. cruzi transmission have been reported to date, all in the southern part
of the country (Reviewed in (Bern et al.,, 2019; Lynn et al., 2020).
Interestingly, some individual blood donors that tested positive for the
presence of the parasite never left the USA (Cantey et al., 2012), indi-
cating that autochthonous transmission may be even higher and un-
discovered. In addition, many Chagas disease cases might have been
overlooked because the early phase of the infection is often asymp-
tomatic, and because some chagasic cardiomyopathies may be mis-
diagnosed (Herwaldt et al., 2000; Kirchhoff, 1993; Milei et al., 2009).

Transmission of T. cruzi in the USA mostly occurs within sylvatic
cycles (Bern et al., 2019) although triatomines, often infected, occa-
sionally invade human dwellings during dispersing flights and report-
edly become in contact with humans and pets (Beard et al., 2003; Klotz
et al., 2010; Lynch and Pinnas, 1978; Moffitt et al., 2003; Reisenman
et al., 2010; Reisenman et al., 2012; Stevens et al., 2012). Although
triatomines in the USA appear to have a relatively low capacity for
domiciliation and human transmission (Klotz et al., 2016), domestic
cycles of disease transmission involving infected insects, dogs and syl-
vatic reservoirs have been reported in southern Texas (Beard et al.,
2003; Garcia et al., 2016). In particular, the finding that dogs in the USA
have increasing roles in enzootic cycles (Bradley et al., 2000; Curtis-
Robles et al., 2017; Elmayan et al., 2019; Garcia et al., 2016; Kjos et al.,
2008), along with the fact these animals are important domestic reser-
voirs of T. crugi (Crisantes et al., 2006; Curtis-Robles et al., 2017; Giirtler
et al., 2007; Gurtler et al., 1991), is highly relevant. The presence of
infected triatomines, small mammals such as packrats, and dogs that
spend time outside the house establishes a scenario in which domestic
transmission cycles of the parasite are possible.

Currently, the parasite’s nuclear genetic diversity is divided into six
Discrete Typing Units (DTUs) termed TcI-TcVI, and a genetic lineage
called TcBat (Brisse et al., 2000; Pinto et al., 2012; Zingales et al., 2012).
Although asexuality has been traditionally assumed to be the most
common mechanism by which the parasite reproduces (Tibayrenc and
Ayala, 1987, 1988), recent studies have shown that sexual reproduction
happens in nature and that clonal and sexual panmictic populations can
coexist (Berry et al., 2019; Schwabl et al., 2019). Furthermore, it is well-
known that genetic exchange events have played important roles
generating genetic diversity in this parasite. For instance, two of the
main DTUs with widespread geographic distribution are hybrids (TcV-
TcVI), the result of an ancient hybridization event that took place be-
tween the ancestors of DTUs Tcll and TclII (Brisse et al., 2003; Flores-
Lopez and Machado, 2011; Machado and Ayala, 2001, 2002), and sur-
veys of variation using mitochondrial and nuclear genes often show
evidence of genetic exchange (Lewis et al., 2011; Messenger et al., 2012;
Roellig et al., 2013; Shender et al., 2016). The findings of an additional
genetic lineage that infects bats in Central America (TcBat) (Lima et al.,
2015; Pinto et al., 2012), and the more complex genetic structure in Tcl
(Llewellyn et al., 2009; Zumaya-Estrada et al., 2012), suggest that the
genetic diversity of T. cruzi may not have been thoroughly sampled. As
sampling is expanded to more regions, a more complex view of the ge-
netic diversity of the parasite may be revealed.

Studies attempting to uncover the genetic diversity of T. cruzi in the
USA have become more common in recent years. Tcl and TcIV are the
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most prevalent DTUs found in the USA (Barnabe et al., 2001; Breniere
et al., 2016; Curtis-Robles et al., 2018; Curtis-Robles et al., 2017; Garcia
etal., 2017; Herrera et al., 2015; Meyers et al., 2017; Roellig et al., 2008;
Roellig et al., 2013; Shender et al., 2016; Vandermark et al., 2018). TcIl
was thought to be the only DTU involved in autochthonous human in-
fections in this country (Roellig et al., 2008), but a recent study un-
covered the presence of non-TcI DTUs and mixed Tcl-nonTcl infections
in Chagas disease patients from Texas which acquired the infection
autochthonously (Garcia et al., 2017). Additionally, mixed Tcl/TcIV
infections and evidence of genetic exchange between Tcl and TcIV have
been detected in wildlife reservoirs (Curtis-Robles et al., 2018; Roellig
et al., 2013). Furthermore, TcVI was recently detected in captive pri-
mates (Herrera et al., 2019), and Tcll was also detected in rodents from
Louisiana (Herrera et al., 2015). More recently, all DTUs except TcIIl
and TcBat were detected in a small sample of rodents from New Orleans
using next-generation sequencing of the mini exon gene (Pronovost
et al., 2020).

All the above discoveries beseech a better understanding of the ge-
netic diversity of T. cruzi currently present in the USA. We thus con-
ducted a phylogenetic study of T. cruzi sequences isolated from
triatomine bugs from two southern USA states, Arizona and Texas,
where infected triatomines are readily abundant and reportedly feed on
humans and pets (Beatty et al., 2018; Garcia et al., 2015; Garcia et al.,
2016; Reisenman et al., 2010; Stevens et al., 2012). We conducted
multilocus sequence typing (MLST) with a combination of three single-
copy nuclear genes and one mitochondrial region that provide more
resolution to identify DTUs and uncover phylogenetic relationships than
data from surveys conducted with single or less variable loci. We found
two genetic lineages of T. cruzi circulating in the sampled Triatomines,
one of which has significant genetic divergence from previously defined
T. cruzi DTUs.

2. Materials and methods
2.1. Collection and location of triatomine samples

Fifty-five Triatomine bugs previously collected and identified from
Texas and Arizona (Mitchell, 2013; Reisenman et al., 2010) are the focus
of this study (Fig. 1; Table S1). Diagnosis of infection was performed in
this study by PCR, using the COII-NDI marker (see description in Section
2.2). Collection records for those individual insects were previously
reported (Mitchell, 2013; Reisenman et al., 2012) but detailed location
information is presented in S1 Table. In Texas, the majority of infected
specimens were T. gerstaeckeri (n = 44), with a lower frequency of Tri-
atoma lecticularia (n = 4), Triatoma sanguisuga (n = 2) and Triatoma
indictiva (n = 1) (Mitchell, 2013). From Arizona we only collected data
from infected T. recurva (n = 4) (Reisenman et al., 2010; Reisenman
et al., 2012). Collected insects were individually placed in 95% ethanol
immediately after collection or upon death and stored at 4 °C until
analysis. The posterior end of each Triatoma specimen was removed to
isolate the hindgut. DNA was extracted using the QIAGEN Blood and
Tissue kit following the manufacturer’s protocol.

2.2. PCR amplification and sequencing

We conducted MLST of all the Triatomine DNA samples using pre-
viously published primers that target four variable T. cruzi single-copy
loci: a mitochondrial region (1,226 bp) encompassing the maxicircle-
encoded genes cytochrome oxidase subunit II and NADH dehydroge-
nase subunit 1 (COII-ND1) (Machado and Ayala, 2001); a partial
segment (727 bp) of nuclear gene TcCLB.506529.310 (Former ID:
Tc00.1047053506529.310) part of the Ydr279p protein family (RNase
H2 complex component) (Flores-Lopez and Machado, 2011); a 737 bp
region of the mismatch repair gene (MSH2) (Augusto-Pinto et al., 2001);
and a 1,408 bp region of the Dihydrofolate reductase-thymidylate syn-
thase (DHFR-TS) gene (Machado and Ayala, 2002). The rationale for



C.A. Flores-Lopez et al.

Infection, Genetics and Evolution 99 (2022) 105251

|

California

=}

Arizona

New Mexico

co

MEXICO

Oklahoma
Texas \
PrS Louisiana
@
©o
0]
@ Collection sites
® O TclV-USA sites
0 1054 km
)

Fig. 1. Southern USA map with collection sites for Triatomines used in this study. Collection sites for specimens of Triatomine vectors (Triatoma gerstaeckeri,
T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in southern Arizona and Texas. Geographic coordinates of each site can be found in Table S1.

selecting these four single-copy loci was based on their previous use as
taxonomic markers for T. cruzi and the availability of reference se-
quences of each DTU for the level of resolution needed in this study. The
following primers (5-3') were used for PCR: COII-ND1 region
(GCTACTARTTCACTTTCACATTC, GCATAAATCCATGTAAGACMCCAC
A); Tc00.1047053506529.310 (TTCTTTCAGGCTGCGATTTT, CGCTG
TTTGGCTCATTTCTT); MSH2 (TNACNGGNCCNAAYATG, TYTCNRC-
CATRAANGT); DHFR-TS (CGCTGTTTAAGATCCGNATGCC, CGCA-
TAGTCAATGACCTCCATGTC). Conditions for the polymerase chain
reaction (PCR) amplifications were: 35 cycles of a 30 s denaturation step
at 94 °C, annealing at 55 °C and 58 °C for 30 s for the nuclear and
mitochondrial loci respectively, and extension at 68 °C for 60 and 90 s
respectively. Amplicons were prepared for sequencing as previously
described (Mitchell, 2013), and PCR primers were used for bidirectional
sequencing on a 3130xI Genetic Analyzer (Applied Biosystems). Se-
quences were edited using CodonCode Aligner (CodonCode Corpora-
tion) and deposited in GenBank (Accession Nos. COII-NDI: MF670300-
MF670349, DHFR-TS: MF784866-MF784877, MSH2: MF(074143-
MF074183, TcCLB.506529.310: MZ014573-MZ014617). The
sequencing effort resulted in a total of 50, 12, 41 and 45 samples
sequenced with COII-NDI, DHFR-TS, MSH2 and TcCLB.506529.310,
respectively.

2.3. Phylogenetic and genetic distance analyses

Previously published sequences of the same genes from cloned
reference T. cruzi strains from all major DTUs (Breniere et al., 2016;
Flores-Lopez and Machado, 2011; Machado and Ayala, 2001, 2002) and
from recently sampled USA isolates were included in the analyses (S2
Table). T. cruzi marinkellei was used as outgroup in the analyses. Se-
quences were aligned using MUSCLE (Edgar, 2004) and then manually
checked. MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and
Huelsenbeck, 2003) was used to conduct Bayesian analyses using the
substitution models chosen by jModeltest on each locus (Posada, 2008).
Two independent simultaneous Markov Chain Monte Carlo runs were
conducted with four chains each for at least 30,000,000 generations and
sampled trees every 10,000 generations. If the standard deviation of
split frequencies were not below 0.01 after the first run, the analyses
were run for an additional 10,000,000 generations and were stopped
after convergence (i.e. standard deviation of split frequencies # 0.01).
Parameters and corresponding trees were summarized after discarding

the initial 25% of each chain as burnin. Maximum likelihood (ML) trees
were estimated in PAUP, using the tree bisection-reconnection (TBR)
algorithm for the branch swapping (Swofford, 2002b). A reduced data
set was selected for the ML analyses due to computational constraints.
jModeltest2 was used to estimate the most appropriate nucleotide sub-
stitution model used for the ML heuristic search, where the Akaike in-
formation criterion (AIC) was employed to select the model (Darriba
et al., 2012). Bootstrap support values were obtained by ML analyses of
100 pseudoreplicates of each dataset. Nucleotide sequence differences
were calculated in PAUP (Swofford, 2002a) to plot the distribution of
pairwise differences within and between DTUs. When describing our
phylogenetic results, we will use the term “lineage” to describe groups of
isolates sharing the same evolutionary history (i.e. reciprocally mono-
phyletic isolates). In most cases “lineage” and DTU are synonymous,
except when lineage describes a group of isolates that has not been
classified using MLEE typing (e.g. TcBat, TcIV-USA).

2.4. Divergence time estimates

A molecular clock was enforced on each data set, and the likelihood
of the ML tree was compared to the tree without the clock constraint to
determine if any data set did not conform to the molecular clock
assumption. The concatenated data set of the three nuclear loci (2,757
bp) and the mitochondrial alignments (1,094 bp) were independently
used to estimate divergence dates using Bayesian divergence analyses
with BEAST 2 (Bouckaert et al., 2014). To calibrate the clock, we used
the time of divergence between T. cruzi and T. c. marinkellei from a
previous study (6.23 Mya for the nuclear data set) (Flores-Lopez and
Machado, 2011). All other priors and parameters used for this analysis
were the same as those previously used (Flores-Lopez and Machado,
2011).

3. Results

3.1. Phylogenetic diversity of two common T. cruzi lineages from Texas
and Arizona

We collected T. cruzi sequences from fifty-five infected Triatomine
bugs from Texas and Arizona (Table S1). Phylogenetic analyses that
include published nucleotide sequences from strains representing the six
currently recognized T. cruzi DTUs indicate that the collected isolates are
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part of two different T. cruzi lineages (Figs. 2 and 3, S1-S8). One of the
lineages corresponds to DTU Tcl. It was detected on 75% of the infected
bugs, in agreement with what is known about the genetic diversity of the
parasite in North America (Breniere et al., 2016). The other 25% of the
infected insects (13/51 from Texas, 3/4 from Arizona) carried isolates
that cluster within a well-supported monophyletic lineage that is more
closely related to DTUs TclII-IV-V-VI than to Tcl or Tcll, but that is
significantly divergent from any of the previously defined DTUs.

Given that the vast majority of DTU reference sequences are from
South American isolates, we surveyed studies from the USA to incor-
porate all published sequences from the same loci used in our analyses.
We found that the non-Tcl lineage from our survey corresponds to what
had been previously described as TcIV from North America (Barnabe
etal., 2001; Lewis et al., 2009; Marcili et al., 2009). This lineage is closer
to TcIV when considering nuclear loci but is equally divergent to TclII-

Infection, Genetics and Evolution 99 (2022) 105251

IV-V-VI at the mitochondrial locus (Figs. 2, 3, and S1-S8). Based on our
survey of GenBank and the literature, no sequences that cluster with
South American TcIV have been collected in the USA. The closest se-
quences to this non-Tcl lineage from our survey come from isolates that
have been termed either TcIV (acknowledging that there is sequence
divergence between South and North America isolates) (Messenger
et al., 2012; Roellig et al., 2013; Yeo et al., 2011), TcIV-US (Lewis et al.,
2011) or TcIV-USA (Shender et al., 2016) which is the label we will use
in this report. All previously published sequences (available in GenBank)
that cluster with the TcIV-USA isolates from our survey are included in
the phylogenies presented here (Figs. 2, 3, and S1-S8; Table S2) as well
as in the distance analyses presented in Section 3.2. Interestingly, TcIV-
USA isolates were detected in all the five North American triatomine
species sampled in this study (T. gerstaeckeri, T. lecticularia, T.indictiva,
T. sanguisuga and T. recurva).
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Sequences from all TcIV-USA isolates are reciprocally monophyletic
regardless of the locus, the combination of loci, or method used (Figs. 2,
3, S1-S8). While DTUs TclIl, TcV and TcVI are effectively indistin-
guishable from each other with the sequences used, lineage TcIV-USA is
clearly different from all other DTUs (Figs. 2, 3, S1-S8), including DTU
TcIV which is represented by the only two reference sequences available
from two South American isolates (CANIIIcl1, EPP). Bayesian posterior
probability values indicate high support for this monophyletic group
regardless of the dataset used in the analyses (Figs. 2, 3, S1-S5). ML
bootstrap support values are also high for this clade regardless of the
dataset (S6-8 Figs). In the analyses of the mtDNA data (COII-NDI), TcIV-

USA sequences form a monophyletic group whose closest relative is a
monophyletic group composed by TclIlI-IV-V-VI (Figs. 2, S1, S6). This
same set of relationships are recovered in analyses of the concatenated
data from all the four loci (Figs. S5, S8). In the analyses of concatenated
sequences from the three nuclear loci (DHFR-TS, MSH2,
TcCLB.506529.310), TcIV-USA and TcIV sequences cluster together
albeit with evidence of significant divergence between the two clades
(Figs. 3, S7, and see Section 3.2). Further, focusing on the nuclear loci,
the TcIV-TcIV-USA clade appears to be well supported only in locus
DHFR-TS (Fig. S4).

Estimates of the divergence time of TcIV-USA from its common
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recent ancestor with South American TclV is similar for both nuclear 3.2. Nucleotide divergence between TcIV-USA and other T. cruzi DTUs
(110,000 yrs. ago) and mitochondrial data (120,000-160,000 yrs. ago)

(Table S3), indicating a mid to late Pleistocene divergence and entry into To complement our phylogenetic analyses, we plotted the distribu-
North America, well before the arrival of humans into North America. tion of nucleotide pairwise differences within and between DTUs to

determine if lineage TcIV-USA is significantly divergent from other
DTUs and could thus correspond to an independent evolutionary line-
age. This approach looks for a “barcoding gap” to delimit evolutionary
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Fig. 4. Distribution of intra and inter-DTU genetic distances for COII-NDI. Absolute pairwise nucleotide differences were calculated within and between DTUs.
Sources of the sequences used for each DTU are listed in Table S2. Differences between intra and inter-DTU differences were analyzed using Mann-whitney U tests. A:
TcIV—TcIV-USA (p < 0.0001); B: TcI—TcIV-USA (p < 0.0001); C: TcII—TcIV-USA (p < 0.0001); D: Tclll/V/VITcIV—USA (p < 0.0001); E: TcIllI—TcV/VI (p =
0.42372, N.S); F: TeI—TcllI (p < 0.00001), TcI—TclII (p < 0.00001). p-values were adjusted for multiple tests using the Bonferronni correction.
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lineages comparing the distribution of pairwise nucleotide differences
within and between lineages (Candek and Kuntner, 2015; Hebert et al.,
2004; Meyer and Paulay, 2005), and here we use the previously
delimited DTUs as controls. We found that the distribution of intra-DTU
sequence divergence is significantly lower than the distribution of inter-
DTU sequence divergence for any of the comparisons between the TcIV-
USA isolates and any of the six previously defined DTUs that are either
distantly (TcI, Tcll) or more closely related (Tclll, TcIV, TcV, TcVI)
(Figs. 4, S9, S10). All the comparisons of intra vs inter-DTU genetic
distances that include the TcIV-USA isolates are statistically significant
(Mann Whitney U tests: p < 0.00001). Furthermore, the divergence
between the TcIV-USA isolates and its four most closely related DTUs
(Tclll, TclV, TcV, TcVI) is significantly higher than the level of diver-
gence among those four DTUs (Figs. 4, S9, S10). In fact, DTUs TclII, TcV
and TcVI are effectively indistinguishable from each other using the four
surveyed loci. Moreover, if one were to force TcIV and TcIV-USA se-
quences into a single genetic group, the intraclonal nucleotide sequence
diversity of this forced TcIV/TcIV-USA group would be significantly
higher than the diversity of any of the previously defined DTUs (Fig. 5).
All these results indicate that TcIV-USA is significantly divergent from
other T. cruzi DTUs and that this finding is not caused by the paucity of
TclV sequences from South American samples.

3.3. Evidence of genetic exchange events in TcIV-USA

Genetic exchange between different T. cruzi lineages can generate
phylogenetic incongruency among different genetic markers (Machado
and Ayala, 2001, 2002). A T. cruzi isolate from a T. sanguisuga specimen
collected in Gainesville (Florida_C16) (Barnabe et al., 2000) provided
the first evidence of mitochondrial introgression in this parasite based
on phylogenetic incongruency between markers (Machado and Ayala,
2001). This sample’s COII-ND1 sequence actually represents the first
published sequence of TcIV-USA (Figs. 2, S2, S6) (although that label
was not used at the time), while its sequences from nuclear genes DHFR
and TR cluster with Tcl (Machado and Ayala, 2001, 2002) in agreement
with its DTU classification (TcI) based on allozyme data (Barnabe et al.,
2000). These findings strongly suggested that Florida_C16 represented a
strain that arose from genetic exchange between Tcl and an unknown
lineage (at that time) that we now know is TcIV-USA. In that instance of
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Fig. 5. Levels of intra-DTU nucleotide diversity in COII-ND1. Labels in the X-
axis indicate the various T cruzi DTUs. The level of nucleotide diversity
observed when combining TcIV and TcIV-USA is significantly higher than that
of any of the other DTUs (A-D: p < 2e-16; E: p = 1; F: p < 2e-16; Wilcoxon
signed-rank test, with Bonferroni adjusted p-values).

Infection, Genetics and Evolution 99 (2022) 105251

inferred genetic exchange, the TcIV-USA mitochondria (maxicircle)
introgressed into a Tcl nuclear genetic background. A similar mito-
chondrial introgression scenario (mtDNA: TcIV-USA, nuclear loci: Tcl)
was later reported for one isolate from Georgia (Messenger et al., 2012),
and for nine isolates from various USA states (Roellig et al., 2013).

In our study there are three samples from Texas (Texl, Tex72,
Tex260) that also have conflicting phylogenies between loci (Figs. 2, 3).
COII-ND1 sequences place all of them in DTU Tcl (Figs. 2, S1), while
sequences from nuclear loci TcCLB.506529.310 (Fig. S2) and MSH2
(Fig. S3) place them in lineage TcIV-USA (DHFR-TS was not sequenced
in these samples). Most nuclear loci in the two major hybrid groups of
strains of T. cruzi (DTUs TcV & TVI) that have been cloned and main-
tained in culture have usually multiple heterozygous sites due to mixed
parental ancestry (DTUs Tcll and TcIII) of their nuclear DNA (Flores-
Lopez and Machado, 2011; Machado and Ayala, 2001, 2002). Since the
mitochondria are thought to have a uniparental mode of inheritance, the
presence of heterozygous sites in a mitochondrial chromatogram in-
dicates mixed amplification of two distinct genotypes and is direct evi-
dence of a mixed infection. None of those three Texas samples (Tex1,
Tex72, Tex260) show ambiguous sites in their mitochondrial chro-
matograms, but sample Tex72 shows ambiguous sites in the MSH2 loci
at all the nucleotide sites that distinguish Tcl from TcIV-USA (Fig. S11)
suggesting this isolate is heterozygous for Tcl and TcIV-USA alleles
consistent with a potential recent hybridization event.

4. Discussion

We collected nucleotide sequences from three single-copy nuclear
genes (DHFR-TS, MSH2, TcCLB.506529.310) and one mitochondrial
region (COII-NDI) to characterize T. cruzi genetic variation in infected
Triatomines from several Texas and Arizona locations. Nucleotide se-
quences from multiple loci provide more resolution to identify DTUs and
uncover phylogenetic relationships than data from single, short or less
variable regions like those traditionally used in large field surveys. We
found two genetic lineages of T. cruzi circulating in the sampled Tri-
atomines from Texas and Arizona. The most common lineage corre-
sponds to DTU Tcl, found in 75% of the infected triatomines (n = 55).
The second lineage, found in 25% of the infected triatomines, showed
significant genetic divergence from previously defined T. cruzi DTUs, but
corresponds to a previously described divergent North American branch
of DTU TcIV labelled TcIV-USA or TcIV-US (Lewis et al., 2011;
Messenger et al., 2012; Roellig et al., 2013; Shender et al., 2016; Yeo
et al., 2011). Using evidence from phylogenetic and genetic distance
analyses, our results indicate that lineage TcIV-USA is significantly
divergent from TcIV and from any other T. cruzi DTUs.

The divergence between South American and North American TcIV
has been noticed in previous studies based on 1) multilocus enzyme
electrophoresis (MLEE) (Barnabe et al., 2001); 2) Restriction Fragment
Length Polymorphism and PCR fragment size differences (Lewis et al.,
2009), and; 3) nucleotide sequences from small subunit ribosomal RNA
and Cytochrome b (Marcili et al., 2009). More recently, this divergence
was also reported based on phylogenetic analyses of North American
samples using sequences from few loci (Lewis et al., 2011; Messenger
et al., 2012; Roellig et al., 2013; Shender et al., 2016; Yeo et al., 2011).
Interestingly, this South America-North America TcIV divergence was
even noticeable in the MLEE and Random Amplified Polymorphic DNA
(RAPD) cladograms used to define the currently accepted six T. cruzi
DTUs (Brisse et al., 2000), although in that study the North American
TcIV was represented by a single North American isolate (DogTheis).
Based on the observed level of RAPD and MLEE divergence between
South American TclV isolates and the only North America TcIV isolate,
plus the strong congruence between cladograms (see clade “2a” from
Figure three of (Brisse et al., 2000)), it is worth wondering whether that
North American TclIV lineage would have been described as a separate
DTU had the Brisse et al. study (Brisse et al., 2000) included more iso-
lates from North America. Our phylogenetic analyses confirm the
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divergence of TcIV-USA, and our genetic distance analyses (Figs. 4, 5,
S9, S10) demonstrate that this divergence is significant relative to all
other defined DTUs. Based on our survey of the literature and GenBank,
no sequences similar to the South American TcIV DTU have been
collected in the USA. Future efforts using genomic data should allow a
rigorous investigation of genome-wide levels of divergence among all
DTUs, and should determine if any changes in the placement of TcIV-
USA within the current T. cruzi classification system are warranted.

The geographic distribution and host associations of TcIV-USA
(“TcIV” as mostly used in US-based studies) are quite broad, covering
for the most part every state, mammalian host and triatomine species
where T. cruzi has been detected. In our study, TcIV-USA was found in all
the five triatomine species sampled: four species from Texas
(T. gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga) and one species
from Arizona (T. recurva). Our sample sizes are not large enough to
conduct statistical tests of preferred vector-DTU associations, but recent
work (Curtis-Robles et al., 2017) reported that in Texas T. gerstaeckeri
was disproportionately associated with Tcl while T. sanguisuga was
mostly associated with TcIV-USA (identified as “TcIV” in that study).
Although our data from Arizona were obtained from a small number of
T. recurva infected specimens, it is important to note that, by far,
T. rubida is the most abundant species in Arizona. T. rubida has repeat-
edly been found infected with T. cruzi (Reisenman et al., 2010; Reisen-
man et al., 2012) although DTUs were not identified. In the neighboring
state of New Mexico, a recent study found a small proportion of T. rubida
infected with TcIV, and even one specimen with a mixed TcI-TcIV
infection (Rodriguez et al., 2021). Furthermore, the second most
abundant Triatomine species in Arizona is T. protracta, also not sampled
in this study, which happens to be the most common species in Cali-
fornia. A recent study reported the presence of TcIV-USA in California
associated with T. protracta (Shender et al., 2016). Interestingly, that
study uncovered T. protracta infected with “TcIV” but only in Southern
California, while TcI was present in all areas of the state that were
sampled, although sample sizes were small.

The most comprehensive USA survey of Triatomines infected with
T. cruzi with a focus in Texas and few samples from 16 southern USA
states (Curtis-Robles et al., 2018), reported high frequencies of infection
with Tcl and “TcIV” in Texas in the same four Triatoma species we
sampled (T. gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga). In
addition, “TcIV” was observed in eight states but only associated with
T. sanguisuga, although samples sizes were very small. Although in that
survey (Curtis-Robles et al., 2018) phylogenies were not presented to
support DTU identification, we assume that samples identified as “TcIV”
are TcIV-USA indicating that this lineage is commonly associated with
Triatomines and widespread in southern USA. Additional surveys should
be conducted to determine the most common mammals associated with
TcIV-USA. Additionally, a sample isolated from a T. dimidiata specimen
collected from the Yucatan peninsula in southern Mexico also clusters
within TcIV-USA (CAFL unpublished). Future work should incorporate
variable sequence markers like those used here to confirm the identity
and frequency of the T. cruzi lineages circulating in Triatomine insects in
the USA.

The observation of multiple instances of potential TcI-TcIV-USA
hybrids (TcI-TclV in the literature) (Lewis et al., 2011; Machado and
Ayala, 2001; Messenger et al., 2012; Roellig et al., 2013; Shender et al.,
2016) is not surprising given that mixed infections in vectors and
mammal hosts are routinely reported (Curtis-Robles et al., 2018; Curtis-
Robles et al., 2016; Herrera et al., 2015; Rodriguez et al., 2021; Roellig
et al., 2008), given that these are the most common lineages in the USA
(Breniere et al., 2016), and given that Tcl and TcIV-USA have been
coexisting in North America probably for more than 100,000 years
(Table S3). A T. cruzi sample that was isolated from a T. sanguisuga
specimen collected in Gainesville (Florida_C16) and that has been clas-
sified as Tcl based on allozyme data (Barnabe et al., 2000), clustered
with strong support within the TcIV-USA clade in the mitochondrial
analysis (Figs. 2, S1) but with Tcl in the analyses of the concatenated
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nuclear loci (Fig. 3). That incongruent phylogenetic placement among
loci is consistent with hybridization/introgression between Tcl and
TcIV-USA. This hybridization event was previously described two de-
cades ago, but since there were no published sequences from TcIV-USA
at that time, the mtDNA sequence was basally positioned in the TclIl
clade (Machado and Ayala, 2001). A similar pattern of phylogenetic
incongruency (mtDNA: TcIV-USA, nuclear loci: Tcl) has been reported
for one isolate from Georgia (Messenger et al., 2012), and for nine iso-
lates from various USA states (Roellig et al., 2013). Here we report the
opposite pattern of phylogenetic incongruency (mtDNA: Tcl, nuclear
loci: TcIV-USA) in three samples from Texas (Tex1, Tex72 & Tex260),
consistent with previous reports from few isolates of T. protracta in
California (Shender et al., 2016) and from a dog isolate from Tennessee
(Roellig et al., 2013).

Our findings also confirm previous studies indicating that TcI is the
most common lineage of T. cruzi in the USA (Barnabe et al., 2001;
Breniere et al., 2016; Curtis-Robles et al., 2018; Curtis-Robles et al.,
2017; Garcia et al., 2017; Herrera et al., 2015; Meyers et al., 2017;
Roellig et al., 2008; Roellig et al., 2013; Shender et al., 2016; Vander-
mark et al., 2018). This is not surprising, given that TcI is also the most
frequently reported lineage found in neighboring Mexico and Central
America (Dorn et al., 2017; Zumaya-Estrada et al., 2012). Phylogenetic
studies that incorporate the large genetic diversity of Tcl found across
the Americas showed that Tcl samples isolated from North America tend
to form a distinct cluster nested within the Tcl isolates from South
America (Cura et al., 2010; Llewellyn et al., 2009). This suggests that the
Tcl lineages found in North America may be derived from South
America, although the timing of the North American introduction is
unclear. Our divergence time estimates, however, indicate that the
origin of the North American TcI clade greatly predates humans’ pres-
ence in the Americas (Table S3).

Although Chagas disease is relatively uncommon in the USA, a small
but increasing number of autochthonous vectorial transmission cases
have been reported in the last decade in southern states. Environmental
changes and globalization will undoubtedly increase the opportunities
for vectorial transmission of T. cruzi in the USA (Eberhard et al., 2020;
Garza et al., 2014), and future efforts should thus focus on evaluating the
epidemiological importance of TcI and TcIV-USA. Our study emphasizes
the need for appropriate epidemiological surveillance and vector control
programs in southern USA states. Infection rates, domiciliated vectors,
socioeconomic factors and habitat conditions that are usually associated
with Chagas disease in Mexico, Central and South America are much less
common in the USA. Nevertheless, the epidemiological importance and
prevalence of TcIV-USA merits investigation, as well as its geographical
range and pathogenicity in humans.

4.1. Conclusions

This study confirms that two major genetic lineages of T. cruzi (Tcl,
TcIV-USA) circulate in the Southwest USA. Parasite sequences belonging
to TcIV-USA have been previously reported in other studies from the
USA as “TcIV”. However, our phylogenetic analyses and a barcoding gap
approach show that sequences from this lineage are significantly
different to those from South American TcIV and from those of any other
currently defined DTUs. A whole-genome comparison approach will be
needed to properly determine the most appropriate taxonomic posi-
tioning of this North American genetic lineage within T. cruzi. Although
the correlation between the variable clinical symptoms of Chagas dis-
ease and the genetic background of T. cruzi is not yet fully understood
(Jimenez et al., 2019), having a better understanding of the genetic
variability of T. cruzi in the USA and the potential connection between
genetic variants and disease progression will be of major importance.
Thus, knowledge of the identity of T. cruzi lineages circulating in the
USA and their possible connections with human infections and disease is
important for designing potential treatments. In fact, a more vigilant
approach to study clinical manifestations of Chagas in the context of
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T. cruzi DTU identity is now urgently needed in the USA.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.meegid.2022.105251.
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