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ABSTRACT

We present results of global 3D magnetohydrodynamic simulations of accretion on to magnetized stars where both the magnetic

and rotational axes of the star are tilted about the rotational axis of the disc. We observed that initially the inner parts of the

disc are warped, tilted, and precess due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted

discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different

angles, from ∼5◦–10◦ up to ∼30◦–40◦. Small tilts may result from the winding of the magnetic field lines about the rotational

axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic

Bardeen–Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in

the disc. Tilted discs slowly precess with the time-scale of the order of ∼50 Keplerian periods at the reference radius (∼3 stellar

radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.

Key words: accretion, accretion discs – magnetohydrodynamics (MHD) – stars: magnetic field – plasmas.

1 IN T RO D U C T I O N

Different types of disc-accreting stars have strong magnetic fields,

such as young T Tauri stars (e.g. Bouvier et al. 2007), accreting X-

ray pulsars (e.g. van der Klis 2006), and white dwarfs (intermediate

polars; e.g. Warner et al. 1995, 2004; Hellier 2001). The magneto-

spheres of these stars open magnetospheric gaps in the surrounding

accretion discs, giving rise to complex paths of accretion on to the

star. Many observational properties of these stars are determined by

the disc-magnetosphere interactions.

The magnetic field of stars may be complex (e.g. Johns-Krull

2007). However, at large distances, the dipole component often

dominates and is responsible for the disc-magnetosphere interaction

(e.g. Long, Romanova & Lovelace 2007, 2008; Gregory 2011).

Spectropolarimetric observations show that in many young stars,

the dipole component of the field is tilted about the rotational axis

of the star by an angle, θ ∼ 10◦–20◦ (e.g. Donati et al. 2007, 2010,

2011). In general, the rotational axis of the star can also be tilted with

respect to the rotational axis of the disc. Such misalignments may

result from the varying angular momentum directions of the gas that

falls on to the disc, as expected in the assembly of protoplanetary

discs.

Interaction of the inner disc with the tilted magnetosphere leads to

bending torques in the disc, which result in a warp (bending wave) in

⋆ E-mail: romanova@astro.cornell.edu

the inner disc (e.g. Bouvier et al. 1999; Terquem & Papaloizou 2000;

Romanova et al. 2013). If the rotation axis of the star is aligned with

that of the disc, the warp rotates with the period of the star, and on

average, the bending torque on the inner disc is zero (e.g. Lai 1999).

However, if the rotational axis of the star is tilted about the rotational

axis of the disc, then the time-averaged torque on the inner disc is not

zero, and the inner parts of the disc may be warped systematically

(e.g. Aly 1980; Lipunov & Shakura 1980; Lai 1999). The magnetic

torque also may drive the tilted inner disc into retrograde precession

(opposite to the rotation of the disc) around the rotational axis of

the star. Under some conditions, the combined effects of differential

precession and viscosity tend to drive the inner disc towards an

aligned state, where the disc plane lies in the rotational equator of

the star (the magnetic Bardeen–Petterson effect, Lai 1999). Thus, the

magnetic warping torque and the magnetic Bardeen–Petterson effect

have an opposite consequence in the inner disc orientation; which

effect wins depends on the dissipative properties of the inner disc

and other parameters (such as the tilt of the magnetosphere).

In theoretical studies, the configuration of the magnetosphere

interacting with the disc was presented in the analytical form and

was not fully time dependent (e.g. Aly 1980; Lipunov & Shakura

1980; Lai 1999). Here, we show results of the global 3D magneto-

hydrodynamic (MHD) time-dependent numerical simulations of this

problem, where the configuration of the magnetic field varies in time

and depends on the relative motion of the rotating star and the disc.

Earlier, we performed global 3D MHD simulations of accretion

on to a star with a tilted dipole magnetosphere, where the rotational
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3D simulations of stars with tilted axes 373

axis of the star was aligned with the rotational axis of the disc

(Romanova et al. 2003, 2004, 2013; Romanova & Owocki 2015;

see also Zhilkin & Bisikalo 2010). In our new simulations, we

study numerically accretion on to stars where both the rotational

and magnetic axes are tilted.

We performed simulations at a variety of different parameters

and observed that a significant part of the disc becomes tilted.

However, in some models the disc normal tends to be aligned with the

rotational axis of the star (aligned discs), while in other models it is

systematically tilted. Comparisons of models show that an important

parameter determining the final tilt is the position of the inner disc

relative to the dipole magnetosphere. Higher tilts were observed in

models where the disc is closer to the star and stronger magnetic field

threads the disc. Another parameter is the rotation of the star: higher

tilts are observed in stars with faster rotation.

In Section 2, we review the theory. In Section 3, we describe

our numerical model. In Sections 4, 5, and 6, we show results of

simulations. Discussion and conclusions are given in Section 7.

2 OV E RV I E W O F T H E TH E O RY

Below, we briefly review the theory following the approach of Lai

(1999) and Foucart & Lai (2011; see also Aly 1980; Lipunov &

Shakura 1980; Lai, Foucart & Lin 2011).

2.1 Warping instability

We consider a star of mass M⋆ and radius R⋆, which rotates with an

angular velocity ω = ωω̂, where ω̂ is the unit vector. The rotational

axis of the star ω̂ is tilted about the disc’s angular momentum vector

l by an angle β. We suggest that a star has a dipole magnetic field

and place the magnetic moment µ at an angle θ relative to ω. Vector

µ rotates about ω with angular velocity of the star, ω (see sketch in

Fig. 1).

Matter of the disc accreting with the rate Ṁ is stopped by the

magnetosphere of the star at the magnetospheric radius (e.g. Pringle

and Rees 1972; Ghosh & Lamb 1978):

rm = k

(

μ4

GM⋆Ṁ2

)1/7

, (1)

where k ≈ 0.5 (e.g. Long, Romanova & Lovelace 2005; Bessolaz

et al. 2008).

The tilted magnetosphere interacts with the inner parts of the

accretion disc. Such interaction may lead to warping and precession

of the disc. For analysis of the disc warping, we use the coordinate

system xyz, with the z-axis initially directed along the disc normal

l̂ . We use the variable l̂ to indicate the initial position of the disc

normal. We suggest that the direction of the disc normal may change

in time and we use the variable l̂n for the disc normal of warping

disc. We also use the variable βn for changing angle between the disc

normal l̂n and ω̂.

The vertical (perpendicular to the disc) magnetic field produced

by the stellar dipole is given by

Bz = −
μ

r3
(cos θ cos βn − sin θ sin βn sin ωt) . (2)

We assume that the static field component, Bs
z =

−(μ/r3) cos θ cos βn, penetrates the disc in an ‘interaction

zone’, between r = rm and rint. This field is twisted by the

differential rotation between the star and the disc. The toroidal

field at the disc increases in time until it becomes comparable to

|Bs
z |, at which point the magnetic field lines inflate (e.g. Lovelace,

Figure 1. Sketch shows coordinate systems used in the paper. The coordinate

system x
′
y

′
z

′
is used in numerical simulations. In this system, the z

′
-axis is

along the direction of the star’s angular velocity vector, ω. The stellar dipole

moment, µ, is tilted about ω by angle θ . The local disc’s angular momentum

vector, l , is directed along the z-axis and is tilted by an angle β with respect

of ω. Initially, at t = 0, the disc is located at the xy-plane. The coordinate

system xyz is used in our 3D plots.

Romanova & Bisnovatyi-Kogan 1995). Here, we suggest that the

field associated with the twist of the magnetic field lines is equal

above and below the disc, with the only difference in the direction of

the field: B ′
φ(r) = ∓ζBs

z (r), where parameter ζ ∼ 1. There is also

a toroidal component of the dipole field, which has the same sign

above and below the disc: B
μ
φ = −(μ/r3)(µ̂ · φ̂), where φ̂ is the

unit vector in the azimuthal direction around the disc. Thus, there is

a vertical magnetic force on the disc which is the difference in the

magnetic pressure between the lower and upper sides of the disc:

Fz(r) =
1

8π

[

(B
μ
φ + ζBs

z )2 − (B
μ
φ − ζBs

z )2
]

=
ζ

2π
B

μ
φ Bs

z . (3)

There is a torque acting on the disc, which leads to warping instability.

The torque per unit area on the disc can be calculated by averaging

over the azimuthal angle in the disc and the stellar rotation period,

Nw(r) = −
ζμ2

4πr5
cos βn cos2θ l̂n × (ω̂ × l̂n). (4)

For ζ > 0, the effect of this torque is to push the local disc axis l̂n

away from ω̂ towards the ‘perpendicular’ state. The characteristic

warping rate is

Ŵw(r) =
ζμ2

4πr7
(r)�(r)
cos2 θ, (5)

where �(r) is the surface mass density of the disc and 
(r) is the

angular velocity of the disc.

The disc is expected to be warped (or tilted) up to the distance

where the time-scale of warping tw = Ŵ−1
w becomes comparable with

the viscous time-scale, tv = r2/ν2, where ν2 is the rz −component

of viscosity (perpendicular to the disc). The warping radius is of

the order of the magnetospheric radius rm (see equation 4.12 in Lai

1999).
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374 M. M. Romanova et al.

2.2 Precession of the disc

There is also a precessional torque on the disc. The torque arises

from the dielectric property of the disc. If the disc does not allow the

vertical stellar field to penetrate, an azimuthal screening current Kφ

is induced in the disc. It interacts with the radial magnetic field Br

from the stellar dipole and produces a vertical force. After azimuthal

averaging and averaging over the stellar rotation, we obtain the torque

per unit area:

Np(r) =
μ2

π2r5D(r)
cos βn
p(r) ω̂ × l̂n, (6)

where D(r) is a function of r/rm and h(r)/rm, where h(r) −is the half-

thickness of the disc (see equation 2.4 from Lai 1999). The torque

Np(r) pushes the disc to precess around the rotational axis of the star.

The precession angular frequency is 
prec(r) = −
p(r) cos β ω̂,

where


p(r) =
μ2

π2r7
(r)�(r)D(r)
F (θ ), (7)

where F(θ ) = 2fcos 2θ − sin 2θ . Parameter f = 1, if the stellar

vertical component is entirely screened from the disc, and f = 0, if

only the time-varying component is screened out.

2.3 Magnetic Bardeen–Petterson effect

The combination of viscous and precession torques may lead to

the gradual alignment of the inner disc with the equatorial plane

of the star. This phenomenon has been extensively studied in

cases of non-magnetic stars where a disc undergoes the Lense-

Thirring precession around a rotating compact object (e.g. Bardeen &

Petterson 1975; Papaloizou & Pringle 1983; Kumar & Pringle 1985,

1992; Pringle 1992; Scheuer & Feiler 1996; Ivanov & Illarionov

1997; Ogilvie 1999; Lubow, Ogilvie & Pringle 2002; Fragile et al.

2007; Dyda & Reynolds 2020; Liska et al. 2019).

In magnetized stars, both, the tilt of the disc and its precession are

driven by the magnetic force. One can derive the magnetic Bardeen-

Petterson radius in analogy with the approach used for relativistic

stars (Lai 1999). Setting the precession time-scale 
p(r)−1 equal to

the viscous time-scale, r2/ν2 (where ν2 is viscosity coefficient in

the direction perpendicular to the disc), one obtains the magnetic

Bardeen–Petterson radius1: Radius RMBP is of the same order

as the warping radius rw inside which the disc tilt grows (see

equation 4.14 in Lai 1999). Which effect dominates depends on

the dissipative properties of the inner disc (see also Foucart &

Lai 2011).

3 N U M E R I C A L M O D E L

We perform global 3D MHD simulations of matter accretion on to a

magnetized star with tilted magnetic and rotational axes. We use the

earlier developed code (Koldoba et al. 2002), which is modified to

incorporate the tilt of the rotational axis. Below, we briefly describe

our model.

1Kumar & Pringle (1985) provided a more precise approach to the problem.

However, in application to magnetized stars we follow an approximate

approach of Lai (1999).

3.1 Initial and boundary conditions

3.1.1 Initial conditions

We place the accretion disc in the xy plane such that its normal

vector l̂ is tilted about the rotational axis of the star by an angle β

(see Fig. 1).

The disc is cold and dense, while the corona is hot and rarefied,

and at the reference point (the inner edge of the disc in the disc

plane at t = 0), the disc is 100 times denser than corona, while the

temperature of the disc is 100 times lower.

Initially, the disc and corona are in the rotational hydrodynamic

equilibrium (see e.g. Romanova et al. 2002). The initial conditions

are derived from the balance of the gravitational, centrifugal, and

pressure gradient forces. Initially, we rotate both the disc and corona

with Keplerian velocity vK(r). This condition helps to eliminate

the effects of the initial discontinuity of the magnetic field lines

at the disc-corona boundary.2 The corresponding distributions of

density and pressure were derived analytically (see equations 5–10

in Romanova et al. 2002). The top left panel of Fig. 2 shows a typical

density distribution in the disc.3

In all models, we consider discs with the same initial density and

temperature at the fiducial point (at the inner disc). To vary the mass

of the disc, we change the initial disc thickness h(r)/r. Soon after

the beginning of simulations, the thin disc expanded and became

thicker, because we took the same initial sound speed in all models

(corresponding to h(r)/r ≈ 0.1 − 0.15). However, discs with smaller

initial values of h(r)/r have ∼3 times smaller mass. The top and

bottom leftmost panels of Fig. 2 show the initial configurations of

the disc and magnetosphere for the more massive (top panel) and less

massive (bottom panel) discs. Fig. 3 shows a 3D view of the initial

configuration in one of the models.

The size of the simulation region is rout ≈ 34R⋆. Initially, we

place the inner disc at distances rin ≈ 8.6R⋆ or 5.7R⋆ which are

larger than expected magnetospheric radii rm. This helps to start

simulation smoothly. Later, the disc moves inward and settles at the

magnetospheric radius.

3.1.2 Boundary conditions

At the inner boundary (stellar surface) and the outer boundary, most

of the variables Fi have free boundary conditions, ∂Fi/∂r = 0. We

fix the normal component of the field, Bn, to support the frozen-in

condition.

3.2 Code description and dimensionalization

3.2.1 The code

We solve the 3D MHD equations with a Godunov-type code in a

reference frame rotating with the star, using the ‘cubed sphere’ grid

(Koldoba et al. 2002). We use the eight-waves Roe-type approximate

Riemann’s solver analogous to that described by Ruy & Jones (1995).

We split the magnetic field to that of the star and induced by currents

in the disc and corona.

2In the opposite case strong magnetic braking of the disc and rapid accretion

have been observed.
3Note that this density distribution does not correspond to the viscous

equilibrium, and we usually observe that the density in the disc is slowly

redistributed on the viscous time-scale.
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3D simulations of stars with tilted axes 375

Figure 2. x
′
z

′
− slices of density distribution in models A and B (top and bottom panels, respectively) at t = 0, t = 15, and t = 20. Top and bottom right panels

show close view of matter flow near the magnetosphere at t = 20. White lines show sample poloidal magnetic field lines. Red lines show the β1 = 1 line. In this

and other 2D plots, we use the coordinate system x
′
y

′
z

′
(see Fig. 1).

Figure 3. 3D view of the disc at t = 0 in Model A. The colour background

shows one of the density levels (ρ = 1.7 in dimensionless units). Lines are

selected field lines. Arrows show directions of the disc’s angular momentum

vector, l , the star’s angular velocity vector, ω, and the stellar dipole moment,

µ. In this and other 3D plots, we use the coordinate system xyz, where the

z-axis is along the initial direction of l (see Fig. 1).

In this work, we use the entropy balance equation instead of the

full energy equation because we do not expect shocks inside the

simulation region.4

3.2.2 Viscosity

The viscosity term is incorporated into the momentum equation with

the α − prescription for the viscosity coefficient ν ∼ αp, where p

is pressure in the disc (Shakura & Sunyaev 1973). The viscosity

is nonzero only inside the disc, above a threshold density (ρv =

0.1ρd, where ρd is the density in the disc). We use α = 0.02 in

all simulation runs. In reality, the disc is expected to be turbulent,

where turbulence can be driven by the magneto-rotational instability

4Shocks are expected at the stellar surface. However, this problem has been

studied separately, on different spatial scales (e.g. Koldoba et al. 2008).

(MRI; e.g. Balbus & Hawley 1991).5 However, these simulations are

time-consuming.

3.2.3 Grid

The grid consists of Nr spheres. Each sphere represents an inflated

cube with six sides. Each side has a N × N curvilinear grid, which

represents a projection of the Cartesian grid on to the sphere. The

whole grid consists of 6 × Nr × N2 cells. We use the grid with Nr =

140 and N = 61. The MPI-parallelized code uses 28 layers in the

radial direction and 6 layers for six sides of the inflated cube, with

168 layers total.

3.2.4 Dimensionalization

Equations are solved in dimensionless form. The dimensionless

variables are determined as F̃ = F/F0, where F are dimensional

variables, while F0 are their reference values. The reference value of

distance R0 is chosen such that the star has radius R⋆ = 0.35R0. The

reference velocity is the Keplerian velocity at R0, v0 = (GM⋆/R0)1/2.

The reference time is t0 = R0/v0. The magnetic moment of the

star: μ⋆ = μ′B⋆0R
3
⋆ , where B⋆0

is the reference surface magnetic

field of the star at the magnetic equator and μ
′

is dimensionless

magnetic moment, which helps to vary the magnetic field of the star:

B⋆ = μ′B⋆0
. The reference magnetic field, B0, is the value of the

magnetic field at r = R0: B0 = B⋆0
(R⋆/R0)3. The reference density

and pressure are ρ0 = B2
0 /v2

0 and p0 = ρ0v
2
0 , respectively.

We take into account that R0 = R⋆/0.35 ≈ 2.86R⋆ and for

convenience show distances in radii of the star. Also, we show time

in periods of rotation at this radius, P0 = 2πR0/v0. Below, we use

dimensionless variables but drop tildes. The results of simulations

can be applied to stars of different types. Table 2 shows sample

reference values for different types of stars.

5Axisymmetric and 3D simulations of accretion from turbulent MRI-driven

disc have shown many similarities in properties of magnetospheric accretion

compared with α −discs (Romanova et al. 2011, 2012).
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376 M. M. Romanova et al.

Table 1. Representative simulation models. From left to right: tilt angles of the rotational and magnetic axes of the star relative to the disc normal,

β and θ , respectively; the magnetic moment of the star, μ
′
; mass of the disc, Md; initial radius of the inner disc, rin; corotation radius, rc; period of

the star, P⋆; time-averaged magnetospheric radius, r̄m; the ratio r̄m/rc; radius of the tilted disc, rt; the ratio rt/r̄m; τ sim/P0 – duration of simulation

runs (in periods P0 of Keplerian rotation at r = 1/0.35); τ sim/P⋆ – duration of simulation runs in periods of the star; the tilt angle, β t.

Model β θ μ
′

Md rin rc P⋆ r̄m r̄m/rc rt rt/r̄m τ sim/P0 τ sim/P⋆ β t

A 20◦ 2◦ 1 Md0 8.6 14.3 11.2 3.4 0.24 24.3 7.3 150 13.4 5◦–10◦

B 20◦ 20◦ 1 0.3Md0 8.6 14.3 11.2 4.0 0.28 21.8 5.4 100 8.9 5◦–10◦

A1 20◦ 2◦ 1 0.3Md0 8.6 14.3 11.2 4.0 0.28 21.4 5.3 120 10.7 5◦–10◦

B1 20◦ 20◦ 1 Md0 8.6 14.3 11.2 3.4 0.24 21.1 6.2 180 16.1 5◦–10◦

C 15◦ 2◦ 1 Md0 8.6 8.6 5.2 3.4 0.39 20.9 6.2 120 23.1 15◦–20◦

D 15◦ 2◦ 0.5 Md0 5.7 8.6 5.2 2.9 0.34 19.0 6.5 70 13.5 30◦–40◦

E 15◦ 2◦ 0.5 Md0 5.7 5.1 2.4 2.9 0.57 19.4 6.5 60 25.0 30◦–40◦

F 15◦ 15◦ 0.3 Md0 5.7 5.1 2.4 2.1 0.41 17.7 8.6 60 25.0 30◦–40◦

Table 2. Sample reference values for three types of stars.

CTTSs White dwarfs Neutron stars

M⋆(M⊙) 0.8 1 1.4

R⋆ 2 R⊙ 5000 km 10 km

R0 (cm) 4 × 1011 1.4 × 109 2.9 × 106

P0 1.8 d 29 s 2.2 ms

B⋆0 (G) 103 106 109

B0 (G) 43 4.3 × 104 4.3 × 107

ρ0 (g cm−3) 7 × 10−12 2 × 10−8 2.8 × 10−5

Ṁ0 (M⊙ yr−1) 2.8 × 10−7 1.9 × 10−7 2.9 × 10−8

3.3 Set of models

We performed simulations at a variety of different parameters:

different initial inclination angles of the rotational axis: β = 15◦

and 20◦; small and relatively large tilt angles of the dipole: θ = 2◦,

15◦, and 20◦;6 different values of the dipole moment: μ
′

= 1, 0.5, and

0.3; different values of the rotational period of the star, which varied

from P⋆ = 11.2 to P⋆ = 2.4.7 We also varied the initial position of

the inner disc, rdin. Table 1 shows parameters of models.

Simulations show that in all models the inner disc was warped,

then tilted, and became approximately flat. However, in some models,

the normal to the tilted disc, l t tends to align with the rotational axis

of the star, and typical tilt angles are small, β t ≈ 5◦–10◦ (we call

them aligned discs). In other models, the disc normal is tilted at a

larger angle, β t ≈ 30◦–40◦ (we call them tilted discs). Comparisons

of results at different sets of parameters showed that one of the main

parameters is the initial position of the inner disc, rin. When we place

the inner disc at larger distances, rin = 8.6, we obtain only slightly

tilted (aligned) discs. In the opposite case, rin = 5.7,8 we obtain

discs with larger tilts. Another important parameter is the corotation

radius, rc: at smaller values of this parameter (faster rotating stars),

we obtain discs with larger tilts. Below, in Sections 4 and 5, we

consider two groups of models corresponding to two values of rin,

and different values of rc.

6We took a small angle, θ = 2◦ because in the case of θ = 0◦, a stronger

switch-on wave is observed and a more gradual spin-up of the star is required

at the beginning of the simulation.
7In the code we determine the period of the star using the corotation radius

rc, which is the radius where the angular velocity of the disc matches the

angular velocity of the star, 
(rc) = ω, rc = (GM⋆/ω2)1/3.
8Note that these radii (measured in stellar radii for convenience) result from

ratios 2/0.35 and 3/0.35 and correspond to rin = 2 and 3 (in units of R0).

4 M O D E L S O F A L I G N E D O R SL I G H T LY

T I LT E D D I S C S (A , B , A 1 , B 1 , C )

In several models, we placed the inner radius of the disc at a relatively

large distance from the star, rin = 8.6. We considered two main

models, A and B. In both models, the rotational axis of the star

is tilted by β = 20◦, while the tilt angles of the magnetosphere are

different: θ = 2◦ in Model A and θ = 20◦ in Model B. In Model A, we

took a disc of higher mass, while in Model B, the disc has three times

lower mass. In these models, we took the corotation radius rc = 14.3

which corresponds to a slow rotation of the star. We also considered

three supplement models. Models A1 and B1 are identical to models

A and B, but the disc mass is ∼3 times lower/ higher, respectively.

Model C is identical to Model A, but a star rotates more rapidly: rc =

8.6.

4.1 Accretion on to a star with a tilted rotational axis: β = 20◦,

θ = 2◦ (Model A)

In this model, we test the main new feature – how the inner disc

evolves in the case when the rotational axis of the star is tilted about

the rotational axis of the disc, while the magnetic axis is almost

aligned.

We observed that the disc initially moved towards the star and was

stopped by the magnetosphere at the distance rm where matter pres-

sure in the disc equals the magnetic pressure of the magnetosphere

(Pringle and Rees 1972) that is where the modified plasma parameter

β1 = 8π (p + ρv2
φ)/B2 = 1. At this distance, matter started flowing

to the star in funnel streams (or in unstable tongues; e.g. Kulkarni &

Romanova 2008). We used the condition β1 = 1 in the equatorial

plane to find the magnetospheric radius. This radius slightly varies

in time due to variability in accretion rate. The time-averaged value

is r̄m ≈ 3.4. The top right panel of Fig. 2 shows the close view of

matter flow near the star and β1 = 1 line. Top middle panels of the

same figure show x
′

z
′

– slices of density distribution and poloidal

field lines at t = 15 and 20. One can see that the field lines inflate and

become non-dipolar in most of the simulations region, excluding the

inner parts of the disc, where the modified dipole can be seen (see

the right-hand panel of the same figure).

The magnetic force and warping torque rapidly decrease with the

distance from the star (see equation 4 for torque), and therefore they

act mainly in the proximity of the disc-magnetosphere boundary.

However, we see that a significant part of the disc becomes tilted. We

suggest that information about the inner warp propagates to larger

distances in the form of bending waves. According to Papaloizou &

Pringle (1983) and Papaloizou & Lin (1995), the disc may be either

in the diffusive regime (if h(r)/r < α2), or in wave regime (if h(r)/r
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3D simulations of stars with tilted axes 377

Figure 4. 3D views of the disc in Model A at different moments of time. The colour background shows density levels which vary from ρ = 0.75 − 1.5 in the

top row of panels, to ρ = 0.23 − 0.54 in three bottom rows of panels.

> α2). In our simulations α2 ≈ 0.02, the ratio h(r)/r ≈ 0.1 − 0.15,

α2 < h(r)/r, and the disc is in the wave regime.9

Fig. 4 shows 3D views of the disc at different times in Model A.

We observed that the inner parts of the disc were warped, precessed,

and tilted under the influence of the magnetic force, as predicted by

the theory (see Section 2). Initially, at t = 10 − 20, the warp formed

in the inner parts of the disc. Later, at t > 20, larger parts of the disc

become warped and tilted. Subsequently, the significant part of the

inner disc becomes tilted and almost flat.10 Fig. 4 also shows that

the disc can be split into two parts: the inner part, which is almost

flat and has the same tilt, and the outer part with a different tilt (see

e.g. panels at t = 120, 130, and 140). We call the inner part the

‘tilted disc’. Its time-averaged radius is rt ≈ 24.3 (in stellar radii) or

rt/r̄m ≈ 7.3 in magnetospheric radii (see Table 1).

The disc slowly precesses about the rotational axis of the star.

The rate of precession, 
p(r) (see equation 7) depends on a number

of factors, including the factor f which characterizes the dielectric

property of the disc. If only the time-varying component is screened,

f = 0, we obtain a factor ∼sin θ ≈ 0.035. However, we observed

comparable rates of precession in models with θ = 2◦ and larger

values of θ . We suggest that we have some intermediate situation, in

which 0 < f < 1.

9In our earlier 3D MHD simulations of waves generated by the tilted rotating

dipole, we observed that bending waves are generated by the warp and

propagate to large distances (Romanova et al. 2013). In these new simulations,

we use similar code and expect that bending waves also propagate with little

damping.
10Note that we use free boundary conditions at the outer boundary, which do

not restrict the motion along the outer boundary.

We observed that after a few periods of stellar rotation (approx-

imately after t = 70, see Fig. 4), the disc starts tilting towards the

equatorial plane of the star, so that the disc normal becomes almost

parallel to the angular velocity of the star, ω. There is still some tilt,

but it is small, β t � 5◦–10◦. We discuss possible mechanisms of the

disc alignment in Section 6. Fig. 5 shows typical initial and final

states of the disc evolution.

The left-hand panel of Fig. 6 shows the accretion rate on to the

star. We observed persistent accretion during 160 rotations (Keplerian

periods at r = 1/0.35 ≈ 2.86), which is approximately 14 periods of

stellar rotation. Initially, the accretion rate increases due to the inward

flow of the disc matter from the initial radius ri = 8.6 to the radius,

where the disc is stopped by the magnetosphere, at r̄m ≈ 3.4. Later,

at 20 � t � 60, matter accrets in two funnel streams, and accretion

is quasi-stationary. At t � 60, more matter arrived to the inner

disc, and accretion switched to the unstable regime where matter

penetrates through the magnetosphere in the unstable ‘tongues’ (e.g.

Kulkarni & Romanova 2008, 2009; Romanova, Kulkarni & Lovelace

2008). The onset of the unstable regime depends on the effective

gravity (the sum of the gravitational and centrifugal potential),

and therefore depends on the ratio r̄m/rc. According to Blinova,

Romanova & Lovelace (2016), accretion becomes unstable, if rm/rc

� 0.71 (in their set of simulations, where the magnetic axis is tilted

by θ = 5◦).

In our model, the star rotates slowly compared with the inner disc,

r̄m/rc ≈ 0.24. However, accretion is stable up to t ≈ 60, and becomes

unstable at t �60. At t < 60, the magnetospheric radius was only

slightly larger during stable regime. We conclude that in the case

of the tilted rotational axis the unstable regime is less favourable

compared with the aligned case considered by Blinova et al.

(2016).
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378 M. M. Romanova et al.

Figure 5. 3D views of the disc in Model A at moments t = 18 (left) and t = 120 (right), respectively. The colour background shows the density levels. Lines

are sample magnetic field lines.

Figure 6. Temporal variation of matter flux Ṁ (in dimensionless units, see Table 2) at the surface of the star in models A and B (left-hand and right-hand panels,

respectively). Dashed vertical lines in right-hand panel show peaks of Ṁ corresponding to moments of high tilt of the magnetic axis relative to the disc normal.

4.2 Both the rotational and magnetic axes are tilted: β = 20◦,

θ = 20◦ (Model B)

Next, we consider the model where both axes are misaligned. In this

model, the mass of the disc is ∼3 times smaller than that in Model

A. The bottom panels of Fig. 2 show that we start from a thin disc,

which expands and becomes comparable in thickness with the disc in

Model A. The density in the disc is ∼3 times smaller than in Model B.

The overall evolution of the disc is similar to that in Model A.

Namely, initially, the inner parts of the disc are warped, then tilted,

and precess about the rotational axis of the star. After 1–2 periods of

precession, the disc settles near the rotational equatorial plane of the

star, and the disc normal has a small tilt angle, β t ∼ 5◦–10◦ relative

to the rotational axis of the star (see Fig. 7).

In this model, the disc is of the lower density and as a result the

time-averaged radius of the magnetosphere r̄m ≈ 4 is larger than in

Model A (r̄m ≈ 3.4). The radius of the tilted disc is slightly smaller

than that in Model A: rt ≈ 21.8. The disc is mainly flat, but, compared

with Model A, there is an additional wavy structure connected with

rotation of the magnetic axis about the rotational axis of the star. The

alignment of the inner disc normal with the rotational axis of the star

occurs faster than in Model A. This may be due to the lower density

in the disc. Namely, in equation (5), the warping rate Ŵw is inversely

proportional to the surface density �, and this may explain the faster

variation of the tilt angle in Model B.

We calculated the accretion rate on to the star. We note that the

magnetic moment of the star is tilted about the disc normal at different

angles. During one rotational period, the position of the magnetic axis

relative to the initial disc axis varies between strongly tilted (χ = β

+ θ = 40◦) and the aligned one (χ = θ − β = 0◦). In the former

case, the accretion through funnel streams is more favourable due

to the high tilt of the magnetosphere towards the disc. This leads

to the variation of the accretion rate at the surface of the star. The

right-hand panel of Fig. 6 shows several maxima and minima which

correspond to different tilts of the magnetic axis relative to the disc.

We chose two moments in time corresponding to the maximum

(t = 22) and minimum (t = 28) of the accretion rate and checked

the position of the magnetosphere and the nature of the matter flow

at these moments. The top left panel of Fig. 8 shows that at t = 22,

the magnetic axis µ is strongly tilted about the rotational axis of the

inner disc, and two funnel streams are formed. The bottom left panel

shows that at t = 28, the magnetic axis is almost perpendicular to the

disc, accretion in funnels is less favourable, and only weak funnel

streams formed. Middle and right-hand panels of Fig. 8 show the

x
′

z
′

and y
′

z
′

– slices of density distribution during high and low tilts

of the magnetic axis. One can see that funnels form more efficiently

during episodes of higher tilt of the magnetosphere.

The amplitudes of maxima in the curve for the accretion rate

are larger initially when the disc normal had a higher tilt about

the rotational axis of the star. Later, when the disc becomes almost

aligned, the tilt of the magnetic axis only slightly varied about the

normal to the disc and the amplitudes of maxima become smaller.

This model shows that in the case when both axes are misaligned,

the main result is similar to that in the case of the aligned dipole:

the disc tends to be in the rotational equatorial plane of the star. We

consider possible explanations of the disc alignment in Section 6.

4.3 Dependence on the disc mass and rotation rate (models A1,

B1, C)

The supplement models A1 and B1 are identical to models A and B,

but the disc mass is ∼3 times larger/smaller, respectively. Simulations
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3D simulations of stars with tilted axes 379

Figure 7. 3D views of the disc at different moments of time in Model B. The colour background shows density levels which vary from ρ = 0.3 − 1.5 in the

top row of panels, to ρ = 0.15 − 0.2 in three bottom rows of panels.

Figure 8. Left-hand panels: 3D views of the inner disc during the episodes of the local maximum (top) and minimum (bottom) accretion rates in Model B at

moments t = 22 and t = 28, respectively. The colour background shows one of density levels. Lines are sample field lines. Middle and right-hand panels: x
′
z

′

and y
′
z

′
slices of density distribution and sample field lines corresponding to the same moments in time.

have shown the same main result: the tilted disc settled approximately

in the equatorial plane of the star such that the normal to the inner disc

is tilted only at a small angle relative to the rotational axis of the star.

The accretion rate is three times smaller/larger, respectively. In Model

B1, the variability in the matter flux, associated with different tilts

of the magnetic axis has also been observed. Episodes of unstable

accretion were observed in Model B1, where the magnetospheric

radius is smaller. These models have shown that result does not

depend on the factor of 3 variations in the disc mass.

We also tested a model similar to Model A, but for a faster rotating

star, rc = 8.6, P⋆ = 5.2 (Model C). We observed the formation of

the inner tilted disc similar to that in Model A. However, the normal
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380 M. M. Romanova et al.

Figure 9. x
′
z

′
– slices of density distribution in models D and F (top and bottom panels, respectively) at t = 0, t = 15, and t = 20. Top and bottom right panels

show close view of matter flow near the magnetosphere at t = 20. White lines show sample poloidal magnetic field lines. Red lines shows the β1 = 1 line.

to the inner disc is tilted at a slightly larger angle: βn ∼ 15◦–20◦.

We suggest that there may be a dependence of the tilt on the rotation

rate of the star. We note that the physics of the disc-magnetosphere

interaction often depends on the ratio rm/rc (e.g. Ghosh & Lamb

1978; Blinova et al. 2016). This ratio r̄m/rc ≈ 0.39 is larger in this

model versus models A and B: r̄m/rc ≈ 0.24, 0.28 (see Table 1). We

further investigate this issue in Section 5.

5 MODELS OF TILTED DISCS (D, E , F)

In this section, we consider discs that show a large tilt angle at the

end of simulations. In these models, we placed the initial radius of

the disc closer to the star, at rin = 5.7 (versus 8.6 in the above models)

and therefore a stronger dipole magnetic field threads the disc. We

also took faster rotating stars. We observed qualitatively different

result: the normal to the inner disc was systematically tilted at a large

angle away from the rotational axis of the star.

In these models, the tilt of the rotational axis is β = 15◦, and tilts

of the magnetic axes are θ = 2◦ or 15◦. The corotation radius rc =

8.6 or rc = 5.1 which correspond to periods of the star P⋆ = 5.2 and

P⋆ = 2.4. We took smaller values of the magnetic moment: μ
′

=

0.5 and 0.3. See Table 1 for all set of parameters. We show sample

results for these models.

Three left-hand panels of Fig. 9 show x
′

z
′

– slices of the initial

density distribution and sample magnetic field lines in models D and

F at times t = 0, 15, 20. Right-hand panels show close view of the

magnetospheric accretion at t = 20. Note that the magnetospheric

radii are smaller than in models A − C: r̄m = 2.9 and 2.1 in models

D and F, respectively.

Fig. 10 shows 3D views of the disc in Model D. One can see that

the inner disc becomes warped, then tilted, and the inner disc seems

to be disconnected from the outer parts of the disc. The radius of

the tilted disc rt ≈ 19 and its normal vector is tilted away from the

rotational axis of the star at an angle β t ≈ 30◦–40◦, which is much

larger than that in models A − C. We observed very slow precession

in this model.

In two other models (E and F) similar tilted discs were formed,

with tilt angles, β t ≈ 30◦–40◦, and tilt radii rt = 19.4 and 17.7.

Discs in models E and F precess with usual rates of 1–1.5 precession

periods per simulation run. In Model D, the precession is very slow.

The magnetic field lines wrap due to the rotation of the inner disc

and rotation of the star. The right-hand panel of Fig. 12 shows the field

lines in Model D during a relatively early time of evolution (t = 30).

One can see that the field lines wrap about the disc normal because

the disc rotates more rapidly than the star. However, wrapping about

the rotational axis of the star was also observed. On the longer time-

scale, the field lines form a magnetic tower about the rotational axis

of the star.

Fig. 11 shows matter fluxes in these models. In model F, where

θ = 15◦, one of the variabilities is connected with different tilts of

the magnetic axis relative to the disc (like in Model B, see Fig. 6).

The quasi-period of variability approximately equals to the period

of the star, P⋆ = 2.4). Variabilities in models E and D and the

flaring component of variability in Model F are connected with non-

stationary and/or unstable accretion.11

One of the main differences between this set of models and the

earlier discussed set of models (A − C) is that the inner disc was

initially closer to the star, and stronger dipole field threads the disc.

Therefore, the role of the dipole component (which helps to tilt

the disc) is more significant. Namely, in equation (3), the dipole

components Bφ and Bz are important in providing the force Fz(r) and

warping torque Nw(r), which persistently tilt the disc away from the

equatorial plane of the star.12 On the other hand, we noticed in the

test Model C and current models that the disc is more tilted when the

star rotates more rapidly. We calculated the ratios r̄m/rc and noticed

that they are larger than in models A − C (see Table 1). We discuss

possible reasons which lead to alignment or tilting of the disc in the

next section.

11Note that in stars with the smaller magnetosphere, the unstable regime

occurs more easily than in stars with larger magnetospheres (Blinova et al.

2016).
12In the real situation, the tilt may depend on the diffusivity at the disc-

magnetosphere boundary and the level of penetration of the stellar field to the

inner parts of the disc.
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3D simulations of stars with tilted axes 381

Figure 10. 3D views of the disc in Model D at different moments of time. The colour background shows density levels which vary from ρ = 0.3 − 1.5 in the

top row of panels to ρ = 0.15 − 0.2 in two bottom rows of panels.

Figure 11. Temporal variation of matter flux Ṁ at the surface of the star. Left-hand panel shows Ṁ in models D (blue colour) and E, and right-hand panel for

Model F. Vertical dashed lines show maxima corresponding to high tilt of the magnetic axis towards the inner disc.

6 MECHA N ISM S O F D ISC A LIGNMENT AND

T ILTING

In our models, the disc breaks up into two parts. The tilt of the inner

disc, β t, is different in different models Below we discuss possible

mechanisms explaining different tilts of the inner disc.

6.1 Mechanisms of disc alignment

In models A − C, the normal to the tilted disc tends to align with

the rotational axis of the star. Below we consider two possible

explanations for this phenomenon.

In our models, the magnetic field lines are wrapped due to the

differential rotation of their foot-points connecting the star and the

disc. The inner disc rotates more rapidly than the magnetosphere

of the star, and the field lines are wrapped about the normal to the

inner disc and expand forming a local magnetic tower. The inner disc

changes its tilt and the tower changes its direction. At the same time,

a star rotates and the field lines wrap about the rotational axis of

the star. On a long time-scale and larger spatial scales, the magnetic

tower becomes more and more symmetric about the rotational axis

of the star. Left-hand panel of Fig. 12 shows the magnetic tower

observed in Model B at t = 62. Note that at this time the normal to

the inner disc has a small angle relative to the rotational axis of the

star, which makes the tower more symmetric.

The right-hand panel of Fig. 12 shows the tower in Model D, where

the disc normal is tilted at a large angle and at the earlier moment

in time, t = 30. One can see that near the disc the field lines wrap

about the disc normal, while at larger distances the wrapping about

the stellar rotational axis is seen. In reality, both components of the

wrapped field are present in all models. The azimuthal component of

the field above and below the disc can be presented as a sum of the

field wrapped about the disc normal (marked with letter d) and stellar

rotational axis (marked with letter s): B
top
φ = Bd

φ + B
s,top
φ and Bbot

φ =

Bd
φ + B

s,bot
φ . The disc components of the field are approximately

equal. However, the stellar component is expected to be stronger

near parts of the disc that are closer to the rotational axis of the star.

In the right-hand panel of Fig. 12, the field is stronger near the top

right and bottom left parts of the tilted disc. Therefore, there is the

magnetic force acting on the disc which is the difference between

magnetic pressure at the top and bottom sides of the disc:

Fz(r, φ) =
1

8π

[

(Bd
φ + B

s,top
φ )2 − (Bd

φ + B
s,bot
φ )2

]

. (8)

The corresponding torque acts to align the normal to the disc with the

rotational axis of the star. This torque acts in the direction opposite
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382 M. M. Romanova et al.

Figure 12. Left-hand panel: figure demonstrates inflation of the magnetic field lines in Model B at t = 62. The colour background shows one of the density

levels, ρ = 0.17. Lines are sample magnetic field lines. Right-hand panel: same but for Model D at t = 30 and for density level ρ = 0.3.

to the warping torque. We suggest that this may be a possible

mechanism for the disc alignment in models A − C. Note that in

equation (8), the magnetic pressure results from the winding of the

field lines, threading the disc. Note that in equation (3) for magnetic

force providing the warping torque, the azimuthal field associated

with the inflated field is taken to be equal on the top and bottom

sides of the disc, and the main asymmetry is connected with the Bφ

− component of the dipole field. We suggest that in models A − C

(where the inner disc was located at a larger distance from the star),

the dipole component has been relatively weak, and the alignment

torque dominates over warping torque. In opposite, in models D, E,

F (where the inner disc was closer to the star), the dipole component

is stronger, and warping torque dominates.

To investigate further this issue, we calculated the poloidal current

Jp ∼ rBφ and observed that the current flows above and below the

disc, and it is almost symmetric about the disc plane (see left-hand

panel of Fig. 13). We draw a line perpendicular to the disc (see

white dashed line in the left-hand panel) and calculated the value of

Bφ
2 along this line. The right-hand panel of Fig. 13 shows that the

magnetic pressure distribution is not perfectly symmetric about the

plane of the disc, and the pressure difference provides the magnetic

force, which may be responsible for the tilting of the disc. Note

that the magnetic pressure dominates over the matter pressure in the

corona above and below the inner parts of the disc. Middle panel of

Fig. 13 shows the distribution of the plasma parameter β = 8πp/B2.

One can see that β < 1 in the corona above and below the disc at r �

11 (see darker green regions). There is also a region where the matter

pressure dominates, but the magnetic pressure is still significant and

can contribute to the dynamics of the disc (see the light-green region

at r � 14 where β < 10). The sizes of these regions vary in time

and also from model to model. However, they are always a few

times larger than the magnetospheric radius rm. We suggest that this

magnetic force and corresponding torque may drive the tilted discs

towards the aligned position.

Another possible explanation for the disc alignment is the magnetic

Bardeen–Petterson effect (see Section 2.3), where the viscous and

precession torques push the inner disc to be aligned with the

equatorial plane of the star. Typically, we observe 1–2 periods of

precession. This time may be too short for the development of the

Bardeen–Petterson effect. In the case of compact stars, the time-scale

to achieve the Bardeen–Petterson alignment is different in different

models and varies from a few precession time-scales (evaluated at

RBP) up to 10–100 (e.g. Pringle 1992).

6.2 Mechanisms of tilting

The warping instability discussed in Section 2.1 always acts to tilt the

inner disc normal away from the rotational axis of the star (see e.g.

Lai et al. 2011). The warping torque operates at distances comparable

with the magnetospheric radius. It is stronger in models D, E, F where

the inner disc is closer to the star, and a stronger dipole field threads

the inner disc.

On the other hand, the winding of the field lines about the stellar

rotational axis provides a force that acts to align the disc. If a star

rotates slowly (as in models A, A1, B, B1) then the role of winding is

more significant, because there is a larger difference between angular

velocities of the star and the disc. In these models, we observe almost

aligned discs. If a star rotates more rapidly (like in models C − F)

then the role of the force associated with winding is less important,

and the warping force dominates.

7 D I SCUSSI ON AND C ONCLUSI ONS

We performed 3D MHD simulations of accretion on to a rotating

magnetized star where both the magnetic and rotational axes of the

star are tilted about the rotational axis of the disc.

7.1 Summary: dependence on parameters

Our simulations are exploratory and are aimed at understanding the

matter flow near the magnetized star where both the magnetic and

rotational axes are tilted. We varied different parameters (see Table 1).

In addition to evident parameters, such as the magnetic moment, μ
′

,

or period of the star, P⋆, we also varied the initial position of the

inner disc, rin, and observed strong dependence on this parameter.

Below, we conclude about dependence on different parameters.

(i) rin − the initial positions of the inner disc. We observed that

in models A − C, where the inner disc is located at a larger radius,

rin = 8.6R⋆, the final tilt angle of the disc is smaller, β t ∼ 5◦–10◦,
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3D simulations of stars with tilted axes 383

Figure 13. Left-hand panel: the distribution of the poloidal current rBφ in the slice y
′
z

′
in Model A at t = 50. Middle panel: the distribution of the plasma

parameter β = 8πp/B2. We show β in three regions, separated by values β = 0.1, 1, 10. Right-hand panel: the distribution of the B2
φ along the dashed line

shown in the left-hand panel.

compared with models D, E, F, where the disc is located closer to

the star, rin = 5.7R⋆, and the tilt of the disc is larger, β t ∼ 30◦–40◦.

(ii) β − initial tilt of the rotational axis of the star relative to the

disc normal. We did not see a difference between results in models

with β = 20◦ and β = 15◦.

(iii) θ − the tilt of the magnetic axis relative to the rotational

axis. There is almost no difference in results for models with almost

aligned (θ = 2◦) and misaligned (θ = 20◦, θ = 15◦) cases. The main

difference is that in models with larger θ , we observed variability in

the matter flux, which is associated with different tilt angles between

the magnetosphere and the disc.

(iv) rc − the co-rotation radius and P⋆ − period of the star. In

models D, E, F, stars rotate more rapidly than in models A, A1, B,

and B1, and this could be a factor that leads to larger tilts of discs

in these models. We suggest that at smaller values of rc and larger

values of r̄m/rc, the difference in angular velocities between the star

and the disc is smaller, and winding of the field lines (which helps to

align the disc) is less efficient.

(v) μ
′

− the magnetic moment of the star: μ
′

= 1, 0.5, 0.3. We

observed that the size of the tilted disc, rt, decreases with μ
′

. This

is an expected result, because at smaller values of μ
′

the magnetic

force is smaller.

(vi) Md − mass of the disc. In test simulations with ∼3 times

lower disc mass (models B and A1), we observed similar parameters

for tilted discs. However, discs were warped and tilted more rapidly.

This may be explained by the fact that the warping rate has an inverse

dependence on the surface density: Ŵw ∼ �−1 (see equation 5).

(vii) τ sim − duration of simulations. Originally, we included into

consideration only the longest simulation runs (models A and B)

which show almost aligned discs. However, later, we realized that

models D, E, F are also valuable because they show persistent tilts. In

these models, the time measured in Keplerian rotations at, τ sim/P0,

is shorter. However, time measured in periods of stellar rotation,

τ sim/P⋆, is comparable or longer than in models A and B. The rotation

of the star is an important factor in winding the field lines and may

influence the physics of the process.

7.2 Conclusions

(1) Simulations show that the disc-magnetosphere interaction led

to the formation of tilted, almost flat discs in all models. However,

discs may have different tilts. The tilt angles of the disc normal

relative to the rotational axis of the star are small (β t ∼ 5◦–10◦) in

models, where the star rotates slowly and where initially the disc is

located at a larger distance from the star so that a weaker dipole field

threads the disc. When stars rotate more rapidly and the inner disc is

located closer to the star (so that the stronger dipole field threads the

disc), the tilt angles are larger (β t ∼ 30◦–40◦).

(2) The sizes of the tilted discs systematically increase with the

strength of the magnetic field, μ
′

. They vary in the range of rt ≈ 17.7–

24.3 if measured in stellar radii. They are typically ∼5.3–8.6 times

larger than the magnetospheric radii.

(3) Tilted discs slowly precess in most of models. The time-scale

of precession is τ p ∼ 50P0, where P0 is the period of Keplerian

rotation at r = R0 ≈ 2.86R⋆.

(4) In models with a significant tilt of the magnetic axis (θ = 20◦

and 15◦), the accretion rate on to the star varied due to the different

positions of the magnetospheric axis about the inner disc. Accretion

is more favourable when the magnetic axis is strongly tilted towards

the disc plane. The quasi-period of variations is close to the period

of the star.

(5) Accretion in the unstable regime has been observed in models

with higher-mass discs and smaller tilts of the magnetosphere.

Overall, tilted discs are expected to form around magnetized stars

with the tilted rotational axis. However, the tilt angle and other

parameters of the disc depend on the properties of the star and details

of the disc-magnetosphere interaction.

7.3 Application to different stars

Tilted precessing discs are expected in different types of accreting

magnetized stars.

(1) The signs of tilted discs are observed in cataclysmic variables.

They are often observed as temporary features. The origin of the tilt

is not well understood (see e.g. Montgomery & Martin 2010).13We

suggest that tilted discs may result from the action of the magnetic

field, as observed in our models, where the disc is expected to be

tilted as long as the dipole magnetic field partly threads the disc.

Note that the inflated field lines may drive outflows or jets from the

13Fateeva, Zhilkin & Bisikalo (2016) studied accretion on to magnetized

stars with the tilted rotational axis in 3D MHD simulations in application to

intermediate polars. However, only a small (a few per cent) temporary tilts of

the inner disc were observed in these simulations.
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disc-magnetosphere boundary. The orientation of the magnetic tower

may be important for determining the direction of such outflows (e.g.

Lovelace et al. 2014).

(2) In another example, accreting millisecond pulsars in X-ray

binaries show a variety of quasi-periodic oscillations (see e.g. van

der Klis 2006). We suggest that the low-frequency QPOs can be

connected with the precession of tilted discs, driven by the magnetic

forces (see also Lai 1999).

(3) The long-term variabilities of unknown nature have been ob-

served in classical T Tauri stars and Ae Herbig stars (e.g. Artemenko,

Grankin & Petrov 2010; Rigon et al. 2017). Some of them may be

connected with tilted precessing discs.
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