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ABSTRACT

We present an algorithm for the resolution of delayed and
overlapping pulses of a common unknown shape from multi-
channel measurements. We show that just a few Fourier sam-
ples acquired by a Time Encoding Machine (TEM) suffice to
solve this challenging problem. This acquisition scheme is
desired for ultra-low power applications in wearables, such as
EMG skin sensor tattoo. Numerical experiments demonstrate
exact recovery of the time delays and Fourier series coeffi-
cient of the pulse shape in the noiseless case as predicted by
the theory, with acceptable error in the presence of noise.

Index Terms— Blind deconvolution, superresolution,
time encoding machine, subspace method

1. INTRODUCTION

We consider the problem of blind identification of the loca-
tions of delayed and scaled (and possibly overlapping) ver-
sions of a pulse of unknown shape from multichannel record-
ings illustrated in Fig. 1, using an ultra-low power and robust
acquisition scheme.

This problem arises in surface electromyography (EMG),
where the EMG signal received on the skin electrodes consist
of impulses convolved with the shape of the action potential
of the active muscle unit. It is desired to localize the pulses
accurately and thus infer the impulse train, but this is chal-
lenging because of the unknown pulse shape and their over-
lap, which requires super-resolution.

An additional challenge arises in our motivating applica-
tion in a wearable EMG device [1], where the power supply
available for the electrode sensors is limited. This results in
a trade off between higher resolution and higher power con-
sumption.

We address the problem by using Time Encoding Ma-
chine (TEM) [2–5] signal-adaptive acquisition, and leverag-
ing the algorithm by Bresler and Delaney [6] to solve the blind
super-resolution and identification problem from the multi-
channel Fourier samples produced by TEM. Bresler and De-
laney [6] considered the acquisition of Fourier measurements
from conventional time samples taken at the Nyquist rate with
respect to bandwidth of the pulse shape. Their goal was to
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Fig. 1: Illustration of (overlapping) pulse streams with a shared
delay pattern and varying amplitudes.

recover the time delays and estimate the pulse shape simul-
taneously. A high sampling rate was required for the latter
task. In this paper, we consider a modified goal, that is, to re-
cover the time delays (comparatively from less information)
and construct a Fourier sketch of the pulse shape. This mod-
ification lowers the required sample rate significantly, and to-
gether with the use of TEM enables a lower-power signal-
adaptive acquisition scheme.

TEM is an alternative method to conventional sampling
which has no global clock (asynchronous) and helps in reduc-
ing power consumption and electromagnetic interference [2].
It works on the principle of selective sampling. The time in-
stants are recorded from the analog signal whenever a cer-
tain threshold is met. One of the popular TEM method is
IF-TEM (integrate and fire TEM) [3–5]. It is inspired by the
integrate-and-fire mechanism of neural system in the human
brain, where the neurons use TEM samples to represent the
neural information via their action potentials. Once firing in-
stants are recorded using this method, the Fourier coefficients
of the input signal is then reconstructed from the recordings.

The contributions of this paper are two folds. We pro-
pose a robust method for the multichannel blind identification
of pulse parameters without requiring prior knowledge on the
pulse shape. This is possible thanks to the redundant obser-
vations from a set of pulse streams sharing a common pulse
shape and delay profile. We also present a sufficient condi-
tion for the exact recovery of the parameters by the proposed
method. This work differs from the literature in the follow-
ing aspects. First, unlike state-of-the-art methods in the sur-



face EMG literature [7], which formulate the problem over
a discretized signal model, our approach is in a continuous-
time setting and provides infinite resolution in the absence of
noise. Compared to prior art in recovering a similar model
from TEM data [4], by invoking a mild condition on the pulse
shape, we do not require knowledge of the pulse shape. We
also quantify the deviation from this condition in terms of the
temporal support size of the pulse shape.

2. PROBLEM STATEMENT

Consider a collection of M real-valued channels of pulse
streams, each given as linear combinations of d delayed
versions of an unknown real-valued pulse shape g(t) with
unknown weights:

hm(t) =
d∑
l=1

γl,mg(t− τl), m ∈ [M ], (1)

where [M ] = {1, 2, . . . ,M}. We suppose that g(t) is sup-
ported within [−R/2, R/2) and the lth pulse in each stream
is delayed by delay τl ∈ [R/2, T − R/2), which is shared
across streams.

The problem is to recover the pulse parameters from ul-
tra low power and robust measurements derived from the M
channels over the observation interval [0, T ).

2.1. Approach and main results

The Fourier transform of hm(t) is written as

Hm(ω) =
d∑
l=1

γl,mG(ω)e−j2πτl . (2)

Bresler and Delaney [6] have shown that the redundant
observation across jointly supported pulse streams enables the
blind recovery of τ1, . . . , τd from a few Fourier samples of the
pulse streams under a mild assumption on the unknown pulse
shape g(t). They assumed that the Fourier transform of g(t)
satisfies the pairwise constant condition (PCC) given by

G(2kω0) = G((2k − 1)ω0), k ∈ [K] (3)

for some K ∈ N, where ω0 = 2π
T .

Although Condition (3) does not hold for pulse shapes
in applications, we now show that it is satisfied up to a
small error if g(t) is supported on a narrow interval. This is
quantitatively justified by Bernstein’s inequality (cf. [8, The-
orem 6.7.1]), that is∣∣∣∣dG(ω)

dω

∣∣∣∣ ≤ 2πR sup
ω∈R
|G(ω)|

if g(t) is supported within the interval [−R/2, R/2). This im-
plies that the relative gradient ofG(ω) normalized by the peak

value is upper-bounded by the width of pulse shape. There-
fore, the difference between both sides of (3) is at most R/T
up to a constant. In other words, Condition (3) holds to a good
approximation when the pulse width R is small compared to
the length T of the observation interval.

The original problem statement in [6] addressed the si-
multaneous recovery of (τl)

d
l=1 and g(t). To this end, they set

K to a large number so that Kω0 corresponds to an approxi-
mate bandwidth of g(t). However, if one is interested in the
recovery of only (τl)

d
l=1, then it suffices to satisfy 2K > d.1

We see a disparity between the sufficient conditions for the
success of two recovery problems. In this work we consider a
modified goal as follows.

The problem is to estimate only the (τl)
d
l=1 (up to a global

shift) from {Hm(kω0)}Mm=1 for k ∈ K, whereK is a minimal
set sufficient for the recovery of (τl)

d
l=1. In the course of this

recovery, we also estimate G(kω0) for k ∈ K. While the lat-
ter may be insufficient for a high-fidelity recovery of the pulse
shape g(t), they may suffice for e.g. a classification task. Im-
portantly, for the acquisition of the Fourier measurements of
the pulse streams, we consider here the recently developed
IF-TEM acquisition scheme.

The proposed algorithm consists of the following two
steps: First we recover Fourier coefficients for all channels
by using the total least squares (TLS). Then we recover the
pulse parameters by ESPRIT leveraging the structure due to
the pairwise constant assumption. These steps are described
in the next sections.

The following theorem presents a sufficient condition for
the parameter recovery in the noiseless case.

Theorem 1. Suppose the following conditions: i) The Fourier
transform G(ω) of g(t) satisfies (3); ii) G(2kω0) 6= 0 for all
k ∈ [K]; iii) Γ ∈ Cd×M with (Γ)l,m = γl,m has full rank.
If the total number of TEM samples Nm per pulse stream is
larger than 2d+ 1 for all m ∈ [M ] with M ≥ d, then (τl)

d
l=1

is recovered by the proposed algorithm upto a global shift
within [−R/2, R/2). Furthermore, the Fourier coefficients
G(kω0) for k ∈ K are recovered up to a global scaling am-
biguity.

Theorem 1 is obtained by combining [4, Theorem 1] and a
sufficient condition for the success of ESPRIT [6], as applied
to the data derived from the measurements.

3. ACQUISITION OF FOURIER MEASUREMENTS
FROM IF-TEM SAMPLES

IF-TEM recordings of the analog signal hm(t) for m ∈ [M ]
are obtained by using the acquisition scheme by Namman et
al. [4]. Each pulse stream hm(t) is first convolved with a

1Since g(t) is real-valued, G(−ω) is determined by G∗(ω). Therefore,
the total number of Fourier measurements is 4K.



sum-of-sinc (SoS) kernel [9] given by

f(t) = rect

(
t

T

)∑
k∈K

ejkω0t, (4)

whereK = {−2K, . . . ,−1}∪{1, . . . , 2K}. Then the filtered
signal is written as

ym(t) =

∫ ∞
−∞

r∑
i=−r

f̄(λ− t+ iT )hm(λ)dλ, (5)

where r = dR+3T
2T e − 1 and f̄(t) denotes the complex conju-

gate of f(t). It has been shown [4, 9] that (5) is equivalently
rewritten as

ym(t) =

∫ ∞
−∞

f̄(λ− t)
∑
i∈Z

hm(λ− iT )dλ

=
∑
k∈K

Hm(kω0)ejkω0t. (6)

Therefore, ym(t) is fully determined by Hm(kω0) for k ∈ K.
Next a bias term b is added to the filtered pulse stream

ym(t) ensure that ym(t) + b ≥ 0. Then the resulting sig-
nal is integrated and compared to a given threshold δ. Once
the threshold is met, the time instant tj,n is recorded and the
integrator is reset to zero. IF-TEM recordings satisfy∫ tm,n+1

tm,n

(ym(t) + b)dt = δ, ∀n. (7)

Recovery of the Fourier coefficients Hm(kω0) from the
IF-TEM recordings is cast as a simple linear inverse problem
[4]. Given theNm time encoding samples tm,1, tm,2, . . . , tm,Nm

,
one obtains linear measurements given by

ym,n =

∫ tm,n+1

tm,n

yj(t)dt = −b(tm,n+1 − tm,n) + δ, (8)

which, by (6), is expressed as

ym,n =
∑
k∈K

(
ejkω0tm,n+1 − ejkω0tm,n

jkω0

)
Hm(kω0). (9)

The relationship between the desired Fourier coefficients and
the measurements is compactly written in matrix form by

ym = Bmhm (10)

for some matrix Bm ∈ CNm×|K|, where ym = (ym,n)∈[Nm]

and hm = (Hm(kω0))k∈K. It has been shown that Bm has
full column rank when Nm ≥ |K| [4]. Therefore, hm is de-
termined from ym via (10) when there is no noise. In the
presence of noise, we propose to estimate hm by total least
squares, to account for the dependence ofBm on the IF-TEM
recordings, leading to perturbation in both ym andBm.

4. IDENTIFICATION OF PULSE STREAMS BY
TLS-ESPRIT

Bresler and Delaney [6] showed that the pairwise constant as-
sumption in (3) enables the retrieval of the pulse parameters.
We summarize their method in our notation for the sake of
completeness.

The vector of Fourier coefficientshm , (Hm(kω0))2Kk=1 ∈
C2K obtained from TEM from the mth channel signal hm(t)
can be written in the form:

hm = diag(g)V αm,

where g = (G(kω0))k∈[2K] ∈ C2K , V ∈ Ck×d is a Vander-
monde matrix such that (V )k,l = φkl with φl = e−jω0τl , and
γm = (γl,m)l∈[d] denotes the mth column of Γ.

Let Π ∈ R2K×2K denote the symmetric permutation
(flipping) matrix. By the conjugate symmetry of a real-
valued signal, the Fourier coefficients of all pulse streams are
rearranged in a matrix form as[

ΠH̄
H

]
=

[
diag(Πḡ) 0

0 diag(g)

] [
ΠV̄
V

]
Γ, (11)

where H̄ denotes the element-wise complex conjugate ofH .
Then the data matrix in (11) provides the rotation-invariance,
which enables applying ESPRIT. Let J1,J2 ∈ R2K×4K de-
note selection matrices selecting the odd rows and the even
rows, respectively. Then we have

J2

[
ΠH̄
H

]
= J2

[
diag(Πḡ) 0

0 diag(g)

]
J>2 J2

[
ΠV̄
V

]
Γ

(12)
By the pairwise constant assumption (3), we have

J2

[
diag(Πḡ) 0

0 diag(g)

]
J>2 = J1

[
diag(Πḡ) 0

0 diag(g)

]
J>1 .

Furthermore, since V is a Vandermonde matrix, we also have

J2

[
ΠV̄
V

]
= J1

[
ΠV̄
V

]
Φ,

where Φ ∈ Cd×d is a diagonal matrix with (Φ)l,l = φl. Then
(12) is rewritten as

J2

[
ΠH̄
H

]
= J1

[
diag(Πḡ) 0

0 diag(g)

]
J>1︸ ︷︷ ︸

Λ

J1

[
ΠV̄
V

]
︸ ︷︷ ︸

A

Φ Γ,

whereas the submatrix with odd rows satisfies

J1

[
ΠH̄
H

]
= ΛAΓ.

In other words, the data matrix is divided into two submatrices
with odd rows and even rows, which are related to each other
with a diagonal displacement matrix. This structure enables



the recovery of Φ by TLS-ESPRIT [10]. ThenA is identified
from the estimate of (τl)

d
l=1, which are obtained from Φ.

Bresler and Delaney [6] proposed further recovery of
g by the following procedure. Let Ez = [E1;E2] with
E1,E2 ∈ C2K×d denote the matrix with columns consisting
of the eigenvectors of the permuted data matrix given by

Z =

[
J1

J2

] [
ΠH̄
H

]
.

Let EΨ be the matrix with columns consisting of the eigen-
vectors of Ψ, which is the TLS solution toE1Ψ = E2. Then
we have

EzEΨ = J

[
diag(Πḡ) 0

0 diag(g)

]
J>
[
A
AΦ

]
diag(q)

= J

[
Πḡ
g

]
q> �

[
A
AΦ

]
for some q ∈ Cd. Therefore, we obtain[

Πḡ
g

]
q> = J>

(
EzEΨ �

[
A
AΦ

])
, (13)

where � denotes the Hadamard division operator. This re-
covers the Fourier coefficients G(kω0) for k ∈ [2K] up to a
global scale ambiguity. In the noisy case, it is approximated
from the best rank-1 approximation of the matrix in (13).

5. NUMERICAL RESULTS

We present the results of numerical experiments illustrating
the proposed method.The pulse shape that is used for the sim-
ulation is g(t) = rect(20t/π) cos2(20t).

Note that the squared cosine waveform g(t) above does
not satisfy PCC in (3). Hence we first approximated g(t) to
the nearest signal among those satisfying PCC. When TEM
recordings were obtained from pulse streams with this pro-
jected pulse shape with PCC, we verified exact recovery up
to numerical precision.2 This result is consistent with Theo-
rem 1. Here the parameters were set to minimal numbers as
follows: d = 3, K = 2d+ 2, M = d+ 1. The firing rate was
set by the choice of δ = 0.07 in (7).

Next we show that, although we only presented a suffi-
cient condition for exact recovery without any model error or
noise, the method degrades gracefully in their presence. To
this end we consider pulses streams generated with the origi-
nal g(t), which does not satisfy PCC. Recall that the recovery
of Fourier series coefficients from TEM measurements does
not rely on any structure of the pulse streams except they are
supported within [0, T ). Therefore, recovery of Fourier co-
efficients from IF-TEM recordings does not suffer. However,
since the following step with TLS-ESPRIT relies on PCC, the

2We also simulated IF-TEM through Riemannian approximation with a
small step size. It adds extra distortion to TEM recordings.

Fig. 2: Estimation error for delays (left) and Fourier coeffi-
cients (right).

model error propagates to the final parameter recovery. To
mitigate the artifact, we used more channels than the mini-
mal required for exact recovery without any artifact. We set
M = 100. This helps obtain an accurate subspace estimate
in ESPRIT. Furthermore, we also oversample the number of
Fourier coefficients for ESPRIT so that K = 4d. To obtain
the increased number of Fourier coefficients from IF-TEM
recordings, we used a higher firing rate setting δ = 0.02.

To model the effects of noise, we adopted the jitter model
for the IF-TEM introduced in [5]. A random bias, uniformly
distributed over (−σ/2, σ/2), is added to each recording
time, while σ varies over {10−7, 10−6, 10−5, 10−4, 10−3}.

In this setting, we carried out a Monte Carlo simulation
to observe the empirical performance of parameter recovery.
The error in recovering delays is measured as the worst case
match given by maxl minl′ d(τ̂l′ , τl), where the distance is
modulo [0, T ). The error for g is measured by the normalized
projection error, that ie, ‖ĝ − ggHĝ/‖g‖22‖2/‖ĝ‖2. The me-
dian value of 50 trials for each of these metrics is plotted for
each setting of parameters.

Fig. 2 illustrate the experimental results. In the absence
of model error (plotted with the dotted line), the error scales
gracefully with the increasing jitter. With the model error due
to the violation of PCC, it dominates the effect of jitter for
σ ≤ 10−4. Our claim here is that our method can tolerate the
model error and jitter up to a certain level and still provides
robust recovery of parameters.

6. CONCLUSION

The proposed method requires just a few Fourier samples ob-
tained by an energy-efficient TEM multichannel signal acqui-
sition scheme to solve the problem of blind identification of
delayed and overlapped unknown pulse shape. The recovery
is obtained for a single common pulse shape, but this method
can be extended for multiple shapes as well.
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