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Abstract—Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples
are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL
has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success
to graph data using graph neural networks (GNNS). In this survey, we provide a unified review of different ways of training GNNs using
SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified
framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL
methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and
algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological
development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common
baseline methods, datasets, and evaluation metrics.

Index Terms—Self-supervised learning, graph neural networks, deep learning, unsupervised learning, graph analysis, survey, review.
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Deep model takes some data as its inputs and is trained
A to output desired predictions. A common way to train
a deep model is to use the supervised mode in which a
sufficient amount of input data and label pairs are given.
However, since a large number of labels are required, the
supervised training becomes inapplicable in many real-
world scenarios, where labels are expensive, limited, imbal-
anced [1], or even unavailable. In such cases, self-supervised
learning (SSL) enables the training of deep models on
unlabeled data, removing the need of excessive annotated
labels. When no labeled data is available, SSL serves as an
approach to learn representations from unlabeled data itself.
When a limited number of labeled data is available, SSL
from unlabeled data can be used either as a pre-training
process after which labeled data are used to fine-tune the
pre-trained deep models for downstream tasks, or as an
auxiliary training task that contributes to the performance
of main tasks.

Recently, SSL has shown its promising capability in data
restoration tasks, such as image super-resolution [2], image
denoising [3, 4, 5], and single-cell analysis [6]. It has also
achieved remarkable progress in representation learning for
different data types, including language sequences [7, 8, 9],
images [10, 11, 12, 13], and graphs with sequence mod-
els [14, 15] or spectral models [16]. The key idea of these
methods is to define pretext training tasks to capture and
use the dependencies among different dimensions of the
input data, e.g., the spatial, temporal, or channel dimensions,
with robustness and smoothness. Taking the image domain
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Fig. 1. A comparison between the contrastive model and the predictive
model in general.

as an example, Doersch et al. [17], Noroozi and Favaro [18],
and He et al. [19] design different pretext tasks to train con-
volutional neural networks (CNNs) to capture relationships
between different crops from an image. Chen et al. [11] and
Grill et al. [20] train CNNs to capture dependencies between
different augmentations of an image.

Based on how the pretext training tasks are designed,
SSL methods can be divided into two categories; namely
contrastive models and predictive models. The major differ-
ence between the two categories is that contrastive models
require data-data pairs for training, while predictive models
require data-label pairs, where the labels are self-generated
from the data, as illustrated in Figure 1. Contrastive models
usually utilize self-supervision to learn data representation
or perform pre-training for downstream tasks. Given the
data-data pairs, contrastive models perform discrimination
between positive pairs and negative pairs. On the other
hand, predictive models are trained in a supervised fashion,
where the labels are generated based on certain properties



of the input data or by selecting certain parts of the data.
Predictive models usually consist of an encoder and one or
more prediction heads. When applied as a representation
learning or pre-training method, the prediction heads of a
predictive model are removed in the downstream task.

In graph data analysis, SSL can potentially be of great
importance to make use of a massive amount of unlabeled
graphs such as molecular graphs [21, 22]. With the rapid de-
velopment of graph neural networks (GNNs) [23, 24, 25, 26,
27, 28, 29], basic components of GNNs [30, 31, 32, 33, 34, 35]
and other related fields [36, 37] have been well studied and
made substantial progress. In comparison, applying SSL on
GNN s is still an emerging field. Due to the similarity in
data structure, many SSL methods for GNNs are inspired
by methods in the image domain, such as DGI [38] and
graph autoencoders [39]. However, there are several key
challenges in applying SSL on GNNs due to the uniqueness
of the graph-structured data. To obtain good representa-
tions of graphs and perform effective pre-training, self-
supervised models are supposed to capture essential infor-
mation from both nodes attributes and structural topology
of graphs [40]. For contrastive models, as the GPU memory
issue of performing self-supervised learning is not a major
concern for graphs, the key challenge lies in how to obtain
good views of graphs and the selection of graph encoder
for different models and datasets. For predictive models, it
becomes essential that what labels should be generated so
that the non-trivial representations are learned to capture
information in both node attributes and graph structures.

To foster methodological development and facilitate em-
pirical comparison, we review SSL methods of GNNs and
provide unified views for both contrastive and predictive
methods. Our unified treatment of this topic may shed light
on the similarities and differences among current methods
and inspire new methods. We also provide a standardized
testbed as a convenient and flexible open-source platform
for performing empirical comparisons. We summarize the
contributions of this survey as follows:

o We provide thorough and up-to-date reviews on SSL
methods for graph neural networks. To the best of
our knowledge, our survey presents the first review
of SSL specifically on graph data.

o We unify existing contrastive learning methods for
GNNs with a general framework. Specifically, we
unify the contrastive objectives from the perspective
of mutual information. From this fresh view, different
ways to perform contrastive learning can be consid-
ered as performing three transformations to obtain
views. We review theoretical and empirical studies
and provide insights to guide the choice of each
component in the framework.

e We categorize and unify SSL methods with self-
generated labels as predictive learning methods, and
elucidate their connections and differences by differ-
ent ways of obtaining labels.

e We summarize common settings of SSL tasks and
commonly used datasets of various categories under
different settings, setting the stage for developments
of future methods.

e We develop a standardized testbed for applying SSL
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on GNNs, including implementations of common
baseline methods and benchmarks, enabling conve-
nient and flexible customization for future methods.

An overview of self-supervised learning methods of differ-
ent categories is given in Figure 2.

A recent work [62] provides thorough and general lit-
erature reviews on self-supervised learning for vision, nat-
ural language processing, and graph mining tasks. While
both [62] and our work review SSL methods as contrastive
ones and non-contrastive ones, we distinguish our reviews
from [62] by the following distinct differences.

e Liu et al. [62] and our paper propose different tax-
onomies for SSL methods from different aspects of
view. Specifically, [62] categorizes contrastive meth-
ods by the levels of contrast such as instance-instance
and context-instance, where mutual-information is
considered as one specific subcategory at the context-
instance level. In contrast, our taxonomy provides
a more unified view and framework from the the-
oretical grounding of the methods. Specifically, in
our work, all contrastive methods are theoretically
grounded by mutual information maximization, and
the contrastive objectives are different upper bounds
or estimators of mutual information. In our frame-
work, different levels of contrast are determined by
how views are selected or generated. We believe that
the more unified view enables a more clear compar-
ison and insightful understanding of commons and
differences among SSL methods.

e Though adapted to graphs, the taxonomy proposed
by [62] is mostly oriented by SSL methods for images.
While SSL for graphs and images share some con-
nections and similarities, there are remarkable dif-
ferences between specific methods for the two types
of data and some categorizations of images do not
apply to graphs. For example, the relative position
and the cluster discrimination methods categorized
by [62] are image-specific contrastive methods and
do not apply to graphs whereas view generation
approaches for graphs and graph-specific predictive
tasks are not discussed in [62]. Therefore, graph-
specific SSL reviews such as ours are important
and necessary for a better understanding of existing
methods and benefit future studies.

Recently, another concurrent survey [63] provides reviews
on SSL methods for GNNs. The work proposes a taxon-
omy with more subdivided categories including generation-
based, auxiliary property-based, contrastive-based, and hy-
brid methods. While [63] aims to provide better coverage on
existing SSL methods for review, our work focuses on pro-
viding a more timely and unified review under comparable
frameworks and provide insights into future SSL studies.

2 PROBLEM FORMULATION
2.1 Notations

We consider an attributed undirected graph G = (V, E, av),
where V' = {v1,---,vy|} denotes the set of its nodes,
E = {e1--- ,e|p|} denotes the set of its edges and o : V' —
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Fig. 2. An overview of self-supervised learning methods. We categorize self-supervised learning methods into two branches: contrastive methods
and predictive methods. For contrastive methods, we further divide them regarding either views generation or objective. From the aspect of views
generation, Infograph [41], DGI [38] and GMI [42] contrast views between nodes and graph; Hu et al. [43] and Jiao et al. [44] contrast views between
nodes and subgraph; MVGRL [10] and GCA [45] contrast views between nodes and subgraph or structurally transformed graph; GRACE [46] and
BGRL [47] contrast views between nodes and structurally transformed graph or featurally transformed graph. Above methods include node-level
representation to generate local/global contrastive pairs. Dissimilarly, following methods use global representation only to generate global/global
contrastive pairs. GCC [48] contrasts views between subgraphs; GraphCL [49] contrasts views of subgraphs and randomly transformed graphs.
From aspect of objective, Infograph [41], DGI [38], Hu et al. [43], MVGRL [10] and GMI [42] employ Jensen-Shannon estimator; GCC [48],
GraphCL [49], GRACE [46] and GCA [45] employ InfoNCE (NT-Xent); Jiao et al. [44] use other MI estimators. For the predictive methods, we
further divide them into graph reconstruction, property prediction, self-training, and invariance regularization methods. Under graph reconstruction,
GAE [39], MGAE [50], and GALA [51] utilize the non-probabilistic graph autoencoder; VGAE [39], ARGA/ARVGA [52], and SIG-VAE [53] utilize
variational graph autoencoder; GPT-GNN [54] applies autoregressive reconstruction. Under property prediction, S2GRL [55] performs the prediction
of k-hop connectivity as a statistical property; GROVER [56] performs predictions of a statistical contextual property and a domain-knowledge
involved property; Hwang et al. [57] predict a topological property, meta-path. M3S [58] and ICF-GCN [59] employs self-training and node clustering
to provide self-supervision. BGRL [47], CCA-SSG [60], and LaGraph [61] derive self-supervised objectives involving invariance regularization
without requiring negative pairs. SSL methods for heterogeneous graphs are marked with underlines. We discuss and summarize SSL methods for
heterogeneous graphs and dynamic graphs in Appendix A. We further discuss and compare contrastive and predictive methods in Appendix B.

R¢ denotes the mapping from a node to its attributes of d
dimensions. We denote the adjacency matrix of G by A €
RIVIXIVI where A;j = 1[(v,vj) € E] for 1 < 4,5 < |V]|,
and denote the feature matrix of G by X € RIVI*¢, where
the i-th row X; = a(v;) for 1 < i < |V]. A heterogeneous
graph additionally includes elements ¢ : V' — T;, that maps
a node to a node type in T}, and ¢ : E — T, that maps an
edge to an edge type in 7.

Given the graph data (A, X)) from the input space G,
we are interested in the representation of the graph at
either node-level or graph-level for any downstream pre-
diction tasks. In general, we want to learn an encoder f
such that the representation H = f(A,X) can achieve
desired performance on a downstream prediction task. For
node-level prediction tasks, we learn a node-level encoder
fn @ RIVIXIVE S RIVIXd 5 RIVIXa that takes the graph
data (A, X) as inputs and computes the representations
for all nodes Hypde = frode(A, X) € RIVI*4, For graph-
level prediction tasks, we learn a graph-level encoder f; :
RIVIXIVE 5 RIVIXd 5 RY that computes a single vector
hgraph = fgraph(A, X) € R? as the representation of the
given graph. Practically, graph-level encoders are usually
constructed as a node-level encoder followed by a readout
function. In many cases, a model for node-level representa-

tion learning may also be utilized to compute graph-level
representations by adding an appropriate readout function,
and vice versa (by removing the readout function).

We let P denote the distribution of unlabeled graphs
over the input space G. Given a training dataset, the dis-
tribution P can be simply constructed as the uniform dis-
tribution over samples in the dataset. The self-supervision
can contribute to the learning of graph encoders f by utiliz-
ing information from P and minimizing a self-supervised
loss L (f,P) determined by a specifically designed self-
supervised learning task.

2.2 Paradigms for Self-Supervised Learning

Typical training paradigms to apply the self-supervision in-
clude unsupervised representation learning, unsupervised
pretraining, and auxiliary learning.

In unsupervised representation learning, only the dis-
tribution P of unlabeled graphs is available for the entire
training process. The problem of learning the representation
of a given graph data (A, X)) ~ P is formulated as

f* = arg mfin ‘cssl(f77))7 (1)
H" = f"(A,X). 2)



The learned representations H™* are then used in further
downstream tasks such as linear classification and cluster-
ing.

The unsupervised pretraining, also dubbed the decou-
pled training by Wang et al. [64], is usually performed as
a two-stage training [65]. It first trains the encoder f with
unlabeled graphs. The pre-trained encoder f;,;; is then used
as the initialization of the encoder in a supervised fine-
tuning stage. Formally, in addition to the distribution P, the
learner further gains access to a distribution P of labeled
graphs over G x ), where Y denotes the label space. Again,
given the labeled training dataset, P can be simply con-
structed as the uniform distribution over labeled samples in
the dataset. The pretrained encoder f;,;+ is then fine-tuned
on P, together with a prediction head h s.t. h(f(A, X)) € Y
and a supervised loss Ly, i.e.,

* h* = argmin L, (f, h, P), 3
f g m p(f ) 3)
with initialization

finz’t = argrnfinﬁssl(fvlp)- (4)

The unsupervised pretraining and supervised finetuning
paradigm is considered as the most strategy to perform
semi-supervised learning and transfer learning. For semi-
supervised learning, the labeled graphs in the finetuning
dataset is a portion of the pretraining dataset. For transfer
learning, the pretraining and finetuning datasets are from
different domains. Note that a similar learning setting called
unsupervised domain adaptation has also been studied gen-
erally [66] or specifically in the image domain [67], where
the encoder is pre-trained on labeled data but finetuned on
unlabeled data under self-supervision. Since the paradigm
is not specifically studied in the graph domain, we do not
discuss the learning setting in detail in this survey.

The auxiliary learning, also known as joint training [65],
aims to improve the performance of a supervised primary
learning task by including an auxiliary task under self-
supervision. Formally, we let Q denote the joint distribution
of graph data and labels for the primary learning task and
P denote the marginal of graph data. We want to learn
both the decoder f and the prediction head h, where h
is trained under supervision on Q and f is trained under
both supervision and self-supervision on P. The learning
problem is formulated as

f*v h* = arg g}l}g ‘Csup(fa h> Q) + )‘LSSl(fa P)a (5)

where ) is a positive scalar weight that balances the two
terms in the loss.

3 CONTRASTIVE LEARNING

The study of contrastive learning has made significant
progress in natural language processing and computer vi-
sion. Inspired by the success of contrastive learning in im-
ages, recent studies propose similar contrastive frameworks
to enable self-supervised training on graph data. Given
training graphs, contrastive learning aims to learn one or
more encoders such that representations of similar graph
instances agree with each other, and that representations
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Fig. 3. Paradigms for self-supervised learning. Top:in unsupervised rep-
resentation learning, graphs only are used to train the encoder through
the self-supervised task. The learned representations are fixed and
used in downstream tasks such as linear classification and clustering.
Middle: unsupervised pre-training trains the encoder with unlabeled
graphs by the self-supervised task. The pre-trained encoder’s parame-
ters are then used as the initialization of the encoder used in supervised
fine-tuning for downstream tasks. Bottom: in auxiliary learning, an aux-
iliary task with self-supervision is included to help learn the supervised
main task. The encoder is trained through both the main task and the
auxiliary task simultaneously.

of dissimilar graph instances disagree with each other. We
unify existing approaches to constructing contrastive learn-
ing tasks into a general framework that learns to discrimi-
nate jointly sampled view pairs (e.g. two views belonging to
the same instance) from independently sampled view pairs
(e.g. views belonging to different instances). In particular,
we obtain multiple views from each graph in the training
dataset by applying different transformations. Two views
generated from the same instance are usually considered
as a positive pair and two views generated from different
instances are considered as a negative pair. The agreement
is usually measured by metrics related to the mutual infor-
mation between two representations.

One major difference among graph contrastive learning
methods lies in (a) the objective for discrimination task
given view representations. In addition, due to the unique
data structure of graphs, graph contrastive learning meth-
ods also differ in (b) approaches that views are obtained,
and (c) graph encoders that compute the representations
of views. A graph contrastive learning method can be
determined by specifying its components (a)—(c). In this
section, we summarize graph contrastive learning methods
in a unified framework and then introduce (a) and (b)
individually used in existing studies. In Appendix C, we
introduce graph neural networks specifically adopted in
contrastive learning as graph encoders and provide further
comparisons and discussions on their effects in contrastive



learning. Moreover, we summarize all contrastive methods
being reviewed by this survey in Supplementary Table 1 for
more clear comparisons.

3.1 Overview of Contrastive Learning Framework

In general, key components that specify a contrastive learn-
ing framework include transformations that compute mul-
tiple views from each given graph, encoders that compute
the representation for each view, and the learning objective
to optimize parameters in encoders. An overview of the
framework is shown in Figure 4. Concretely, given a graph
(A, X) as a random variable distributed from P, multiple

transformations 71,--- ,7T; are applied to obtain different
views wy, - - - , wy, of the graph. Then, a set of encoding net-
works fi,- -, fi take corresponding views as their inputs
and output the representations hy, - - - , hy, of the graph from
each views. Formally, we have

w; = 7:(A7X)7 (6)

We assume w; = (A;, X;) = T;(A, X) in this survey since
existing contrastive methods consider their views as graphs.
However, note that not all views w; are necessarily graphs or
sub-graphs in a general sense. In addition, certain encoders
can be identical to each other or share their weights.

During training, the contrastive objective aims to train
encoders to maximize the agreement between view rep-
resentations computed from the same graph instance. The
agreement is usually measured by the mutual information
Z(h;, h;) between a pair of representations h; and h;. We
formalize the contrastive objective as

1
max —————

oijL(hi, hj) |, 8)
{fl}f:l Zq;é_] O'” Z J ( ])

i)

where o;; € {0,1}, and ¢;; = 1 if the mutual information
is computed between h; and h;, and o;; = 0 otherwise,
and h; and h; are considered as two random variables
belonging to either a joint distribution or the product of two
marginals. To enable efficient computation of the mutual
information, certain estimators Z of the mutual information
are usually used instead as the learning objective. Note that
some contrastive methods apply projection heads [10, 49] to
the representations. For the sake of uniformity, we consider
such projection heads as parts of the computation in the
mutual information estimation.

During inference, one can either use a single trained
encoder to compute the representation or a combination of
multiple view representations such as the linear combina-
tion or the concatenation as the final representation of a
given graph. Three examples of using encoders in different
ways during inference are illustrated in Figure 5.

3.2 Contrastive Objectives based on Ml Estimations

Given a pair of random variables (z,y), the mutual infor-
mation Z(x, y) measures the information that « and y share,
given by

I(z,y) = Drr(p(z, y)llp(z)p(y)) ©)

- og P®Y)
=B o s 1o
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where Dy, denotes the Kullback-Leibler (KL) divergence.
The contrastive learning seeks to maximize the mutual
information between two views as two random variables.
In particular, it trains the encoders to be contrastive between
representations of a positive pair of views that comes from
the joint distribution p(v;, v;) and representations of a neg-
ative pair of views that comes from the product of marginals
p(vi)p(v;).

In order to computationally estimate and maximize the
mutual information in the contrastive learning, three typical
lower-bounds to the mutual information are derived [68],
namely, the Donsker-Varadhan representation 7 (DV) 169,
70], the Jensen-Shannon estimator 7 (78) [71] and the noise-
contrastive estimation ZWWCF) (InfoNCE) [12, 72]. Among
the three lower-bounds, 7US) and ZINCE) are commonly
used as objectives [10, 38, 41, 49] in the contrastive learning
in graphs.

A mutual information estimation is usually computed
based on a discriminator D : R x R? — R that maps the
representations of two views to an agreement score between
the two representations. The discriminator D can be either
parametric or non-parametric. For example, the discrimina-
tor can optionally apply a set of projection heads [10, 49] to
the representations hi,--- , h; before computing the pair-
wise similarity. We formalize the optional projection heads
as gi,- - ,gi such that

z; = gz(hl)7 1= 17' o ak7 (11)

where g; can be an identical mapping, a linear projection
or an MLP. Parameterized g¢; are optimized simultaneously
with the encoders f; in Eqn. (8), given by

1 N
max 1D 002y, (Rishy) |, (12)

(Figi¥ioy 202 %0 |5

In following subsections, we introduce the three lower
bounds as specific estimations of mutual information and
a non-bound estimation of mutual information. We further
compare and discuss the effect of different MI estimations
in contrastive learning in Appendix D.

3.2.1 Donsker-Varadhan Estimator

The Donsker-Varadhan (DV) estimator, also knwon as the
DV representation of the KL divergence, is a lower-bound
to the mutual information and hence can be applied to
maximize the mutual information. Given h; and hj, the
lower-bound is computed as

ZPV)(hi, hy) = Ep(h,,n;) [D(hi, hj) (13)

— 108 Ep(hy)p(hy) {ep(h"’h")} ;
where p(h;, h;) denotes the joint distribution of the two rep-
resentations h;, h; and p(h;)p(h;) denotes the product of
marginals. For simplicity and to include the graph data dis-
tribution P, we assume transformations 7; to be determin-
istic and encoders f; to be injective, and have p(h;, h;) =
p(hi)p(hjlhi) = p(fi(Ti(A, X)))p(£;i(Ti(A, X))|(A, X)).
We hence re-write Eqn. (13) as

f(DV)(hZ-, h;) = E,x)~p[D(hi, h;)] (14)
_ log ]E[(A7X)7(A/7X/)]N7D><’P |:€D(hri,h;):| )
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Fig. 5. Different ways of using encoders during inference. Top: encoders
for multiple views are used and output representations are merged by
combinations such as summation [10] or concatenation. Middle: only
the main encoder [47] and the corresponding view are used during
inference. Bottom: the given graph is directly input to the only en-
coder [48, 49] shared by all views to compute its representation.

where h; and h; in the first term are computed from
(A, X) distributed from P, h; and h’; in the second term
are computed from (A, X) and (A’, X’) identically and
independently distributed from P, respectively. In following

formulations, we use the later notation includes P.

3.2.2 Jensen-Shannon Estimator

Compared to the Donsker-Varadhan estimator, the Jensen-
Shannon (JS) estimator enables more efficient estimation and
optimization of the mutual information by computing the
JS-divergence between the joint distribution and the product
of marginals.

Given two representations h; and h; computed from the
random variable (A, X) and a discriminator D, DGI [38],
InfoGraph [41], Hu et al. [43] and MVGRL [10] computes
the JS estimator

IV (hi,hy) = Ea,x)~p log(D(hi, b)) +

Ej(a.x),(a’.x))~Pxp [log(1 = D(hi, hj))]
where h;, h; in the first term are computed from (A, X)
distributed from P, h; and h’ in the second term are
computed from (A, X) and (A'j7 X') identically and inde-
pendently distributed from the distribution P. To further
include edge features, Peng et al. [42] derives the graphic
mutual information (GMI) based on MI decomposition and
optimizes GMI via JS estimator. Note that [41] and [10]
depict a softplus version of the JS estimator,

IUS=SP)(hy, hy) = E(a,x)~p [=5p(=D'(h;, hj))]
Eja,x),(a,x))~PxP [sp(D'(hi, h}))]

(15)

~(16)



where sp(z) = log(1 + e”). We consider the JS estimators
in Eqn. (15) and Eqn. (16) to be equivalent by letting
D(hz, hj) = SlngId(D,(hz, hj))

For the the negative pairs of graphs [(A4, X), (A’, X')] ~
P x P in particular, DGI [38] samples one graph (A, X)
from the training dataset and applies a stochastic cor-
ruption C to obtain (A’, X’) = C(A, X). For node-level
tasks, MVGRL [10] follows DGI to obtain negative sam-
ples by corrupting given graphs. InfoGraph [41] indepen-
dently samples two graphs from the training dataset as a
negative pair, which is followed by MVGRL for graph-
level tasks. Discriminators in JS estimators usually compute
the agreement score between two vectors by their inner
product with sigmoid, i.e., D(h;, h;) = sigmoid(z]2;) =
sigmoid(gi(hi)" g;(h;))-

3.2.3 InfoNCE

InfoNCE Z(NCE) js another lower-bound to the mutual
information Z. It is shown by You et al. [49] that maximizing
InfoNCE it equivalent to maximizing the Donsker-Varadhan
estimator. Given the representations h; and h; of two views
of random variable (A, X), the discriminator D, and the
number of negative samples IV, the InfoNCE is formalized
as

(A,X>H )

oD(hihj)
D(hi,h))

PRk /Ny

>

(A", X"eK

]EKNPN |: IOg

= E|a,x),K]~PxPN {bg
Z(A’,X’)GK e

+log N,

where K consists of N random variables identically and
independently distributed from P, h;, h; are the represen-
tations of the i-th and j-th views of (A, X), and h; is the
representation of the j-th view of (A’, X’).

In practice, we compute the InfoNCE on mini-batches
of size N + 1. For each sample x in a mini-batch B, we
consider the set of the rest NV samples as a sample of K.
We then discard the constant term log N in Eqn. (17) and
minimize the loss
¢D(hi,hj)

1
Linfo = -0 lo
InfoNCE N+1z gz

D(hi;h}) |
zE€B z’eB\{z} €

(18)
Intuitively, the optimization of InfoNCE loss aims to score
the agreement between h; and h; of views from the same
instance « higher than between h; and h/; from the rest N
negative samples B \ {z}. GraphCL [49] and GRACE [46]
include additional contrast among the same view of differ-
ent instances (i.e., h; and h}) or different nodes in the same
view (intra-view contrast [46]), leading to the optimization
of lower bounds of InfoNCE, which are still lower bounds
of ML
Discriminators in typical InfoNCE compute the agree-
ment score between two vectors by their inner product,
ie., D(h;,h;) = z!z; = gi(h;)Tgj(h;). A specific type
of the InfoNCE loss, known as the NT-Xent [73] loss, in-
cludes normalization and a preset temperature parameter
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7 in the computation of discriminator D in the InfoNCE
loss, i.e., D(hi, h;) = g;(h;)" g;(h;)/7. The discriminator in
You et al. [49] computes the agreement score between vec-
gi(hi)"g;(hy)/T

tors with normalizations, i.e., D(h;, h;) = g h)las BT

where ||-|| denotes the ¢5-norm.

3.2.4 Other Mutual Information Estimators

There are other objectives that have been used in some
studies, and optimizing these objectives can also encourage
higher mutual information. Although the objectives differ
from the above upper bound MI estimators

However, these objectives may not be provable lower-
bounds to the mutual information, and optimizing these ob-
jectives does not guarantee the maximization of the mutual
information.

For example, Jiao et al. [44] proposes to minimize the
triplet margin loss [74], which is commonly used in deep
metric learning [75]. Given representations h;, h; and the
discriminator D, the triplet margin loss is formalized as

Liriplet = E[(a,x),(47,X)]~PxP [ max{D(h;, h;)

where D(h;, h;) is computed as sigmoid(h! h;) or based
on the Euclidean distance ||h; — h;|| and € is the margin
value. While the triplet loss differs from previous MI-based
objectives in formulations, Khosla et al. [76] show that the
triplet loss is a special case of the InfoNCE (NT-Xent) loss
when there is only one negative sample where the margin
value € corresponds to the temperature parameter 7 in NT-
Xent. Moreover, the Bayesian Personalized Ranking (BPR)
loss [77] used in Jiao et al. [44] is also equivalent to the
InfoNCE loss when letting N = 1 and D(h;, h;) = hl h;.

3.2.5 Projection Heads: Parametric Ml Estimation

Many contrastive learning studies [10, 41, 49] propose to
include projection heads g; when computing the MI estima-
tions. For example, Hassani and Khasahmadi [10], Sun et al.
[41] use 3-layer MLPs, You et al. [49] use 2-layer MLPs as the
projection heads and Sun et al. [41] applies a linear projec-
tion to the graph-level representation. The projection heads
are shown to significantly improve the contrastive learning
performance [11]. For contrastive learning on heterogeneous
graphs, it is common to apply individual projections to
representations of different type of nodes. For example,
Jiang et al. [78] adopt D(h,,, h,) = [W¢(u)hu]T[W¢(v)hv} =
hIWgh, for nodes u and v with types ¢(u) and ¢(v)
connected by the relationship I, where W = W¢>T(u) Wy)-

We consider MI estimators that include projection heads
as parametric estimators and those without projection heads
as non-parametric estimators. Then a reasonable explana-
tion to the observation that the contrastive methods with
projection heads usually achieve better performance is that
parametric estimators provide better estimation to the mu-
tual information.

3.3 Graph View Generation

To generate views from a graph sample distributed from P,
one usually applies different types of graph transformations
(or augmentations) 7. Here, we only consider cases where



T still outputs the graph-structured data. We summarize the
existing transformations applied to graph data in three cat-
egories, feature transformations, structure transformations
and sampling-based transformations. Feature transforma-
tions can be formalized as

ﬁeat(AaX) = (A,TX(X)), (20)

where Tx : RIVI¥4 — RIVIXd performs the transformation
on the feature matrix X. Structure transformations can be
formalized as

%truct(Av X) = (TA(A); X)a (21)

where T : RIVIXIVE — RIVIXIVI performs the transforma-
tion on the adjacency matrix A. And the sampling-based
transformations are in the form

Tsample (A, X ) = (A[S; S], X[S5]), (22)

where S C V denotes a subset of nodes and [] selects certain
rows (and columns) from a matrix based on indices of nodes
in S. We consider the transformations applied in the existing
contrastive learning methods to generate different views
as a single or a combination of instantiations of the three
types of transformations above. Note that when node-level
representations are of interest, the node-level contrasts are
usually included. We consider nodes representations to be
computed from views generated by ego-nets sampling from
given graphs.

3.3.1 Feature Transformations

Given an input graph (A, X), a feature transformation
only performs transformation to the attribute matrix X, i.e.,

Node attribute masking [49] is one of the most common
way to apply the feature transformations. The node attribute
masking randomly masks a small portion of attributes of all
node with constant or random values. Concretely, given the
input attribute matrix X, we specify 7x(X) for the node
attribute masking as

T (X) = X 5 (1= 1) + M # Loy, (23)

where * denotes the element-wise multiplication, M de-
notes a matrix with masking values and 1,, denotes the
masking location indicator matrix. Given the masking ra-
tio r, elements in 1,, are set to 1 individually with a
probability » and 0 with a probability 1 — r. To employ
adaptive masking, Zhu et al. [45] propose to sample 1,,, with
centrality-based probabilities, including degree centrality,
eigenvector centrality, and PageRank centrality. The values
in M specifies different masking strategies. For example,
M = 0 applies a constant masking, M ~ N(0, X) replaces
the original values by Gaussian noise and M ~ N(X,X)
adds Gaussian noise to the original values.

In addition to contrastive models such as [49], attributes
masking is also commonly applied in predictive mod-
els [3, 6] for regularized reconstruction. The node attribute
masking forces the encoders to captures better dependen-
cies between the masked attributes and unmasked context
attributes and recover the masked value from its context
during encoding.

3.3.2 Structure Transformations

Given an input graph (A, X), a structure transformation
only performs transformation to the adjacency matrix A and
remains X to be the same, ie.,, T(A,X) = (Ta(A), X).
Existing contrastive methods apply two types of structure
transformations, edge perturbation that randomly adds or
drops edges between pairs of nodes and graph diffusion
that creates new edges based on the accessibility from one
node to another.

Edge perturbation [48, 49] randomly adds or drops
edges in a given graph. Similarly to the node attribute
masking, it applies masks to the adjacency matrix A. In
particular, we have

TP (A)=Ax(1—1,)+ (1 —A)x1, (24

where * denotes the element-wise multiplication and 1,
denotes the perturbation location indicator matrix. Given
the perturbation ratio r, elements in 1, are set to 1 individ-
ually with a probability  and 0 with a probability 1 — r. In
addition, 1,, is a symmetric matrix.

Diffusion [10] creates new connections between nodes
based on random walks, aiming at generating a global
view (S, X) of the graph in contrast to the local view
(A, X). Two instantiations of diffusion transformations are
proposed to use in [10], namely, the heat kernel Téhcat) and

the Personalized PageRank ’TAPPR), formulated as follows.

T (A) = exp(tAD™! — 1), (25)

TAT(4) = o (L - (1- a)D‘l/ZAD_1/2>71 , (26)

where D € RIVI*IVl is a diagonal degree matrix, v denotes
the teleport probability in a random walk and ¢ denotes the
diffusion time.

Centrality-based edge removal [45] randomly removes
edges based on pre-computed probabilities determined by
the centrality score of each edge. Centrality-based probabil-
ities for edge removal reflects the importance of each edge,
where less important edges are more likely to be removed.
In particular, the centrality score of an edge (u,v) € FE is
computed as Wy, = (¢c(u) + ¢c(v))/2, where ¢.(u) and
¢c(v) are the centrality of nodes u and v connected by the
edge and a higher centrality score leads to lower probability
Puv of edge removal.

3.3.3 Sampling-Based Transformations

We consider sampling-based transformations that sample
node-induced sub-graphs from a given graph (A, X), i.e.,
Tsample(A, X) = (A[S;S], X[S]) with S C V. Note that
more generalized sub-graph sampling methods that sample
both nodes from V and edges from E can be considered
as a combination of the node-induced sub-graph sampling
and the edge perturbation. As different sampling-based
transformations are determined by the set S of sampled
nodes from the node-set V, we categorize the sampling-
based transformations by how the set S is obtained. Existing
contrastive methods apply three approaches to obtain the
node subset S, uniform sampling, random walk sampling,
and ego-nets sampling.

Uniform sampling and nodes dropping can be con-
sidered as the two simplest sampling-based transformation



approaches. The transformation in [10] samples sub-graphs
by uniformly sampling a given number of nodes S from V
and edges of the sampled nodes. In addition, transformation
methods in [49] include node dropping as one of the graph
transformations, where each node has a certain probability
to be dropped from the graph. We denote the set of dropped
nodes by D and we have S =V \ D.

Ego-nets sampling can be considered as a sampling-
based transformation to unify the contrast performed be-
tween graph-level representation and node-level represen-
tations in the general contrastive learning framework, such
as in DGI [38], InfoGraph [41] and MVGRL [10]. In other
words, we consider that node-level representations are com-
puted by node-level encoders from certain views, namely,
ego-nets, of a given graph. Given a typical graph encoder
with L layers, the computation of the representation of
each node v; only depends on its L-hop neighborhood, also
known as the L-ego-net of node v;. We hence consider the
computing of node-level representations as performing L-
ego-net sampling and a node-level encoder with L layers.
In particular, for each node v; in a given graph, the transfor-
mation 7; samples the L-ego net surrounding node v; as the
view w;, computed as

w; = Ti(A, X) = (A[NL(v:); N (vi)], X [N (0:)]),
Ni(v) = {v:d(v,v;) < L}

where L denotes the number of layers in the node-level
encoder f;, d denotes the shortest distance between two
nodes and (A[; -], X[-]) selects a sub-graph from (A, X).

Random walk sampling is proposed in GCC [48] to
sample sub-graphs based on random walks starting from
a given node. The subset of nodes S € V is collected
iteratively. At each iteration, the walk has a probability p;;
to travel from node v; to node v; and has a probability of
pr = 0.8 to return to the start node. GCC considers the
random walk sampling with restart as a further transforma-
tion of the r-ego-net centered at the start node. Given the
center (start) node, the random walk sampling can be hence
considered as a stronger sampling-based transformation
than the ego-nets sampling.

Network Schema and Meta-path views are proposed in
HeCo [79] as two specific views for the contrastive learning
of heterogeneous graphs. Given a target node of type t,
the network schema view is a special case of 1-ego-nets
consisting of neighbor nodes whose types are connected
to the target node type in the network schema, and ex-
cluding nodes with the same type ¢t. When computing the
representation for a network schema view, aggregations are
computed individually for each node type. The meta-path
view consists of all meta-paths between the target node
and other nodes of the same type. When computing the
representation for a meta-path view, nodes of other types are
masked and the information is aggregated along individual
meta-paths.

27)
(28)

3.3.4 Discussions of Graph View Generation

Currently, there is no theoretical analysis guiding the gener-
ation of the view for graphs. However, Tian et al. [80] the-
oretically and empirically analyze the problem in a general
view and image domain, considering the generation of the
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view from the aspect of mutual information. In particular,
a good view generation should minimize the MI between
two views I (v1, v2), subject to I(v1,y) = I(ve,y) = I(z,y).
Intuitively, to guarantee that contrastive learning works, the
generated views v; should not affect the information that
determines the prediction for the downstream task, under
which restriction, stronger disagreement between views
leads to better learning results. Following the above idea,
AD-GCL [81] proposes to generate views of graphs that
achieve the above minimum under constraints by param-
eterizing the above types of transformations and propose
learnable transformations. In particular, the transformations
are learned in an adversarial manner - the transformation
(views generator) is trained to minimize I(vy,v2) subject
to I(vi,y) = I(ve,y) = I(z,y), whereas the encoder is
trained to maximize I(vy, v2). Following a similar principle,
InfoGCL [82] proposes to discretely select optimal views
from a list of candidate views based on the mutual infor-
mation with downstream tasks.

From the manifold point of view, a recent analytic
study [83] proposes the expansion assumption and explains
the data augmentation as to prompt the continuity in the
neighborhood for each instance. It indicates similar require-
ments for the view generating by augmentation, i.e., an ideal
augmentation should satisfy the following two conditions,
1) the (augmentation) neighborhood of an instance does not
intersect the neighborhood of instances that belong to the
other class in the downstream task, 2) the neighborhood of
an instance should be as large as possible, subject to 1.

To this end, the learning on datasets with different
downstream tasks may benefit from different types of trans-
formations. For example, the property of a social network
to be predicted in a downstream task may be more tolerant
of minor changes in node attributes, for which the feature
transformations can be more suitable. On the other hand,
the property of a molecule usually depends on bonds in
some functional groups, for which the edge perturbation
may harm the learning while the sub-graph sampling could
help. Empirically, You et al. [49] observes similar results.
For example, edge perturbation is found contributory to the
performance on social network datasets but harmful to some
molecule data.

4 PREDICTIVE LEARNING

Compared with contrastive learning methods, predictive
learning methods train the graph encoder f together with
a prediction head g under the supervision of informative
labels self-generated for free. We use the term “predictive”
instead of “generative” categorized by Liu et al. [62] to avoid
confusion, as not all methods introduced in this section are
necessarily generative models. Categorized by how the pre-
diction targets are obtained, we summarize predictive learn-
ing frameworks for graphs into (1) graph reconstruction that
learns to reconstruct certain parts of given graphs, (2) invari-
ance regularization that aims to directly learn robust and
informative representations, (3) graph property prediction
that learns to model non-trivial properties of given graphs,
and (4) multi-stage self-training with pseudo-labels. In this
section, we let H € RIVI*4 denote the desired node-level
representation and h; denote the representation of node v;.
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Fig. 6. lllustrations of three predictive learning frameworks. For predictive learning methods, self-generated labels provide self-supervision to train
the encoder together with prediction heads (or the decoder). We conclude predictive learning methods into three categories by how the prediction
targets are obtained. Top left: the prediction targets in graph reconstruction are certain parts of given graphs. For example, GAE [39] performs
reconstruction on the adjacency matrix, and MGAE [50] performs reconstruction on randomly corrupted node attributes. Top right: the supervision
comes from the invariance regularization and additional constraints that are derived based on different theoretical frameworks and promote the
learning of informative representations. Bottom left: the prediction targets in property prediction models are implicit and informative properties of
given graphs. For example, S2GRL [55] predicts k-hop connectivity between two given nodes. Moreover, GROVER [56] utilizes motifs (functional
groups) of molecules based on domain-knowledge as prediction targets. Bottom right: the prediction targets in self-training are pseudo-labels.
In M3S [58], the graph neural network is trained iteratively on a pseudo-label set initialized as the set of given ground-truth labels. Clustering
and prediction are conducted to update the pseudo-label set based on which a fresh graph neural network is then trained. Such operations are

performed multiple times as multi-stage.

The general frameworks of three types of predictive learning
methods are shown in Figure 6. We summary all predictive
methods being reviewed by this survey in Supplementary
Table 2 for a more clear comparison.

4.1 Graph Reconstruction

Graph reconstruction provides a natural self-supervision
for the training of graph neural networks. The prediction
targets in graph reconstruction are certain parts of the given
graphs such as the attribute of a subset of nodes or the
existence of edge between a pair of nodes. In graph recon-
struction tasks, the prediction head g is usually called the
decoder which reconstructs a graph from its representation.

4.1.1  Non-Probabilistic Graph Autoencoders

The autoencoders, firstly proposed in [84], have been widely
applied for the learning of data representations. Given
the success in the image domain and natural language
modeling, various variations of graph autoencoder [85] are
proposed to learn graph representations. Aiming at learning
the graph encoder f, graph autoencoders are trained to
reconstruct certain parts of an input graph, given restricted
access to the graph or under certain regularization to avoid
identical mapping.

GAE [39] represents the simplest version of the graph
autoencoders. It performs the reconstruction on the adja-
cency matrix A from the input graph (A, X). Formally, it
computes the reconstructed adjacency matrix A by

A = g(H) = o(HHT),
H = f(A,X),

(29)
(30)
and is optimized by the binary cross-entropy loss between

Aand A. As GAE is originally proposed to learn node-level
representations for link prediction problem, it assumes two

linked nodes should have similar representations. Graph-
SAGE [86] introduces a similar framework with the self-
supervision of the adjacency matrix based on a different
objective including negative sampling. In addition, a recent
work SuperGAT [87] includes the GAE objective as a self-
supervised auxiliary loss during training a graph attention
network to guide the learning of more expressive attention
operators. Similarly, SimP-GCN [88] applies node-pair sim-
ilarity as a substitute of the adjacency matrix to construct a
self-supervised auxiliary task.

MGAE [50] follows the idea of denoising autoen-
coder [89]. Given a graph (A, X ), MGAE performs recon-
structions on multiple randomly corrupted feature matrices
{X;}™, with a single-layer autoencoder fy and the objec-
tive

DX — fo(A, X3 + 6],
i=1

G2Y)

where ¢ denotes the weights in the single-layer encoder,
A denotes the hyper-parameter for [*-regularization, and
H,; := fy(A, X;) is considered as the reconstructed rep-
resentation. To enable non-linearity, [50] proposes to stack
multiple single-layer autoencoders. Formally, given the re-
constructed representation H (‘=1 at the (¢ —1)-th layer, the
{-th layer is trained by optimizing

STIHEEY — = |12+ 2012, (32)
=1

H = f,, (A7), (33)
where BE“” denotes the corrupted representation from
the (¢ — 1)-th layer. The reconstructed representation at
the last layer is then considered as the representation for
downstream tasks.

GALA [51] introduces a multi-layer autoencoder with
symmetric encoder and decoder, unlike GAE and MGAE.



Motivated by the Laplacian smoothing [90] effect of GCN
encoders, GALA designs the decoder by performing Lapla-
cian sharpening [90], which prompts the decoded represen-
tation of each node to be dissimilar to the centroid of its
neighbors. A Laplacian sharpening layer in the decoder g in
computed by

X0 =ox(D _p-ltax-1, (34)

where X and X“~1) denote the decoded representation
and D denotes the degree matrix. GALA reconstructs the
feature matrix by optimizing the mean squared error || X —
X ||? with

X =g(A H), H=f(AX) (35)

Attribute masking [43], also referred to as graph com-
pletion [91], is another strategy to pre-train graph encoder f
under the graph autoencoder framework by reconstructing
masked node attributes. The encoder f computes the node-
level representations H given the graph with its node
attributes randomly masked. And a linear projection is
applied to H as the decoder g to reconstruct the masked at-
tributes. When the edge attributes are also available, one can
also perform reconstruction on the masked edge attributes.
Although the attribute masking is not explicitly named as
graph autoencoders, we categorize it as graph autoencoders
since the encoders are trained by performing reconstruction
on the entire or certain parts of the input graph.

4.1.2 \Variational Graph Autoencoders

Although sharing a similar encoder-decoder structure with
standard autoencoders, variational autoencoders as gen-
erative models are built upon a different mathematical
foundation assuming an existing prior distribution of latent
representation that generates the observed data. Primarily
targeted in learning the generation of the observed data,
variational graph autoencoders also shown promising per-
formance in learning good graph representations.

VGAE [39] introduces the simplest version of varia-
tional graph autoencoders. VGAE performs reconstruction
on the adjacency matrix and is composed a inference model
(encoder) q(H|A, X) = TT\} N (hi[i(A, X), 5:(A, X))
parameterized by graph neural networks p, 3 and a genera-
tive model (decoder) p(A|H ) modeled by the inner product
of latent variables. VGAE optimizes the variational lower
bound

Eq(m|A,x) [log p(A[H)] —

where KL(-) denotes the KL-divergence and p(H') denotes
the prior given by the Gaussian distribution.

ARGA/ARVGA [52] propose to regularize the autoen-
coder with an adversarial network [92] which enforces the
distribution of the latent variable to match the Gaussian
prior. In addition to the encoder and decoder, a discrimi-
nator is trained to distinguish fake data generated by the
encoder and the real data sampled from the Gaussian dis-
tribution. As the adversarial regularization is provably an
equivalence of the JS-divergence between the distribution of
the latent variable and the Gaussian prior, ARGA/ARVGA
can achieve a similar effect to VGAE but with stronger
regularization.

Lig(H|A, X)[|[p(H)], (36)
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SIG-VAE [53] replace the inference model in the varia-
tional graph autoencoder a hierarchy of multiple stochastic
layers to enable more flexible model of the latent variable.
In particular, the inference model is given by p(H|A, X) =
p(H|A, X, u,X), where p and X are considered as random
variables computed by stacked stochastic layers with noise
injected to each layer. The marginalized p(H| A, X) is hence
not necessarily a Gaussian distribution and enabled higher
flexibility and expressivity.

There exist other variations of the variational graph
autoencoders such as JTVAE [93] and DGVAE [94]. How-
ever, those variational graph autoencoders focus on the
generation of graphs. As we mainly consider the learning of
representations, we omit the introduction to those methods.

4.1.3 Autoregressive Reconstruction

Following the idea of GPT [95] for the generative pre-
training of language models, GPT-GNN [54] proposes a au-
toregressive framework to perform reconstruction on given
graphs. Ash both variational autoencoders and the autore-
gressive models are generative and based on reconstruction,
graph autoregressive models differ from that they perform
reconstruction iteratively. In particular, GPT-GNN consists
of a graph encoder f, decoders g¢,, and g. for node genera-
tion and edge generation, respectively. Given a graph with
its nodes and edges randomly masked, GPT-GNN generates
one masked node and its edges at a time and optimizes the
likelihood of the node and edges generated in the current
iteration. GPT-GNN iteratively generates nodes and edges
until all masked nodes are generated.

4.2 Representation Invariance Regularization

Adopting predictive objectives based on invariance regular-
ization is recently trending for both image and graph do-
mains. Methods adopting invariance regularization directly
computes losses on representations and usually follows a
similar framework to contrastive learning, i.e., to obtain
two augmented graphs of the given graph, and compute
the representations of the two graphs, but their objective
does not include any contrast nor requires paired or nega-
tive samples. Hence they are categorized as predictive ap-
proaches. In particular, the objective seeks to minimize the
difference between representation of two distorted graphs,
encouraging representations of the graphs to be invariant to
random distortions. Certain approaches are introduced to
enable the learning informative representations, preventing
trivial solutions to be learned.

Inspired by BYOL [20] in the image domain, BGRL [47]
proposes a variation of contrastive learning framework,
which eliminates the need of negative samples. Given a
mini-batch of graphs B, it compute node representations
H, , and H,; of two augmented graphs from each x in
B and minimize the following invariance-based loss with a
parametric predictor pg

Hmb
.0 ||||H

>

meB

Leyor =Eg.p~y (37)

Hpe

As no negative sample is included, certain mechanisms
and restrictions, such as updating an offline encoder with
exponential moving average [20] and batch normalization,



are required in the framework to prevent degenerate so-
lutions and achieve similar effect of optimizing MI bound
objectives. BGRL and BYOL are commonly acknowledged
as variations of contrastive methods. While the framework
of BGRL follows the typical contrastive framework, the
computation of the above invariance-based objective does
not require paired samples or negative samples.

CCA-SSG [60] proposes an invariance-based objective
inspired by a well-studied idea of canonical correlation
analysis [96, 97]. The proposed objective consists of an
invariance term minimizing the difference between two
representations and a decorrelation term minimizing the
correlation among dimensions of the representations, fomu-
lated as

Lcoa = Egopn {”Ha — H,|]?
(38)
A (|HIH, - 1+ |- 1)) |

where H, and H,; are batched node representations of
graphs with two augmentations a and b. Similarly to
Barlow-Twins [98], CCA-SSG uses batched representations
to estimate the correlations among different dimensions.
Both CCA-SSG and Barlow-Twins encourage the learning
of imformative representation by reducing the correlation
or redundancies among dimensions.

LaGraph [61] proposes another invariance-based objec-
tive based on the assumption that all observed graph data
have their latent counterparts, analogically to inaccessible
clean counterparts of observed noisy data such as images.
The proposed objective is derived as an self-supervised
upper bound to the supervised latent graph prediction loss,
formulated as

Cracronn = Eca x)urEy [D(A, H) -~ X|?/|V]
(39)
, 9 1/2

A\l o (H-H) /171 |,

where D is a decoder network, J is a random subset of
node indices, H is the node representation matrix of the
given graph, H' is the representation of the graph whose
nodes in J are masked, and 1 ;® means the invariance is
computed on the masked nodes only. Different from the
above two methods, LaGraph computes the representations
for the original graph and its masked version, instead of
two randomly augmented graphs, and only computes the
invariance on masked nodes. The characteristics come from
the derivation of the objective.

One intuition behind the invariance regularization-based
methods is that the learned representation are expected to
contain enough information of the given data but be invari-
ance to distortions on the data. Both CCA-SSG and LaGraph
discuss the relationships between invariance-based method
and the Information Bottleneck principle [99] indicating
the above intuition. Moreover, LaGraph further discusses
its relationship with denoising autoencoder and mutual
information-based methods.

4.3 Graph Property Prediction

In addition to the reconstruction, an efficient way to perform
self-supervised predictive learning is to design the predic-
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tion tasks based on informative graph properties that are not
explicitly provided in the graph data. Commonly applied
properties for self-supervised training include topology
properties, statistical properties, and domain-knowledge in-
volved properties.

S2GRL [55] generalizes the adjacency matrix reconstruc-
tion task to a k-hop connectivity prediction task between
two given nodes, motivated by that the interaction between
two nodes is not limited to their direct connection. In par-
ticular, given encoded representations of any pair of nodes,
the prediction head performs classification on the absolute
difference between the representations. S°GRL then trains
the encoder and prediction head to classify the hop counts
between the pair of nodes.

Meta-path prediction [57] provides a self-supervision
for heterogeneous graphs, such as molecules, which include
multiple types of nodes and edges. A meta-path of length ¢
is defined as a sequence (t1,--- ,tg) where t; denotes the
type of the i-th edge in the path. Given two nodes in a
heterogeneous graph and K meta-paths, the encoder f and
prediction heads g; (¢ = 1,--- , K) are trained to predict if
the two nodes are connected by each of the meta-paths as
a binary classification task. In [57], the predictions of the
K meta-paths are included as K auxiliary learning tasks in
addition to the main learning task.

GROVER [56] performs self-supervised learning on
molecular graph data with two predictive learning tasks.
In contextual property prediction, the encoder and pre-
diction head is trained to predict the “atom-bond-count”
relationship within the k-hop neighborhood of a given node
(atom), e.g. “O-double_bond-2" if there are two atoms “O”
connected to the given atom with double bonds. In addition,
a graph-level motif prediction task is applied to involve
the self-supervision of domain knowledge. For molecular
graphs, the motifs are instantiated by the functional groups
in molecules. Given a list of motifs, the graph-level predic-
tion head predicts the existence of each motif, as a multi-
label classification task.

4.4 Self-Training with Pseudo-Labels

Instead of the labels obtained from input graphs, the pre-
diction targets in self-training methods are pseudo-labels
obtained from the prediction in a previous stage utilizing
a small portion of labeled data [1] or even randomly initial-
ized. The self-trained graph neural networks can be either
applied under a semi-supervised setting or further fine-
tuned for downstream tasks. We consider the node-level
classification for an instance.

Under the node-level semi-supervised setting, the multi-
stage self-training [100] is proposed to utilize the labeled
nodes to guide the training on unlabeled nodes. Concretely,
given both the labeled node set and unlabeled node set, the
graph neural network is first trained on the labeled set. After
the training, it performs prediction on the unlabeled set and
the predicted labels with high confidence are considered as
the pseudo-labels and moved to the labeled node set. Then
a fresh graph neural network is trained on the updated
labeled set and the above operations are performed multiple
times.



M3S [58] applies DeepCluster [101] and an aligning
mechanism to generate pseudo-labels on the basis of multi-
stage self-training. In particular, a K-mean cluster is per-
formed on node-level representations at each stage and the
labels obtained from clustering are then aligned with the
given true labels. A node with clustered pseudo-label is
added to the labeled set for self-training in the next stage
only if it matches the prediction of the classifier in the cur-
rent stage. Compared to the basic multi-stage self-training,
M3S considers the DeepCluster and the aligning mechanism
as a self-checking mechanism and hence provides stronger
self-supervision.

ICF-GCN [59] proposes to optimize the GCN model and
pseudo-labels for nodes simultaneously in an Expectation-
Maximization (EM) manner. In particular, the E-step up-
dates the GCN based on the given pseudo-labels whereas
the M-step updates the pseudo-labels based on the GCN
predictions. Similarly to M3S, ICE-GCN performs clustering
on hidden representations to obtain GCN predicted classes.
To avoid the alignment issue, both pseudo-labels and the
clustered node classes are represented in relational matrix
of shape |V| x |V|, where an element value 1 indicates two
nodes belong to the same class and 0 indicates different
classes.

A recent study [83] provides the theoretical justifica-
tion for the self-training with pseudo-labels based on an
assumption of the expansion property and generalizes the
self-training methods from semi-supervised settings into
the unsupervised setting. Intuitively, the examples with
correct pseudo-labels will be utilized to denoise the in-
correctly pseudo-labeled examples and high accuracy can
be achieved due to the expansion assumption. Under the
unsupervised setting, it theoretically shows that a classi-
fier trained with arbitrarily assigned pseudo-labels can still
achieve good accuracy for some permutation of the classes.

5 SUMMARY OF LEARNING TASKS AND DATASETS

The self-supervised learning methods are usually applied
to and evaluated on two common types of graph-related
learning tasks, the graph-level inductive learning and the
node-level transductive learning. The graph-level inductive
learning aims to learn models predicting graph-level prop-
erties, and the models are trained and perform prediction
on different sets of graphs. On the other hand, the node-
level transductive learning aims to learn models performs
node-level property prediction, trained and performing pre-
diction on the same sets of large graphs. In this section, we
summarize datasets under the two types of learning tasks.
The statistics of common datasets are shown in Table 5.

5.1 Graph-Level Inductive Learning

Graph-level learning tasks are performed as inductive learn-
ing tasks on multiple graphs [38]. Commonly used datasets
for graph-level learning tasks can be divided into three
types, chemical molecule datasets, protein datasets, and
social network datasets.

Chemical Molecular Property Prediction. In a molecular
graph, each node represents an atom in a molecule where
the atom index is indicated by the node attribute and
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each edge represents a bond in the molecule. Datasets for
chemical molecular property prediction are also categorized
as small molecule datasets in TUDataset [102]. Traditional
molecule classification datasets such as NCI1 [103] and MU-
TAG [104] are the most commonly used datasets for unsu-
pervised graph representation learning in self-supervision
related studies [10, 49]. In addition, the molecule property
prediction models can be also trained in a self-supervised
pre-training and finetuning fashion for semi-supervised
learning and transfer learning. Recent works [43, 49, 56]
build their pre-training molecule dataset by sampling unla-
beled molecules from the ZINC15 [105] database containing
750 million molecules. MoleculeNet [21] also provides a
collection of molecular graph datasets for molecule prop-
erty prediction, which is suitable for downstream graph
classification. Among all the datasets in MoleculeNet, the
classification datasets such as BBBP, Tox21, and HIV are
used for the evaluation of several self-supervised learning
methods [43, 49, 56].

Protein Biological Function Prediction. The protein is
a particular type of molecule but is represented differently
by graph data. In a protein graph, nodes represent amino
acids and an edge indicates the two connected nodes are less
than 6 Angstroms apart. Datasets for chemical molecular
property prediction are also categorized as bioinfomatics
datasets in TUDataset. Similar to the chemical molecule
datasets, protein datasets can be used in both unsuper-
vised representation learning, such as PROTEINS [106] and
DD [107], and in the two-stage training.

Social Network Property Prediction. A social network
graph dataset considers each entity (e.g. a user or an au-
thor) as a node and their social connections as edges. As
social networks in different datasets represent differently,
social network graph datasets are not typically used for
transfer learning. Social network graph datasets used in
recent self-supervised studies [48, 49] are typical datasets
for graph classification [108] such as COLLAB, REDDIT-B
and IMDB-B.

5.2 Node-Level Transductive Learning

Node-level learning tasks can be performed as transductive
learning tasks on large graphs [38], where are nodes and the
complete graph structure, together with labels of a portion
of nodes, are available for training. The citation network
datasets [109], including CORA [110], CITESEER [111] and
PUBMED [112] are commonly used for node-level transduc-
tive learning. There are three typical ways to use the citation
network datasets. Contrastive learning methods [10, 38, 41]
are usually evaluated on the social network datasets by
performing unsupervised representation learning followed
by a linear classification with fixed representations, whereas
predictive learning studies usually perform unsupervised
representation learning followed by clustering [50, 51] or
semi-supervised link prediction [39, 55] on the social net-
work datasets.

Motivated by the concern that current GNN eval-
uations becomes saturated on above citation network
datasets, Shchur et al. [113] construct four additional
node-level datasets, Coauthor-CS, Coauthor-Physics from
the Microsoft Academic Graph [114], Amazon-Photos,



Summary and statistics of common graph datasets for self-supervised learning. Unsupervised classification refers to performing unsupervised

TABLE 1

representation learning followed by linear classification.
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Datasets Learning tasks Task level Category # graphs Avg.nodes Avg. edges # classes
NCI1 Small molecules 4110 29.87 32.30 2
MUTAG Small molecules 1113 17.93 19.79 2
PTC-MR Small molecules 344 14.29 14.69 2
PROTEINS Unsupervised or Bioinformatics (proteins) 1178 39.06 72.82 2

DD semi-supervised Graph Bioinformatics (proteins) 188 284.32 715.66 2
COLLAB classification Social networks 5000 74.49 2457.78 2
RDT-B Social networks 2000 429.63 497.75 2
RDT-M5K Social networks 4999 508.52 594.87 5
IMDB-B Social networks 1000 19.77 96.53 2

BBBP Small molecules 2039 24.05 25.94 2

Tox21 Small molecules 7831 18.51 25.94 12 (multi-label)
ToxCast Unsupervised Small molecules 8575 18.78 19.26 167 (multi-label)
SIDER transfz ¢ learnin Graph Small molecules 1427 33.64 35.36 27 (multi-label)
ClinTox PN P Small molecules 1478 26.13 27.86 2

MUV Small molecules 93087 2423 26.28 17 (multi-label)
HIV Small molecules 41127 25.53 27.48 2

BACE Small molecules 1513 34.12 36.89 2
CORA Citation network 1 2,708 5,429 7
CITESEER Unsupervised or Node/Link Citation network 1 3,327 4,732 6
PUBMED Hpervise Citation network 1 19,717 44,338 3
Coauthor CS sf“??.upte.r‘““d Citation network T 18,333 81,894 15
Coauthor Phy. ftjasf:s éi‘cifvr‘e) Node Citation network 1 34,493 247,962 5
Amazon Photos E-commerce network 1 7,650 119,081 8
Amazon Comp. E-commerce network 1 13,752 245,861 10

PPI Unsupervised Bioinformatics (proteins) 24 56,944 818,716 121 (multi-label)
Flickr classification Node Social network 1 89,250 899,765 7
Reddit (inductive) Social network 1 232,965 11,606,919 50

and Amazon-Computers from the Amazon Co-purchase
Graph [115]. The four datasets contain larger graphs with
more nodes and edges. And their learning tasks are hence
more challenging compared to the citation network datasets.

5.3 Node-Level Inductive Learning

Node-level inductive learning performs training and testing
on separate subsets. There are two typical ways to split the
nodes for training and testing. First, in cases that all nodes
are from the same large graph, a random subset of nodes
are selected for testing and is masked out together with
their edges during training, in contrast to the transductive
learning where all nodes and the complete graph structure
are used during training. Two commonly used node-level
inductive learning datasets in the first case are Reddit [86]
and Flickr [116]. Each node in Reddit represents a post and
posts are connected by edges if they are commented by the
same user. The node classification task is to predict which
community the post belongs to. For the Flickr dataset, each
node represents an image uploaded to Flickr and an edge
between nodes indicates that they share common properties
such as the same geographic location or commented by the
same user. The task is to predict the class (based on tags)
each image belongs to.

In cases that all nodes belong to separate graphs, the
training and testing nodes are split by graphs. Zitnik and
Leskovec [117] build a inductive learning dataset in the
second case containing 395K unlabeled protein obtained
from protein—protein interaction (PPI) networks and per-
form finetuning on PPI networks consisting of 88K proteins
labeled with 40 fine-grained biological functions, obtained

from Zitnik et al. [118]. Each node in a graph represents a
protein and an edge indicates the existance of interaction
between the proteins. The task of PPl is to predict the gene
ontology sets a protein belongs to.

6 AN OPEN-SOURCE LIBRARY

We develop an open-source library DIG: Dive into
Graphs [119]!, which includes a module, known as sslgraph,
for self-supervised learning of GNNs. DIG-sslgraph is based
on Pytorch [120] and Pytorch Geometric [121] and aims
at easy implementation and standardized evaluation of
SSL methods for graph neural networks. In particular, we
provide a unified and highly customizable framework for
contrastive learning methods, standardized data interface,
and evaluation tools that are compatible for evaluating both
contrastive methods and predictive methods. The overview
of the library is shown in Supplementary Figure 1.

Given the developed unified contrastive framework as
a base class, particular contrastive learning methods can
be easily implemented by specifying their objective, func-
tions for view generation, and their encoders. We also
pre-implement four state-of-the-art contrastive methods for
either node-level or graph-level tasks based on the unified
framework, including InfoGraph [41], GRACE [46], MV-
GRL [58], and GraphCL [49]. The provided data interface
includes datasets from TUDataset [102] and the citation net-
work dataset [109]. Other datasets from Pytorch Geometric
and new datasets processed by Pytorch Geometric are also
supported by our data interface. The provided evaluation
tools and data interface allow standardized evaluations of

1. The open-source library is now publicly available at the URL:
https:/ /github.com/divelab/DIG/



SSL methods and fair comparisons with existing SSL meth-
ods under common evaluation settings, including unsuper-
vised graph-level representation learning, semi-supervised
graph classification (or transfer learning, depending on
the datasets), and unsupervised node-level representation
learning. Altogether, our open-source library provides a
complete and extensible framework for developing and
evaluating SSL methods for GNNs. To show the efficiency
and effectiveness of the DIG-sslgraph library, we compare
the training time, memory consumption, and downstream
accuracy of four SSL methods on multiple datasets between
the original implementations and DIG counterparts. The
results are shown and discussed in Appendix G.

7 CHALLENGES AND FUTURE DIRECTIONS

While existing SSL approaches have shown promising ef-
fectiveness on learning from graph data, there still exist
several challenges due to the more complicated structure
and more diverse tasks of graphs. In this section, we discuss
the remaining challenges as well as potential directions for
future studies on Graph self-supervised learning.

The optimal views generation w.rt specific down-
stream tasks are still unclear for contrastive methods. The
performance of the learned representation or pre-trained
model on downstream tasks heavily depends on the se-
lection of transformations to generate views. The optimal
view generation also depends on specific downstream tasks.
However, there is still no way to obtain the optimal view
for each downstream task even the task is available. Several
studies have explored approaches to utilizing better views
for contrast based on adversarial learning [81] or search-
ing [82], but views generated by the two approaches are
still not optimal due to their limited search space for graph
transformations. In particular, Xu et al. [82] only considers
a finite set of graph transformations whose search space is
also limited. In addition, Suresh et al. [81] only considers
parameterized structural transformations, and more com-
plicated learnable view generation involving feature-space,
structure-space, and sampling-based transformation are still
challenging and are limited by the development of graph
generation studies [122, 123, 124, 125]. Moreover, the above
methods require available downstream tasks at the pre-
training stage. They become inapplicable when downstream
tasks are unavailable or in the unsupervised representation
learning setting. Hence it is also desired to study universally
optimal views under the downstream task-agnostic setting.

There is no unified theory or theoretical framework for
predictive methods. Unlike contrastive methods grounded
by the problem of mutual information maximization, the
predictive methods, especially the graph property predic-
tion and invariance regularization-based methods, utilize
different pretext learning tasks motivated by individual
hypotheses and based on empirical studies. However, they
lack guidance from unified theoretical frameworks to design
specific pretext tasks for different downstream tasks. The
information bottleneck principle may be used to interpret
the effectiveness of several predictive methods but further
study and investigation are desired.

Richer domain knowledge can be better utilized as
self-supervision. For graph machine learning tasks oriented
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by other research areas such as biomedical researches and
quantum physics, existing constraints and rules from do-
main knowledge naturally contain rich supervision bene-
fiting the learning of downstream tasks. Including domain
knowledge has shown to be effective for both contrastive
methods [126] and predictive methods [56]. Currently, only
simple domain knowledge-based tasks such as the motif
prediction [56] are adopted. Future studies on designing
novel tasks better utilizing domain knowledge such as
functional groups and quantum mechanisms are promising
directions.

Scaling-up and efficiency issues are to be addressed.
Many existing SSL approaches suffer from memory issues
and computing efficiency issues in terms of time consump-
tion when scaled up to larger graphs. For contrastive meth-
ods, the scaling-up issue becomes more critical as their
performance usually relies on a larger number of samples
in a mini-batch. In addition, as the contrastive framework
requires computing representations of multiple views, their
memory consumption is times higher than predictive ap-
proaches. When the computing of view generation for con-
trastive methods or the graph properties computation for
predictive methods is heavy, the computation time may
increase sharply as the graph scales up. The above issues
prevent the application of existing methods to extremely
large graphs in industrial scenarios or other research areas
(e.g., protein networks and particles in materials). Currently,
studies addressing the scaling-up issue for SSL methods are
still lacking and less explored.

Explainability of SSL for GNN requires further stud-
ies. The explainability for GNNS is critical in multiple appli-
cation scenarios to assure the reliability and security of GNN
models. For example, in drug discovery, it is important to
understand which functional group in a molecular graph
leads to the GNN decision for a property prediction. A sur-
vey work [127] provides a thorough introduction to existing
explanation methods for GNNs. However, existing SOTA
studies focus on the explanation under supervised setting
and require downstream tasks to perform explanation, and
only limited methods, such as gradient-based methods, can
be adapted to explain pre-trained GNN encoders without
given the downstream prediction head. A recent work [128]
proposes the task-agnostic explanation framework to enable
high-quality GNN explanations without downstream tasks.
The task-agnostic framework can be utilized to explain
GNN s trained through SSL. More studies and investigations
are desired in this direction.

8 CONCLUSION

Despite recent successes in natural language processing
and computer vision, the self-supervised learning applied
to graph data is still an emerging field and has signifi-
cant challenges to be addressed. Existing methods employ
self-supervision to graph neural networks through either
contrastive learning or predictive learning. We summarize
current self-supervised learning methods and provide uni-
fied reviews for the two approaches. We unify existing
contrastive learning methods for GNNs with a general
contrastive framework, which performs mutual information



maximization on different views of given graphs with ap-
propriate MI estimators. We demonstrate that any existing
method can be realized by determinating its MI estimator,
views generation, and graph encoder. We further provide
detailed descriptions of existing options for the components
and discussions to guide the choice of those components.
For predictive learning, we categorize existing methods into
graph reconstruction, property prediction, and self-training
based on how labels are generated from the data. A thor-
ough review is provided for methods in all three types of
predictive learning. Finally, we summarize common graph
datasets of different domains and introduce what learning
tasks the datasets are involved in to provide a clear view to
conduct future evaluation experiments. Altogether, our uni-
fied treatment of SSL in GNNs in terms of methodologies,
datasets, evaluations, and open-source software is antici-
pated to foster methodological developments and facilitate
empirical comparisons.
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APPENDIX A
HETEROGENEOUS AND DYNAMIC GRAPHS

Compared to typical homogeneous graphs, the heteroge-
neous graphs further include attributes indicating types of
nodes and edges that contain richer topological and feature
information. Generally, typical contrastive and predictive
frameworks can still be adapted to learn representations
from heterogeneous and dynamic graphs, as long as a
proper graph encoder, such as message passing neural
networks with edge attributes and R-GCNs [129]. To better
utilize the information in node and edge types, recent work
proposes contrastive methods with view generations and
objectives specifically designed for heterogeneous graphs.
In particular, for the view generation, HeCo [79] proposes to
generate the network schema and meta-paths as two views
in the contrastive framework for heterogeneous graphs, as
introduced in Section 3.3.3. Moreover, for the computation
of contrastive objectives, HGNN [78] proposes to adopt
asymmetric projection heads for the representation of two
nodes with different types. For predictive methods, the
meta-paths in heterogeneous graphs are adopted as addi-
tional self-supervision to help improve the performance of
downstream tasks. The dynamic graph can be considered
as a special case of heterogeneous where the additional
attributes contain temporal information indicating the time
when the nodes and edges are constructed in a continuous
form. Tian et al. [130] propose the time-aware GNN encoder
for dynamic graphs and the DDGCL framework where two
temporal subgraphs obtained at different time points are
adopted as two views. While still following the general con-
trastive framework, the specific design of view generation,
encoders, and objectives for homogeneous and dynamic
graphs can bring additional performance gain compared to
general contrastive methods on homogeneous graphs.

APPENDIX B
COMPARISONS BETWEEN CONTRASTIVE AND PRE-
DICTIVE MODELS

As described in Section 1, the major methodological differ-
ence between contrastive methods and predictive methods
is whether paired samples are required for training, as
contrastive methods contrast negative pairs from positive
ones. They both aim to learn encoders that compute infor-
mative representations. For contrastive learning, the goal
is achieved by maximizing mutual information between
representations of different parts of the data. In other words,
the mutual information I(v;, f(v;)) between any given
view v; and its representation f(v;) is maximized only if
I(f(vi), f(v;)) is maximized, ideally, to I(v;,v;) for any
views of a given graph. For predictive methods, the goal
is achieved by learning representations that preserve (by
being able to predict) certain properties or characteristics
of the original graph.

Empirically, contrastive methods are usually more com-
putationally expensive compared to predictive methods but
generally outperform most predictive methods in terms
of downstream classification performance. On the other
hand, recent predictive methods based on invariance-
regularization can achieve performance on par with the

21

SOTA contrastive methods. The design of pretext learning
tasks in predictive methods is more flexible so more do-
main knowledge can be included to benefit the learning
of representations. However, most predictive methods are
less theoretically guided compared to contrastive methods
grounded on mutual information, as discussed in Section
7, which may lead to the reduced performance mentioned
above.

APPENDIX C
GRAPH ENCODERS IN CONTRASTIVE LEARNING

Graph encoders are usually constructed based on graph
neural networks (GNNs) following a neighborhood ag-
gregation strategy, where the representation of a node is
iteratively updated by combining the its own representa-
tion with the aggregated representation over its neighbors.
Formally, the k-th layer of GNN is:

z(¥) = COMBINE®) (2(F=1) | qh), (40)

a’ = AGGREGATE™® ((mq()kfl), 2y u e N(v)) ,

(41)
where ') denotes the feature vector of node v at the
k-th layer, and N (v) is a set of neighbor nodes of wv.
Graph encoders mainly differ from their a§§regation strate-
gies. COMBINE®®(.) and AGGREGATE™™)(.) are compo-
nent functions that determine types of GNNSs, such as Graph
Convolutional Networks (GCNs) [23], Graph Attention Net-
works (GATs) [131] and Graph Isomorphism Networks
(GINs) [24].

C.1

The most straight-forward way to obtain the node-level
representation h, for node v is to directly use the node
feature at the final layer K of the encoder [38, 43, 44],
ie, hy = 2. One may also adopt skip connections or
jumping knowledge [132] to generate node-level represen-
tation. However, the node-level representation produced by
concatenating node features from all layers have different
dimension from node features. To avoid such inconsistency
in vector dimension, [41, 49] and [10] concatenate node
features of all layers, followed by a linear transformation:

h., = CONCAT([zP]K_yw, (42)

v
where W € Rk @%)%4 js the weight matrix used to shrink
the dimension size of h,,.

The READOUT function is considered as the key op-
eration to compute the graph-level representation hgrqpn
given the node-level representations H of the graph. For
the sake of node permutation invariance, summation and
averaging are most commonly used READOUT functions.
Sun et al. [41], You et al. [49] and Hassani and Khasahmadi
[10] employ sum over all the nodes’ representations as

Node-Level and Graph-Level Representations

\4
hgraph = READOUT(H) = (> _ h), (43)
v=1
where |V| denotes the total number of nodes in the given
graph, and o is either sigmoid function, multi-layer percep-
tron or identity function. Velickovi¢ et al. [38] and Jiao et al.



[44] employ mean pooling READOUT that averages all the
node-level representations as

V]

\V\ 2t

Ryraph = READOUT(H (44)

C.2 Effects of Graph Encoders

Typically, GNN-based encoders are not constrained on
choices of GNN types and most frameworks [10, 48] allow
various choices. However, some studies have more thor-
ough considerations of GNN types. InfoGraph [41] adopts
GIN to achieve less inductive bias for graph-level applica-
tions. GraphCL [49] finds GIN outperforms GCN and GAT
in semi-supervised learning on node classification tasks. Hu
et al. [43] observe that the most expressive GIN achieves
the best performance with pre-training, although GIN has
slightly inferior performance than the less expressive GNNs
without pre-training. That is, GIN achieves the highest
performance gain of pre-training. This observation agrees
with [133] that fully-utilization of pre-training requires an
expressive model as limited expressive models can harm
performance and the observation [134] that the quality of
learned representations is impacted more by the choice of
encoder than the objective. On the contrary, for SUBG-
CON [44], GCN-based encoders outperform other GNN-
based encoders as GCN is more suitable to handle sub-
graphs than more expressive GIN and GAT. In addition,
Veli¢kovi¢ et al. [38] and Zhu et al. [46] employ different
encoders on different learning tasks, i.e., GCN for trans-
ductive learning tasks, GraphSage-GCN or a mean-pooling
layer with skip connection for inductive learning on larges
Reddit, and mean-pooling layers with skip or dense skip
connections for inductive learning on multiple graphs PPIL.
These observations imply that different contrastive learning
frameworks and methods may prefer distinct GNN types
for encoders. Even for the same framework, encoder choices
may vary when applying to different datasets.

APPENDIX D
COMPARISON OF CONTRASTIVE OBJECTIVES

Among all contrastive objectives for graphs, the JS estimator
7(75) and InfoNCE Z(NCE) based on lower-bounds to mu-
tual information are most commonly used. Regarding the
two estimators generally, Hjelm et al. [68] empirically shows
that InfoNCE generally outperforms the JS estimator in most
cases. However, compared to the JS estimator, InfoNCE is
more sensitive to the number of negative samples N and
requires a large number of negative samples in order to be
competitive. Consequently, when the number of negative
samples, i.e., the mini-batch size, is limited, the performance
of InfoNCE could be limited and the JS estimator may
become a better choice.

In addition, Hassani and Khasahmadi [10] perform ab-
lation studies comparing the three objectives Z(OV) 708)
and Z(NCE) with batch size ranged from 32 to 256 for graph
classification and ranged from 2 to 8 for node classification.
They show that the JS estimator generally leads to the best
performance among all objectives on graph classification
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datasets, while InfoNCE (or NT-Xent) achieves overall best
performance on node-classification tasks.

Moreover, Jiao et al. [44] compares the non-bound based
triplet margin loss, the logistic loss [135] as an equivalence
of the JS estimator and the BPR loss as an equivalence of the
InfoNCE with N = 1 under their graph contrastive frame-
work. Their results show that the JS estimator and the BPR
loss (the InfoNCE loss with [NV = 1) are similarly effective in
their method, while the triplet margin loss achieves the best
performance among the three objectives. The results indicate
that the triplet margin loss can still be effective, given some
certain views of the graphs, when the positive pairs and
negative pairs should not be discriminated absolutely.

APPENDIX E
SUMMARY OF SSL METHODS FOR GNNSs

We summarize contrastive methods and predictive methods
reviewed in this survey in Supplementary Table 1 and
Supplementary Table 2, respectively.

APPENDIX F
OVERVIEW OF THE SSLGRAPH LIBRARY WITHIN
DIG

An overview of the developed DIG-sslgraph library is
shown in Supplementary Figure 1.

APPENDIX G
EFFICIENCY AND DOWNSTREAM ACCURACY OF
DIG IMPLEMENTATIONS

We compare the efficiency and downstream accuracy be-
tween individual original implementations and DIG imple-
mentations for SSL methods in Supplementary Table 3. All
results are obtained from running corresponding implemen-
tations under the unsupervised setting on the same environ-
ment and device with a single NVIDIA V100 GPU. We use
the standard dataset split for training and test [121] for all
datasets. Note that the left column of downstream accuracy
are reproduced results using the official code provided by
the authors and may differ from the original results reported
in their paper due to environment difference, randomness,
training/test data split, or any unreleased tricks. For exam-
ple, the original GRACE code uses different datasets split
with individual prefixed random seeds for each dataset. To
assure fair comparisons, we perform evaluation of the orig-
inal GRACE under the standard datasets split. Regarding
the efficiency, the DIG-sslgraph implementations consume
significantly less training time for GraphCL, MVGRL, and
InfoGraph, due to more efficient view generation compu-
tations. Besides, DIG consumes the same level of GPU
memory as original implementations for all four methods.
Although DIG-sslgraph does not focus on efficiency opti-
mization, we will keep improving the efficiency in future
released versions.



TABLE 2
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Summary of contrastive methods for GNNs in chronological order. Columns categorize the methods by their learning objectives, level of
representations for contrast (G: graph, N: node), the type of view generation, and the level of their majorly targeted downstream tasks. We also
include notes to show their specific constraints or related literature in other domains such as vision for additional references, when applicable. For
downstream tasks, the task of link prediction is also considered as node-level as it is based on representations of a pair of nodes. *The triplet loss

is equivalent to the NT-Xent (InfoNCE) loss where the number of negative samples equals to one.

Method Objective Rep. Levels View Generation Targeted Downstream Tasks Other Notes

DGI [38] JSE G-N Identical Node-level Deep Infomax [68]
InfoGraph [41] JSE G-N Identical Graph-level Deep Infomax [68]
Hu et al. [43] JSE G-G Subgraphs Graph-level -

GMI [42] JSE N-N Identical Node-level -

GCC [48] InfoNCE G-G Subgraphs Graph-level -
SUBG-CON [44]  Triplet* G-G Subgraphs Graph-level -

GRACE [46] InfoNCE N-N Structural & Feature Node-level Molecular Graph
MVGRL [10] JSE G-N Structural & Subgraphs Node-level -

GraphCL [49] InfoNCE G-G Random Graph-level SImCLR [11]
GCA [45] InfoNCE N-N Structural & Subgraphs Node-level -

PHD [126] JSE G-G Subgraphs Graph-level Molecular Graph
PT-HGNN [78] InfoNCE N-N Structural Node-level Heterogeneous Graph
HeCo [79] InfoNCE N-N (Scherilalb&érls/[i}tli-path) Node-level Heterogeneous Graph
InfoGCL [82] InfoNCE  G-G/G-N/N-N Optimized (searched) Graph-level/Node-level Tian et al. [80]
AD-GCL [81] InfoNCE G-G Optimized (learned) Graph-level Tian et al. [80]

TABLE 3

Summary of predictive methods for GNNs. Columns categorize the methods by their sources of supervision, sub-categories, pretext tasks, and
paradigms of utilizing self-supervision. In the training paradigm column, URL denotes unsupervised representation learning, Pretrain denotes
unsupervised pretraining, and Auxiliary denotes auxiliary learining.

Method Source of Supervision  Sub-category Pretext Task Training Paradigm
GAE [39] Graph autoencoder Adjacency reconstruction URL
VGAE [39] Variational autoencoder Adjacency reconstruction URL
MGAE [50] Denoising autoencoder Node feature reconstruction URL
ARGA/ARVGA [52] Variational autoencoder Adjacency reconstruction URL
GALA [51] Reconstruction Graph autoencoder Node feature reconstruction URL
SIG-VGA [53] Variational autoencoder Adjacency reconstruction URL
GPT-GNN [54] Auto-regressive reconstruction =~ Node and edge reconstruction URL
SuperGAT [87] Graph autoencoder Adjacency reconstruction Auxiliary
SimP-GCN [88] Graph autoencoder Node-pair similarity rec. Auxiliary
BGRL [47] Invariance - Pseudo-contrastive URL
CCA-SSG [60] recularization - Correlation reduction URL
LaGraph [61] g - Latent graph prediction URL
S2?GRL [55] Statistical property K-hop connectivity prediction URL
GROVER [56] Graph properties i?;iﬁlgg;:iii%mam Motif, contextual property pred. Pretrain
Hwang et al. [57] Topological property Meta-path prediction Auxiliary
M3S [58] Pseudo-label Self-training Pseudo-label prediction URL
TFC-GCN [59] seudo-labels Self-training Pseudo-label prediction Pretrain

TABLE 4

Comparisons on efficiency and downstream accuracy between individual original implementations and DIG implementations for SSL methods.
Efficiencies are compared in terms of in terms of training time and GPU memory. Four pre-implemented methods, GraphCL, MBGRL, InfoGraph,
and GRACE, are compared.

Method Dataset Tlmg cost per GPU memory Downstream accuracy
training epoch consumption
Original DIG Original DIG Original DIG
NCI1 68.6915s 7.279s 1459MB 1499MB 0.7954 £ 0.0141 0.7961 £ 0.0143
GraphCL PROTEINS 5.223s 3.996s 1463MB 1607MB 0.7547 £ 0.0350 0.7637 £ 0.0290
MUTAG 0.278s 0.446s 1431MB 1475MB 0.8991 £ 0.0495 0.9096 £ 0.0669
MUTAG 9.417s 1.602s 1917MB 2091MB 0.8778 £ 0.0665 0.8877 £ 0.0646
MVGRL PTC-MR 8.213s 2.986s 2827MB 2493MB 0.5755 £ 0.0670 0.5903 £ 0.0859
IMDB-B 27.342s 8.557s 4459MB 4783MB 0.7450 £ 0.0377 0.7370 £ 0.0377
MUTAG 0.585s 0.551s 1459MB 1459MB 0.8939 £ 0.0885 0.9041 £ 0.0927
InfoGraph PTC-MR 0.808s 0.924s 1471IMB 1445MB 0.6249 =+ 0.0966 0.6196 £ 0.0422
IMDB-B 9.356s 3.013s 1485MB 1465MB 0.7370 £ 0.0276 0.7400 £ 0.0313
CORA 0.020s 0.064s 1701IMB 1773MB 0.7869 + 0.0013 0.7877 £ 0.0096
GRACE CiteSeer 0.030s 0.083s 2001MB 2145MB 0.6858 £ 0.0004 0.6842 £ 0.0061
PubMed 0.233s 0.345s 12703MB 13963MB 0.8217 £ 0.0005 0.8188 £ 0.0046




24

Data interface

(Pre-implemented) Encoders

Objectives: i i Pre-implemented models: i
InfoNCE, 3L GRACE, InfoGraph, |
Jensen-Shannon estimator | | MVGRL, GraphCL :

I
View generation functions: |
feature, sample, |
structure, combination |

I
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: representation learning 1 | graph classification 0! representation learning i

Fig. 7. An overview of the developed ssligraph library within DIG: Dive into Graphs. The library provides a standardized evaluation framework
consisting of customizable framework and pre-implemented models for contrastive methods, data interface and evaluation tools for both contrastive
and predictive methods.
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