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and rewrite BNS to a summation of flux and metric gradient of entropy. We then develop
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1. Introduction

Nonlinear systems of conservation laws [11,12] play essential roles in physics, modeling, engineering, and scientific
computing. A canonical example of systems of conservation laws is the compressible Navier-Stokes equations [9]. They
describe the fluid flow using physical laws, such as conservation of mass, momentum and energy. The system also contains
a viscosity term, which describes thermodynamics’ dissipative nature. Solving compressible Navier-Stokes equations and
their simplifications are fundamental problems in computational fluid dynamics.

In this paper, we propose a class of optimal control problems for systems of conservation laws following [20]. We select
the barotropic compressible Navier-Stokes equation (BNS) as an example. We first apply the entropy-entropy flux-metric
condition for BNS. We then select an entropy function and rewrite BNS into the summation of flux and metric gradient
of entropy. We call this formulation “flux-gradient flow” in BNS metric space. We use the flux-gradient flow formulation
to design a metric variation problem and derive its critical point system, i.e., the primal-dual BNS system. We demon-
strate that the primal-dual BNS system is useful in modeling and computation. More importantly, we apply a primal-dual
hybrid gradient method and Lax-Friedrichs type schemes to compute the primal-dual BNS system. It includes a simple-
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to-implement method for solving implicit time approximations for conservation laws, which seems to be unconditionally
stable. We present several numerical examples to demonstrate the effectiveness of the method.

The main result is sketched below. Denote €2 as a one dimensional torus, and define F, G as smooth functionals. Consider
a variational problem for BNS:

1

1
/[/5Ia(t,X)|2M(p(t,X))dX—f(p,m)(t)]dtJrH(m,m]),

0 Q

n
p,m.a, p1,m

where the infimum is taken among variables p: [0,1]x Q —> R4, m: [0,1]x Q2 —> R, a: [0,1]x Q2 — R, and p1: @ > R,
m1: Q — R satisfying

0tp +0oxm=0,
m? m
orm + 8x(7) + 0xP(p) + ox(u(p)a) = ﬂax(M(P)ax;),

with given initial time value conditions p(0, x) = po(x), m(0, X) = mp(x). Here we assume P(p) = p¥, u(p) = p%, y,a € R.
The critical point system of the above variational problem is described below. Denote ¢, v : [0, 1] x 2 — R. Then a(t, x) =
oxy (t, x), and

0o + xm =0,
m2 m
0gm + 3x(7) + 0xP(p) + 0x((p)ox¥r) = ﬂax(//«(/))ax;),

1 5, m2 , P
o + E|3x1p| w(p) — (?, xY) + (P'(p), oxyr) + %f(p, m)

= By, ax%)mp) + ﬁ%ax(mmaxw,

m $ 1
Oy + 204 - » + 0xp + %F(p, m) = —ﬂ;ax(u(p)axxw.

Here functions ¢, ¢ have boundary conditions at the terminal time t = 1. We call the above system the primal-dual BNS
system. Clearly, if we select F =% = 0, then we minimize a quadratic running cost in term of a2, in which a =0 is a critical
point solution. The primal-dual BNS system forms the initial value problem of BNS equation.

In the literature, optimal control problems in density space are widely considered in optimal transport [1,3,5,10,23,24],
mean-field games [4,14,16], and Schrédinger bridge problems [2,7,18]. These control problems are often studied on a scalar
density function. We extend current studies in modeling systems of conservation laws, where the dynamics of the density
and its momentum form a system. We also remark that the entropy-entropy flux-metric condition is closely related to the
energetic variational approach in the literature [13,21,22]. In this paper, we choose both entropy (Lyapunov) functionals and
optimal transport type metrics from the flux function. Under this selection, we design a class of optimal control problems
for systems of conservation laws, from which we derive primal-dual systems of conservation laws and design implicit
variational schemes.

The paper is organized as follows. In section 2, we briefly review the conservation laws with entropy-entropy flux-
conditions. We further design control problems for flux-gradient flows. In section 3, we apply this approach to control
barotropic compressible Navier-Stokes equations and derive their primal-dual PDE systems. In section 4, we formulate
primal-dual hybrid gradient like algorithms to solve the BNS system numerically. Several numerical examples are presented.

2. Conservation law and entropy-entropy flux-metric

In this section, we present the entropy-entropy flux-metric condition for regularized systems of conservation laws [20].
Following this condition, we define a class of metric operators for systems of conservation laws, and then design flux-mean-
field control problems.

2.1. Entropy-entropy flux-metric

For simplicity of presentation, we consider a one dimensional periodic spatial domain. Le., & = T!. Consider a system
of N partial differential equations

N
Beui(t, X) + O fi(u(t, ) = B Y_ dx(Aij(ut, x)dxuj(t, X)), (1)

j=1
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where u = (uj, -~ ,uy) is a vector function with u;: Ry x @ > R, i=1,--- N, f = (f1,--- fn) is a flux vector function
with fi: RN > R', i=1---,N, and A = (Ajj)1<i j<n € RV is a semi-positive definite matrix function with A;;: RN —
R',i,j=1,---,N.

We next define a metric space for the unknown vector function u. Here the metric is constructed by both entropy-
entropy flux condition and the nonlinear diffusion operator.

Definition 1 (Entropy-entropy flux-metric condition). We call (G, ¥, C) an entropy-entropy flux-metric condition for equation
(1) if there exists a convex function G: RN — R, and w: RN — R, such that

d N
g Y = >3 FrACl f,(u)
j=1
and there exists a symmetric semi-positive matrix function C: RN — RN*N such that

Cw)V2,G(u) = Au).

In other words, denote C = (Cjj)1<;, j<n. such that

Z U9 0u
j=1

We require that C;j =Cj; and C > 0. Here we call G the entropy element, ¥ the entropy flux and C the metric element.

. G(u) = Ajk(u).

Remark 1 (Symmetry conditions). The entropy-entropy flux-metric condition is to require the following symmetric conditions
on the regularized conservation law (1). Assume that G is strictly convex. For any i,k=1,---, N,

(1)
N 2 N 2

9 9 9 9
Z pa0m, C Wy W= Z g C Wi
j=1"" j=1

. (A6, = (A7),

and

A)(VE,Gw) ' >0,

We comment that condition (i) follows from the fact that du (,u Y(u) = du, ()u W(u), as discussed in Friedrichs-Lax’s paper

[12]. Condition (ii) guarantees the existence of generalized optlmal transport type metric and generalized Fisher information
functional.

2.2. Metrics and flux-gradient flows

From the entropy-entropy flux-metric condition, we introduce the metric space for variable u. Define the space of func-
tions u as
M= ’u =(Uuq, -+ ,UN) € COO(SZ)N: /ui(x)dxzconstant, fori=1,.-- ,N}.
Q
Denote the tangent space of M (u) at point u as

Tu/\/l:[a:(ol,---,oN)eCOO(SZ)N: /ci(x)dx:o, fori=1,..- ,N}.
Q

We define a metric operator on the vector function space M. Here we shall use the metric element C(u).

Definition 2 (Metric). Define the inner product g: M x TyM x Ty M — R below.

N
gu)(o,6)=) / (01 (%), 0} () Cij (u)dx,

i,j=1¢
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where vector functions ¢ = (¢1,---,¢n), ¢ = (d1,---,Nn) € CC (N satisfy

N N
—Zax(cij(u)axfpj)a 0j :_Zax(cij(”)axqzj),

j=1 j=1
fori=1,---,N.

In this metric space (M, g), we notice that the dissipative operator of PDE (1) forms the gradient descent flow of the
entropy functional. We denote the entropy functional as

gu) = / G(u)dx.

Q

Proposition 3 (Gradient flow). The gradient descent flow of functional G (u) in (M, g) satisfies

N
deut; = Zax(cuw)ax G(u>)=Zax<A,-j(u>axu,~>.
j=1

Proof. The proof is based on a direct computation.

o = Zax(cu<u)ax—6(u))

j=1

= Zzax(%(u) G(u)axuk)

j=1k=1

=

- ax(A,»k(waxuk).

k=1

In the second equality, we use the fact that Z?’ﬂ C,-j(u)au‘j—;w(G(u) =Ai(). O

Under the metric space, the conservation law system (1) has a “flux-gradient flow” formulation. The flux-gradient flows
demonstrate the dissipation behavior of regularized systems of conservation laws with entropy-entropy flux pairs.

Definition 4 (Flux-gradient flow). Equation (1) can be written as

s+ oS =43 o i) 05— g(u))

j=1

where

N
> / i) g oGk =0,

We denote the above formulation of equation (1) as the flux-gradient flow in (M, g).

Corollary 5 (Entropy-Entropy flux-Fisher information dissipation). Energy functional G(u) is a Lyapunov functional for PDE (1). Sup-
pose u(t, x) is the solution of equation (1), then

d
Eg(u(t’ ) =—BLg(u(t,-)) <0,

where Zg: M — R is the “generalized Fisher information functional” defined as

d
Tg(u) = Z /ax—c(u) by —G ) - Cij(u(x))dx.
Uuj

i,j= 1o
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Proof. The proof follows from the entropy-entropy flux-metric condition and integration by parts. In detail,

d
Lo, ) = 5 [ -G

i= 19

N
= f G CWAfiwdx+ B Z / —G(u)ax(cl,w)ax -6w)

i=1 ij=1¢g
N
Zf W f,(u)axu,dx—ﬂ Z/C,](u)ax G(u)ax—c(u)dx
i,j=1 Lj=1¢g
N
Z/ -W(u)dyu jdx — B Z /c,,(u)ax G(u)ax—G(u)dx
j=1 i,j= 1o
N
Z/axlll(u)dx—ﬁ Z /c,](u)ax G(u)BX—G(u)dx
=1g ij=1¢q

=—8 ch,,(u)ax G(u)ax—G(u)dx O
ij=1g

Remark 2. In the literature, the dissipation of entropy along diffusion equals to the negative Fisher information functional,
iie, N=1, G(u)=ulogu —u, f =0, C(u) =u. Then

Bth(u)dx=—/|3xlogu|2udx.
Q Q

The above fact follows directly from the gradient flow formalism in optimal transport metric [23]. Indeed, the similar dissi-
pation relation also holds for flux-gradient flows in a general metric space (M, g). We call the functional Zg “generalized
Fisher information functional”. In next section, we derive the barotropic Navier-Stokes metric and its Fisher information
functional.

2.3. Controlling flux-gradient flows

In this subsection, we construct the optimal control problems for flux-gradient flows. This is to design an optimal control
problem over flux-gradient flows in a metric space.

Definition 6 (Optimal control of conservation laws). Given smooth functionals F, H: M — R, consider a variational problem

1

N

_ 1

U%I [zle Cij(u)vivjdx—]-'(u)]dt—i—?—é(m), (2a)
0 Q b=

where the infimum is taken among variables v: [0,1] x @ — R, u: [0,1] x 2 — RN, and u;: € — RN satisfying

N N
deui + O fi) + D x(Cij@v) = B Y du(Aiwduj), u(0,% =u’(). (2b)

j=1 j=1

Here u%: @ — RN is a fixed initial value vector function.

We next derive critical point systems of variational problem (2). They are Hamiltonian flows in (M, g) associated with
regularized conservation laws.

Proposition 7 (Hamiltonian flows of conservation laws). A critical point system of variational problem (2) is given below. There exists
a vector function ¢: [0,1] x Q — RN, such that

vi(t, x) = 9x¢i(t, X),
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and

N N
Ocui + O fi (W) + ) 9x(Cijw)dxdj) = B Y du(Ayj(w)dauj),

j=1 j=1

i + Z 8"¢k fk(u) +5 Z ax¢18x¢k C]k(u) + 7;(11)

k=1 ]k]

d
=—ﬁZaX<A,,(u>ax¢]) +58 Z 0Ot A ().

j=1 J.k=1

Here initial and terminal time conditions satisfy

ui(0,x) = ud(x), W Hu') +¢i(1,x)=0, i=1,---,N.

1
Proof. Denote a Lagrange multiplier vector function ¢ = (¢1, - - - , ¢n). Consider the following saddle point problem

inf sup Lu,v,uq,¢),

u,v,uq

where
1

N
£(u,v,u1,¢):/[%f 3 Ciwyviv dx—}'(u)]dt—}-?—[(ul)

o g b=l

i=1 j=1 j=1

1 N N
+ / / 01 (Bett + 0 i) + 3 (Cywdy) — B du(Ayywdeu) ).
0ql

The saddle point system satisfies

—£ 0,
8vl
—ﬁ 0,
8<l>1
—L 0,
Su;
1)
du;

In detail, we have

N
> Cij(u)(vi — dxi) =0,

j=1

N N
Opui + Oy fi(u) + Z 0x(Cij(uw)oxpj) — B Z Ox(Ajj(u)oxu;j) =0,

j=1 j=1

1)
= Z —ckz(umvz — gu T — i = Zaxcpk—fk(u)

ll 1 k=1
0
- Z —ckz(u>8x¢kax¢z ﬂZax<A,,<u>ax¢,)+ﬂ Z Oyt g - Aj() =0,
k1= 1 j=1 Jj.k=1

3 1H(u ) +¢i(1,x) =

By substituting v; = dx¢; into the third equality, we finish the derivation. O

6

(3)
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Proposition 8. PDE system (3) has the following Hamiltonian flow formulation in (M, g). Fori=1,--- , N,
d ’ Hg (U, @)
Uj=—+ u,Q),
o
O pi = 5 Hg (U, ¢)
tPi = 511,‘ g\, s
where we define a Hamiltonian functional Hg: M x C® ()N — R as

N
Hg (1, §) = / Z cu<u>ax¢,ax¢, BAG 3t dx + / > [ fiw Jax + Faw), (4)
k=1

i,j=1

In addition, the Hamilton-Jacobi equation in (M, g) satisfies

AUt u) + 5 Z/ax T 5( JUw) - Cij(u(0)dx
+Zfax SUE W) fi@@)dx+ F(u)

)
-7 Zf O St & W) - 9t () - Ciju(x)dx =0,

where U4 : [0,1] x L2(2)N — R is a value functional.
Proof. The proof follows from a direct calculation. See detailed derivations in [20]. O

3. Controlling barotropic compressible Navier-Stokes equations

In this section, we present an example for control problems of systems of conservation laws.
We study one dimensional barotropic compressible Navier-Stokes equations. We shall derive a primal-dual system for
this system. Consider

{8[p+3x(pV)=0 )
¥ (V) + d(pv?) + 9P (p) = Box((P)dxV).

Here p = p(t, x) is the density function, v = v(t, x) is the vector-valued velocity function and g > 0 is diffusion constant.
For simplicity, let p stay in one dimensional compact spatial domain with periodic boundary conditions. E.g., = T!. And
the pressure term P (o) and the viscosity coefficient @ (p) are smooth functions of variable p. E.g.,

P(p)=p",  pip)=

where y > 1 and @ € R are given constants. The PDE system (5) has a conservation law system formulation. Denote m = pv,

ie,v= % when p > 0. In this notation, equation system (5) satisfies

0p+oxm=0,
m? m (6)
ogm + ax(?) + 0xP(p) = ﬂax(ﬂ(p)ax;)~

The system (6) satisfies

u=("* eRL xR, f(u)= 2m eR?, C)= 0 e R?
=\m + ’ - %.FP(/)) ’ o ax(ﬂ(p)ax%) ’

3.1. Entropy-entropy flux-Fisher information dissipation
In this subsection, we show that system (5) satisfies the entropy-entropy flux-metric-Fisher information conditions.

7
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Proposition 9 (Entropy-entropy flux-metric-Fisher information). There exists an entropy function, entropy flux, Fisher information
and metric operator for equation (6).

(i) Entropy-entropy flux: Denote an entropy function G: Ry x R — R and an entropy flux ¥: Ry x R — R, such that
2 3
m A m N
G(p,m)=—+P(p), Y(p,m)=—+P'(p)m,
(p,m) 2 + P(p) (o, m) 22 + P (p)
where P R+ — Ris a function satisfying
P'(p)

P’ (p) = )
(o) P

Suppose (p(t, x), m(t, x)) satisfies equation (5) with B = 0. Then the following condition holds.

%G (p(t,x), m(t, x)) + ax(\lf(p(t, x), m(t, X))) <0.

(ii) Metric: Consider a space

M= [(,o,m) € COO(Q)Z: p >0, /,odx:c], /mdx:cz, where c1 > 0, ¢ ER].
Q Q
The tangent space of M at (p, m) satisfies

TuM={(p,m)ec°°(Q)xc°°(sz): /pdx:O, /rhdx:O].
Q Q
In this case, the (degenerate) metric g: M x TyM x Ty M — R satisfies

g(p, m)((p1,1M1), (P2, 1M2)) = / Y1 (x) - Ixpra(x) - (o (x))dx,
Q
where (p;, m;) € Ty M and (;, ¥;) satisfies the following parabolic equation

i = —dx(u(P)oxi), i=1,2.

(iii) Fisher information dissipation: Denote an entropy functional G: M — R as

g(p,m)sz(p(X),m(X))dx.
Q
Suppose (p(t, x), m(t, x)) satisfies equation system (5), then G is a Lyapunov functional. In detail, the following dissipation holds.

d

where Zg : M — R is a Fisher information functional defined as

)
Ig(p,m) = / |0k -G (0 (), m()) | (p (x))dx
Q

B mx)
- S[ 9 o0y

Proof. (i) We first apply Lax’s entropy-entropy flux condition [11,17]. We need to find both entropy and entropy flux
function. Denote (p,m) as a solution for dynamics (10b) with g = 0. By a direct computation, we have

9
56(,0, m) =G, (0, M3 p + Gu(p, m)dem

m2
=—Gp(p, m)dxm — Gm(p, m)(ax(F) + 3P (p))

2m m?
= —{Go o mm + G, m) Xm0, ) — G, mP'(p)oep |

2 2
=~ {Gpto.m) + Gt ZE i — [ = Gt ) 7+ G0, P ().

8
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Clearly, the entropy-entropy flux condition requires that there exists a function ¥: R, x R — R, such that
m? ,
W, (p,m) = Gm(p,m)( — 2 +P (p)),

2m
Um(p,m)=Gp(p,m)+ Gm(p, m)j.

This is to enforce the condition Wy, = Wp). In other words, we need to solve the following PDE:

<_ Gm(p, m)r;_j +Gm(p, m)P/(,O))m = (Gp(,o, m) + Gm(p, m)z%)p.

Le.,
m? 2m , 2m 2m
Le.,
, m? 2m
Gmm(p, m)(P'(p) — F)=Gpp(p,m)+0mp(p,m)7- (7

Assume that G has a formulation
m? .
G(p.m) = —— + P(p).
2p

Then equation (7) forms

km? k(k + 1)m?

P D/ —
Gp(p,m) = +P'(p), Gpplp,m)= 22

Y4
2T +P(p),

m km 1
Gm(p,m) =By Gmp(p,m) = _W, Gmm(p, m) = F

Hence condition (7) satisfies

1 m?  k(k+1Dm? . 2km?
P = ) = T P = T
o P 2p o
Le,
k(k+1) m? ., P'(p)
In this case, k =1 or 2. Here we are only interested in k = 1, such that
m? P'(p)

G(p,m)=~—+ P(p), where P"(p,m) = :
2p P

(ii), (iii): When k = 1, we check that the integration of entropy function G, i.e. G(p,m) = fQ G(p, m)dx, forms a Lyapunov
function for dynamics (6). Denote (0, m) as a solution for dynamics (6) with g > 0. Then

ig t t,)) = 3c; d
i (p(,~),m(,-))—/8t (p, m)dx
Q

2/ Gp(p,m)3p + Gm(p, m)dmdx
Q

= [ ~8,W(p, mydx + B / Gm(p,mwx(u(p)ax%)dx
Q Q

m m
213/_8;((//«(10)3)(_)(1)‘
2 1Y 1Y

=5 [102 Puoie
P 1Y

Following the above dissipation behavior, we can define the metric operator. See details in section 3.2. O

9
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Remark 3 (Entropy flux and generalized Fisher information functional). We remark that entropy-entropy flux conditions [11]
are not unique for equation (6). There are many entropy functions. In contrast, the proposed metric condition suggests
a particular entropy and Fisher information functional. This follows the relation among dissipative operator, entropy and
metric behind equation (6). In detail,
d
ag(p(t, D, m(t, ) = — g0 p, dm), (0, dm))
=—pBZg(p(t, ), m(, ")

=-8 / L ) 121 (p(t, x)dx < 0.
Q

p(t, %)

In the future, we shall study the Navier-Stokes metric operator and demonstrate its connection with the classical
Wasserstein-2 metric.

3.2. Barotropic compressible Navier-Stokes transport metrics

In this subsection, we study the metric operator g induced by the compressible Navier-Stokes equation (5). We demon-
strate that metric, gradient, flux-gradient and Hamiltonian flow dynamics have several coordinates, namely tangent space
coordinates, and cotangent space coordinates (Eulerian coordinates in fluid dynamics).

Consider a function space

M:{(p,m)eCoo(Q)Z: p >0, /,odx:c], /mdx:cz, where c1 > 0, ¢ ER}.
Q Q

The tangent space of M at (p, m) satisfies

TuM = [(/),rh) €C®(Q) x C®(Q): /p(x)dx:O, /m(x)dx=0}.
Q Q

Denote a weighted elliptic operator A, (p): C*(R2) — C*(RQ) as

A;,L(p) = 8x(ﬂ(p)ax)~

In other words, for any test function f € C*°(£2), we have

(Ao N = 013 ).

Proposition 10 (Degenerate H~'(p) metric). Denote g: M x Ty M x Ty M — R. Then the following formulations of metric operator
g hold.

(i) (Tangent space)

g(p, m)((p1,1m1), (02,112))
:/<p1(x>)T(o 0 )<D2(X))dx
m® ) \0 (—=Aup)™") Ui

Q

:/n‘11(x)((—AM(p))*1m2)(x)dx.
Q

(ii) (Cotangent space)

gp, m)((p1,111), (P2, 12)) = /(ax% (), Y2 (X)) (P (x))dx,
Q

where (p;, m;) € Ty M and (m;, ¥;) satisfies the following parabolic equation

i = —x(u(P)oxyi), i=1,2.

10
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Proposition 11 (Gradient flows). Consider a smooth functional £ : M — R. The gradient flow of energy functional £(p, m) in (M, g)
satisfies

oo =0,
opm =0, ) 8 & ®)
km = 0x (L () XSm (p,m)).

In particular, if
2
(0.m) = oo, m) = p( [ Fodx+ P (o),
Q

then the gradient flow (8) satisfies
oo =0,
m
dm = ﬁax(M(P)ax;)-

Proof. (i) The gradient flow in (M, g) follows by its definition. In other words,
<afp)__<o 0 ) 5 E(p,m)
am 0 —Aup %S(p, m)
~(“Caumsenm)
T\ (A M)

0
- <8x(u(p)8x%5(p,m)))'

(ii) Since £(p, m) = BG(p, m) = ,3([9 o dx + 13(,0)), then

2 e(p.m = pT.
ém 0
Hence the gradient flow (8) satisfies
oo =0,
B = 04 (1(0) By & (p, ) = BOk(L(P) ),
sm ]
which finishes the proof. O

We are now ready to present the flux-gradient flows in (M, g).

Proposition 12 (Flux-gradient flows). Consider a smooth functional £ : M — R. The flux gradient flow of energy functional £(p, m)
in (M, g) satisfies
dp + o fr1(p,m)=0,
8 9)
dem + 9x f2(p,m) = 8x(u(p)8x%€(p, m)),
where (f1, f2) is a flux function assumed to satisfy
) 8
/ (f1 (p, m)8x%5(p, m) + f2(p. m)dy < —E(p. m)))dx =0.
Q

In this case, £(p, m) is a Lyapunov functional for equation (9). In detail,
d 8
o P ). m(t. ) = —/ |0x5—E(p, m)(t, X P u(p(t, x))dx.
Q

In particular, if £(p, m) = BG(p, m) = ,B(fQ %dx + 13(/))), and fi(p,m)=m, fo(p,m) = mTf + P(p), then the flux gradient
flow (9) forms the barotropic compressible Navier-Stokes equation (5).
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3.3. Controlling barotropic compressible Navier-Stokes equations

In this subsection, we present the main result of this paper. We apply the above condition to formulate a variational
problem for compressible Navier-Stokes equations. Its critical point system leads to a primal-dual PDE system.

Definition 13 (Optimal control of BNS). Given smooth functionals 7, H: M — R, consider a variational problem
1

. 1
it [ [ 3o 0Ruco 0~ o, m Jie + o mo) (10a)
p.m,a, p1,m; 2
0 Q
where the infimum is taken among variables p: [0,1] x Q —> R;, m: [0,1]x Q2 —> R, a: [0,1]x Q2 — R, and p1: @ > R,
: Q — R satisfying
o p(t,x) + oxm(t,x) =0,
m?
8tm(t7x)+ax(7)(t7x)+axp(,0)(t,x) (10b)
m(t, x)

Ox t, t,x)) = Box , X)) 0x
+ ax(u(p(t, x))a(t, x)) = Box(1(p(t, X)) (%)

),
with fixed initial time value conditions

P0,%) = po(x),  m(0,x) =mp(x).

Here (00, mp) is a given pair of functions in M.

We next derive the critical point system of problem (10) and present its Hamiltonian formalism in metric space (M, g).

Proposition 14 (Hamiltonian flows of BNS). The critical point system of variational problem (10) is given below. There exists a pair of
functions ¢: [0,1] x 2 — R and ¥ : [0, 1] x Q — R, such that

a(t,x) = oy (t, x),
and

0o + xm =0,
m2 m
0gm + 3x(7) + 0xP(p) + 0x((p)ox¥r) = ﬂax(//«(/))?)x;),

1 2 P
o + E|3x1p|2ﬂ/(p) - (%, awy) + (P'(p), x¥) + —pf(p, m)

— B e )M (/0)+/3 7 (1 (P)OxV),

m $
Oy + 204 - » + 0xp + %F(,O, m) = —ﬂ;ax(u(p)axw-

Here ' represents the derivative w.r.t. variable p. The initial and terminal time conditions satisfy
P(0,%) = po(x),
m(0, x) =mo(x),

Sp(l’x)’ii(pl,ml) +¢(1,x)=0

1)
sm. X)H(m ,my) +¥(1,x) =

Proof. The proof follows the ideas in proving Proposition 14 in [20]. We present it here for the completeness of this paper.
Consider a change of variable w(t, x) = u(p(t, x))a(t, x). In this case, the variational problem (10) is written below.

1
wie. o
i "”o/ [ Sptiptn = F o m @]+ Hprm (12a)
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where the infimum is taken among variables p: [0,1]x Q2 — R, m: [0,1]x Q2 —> R, w: [0,1]xQ — R, and p1: > R,
my: Q — R satisfying

9tp +9xym =0,

m?2 m
3tm+3x(7)+3xP(,0)+3xW=/33x(M(,0)3x;), (12b)
p0,%) = po(x), m(0,x) =mp(x).

We derive the critical point system (11) by solving a saddle point problem below. Denote ¢, W: [0,1] x 2 — R as a pair of
functions, which are Lagrange multipliers for p, m in dynamical constraints of (12b), respectively. Consider

inf  sup L(p,m,w,p1,my, ¢, V),
.M W, 01.M1 g

where we define a Lagrangian functional £ as

L(p,m,w, p1,mq, ¢, )
1
e
1

+//¢ Bt,o+8x dxdt
Q

m?2 m
¥ (0m + N P () + dhw = ﬂax(u(max;))dxdt

dx = F(p,m) |dt + H(pr, m1)

+

{O\

[ 11w x_]r(p,m)]dt+H(p1,m1)
2 (p)

+

o\’_‘ O\_. o\’_‘ o

m2
/¢3xm+1/f ax(*)+8x1’(,0)+3xw ﬂax(M(P)axp))dxdt
Q

1
+/(¢>1p1+wlm1)d)<—f/(par¢+m8tw)dxdt.
Q 0 @

We are now ready to derive the saddle point. Assume p > 0. We let the L? first variations of £ be zero. In detail,

L—aw 0.
RPN np)
Sw dp+dm=0,
5
~—r£=0 m? m
3¢ atm‘f‘ax(F) + 0xP(p) + oxw _ﬁax(ﬂ(p)ax;) =0,
5
—L=0 2 2
8y S L —if + () — By, P’
s 2,11(,())2“(’0) (p,m) (,02’ ¥) — (0x¥r, P'(0))
—L=0 =
8p +/3(3x\/f,3x )M(P)-f—ﬂ 5 0x(U(P)0xVY) — 0 =0,
%[;:o % Feoom —axp — o) — L anuiorany) — oy =0
i ,m_x__,x — —0x xV) — =U,
5 sm Y 0 0 nip ¢
3 _H(pr,m1) + ¢1 =0,
b 31
O .
am 8—7'[(:01,"11) +Y1 =

In above formulations, we further use the fact that y=a= dxY¥. Hence we derive the critical point system (11). O

u(p
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Proposition 15 ( Hamiltonian formalisms). The PDE system (11) has the following Hamiltonian flow formulation.

Brp=—¢’Hg(p m,¢,y),

3tm=w7'lg(,0 m, ¢, ),

8
at¢ = E'Hg(p,m, d)’ !ﬁ),

8
oY =— —Hg(p,m,¢,v),
Y s gp,m, ¢, ¥)
where we define a Hamiltonian functional Hg as

Hg(p’ mv 4’7 ‘W)
1 m? m (13)
=/[;mwmwaH4mmm+o;+waww—mmwm;mwﬂw+fwm»
Q
Proposition 16 (Functional Hamilton-Jacobi equation of BNS). The Hamilton-Jacobi equation in (M, g) satisfies
1
Bfu(t,p,m)JrE/(axB — )M(t p,m), Bx — )u(t P, m)) (L (p(x))dx

Q

8 ) m(x)>
+/( x5 ()Z/l(t p,m), m(x))dx—i—/(axmu(t,p,m), 000 + P(p(x)))dx
Q

ﬂ/(ax M(t p,m), dx E ;)u(p(x))derf(p m) =

where U: [0, 1] x L2(2) x LZ(Q) — R is a value functional.

Proof. We only need to prove that equation is an Hamiltonian flow in (M, g). We can check it directly by computing the
L? first order variations of the Hamiltonian functional ‘Hg w.r.t. variables p,m, ¢, ¥, respectively. Clearly,

%HG(P m, ¢, ¥) = —oxm,
m2

QHG(P m, o, 1//)——3x(— +P(,0))—ﬂax(,u(ﬂ)axl/f)+ﬂ3x(u(0)3xp)
2

2 __m ' 1o 2 (o) — m
apHg(P,m, ¢.¥) = 2 Ot + P(P)Ox¥ + 5 |8x\/f| w(p) ﬂax(M(P)axlﬁ)pz

— B o (0) + = F(p,m)
ﬁ le! sz M p 8,0 107 )

8 B s
—’Hg(p m, ¢, Iﬁ)—ax¢+ P 3x¢+ pax(u(p)aijtﬁ}"(p,m).

In addition, the Hamilton-Jacobi equation in (M, g) satisfies

U, p,m)+Hg(p,m, %M(t, 0,m), %Z/I(t, p,m)) =0,
where %, % are first variation operators w.r.t. p, m, respectively. This finishes the derivation. O
3.4. Examples

In this subsection, we present several examples of control problems of BNS (10) and the primal-dual BNS (11).

Example 1 (o0 = 1). Consider w(p) = p. In this case, variational problem (10) forms

p.m.a, p1,mq

1
inf / / la(t, x)l p(t, x)dx — F(p, m)(t)]dt+’H(,01,m1)
0

14
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s.t.

8t,0 + axm =0,
m?2 m
orm + 3x(?) + 3P (p) + 0x(pa) = ﬂax(,oax;),

£(0,x) = po(x), m(0,x) =mp(x).
The critical point system of above minimizer problem satisfies

0 +oxm=0,
m? m
oem + BX(F) + 0xP(p) + 0x(pdxY) = ﬁax(/)ax;)a

o+ L1 |2—(m—23 )+ (P/(0). ) + 2 Fo.m) = B, ™) + 8™ . pdys)
t 2 Y p2’ Y P), XY 5p P, = B0y, X,O ﬂpz x (00xY),

1
Oy + 20x - m + 0 + Kl F(p,m)=—B—0x(00x¥).
Y ém Y

In other words,

) 8 8 )
0tp=—Hg, om=—Hg, op=——Hg, ¥ =——Hg,
to 8¢7'lg m 81//7'19 kP (SpHg 4 SmHg
where the Hamiltonian functional #g satisfies
Hg(p,m, ¢, V)
1 m? m
= / [ 5@t 8000+ 1. 509) + (- 4 Pp). ) = B b o Jdx-+ F(p,m).

Q

Example 2 (o« = 0). Consider u(p) = 1. In this case, variational problem (10) forms

1

. 1

inf / [/ ~la(t, x)|*dx — f(p,m)(t)]dt+“rt(p1,m1),

p.m,a, p1,m; 2
0 Q

s.t.

0o +0xm=0,

m? m
oem + 3)((7) + 0xP(p) + 0xa= ,Bax(ax;),

P(0,%) = po(x), m(0,x) =mp(x).
The critical point system of above variational problem satisfies

0tp + dxm =0,
m2 m
orm + 8x(7) + 0P (p) + 0x(0x¥) = ﬂax(ax;),

2t — (™5 P'(p), S ¥ — B 5.0
t¢_(ﬁv x¥) + (P'(p), XW)‘F% (sz)—ﬁp x (0x ),

O + 205 - oy 0 + if(p, m) = —ﬁlax(axdf).
P ém P

In other words,

) ) ) )
0kp=—Hg, om=—Hg, 0p=——Hg, Y =——Hg,
[pé(j)gtm&/fg[d) apgtlﬁ 5m o
where the Hamiltonian functional #Hg satisfies
Hg(p,m, ¢, Y)
1 m2 m
= [E@Xw, D)+ (. 09) + (- P (), ) = B ax;)]dx + F(p,m).
Q
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4. Numerical methods and examples

This section designs numerical schemes for optimal control of barotropic compressible Euler equations in 1D. It proposes
an algorithm inspired by the primal-dual hybrid gradient method (PDHG) to solve the control problem.

4.1. The PDHG inspired algorithm
The primal-dual hybrid gradient algorithm [6] solves the saddle-point problem
minmax(Kz, p)2 + g(2) — h*(p),

where Z is a finite or infinite dimensional Hilbert space, h and g are convex functions and K : Z — 7 is a linear operator
between Hilbert spaces. The function h* is the convex conjugate of h, where h*(p) = sup,(Kz, p);> — h(z). The algorithm
solves the saddle-point problem by iterating the following steps:

1
n+1 _ . ~n ny2
2= argmzm(Kz, M+ g+ Z”Z_ Z' |72,
1
p"t! =argmax(KZ""", p)2 — h*(p) — —Ip — p"II%.
p 20
ﬁn+1 — zpn+l _ pn'

Here 7(0) is the stepsize for proximal gradient descent(ascent) steps respectively. The algorithm converges if o T||[KT K| < 1.
There are various extensions of PDHG, including nonlinear PDHG [8] where the operator K is nonlinear and the General-
proximal Primal-Dual Hybrid Gradient (G-prox PDHG) method [15] where choosing proper norms (L2, H',...) for the
proximal step allows larger stepsizes.
Inspired by the PDHG method and its variants, we use the saddle point formulation of the optimal control of BNS (10)
and propose an algorithm to solve it. Denote
z=(p,m,a, p1,my),
= (¢, ¥),
K ( ) 0o + 0ym
,m,a, p1,Mmy) = 2 )
prm e 8 + 0x(") + 3P () + B (1L(P)A) — Bdx((0))Ox™)

1

g(p,m,a,pl,rm):/[/5|a(t,X)|2u(p(t,X))dx—f(p,m)(t)]dt+H(p1,m1),
0 Q

0 ifKz=0

h(Kz) =
(Kz) i-i—oo else

The corresponding inf-sup problem takes the following form

inf  sup L(p,m,a, p1,mq,d, V), (14)
p.m,a,pq,m dhw

subject to

p0,%) = po(x), m(0,x) =mp(x),

)
H(p1.m) +¢(1,x) =0, ———H(p1.m) +y(1,x) =

8p(1,x) om(1,x)

where

L(p,m,a, p1,my, ¢, ¥)

1
/ / la(t, ) > (p(t, x)dx — F(p, m)(t)]dt+7-l(,01 mp) (15)
0
1
+//¢(8t,0+8xm)dxdt
0 Q
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1
2
+//w@m+a€y+mmm+mwmm—&Mmmm%ﬂww
0 Q
L2

We choose L“ norm for primal variable (o, m, a) update and H norm for (¢, v), where

1
2 2 2 2 2 2
|Mm=f/vMM VI3 = cHIVVIZ + Call AV, + eI,

Here the parameters c;,i =1, 2, 3 are chosen based on the operator K.
We now present the algorithm as follows.

Algorithm 1 PDHG for optimal control of BNS.
Input: A set of initial guess of (o, m,a, p1,m1, ¢, V)
Output: (p,m,a, p1,my)

while iteration k < XCpaximal do

k+1 k+1 k+1 k+1 k+1)
(p( D D) gt p0ED )

) - 1 1 1
=arg min - L(p.m.a.pr.mi. ¢ 0 + ollp = pPUE + o m = m O+ o fla—a®,

£.m,a,p1,my

1 1
(k)12 (k)
+ 57001 = I 4 o lmn — i

(¢(k+1) 1//("“))
1 1
—aremax L U‘H),m(kﬂ),a(kﬂ), (I‘H),m(k“), . _ a2 _ _ k) z;
g&w (p 01 1 . 9) % o —o™ 4 % I =¥y

(q;(k-%—l)’ WH”) _ (2¢(k+1) —g® 2yl _ w(k)) ;

k<k+1;
end while

4.2. Finite difference scheme of the control problem in the variational form

We consider the barotropic compressible Euler equation and discretize it using Lax-Friedrichs type of scheme [19].
Consider the domain [0, 1] x [0, 1] in space-time. Given Ny, N; > 0, we have Ax = le At = Nl[ For x; = iAx, t; = |At, define

ub =u(t, X)),
Uiy1 — Ui Uipr — 2Uj + Ui
Dc(uw)i = #, Lap(u); = #,
a1 4 g H—l 1+1
1 +q; +a;
I+1 _ i+1 1 i=1 (1
D(a(Du));"" = s (f (“i+1 —u; ) ﬁ (u,. 1]))

The barotropic compressible Euler equation adapted from the Lax-Friedrichs scheme is as follows:

1 (,ofJrl - p,’) + De(m)iT! — cAxLap(p)tT! = (16)
T I+1 I+1 gl m \"*!

: <m,- )+Dc( ) + Dc(P(0);"" + Dc(i(p)); -BD (M(P)M;))i (17)
— AxLap(m)t! =

for 1<i <Ny, 0<I<N;—1. And c,c’ > 0 are artificial viscosity coefficients. We use the implicit scheme that fits the
feedback structure of the optimal control problem. The discrete min-max problem is as follows:

min maxL(p,m,a, p1,m,
pribin MO (o, o1, M1, ¢, ¥),

17
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where

L(p,m,a, p1,m1, ¢, ¥)
=AxAL Y ldPuph — At Y Fpl.mh+ax > Hp . m)

1<i<Ny 1<I<N; 1<i<Ny
1<I<N¢
1
+ AxAt Z [¢f( (pllﬂ _ le) + Dc(m)i.“ chLap(p)IH)
1<i<Ny
0<I<N;-1

"‘1/’1‘1(% (mgﬂ )+D i )I+1 4D, (P(,o))m

I+1

+De(u(p)Hdt = gD (M(p)D(%)>

—c AxLap(m)l+1) }

Via the summation by parts and take first order variational derivative, we derive the implicit finite difference scheme for
the dual equations of ¢, V.

1 1 2 2
(o1 =) + 5 (Detw) wph + D) P’(p!)—(%)
oV Vi (M mn v (mib m Gl m 18
1P 2Ax 1< 1 l+ll + (oD ZAx1 ’Ll_ 2l R "
i i1 it1 P p
ml
= —(ch)Lap(¢)
(p)?
and
1 ,m
~ (v - w,)+znco/f> +D<¢>+(p7‘+/3 1D (@)D 19)
= (' Ax)Lap ().

4.3. Numerical examples

We provide three examples here to illustrate the proposed control problem. Without further specification, examples
are considered in [0, 1] x [0, 1] in space-time domain. The spatial domain is imposed with periodic boundary condition.
We have uniform mesh size in space and time, with At = Ni[ Ax = Nix N¢ =32, Ny = 64. We set the iteration number

Komaximal = 5 - 10%, and the stepsizes of T, o are tuned in each example.
4.4. Example 1

In the first example, we consider a degenerate case where there is essentially no control, i.e., 7 =0, = 0. Solving this
control problem is equivalent to solving an initial-value problem of BNS system. We set initial condition as follows with
discontinuous piece-wise constant:

2 if0.25 <x < 0.75
1 else

1 if0.25 <x <0.75

;M) = {0.5 else

Pox) = {
We consider this problem in [0, 1] x [0, 0.2] space-time domain, with mesh N, = 64, N; = 16. To verify that our proposed
model solves the initial-value problem of BNS system, we compare the result with a forward explicit finite difference scheme
of the BNS system:
I+1 1
=P
g + Dc(m)} — cAxLap(p)} =0,

l+1

mt I
M + Dc(—)’ + Dc(P(p))} — BD (u(p)D(%))i — ¢'AxLap(m)} = 0.
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Fig. 2. Initial condition of the BNS equation (g, mp) in example 1 and the comparison of two solutions via solving an optimal control problem (pr,mr)
and using explicit scheme (pr, mr explicit scheme) at final time T = 0.2.

The explicit scheme needs to satisfy the CFL condition, which leads to a very fine mesh in time. In this example, we
set Ny = 64, N; = 256. The BNS system has w(p) =1, P(p) =0.1p%,  =0.1,c = 0.5,¢ = 0.5. The numerical results from
Fig. 1, 2 shows that our optimal control problem can successfully recover the initial value problem for the BNS system.
Thanks to the implicit finite difference scheme, the optimal control problem allows larger step sizes in time. We expect that
the computational complexity of our primal-dual approach will be lower than the explicit finite difference schemes as we
refine the grid.

4.4.1. Example 2
We consider a control problem of the BNS system where w(p) =1, P(p) = 0.1p2, 8 = 0.1. Numerical artificial viscosity

¢ =0.5,¢ =0.5. The initial conditions for density and momentum are

po(x) =0.1+0.9exp(—100(x — 0.5)2), mo(x) =0.

As for the control problem, we set F = 0,H(p1,m1) = fg p1(x)g(x)dx. We test two cases: gi(x) = 0, g2(x) =
—0.1exp(—100(x — 0.25)?). In the first case, the optimal control problem will degenerate to the BNS equations without
control; the solution p,m will correspond to the original initial value problem. As for the second case, the final cost
functional H we choose will make density concentrate around x = 0.25.

We can see from the numerical result in Fig. 3, 4 that with H =0, the density only diffuses in the first case; while in the
second case a final cost functional is imposed at terminal time, the density moves towards x = 0.25 enforced by external
control (from a).

4.4.2. Example 3
We consider a control problem of the BNS system where () = p, P(p) = 0.1p2, 8 =0.1. Numerical artificial viscosity
¢=0.1,¢ = 0. The initial conditions for density and momentum are
po(x) =1+ exp(—100(x — 0.5)2), mo(x) =0.

19



W. Li, S. Liu and S. Osher Journal of Computational Physics 463 (2022) 111264

0.02

gy
|||| jyastt
7 ““““‘\\““‘\““‘ o
““““\“u‘_

!
i

Fig. 5. The density (left) and the momentum (right) change over time for case cr =0 in example 3.

We set F(p,m) = fg cpm2dx, H(p1, m) = fsz p1(x)g(x)dx, where g(x) = 0.1sin(4mx). Similarly to the first example, the
final cost functional makes the density move towards x = %, %. The term F(p,m) penalizes the control system with a large
momentum for cg > 0.

Fig. 5, 6 present the density and momentum profile for the control problems. The density forms a similar shape both
cases, with density concentrate more around x = %, %. And the momentum in the second case cr =2 has a smaller magni-
tude in terms of maxy  m(x, t).

5. Discussions

The paper develops an approach to solve BNS implicitly in time. We first create a metric variational problem whose
critical points form a primal-dual BNS system. We then apply finite difference schemes for this variational system, which
forms an implicit in-time numerical approximation of the original BNS equations. Finally, we use a primal-dual hybrid
gradient-inspired method to solve the optimization problem, which leads to an unconditionally stable algorithm. The current
computational approach is restricted to special one-dimensional NS equations with first-order schemes on coarse meshes.
We shall design fast, efficient and scalable methods to address these limitations in future work.
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Fig. 6. The density (left) and the momentum (right) change over time for case cr =2 in example 3.
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