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An Information-Theoretic View of Stochastic
Localization

Ahmed El Alaoui and Andrea Montanari

Abstract—Given a probability measure µ over Rn, it is often
useful to approximate it by the convex combination of a small
number of probability measures, such that each component is
close to a product measure. Recently, Ronen Eldan used a
stochastic localization argument to prove a general decompo-
sition result of this type. In Eldan’s theorem, the ‘number of
components’ is characterized by the entropy of the mixture, and
‘closeness to product’ is characterized by the covariance matrix
of each component.

We present an elementary proof of Eldan’s theorem which
makes use of an information theory (or estimation theory)
interpretation. The proof is analogous to the one of an earlier
decomposition result known as the ‘pinning lemma.’

Index Terms—Low complexity decompositions, the pinning
lemma, stochastic localization.

I. MOTIVATION AND RESULT

LET µ be an arbitrary Borel probability measure on Rn.
A broadly useful approach to understanding µ is to

decompose it into simpler components

µ =

Z

⇥
µ✓ ⇢(d✓) =: E✓µ✓ . (I.1)

Here (⇥,F⇥, ⇢) is an abstract probability space, and, for each
✓, µ✓ is a probability measure on Rn. In this paper, the
components µ✓ will be simple in the sense of being close
to product measures.

Of course, the decomposition (I.1) is always possible: just
take ⇥ = Rn, ⇢ = µ, and µ✓ = �✓ (a point mass at ✓) for
✓ 2 Rn. This is a ‘maximum entropy’ decomposition (all the
entropy of µ is pushed into ⇢), and is not particularly useful.
We will be instead interested in decompositions such that ⇢
has small entropy, and the µ✓’s are only approximately product
measures.

Low-entropy decompositions have found applications in
statistical mechanics [COP19], [Aus19], random graph the-
ory [CD16], [Eld18], random constraint satisfaction problems
[ACOGM20], high-dimensional statistics [COKPZ18], anal-
ysis of Markov chains [EKZ21] to name a few areas. A
generic construction consists in letting µ✓ be the conditional
distribution of x ⇠ µ given a small subset of the coordinates
of x (see below for further discussion). This leads to the so-
called ‘pinning lemma’ which was discovered independently in
[Mon08], [RT12]. Recently, Ronen Eldan [Eld20] pointed out
that the pining lemma can be suboptimal and proved a general
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decomposition result with better properties. Eldan’s proof
follows the general approach of ‘stochastic localization’ which
is in turn inspired by ideas in high-dimensional geometry
[Eld16].

The purpose of this note is to present a new interpretation
of Eldan’s theorem, leading to an elementary proof. The inter-
pretation has an information-theoretic (or estimation-theoretic)
nature. We consider a noisy communication channel that takes
as input x ⇠ µ and outputs ✓. The distribution µ✓ is then the
conditional distribution of the channel input given its output
✓. Note that this is the same interpretation as for the proof of
the pinning lemma in [Mon08]. The main difference is that
while in the pinning lemma the channel x ! ✓ is an erasure
channel, here we will use a Gaussian channel.

Turning to our construction, let Q 2 Rn⇥n be a fixed
positive semidefinite matrix, x ⇠ µ and define the noisy
observation (channel output) y via

y =
p
⌧ x+Q1/2z , (I.2)

where z ⇠ N(0, In), and ⌧ is uniform in the interval [1, 2].
The random variables x, z and ⌧ are independent. For any
fixed ⌧ = t, this is a noisy Gaussian channel, with signal-to-
noise ratio (SNR) t. Introducing a random ⌧ is convenient for
the proof, but the estimates we prove hold also (with possibly
worse constants) for all ⌧ 2 [1, 2], except on a set of small
measure.

We set ✓ = (y, ⌧) and µ✓(·) = µ( · |✓). It is clear that
µ = E✓µ✓ so that the decomposition (I.1) holds.

Let ⌫ be a background measure on Rn such that µ is
absolutely continuous with respect to ⌫, i.e. µ ⌧ ⌫. Recall
that the relative entropy of µ with respect to ⌫ (Kullback-
Leibler divergence) is defined by

D(µk⌫) = Eµ log
dµ

d⌫
(x). (I.3)

It is easy to see that µ✓ ⌧ µ ⌧ ⌫ a.s., so that D(µ✓k⌫) is
well defined.

Theorem 1 ([Eld20]). We have

E✓Cov(µ✓) � Q , (I.4)
0  E✓D(µ✓k⌫)�D(µk⌫) (I.5)

 1

2
log det

�
In + 2Q�1Cov(µ)

�
, (I.6)

E✓

�
Cov(µ✓)Q

�1Cov(µ✓)
 
� Cov(µ) . (I.7)

Remark I.1. Equations (I.4) and (I.7) bound the covariance
of the component measure µ✓. On the other hand, Eq. (I.6)
controls the entropy of the variable ✓, which is given by
the difference between the entropy of the mixture and the
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average entropy of the components. More precisely, in in-
formation theoretic terms, we control the mutual information
E✓D(µ✓k⌫)�D(µk⌫) = I(✓;x) (see proof for definitions).

Remark I.2. As mentioned above, the difference between
the decomposition presented here and the pinning lemma of
[Mon08] is in the choice of the noisy channel. Here we use
the Gaussian channel (I.2) (neglecting for a moment the fact
that ⌧ is random). In contrast, in [Mon08], the channel is an
erasure channel: yi = xi with probability " and yi = ⇤ (an
erasure) otherwise, independently across coordinates.

Remark I.3. The expectation with respect to ✓ in Eqs. (I.4)
to (I.7) is an expectation with respect to (⌧,y): E✓( · ) =
E⌧ (Ey|⌧ ( · |⌧)). The expectation with respect to ⌧ can be
eliminated using Markov inequality. This implies that there
exists a set T ✓ [1, 2] of Lebesgue measure |T | � 1� 3M�1

such that, for any t 2 T , the inequalities (I.4), (I.6), (I.7)
hold up to a factor M for ⌧ = t. For instance, the first
inequality is replaced by E(Cov(µ✓)|⌧ = t) � MQ. Note
that the conditional expectation is simply the expectation with
respect to y =

p
tx+Q1/2z.

We finally notice that the above information-theoretic inter-
pretation does not only apply to the final decomposition (I.1),
but to the whole measure-valued stochastic process defined in
[Eld20] 1. We explain this extension in Section III.

II. PROOF

A. Proof of Eq. (I.4)

We compare the error of the maximum likelihood estimator
of x to that of the Bayes optimal estimator of x given ✓ =
(y, ⌧):

bxML = ⌧�1/2 y and bxBayes = E[x|y, ⌧ ].

Let R 2 Rn⇥n be a fixed PSD matrix, and define kvk2R =
hv,Rvi. Since bxBayes minimizes the mean squared error
E{kx� bx(✓)k2R} among all measurable estimators bx, we have

ETr
⇥
R(x� bxBayes)(x� bxBayes)

>⇤ 
ETr

⇥
R(x� bxML)(x� bxML)

>⇤ . (II.1)

The left-hand side is equal to ETr(RCov(µ✓)), and the right-
hand side is equal to

E
⇥
⌧�1hzQ1/2,RQ1/2zi

⇤
= E[⌧�1] · Tr(RQ). (II.2)

Since the inequality holds for all R ⌫ 0, we conclude that

ECov(µ✓) � E[⌧�1] ·Q � Q . (II.3)

B. Proof of (I.5) and (I.6)

This claim follows immediately using some basic inequali-
ties from information theory [CT91], [DCT91].

1After the completion and submission of this work, we learned that this
extension has been independently discovered in a concurrent work of Klartag
and Putterman [KP21].

The mutual information of two random variables X,Y is
I(X;Y ) := D(µX,Y kµX ⇥ µY ), where we denote by µX,Y,...

the joint law of X,Y, . . . . If µX , µX|Y ( · |y) ⌧ ⌫X , we have

I(X;Y ) := EyD(µX|Y ( · |y)k⌫X)�D(µXk⌫X) . (II.4)

We consider X = x, Y = y, under their joint distribution
given ⌧ = t. In other words x ⇠ µ and y is given by Eq. (I.2)
with ⌧ = t. We have µ✓ = µX|Y ( · |y). Using non-negativity
of the mutual information, we have

0  I(x;y) = EyD(µ✓k⌫)�D(µk⌫) . (II.5)

which yields the inequality Eq. (I.5). As for Eq. (I.6), inverting
the role of X,Y in the definition of mutual information, and
letting ⌫ be, for instance, the standard Gaussian measure we
get

I(x;y) = ExD(µy|x( · |x)k⌫)�D(µyk⌫) . (II.6)

Recall the definition of differential entropy of a random
variable X with density f with respect to the Lebesgue
measure: h(X) := �

R
f(x) log f(x)dx, and h(X|Y ) =

h(X,Y )� h(Y ). We then have from the last display

I(x;y) = h(y)� h(y|x) . (II.7)

The differential entropy of an n-dimensional Gaussian vector g
with covariance ⌃ is h(g) = (n/2) log(2⇡e)+(1/2)Tr log⌃.
Therefore,

h(y|x) = n

2
log(2⇡e) +

1

2
Tr logQ .

Moreover, the Gaussian distribution maximizes the differential
entropy among all those distributions with the same covari-
ance, hence

h(y)  n

2
log(2⇡e) +

1

2
Tr log Cov(µy) . (II.8)

Since Cov(µy) = tCov(µ) +Q, we obtain

I(x;y)  1

2
Tr log Cov(µy)�

1

2
Tr logQ (II.9)

=
1

2
log det

�
In + tQ�1Cov(µ)

�
. (II.10)

The claim then follows since t  2.

C. Proof of (I.7)

Fixing ⌧ = t a non-random value, we write yt for the
corresponding output of channel (I.2), namely yt =

p
tx +

Q1/2z. We denote by µyt
(dx) for the conditional distribution

of x given yt. In order to emphasize its dependence on t,
we will write µx0,z,t := µyt=

p
tx0+Q1/2z . Simplifying Bayes

formula, we get

µx0,z,t(dx) = (II.11)

exp
n
� t

2
kx� x0k2Q�1 +

p
thz,Q�1/2xi

o µ(dx)

Zx0,z,t
.

Here we use the notation kvk2A := hv,Avi.
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Throughout this proof, given a measure ⌫(dx) and function
 1(x), 2(x), we use the shorthands

⌫( (x)) :=

Z
 (x)⌫(dx) and,

⌫( 1(x); 2(x)) := ⌫( 1(x) ·  2(x))� ⌫( 1(x))⌫( 2(x)) .

We then have
d

dt
µx0,z,t(x) = �1

2
µx0,z,t

�
x; kx� x0k2Q�1

�

+
1

2
p
t
µx0,z,t

�
x; hz,Q�1/2xi

�
. (II.12)

(Note that µx0,z,t(x) is the mean of the vector x.)
Given a matrix R ⌫ 0, we define the minimum mean square

error

mmse(t) := E
n��x� E(x|yt)

��2
R

o
(II.13)

= Tr
�
RCov(µ)

�
� Ex0,zhµx0,z,t(x),Rµx0,z,t(x)i .

Differentiating, and using the formula above to differentiate
µx0,z,t(x), we get

d

dt
mmse(t) = �2 · Ex0,zhµx0,z,t(x),R

d

dt
µx0,z,t(x)i

=: A�B1 +B2 , (II.14)

where

A := Ex0,z

�
hµx0,z,t(x),Rµx0,z,t(x; kx� x0k2Q�1)i

 
,

B1 :=
1p
t
Ex0,z

�
hµx0,z,t(x),Rµx0,z,t(xhz,Q

�1/2xi)i
 
,

B2 :=
1p
t
Ex0,z

�
hµx0,z,t(x),Rµx0,z,t(x)i

· µx0,z,t(hz,Q
�1/2xi)

 
.

We next use Gaussian integration by parts (Stein’s Lemma) to
simplify the terms B1, B2. It is useful to note that

1p
t
rzµx0,z,t

�
 (x)

�
= µx0,z,t

�
 (x);Q�1/2x

�
. (II.15)

Writing for simplicity µt := µx0,z,t and E = Ex0,z , we get

B1 = E
�
µt(x)

>Rµt(xkxk2Q�1)
 

(II.16)

� E
�
µt(x)

>Rµt(xx
>)Q�1µt(x)

 

+ ETr
�
Q�1⇥µt(xx

>)� µt(x)µt(x
>)
⇤
Rµt(xx

>)
 
,

B2 = E
�
µt(x)

>Rµt(x)µt(kxk2Q�1)
 

(II.17)

� E
�
µt(x)

>Rµt(x)µt(x)
>Q�1µt(x)

 

+ 2E
�
µt(x)

TQ�1[µt(xx
>)� µt(x)µt(x)

>]Rµt(x)
 
.

Finally, by the tower property of conditional expectation

A = E
�
µt(x)

>Rµt(x; kxk2Q�1)
 

� 2E
�
µt(x)

>Rµt(x;x
>)Q�1x0

 

= E
�
µt(x)

>Rµt(x; kxk2Q�1)
 

(II.18)

� 2E
�
µt(x)

>R[µt(xx
>)� µt(x)µt(x)

>]Q�1µt(x)
 
.

We next substitute Eqs. (II.16), (II.17), and (II.18) in
Eq. (II.14) to get

d

dt
mmse(t) = �ETr

�
Cov(µt)Q

�1Cov(µt)R
 
. (II.19)

We next integrate this identity for t 2 [1, 2], to get
Z 2

1
ETr

�
Cov(µt)Q

�1Cov(µt)R
 
dt = mmse(1)�mmse(2)

 mmse(0) = Tr(Cov(µ)R) .

Finally, the integral over t can be interpreted as an expectation
over ⌧ ⇠ Unif([1, 2]), whence

ETr
�
Cov(µ✓)Q

�1Cov(µ✓)R
 
 Tr(Cov(µ)R) .

Since this holds for any R ⌫ 0, we proved Eq. (I.7).

III. EXTENSION TO THE STOCHASTIC LOCALIZATION
PROCESS

Another way of writing the output of the Gaussian channel
is as follows: Let x ⇠ µ and (Bt)t�0 be a standard Brownian
motion in Rn. Further, let

ȳt = tx+Q1/2Bt. (III.1)

Then it is clear that ȳt has the same law as the vector
p
ty,

so the conditional distribution of x given y has the same law
as the probability measure

µt(dx) =
1

Zt
exp

n
hȳt,xiQ�1 � t

2
kxk2Q�1

o
µ(dx) . (III.2)

We will show that the measure-valued process (µt)t�0

satisfies the stochastic localization SDE of Eldan [Eld20], as
stated below.

Theorem 2. Write Lt for the likelihood ratio process of µt

with respect to µ:

Lt(x) :=
dµt

dµ
(x) . (III.3)

Then there exist a Brownian motion (W t)t�0 adapted to the
filtration generated by (ȳt)t�0, such that for all x 2 Rn and
t � 0, we have

dLt(x) = Lt(x)
⌦
x� at,Q

�1/2dW t

↵
, and L0(x) = 1 ,

(III.4)
where

at = E
�
x|ȳt

 
=

Z
xµt(dx) . (III.5)

Proof. We use the representation (III.2) to write

d logLt(x) = hdȳt,xiQ�1 � 1

2
kxk2Q�1dt� d logZt .

(III.6)

Let us write ht(x) for the expression appearing in the exponent
in Eq. (III.2). By Itô’s formula we have

dZt =

Z

Rn

⇣
hx,Q�1dȳti �

1

2
kxk2Q�1dt

⌘
eht(x)µ(dx)

+
1

2

⇣Z

Rn

kxk2Q�1eht(x)µ(dx)
⌘
dt

=
DZ

Rn

xeht(x)µ(dx),Q�1dȳt

E
. (III.7)
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With the notation at = E
�
x|ȳt

 
=
R
xµt(dx) (and writing

[Z]t for the quadratic variation process), we obtain

d logZt =
dZt

Zt
� 1

2

d[Z]t
Z2
t

(III.8)

=
⌦
at, dȳt

↵
Q�1 �

1

2
katk2Q�1dt . (III.9)

Substituting this in Eq. (III.6) we have

d logLt(x) =
⌦
x� at, dȳt

↵
Q�1�

1

2

⇣
kxk2Q�1 � katk2Q�1

⌘
dt

=
⌦
x� at, dȳt � atdt

↵
Q�1�

1

2
kx� atk2Q�1dt .

(III.10)

It remains to understand the law of the process ȳt �
R t
0 asds.

We let Ft = �({ȳs : 0  s  t}) and F = (Ft)t�0. It is
known that the process (W t)t�0 defined by

W t := Q�1/2
⇣
ȳt �

Z t

0
E
�
x|Fs

 
ds
⌘
, (III.11)

is an F-adapted Brownian motion. See for instance Theorem
7.12 in [LS77], or Theorem 5.13 in [LG16]. We conclude by
arguing that E

�
x|Ft

 
= at.

Indeed, for a fixed t � 0, we let

pt,x := L
�
(ȳs)s2[0,t]

��x
�

denote the law of the path (ȳs)s2[0,T ] conditional on x as
per Eq. (III.1), and let qt = pt,x=0 . We obtain by Girsanov’s
theorem—see also Theorem 7.1 and its Corollary in [LS77]—
that

dpt,x
dqt

(y) = exp
n
hyt,xiQ�1 � t

2
kxk2Q�1

o
, (III.12)

for all y 2 C([0, t],Rn) (the space of continuous functions
on [0, t] endowed with the topology of uniform convergence).
We observe that the above only depends on the path y through
the endpoint yt. Therefore by the Bayes rule, the conditional
distribution of x given Ft is equal to µt (III.2), and we have
E
�
x|Ft

 
= E

�
x|yt

 
= at as a consequence. Continuing

from Eq. (III.10), we have

d logLt(x) =
⌦
x� at,Q

�1/2dW t

↵
� 1

2
kx� atk2Q�1dt ,

(III.13)
and we obtain (III.4) by applying Itô’s formula once more.
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