Monitoring GDA Agent’s Expectations
Generated from Durative Effects

Author Names Withheld

Abstract. One of the crucial capabilities for robust agency is self-assessment,
namely the capability of the agent to compute its own boundaries. A method
of assessing these boundaries is using so-called expectations: constructs defin-
ing the boundaries of an agent’s courses of action as a function of the plan, the
goals achieved by that plan, the initial state, the action model and the last ac-
tion executed. In this paper we redefine four forms of expectations from the goal
reasoning literature but, unlike those works, the agent reasons with durative ac-
tions. We present properties and a comparative study highlighting the trade offs
between the expectations.

1 Introduction

There has been an increasing interest in Al safety, creating reliable Al agents that per-
form within their boundaries. With the increasing sophistication of autonomous sys-
tems, situations arise in which unexpected situations may occur. This happens when the
agent and/or the environment in which the agent is operating behaves in a way that is
inconsistent with the agent’s planning knowledge.

Goal-driven autonomy (GDA) agents supervise the agent’s execution of its current
plan and formulate new goals when discrepancies arise between the agent’s expecta-
tions of the actions in the plan executed so far and the resulting state. To detect dis-
crepancies, the agent generates a set of expectations X (7, a), as a function of the next
action a in the plan 7 to be executed. The agent can then check if this expectation is
satisfied in the state, s.

Naively, for computing the expectation X (r, a) it would seem sufficient for the
agent to simply check if the preconditions of a are satisfied in s (i.e., to define X (7, a)=
’the preconditions of a”). However an agent using expectations defined this way would
not be checking the plan trajectory in any way. Similarly, we could project the state s
before the action a is the be executed from the initial state sy using 7. (i.e., to define
X (7, a) = s). Expectations are often generated this way in the goal reasoning literature
[11,[2],[3]). The issue here is that there are often cases where there are variables in the
state that have no bearing on 7 and thus if they are altered it will not impact the agents
execution. To define the expectations over the entire state would cause discrepancies
in situations where they are not needed. Researchers have observed that the notion of
expectations plays a key role in the resulting performance of goal reasoning agents [4,
51

2 Author Names Withheld

In this paper we report on our studies computing expectations when the actions
are durative. This means actions have continuous effects over some segment of time.
For instance, the agent may control a camera to follow a target while turning around
20° on a swivel. Performing this action requires some time to complete as a function
of the rotation speed of the camera. Furthermore, while performing this action, the
agent may initiate another action such as zooming out by a 1/3 zoom ratio. This action
itself requires time to complete and may be initiated while the previous action is still
not completed. Therefore, expectations are also a function of the time ¢ and not of a
specific action in 7 since multiple actions may have been initiated. Thus, in our work,
expectations are a pairs of the form X (, ¢), where ¢ is some time after 7 was initiated.

The following are the main contributions of this paper, centered around the notion
of expectations when GDA agents perform durative actions:

— We re-define the notion informed, regression [6] and goldilocks [7] expectations.

— We formulate properties on regression expectations providing guarantees on the
success of the remaining plan when certain conditions are met.

— We provide a empirical evaluation on two very different domains and discuss trade
offs between the different forms of expectations.

2 Related Work

GDA is a goal reasoning model in which agents monitor the current plan’s execution
and assess whether the observed states match the agents’ own expectations. GDA agents
formulate a plan 7 achieving goals g from the current state s. They also formulate the
expectations X (7, a) for every action a in 7. As each action a in 7 is executed, the
agent checks if its expectations X (, a) are satisfied in the current state s. When they
are not satisfied the GDA agents follows a procedure to formulate new goals ¢’, a new
plan 7/, new expectations X (7', a) and the process repeats itself.

Research on GDA agents have explored different facets of the cycle including gen-
erating explanations for the mismatch between the agent’s expectation and the state [8]
and procedures to generate new goals [9]. In this discussion, we focus on work for-
mulating the expectations. A variety of formulations for the expectations have been
formulated mostly for symbolic domains. This includes defining the expectations as
[10]:

(1) immediate expectations: checking the preconditions of the next action to exe-
cute;

(2) state expectations: the projected state by applying the actions in the plan exe-
cuted so far;

(3) informed expectations: the cumulative effects of the actions executed so far;
(4) goal regression expectations: starting from the goals, accumulating the condi-
tions in the state necessary to execute the rest of the plan, building on classical work
[11];

(5) goldilocks expectations [7] combining (3) and (4).

In our work we re-define informed, regression, and goldilocks expectation’s when ac-
tions have durative effects.

Monitoring GDA Agent’s Expectations Generated from Durative Effects 3

GDA expectations have been explored for actions with numeric fluents. Intervals
(xy,z4) are used to indicate valid values for a variable. Actions define a function f(z)
indicating new values for x after the action is applied. Like their symbolic counter-
parts, these works assume the actions in a plan 7 are executed instantaneously and in
sequence. Therefore, expectations are also denoted as a function X (7, a) of each ac-
tion a € 7. In Wilson et. al. [12], state expectations are defined in which the intervals
are projected forward (f(z,), f(z4)) for each action. [13] extends these ideas for in-
formed, regression, and goldilocks expectations. In our work, we re-define when the
numeric effects of the action change over time (e.g., f(z,t)) and include situations
when actions in the plan 7 are performed concurrently. Hence, we define expectations
over time, X (7, t).

Studies on expectation failures emanate from the plan execution literature [14]. For
instance, [15] proposed a model to find the reason for a failure in the plan. [16] propose
a taxonomies of expectation failures as a function of the plan, planning knowledge, the
resulting state and the state expectations. For example, the incorrect domain knowledge
class refers to expectations failures caused by planning operators incorrectly modeling
the actual operators behavior. [17] presents an alternative taxonomy of failures related
to the execution of the SIPE HTN planner. For instance, a failure maybe attributed to
a condition that was held to be true at planning time but it is no longer true when the
plan is executed. [18] proposes execution failures when the plan doesn’t meet quality
considerations. None of these works consider failures due to durative actions.

3 Preliminaries

Throughout this paper, we will use partial mappings. A partial f : A - B indicates
a function that is defined only for a subset of A. When referring to the set of variables
defined in a mapping, we write Ay, meaning the set of variables from A defined in the
mapping f. When listing the entire mapping (e.g., in examples), we will use a dictionary
format to represent the partial mapping, where the keys are the variables, and the values
are what they map to. For example, f = {a : 1,b : 0} denotes that there are two
variables in mapping f: a and b, and that their respective values, denoted f[a] and f[b],
are 1 and 2.

Since we are dealing with actions that have functional effects, such as changes over
a time t, we use lambda calculus to represent them. Briefly, functions are represented
as tuples. The first element in the tuple is the function to be exercised, all following el-
ements in the tuple are arguments to that function. For example, (— 3 2) represents the
minus function, where 3 is the first argument and 2 is the second, i.e., 3 - 2. Therefore
(— 3 2) would return 1. There can also be functions with free variables, called lambda
functions. We use these to represent functions dependent on a time variable. For exam-
ple, one can write f = At.(— t 3) to represent a function with a singular argument ¢.
This function f thus returns the argument given it subtracted by 3, thus (f 5) would
return 2.

A state is a mapping S : V — R from a collection of variables V to a collec-
tion of real numbers R. Since we are dealing with real numbers, its unrealistic to al-
ways know the exact values of variables [19]. Therefore we represent the value of a

4 Author Names Withheld

variable, e.g., at-y[r], with two mappings denoting its lower and upper bounds, e.g.,
(at-y[r]y, at-y[r]1). Actions have durative effects, meaning for a time period ¢ the vari-
able is changing as a function of ¢. Table 2 shows an example of a state, while Table 1
shows an example operator that can be applied to this state. As exemplified in Table 1,
an operator is a 4-tuple o=(name parameters pre® ef f¢).

A set of goals G is a partial mapping G: V' - R from a collection of variables V' to
a collection of real numbers R. These are also represented with two mappings to denote
an upper and lower bound for each variable in V.

An operator’s preconditions are a list of variables boundings. They are represented
as the partial mapping pre® : V' - C of variables to constants (with individual vari-
ables for upper and lower bounds). For example, in the operator move_north shown in
Table 1 we are checking that the lower bound of the variable at-y[z] (i.e., at-y[z]) is
(* t move-rate[z]4)).

We define the set of effects from an action as a partial mapping ef f¢ : V. —» A
from variables to lambda functions. Looking at Table 1, we can see that the effects are a
list of 3-tuples. For the purpose of our calculations, we care solely about the functional
changes to the state variables. Thus for all variables v € e where e is the effect list,
eff*v] = e[v][2][0]. For example, from Table 1, one of the effects is ”[at-y[z]; —
(+ at-y[z]y ((f1 z)t))),”. Thus ef f*[at-y[x];] would be the lambda function returned
by ”(f1 z)” (as defined in the operator).

Applying operators change the values of variable as a function of time ¢. For exam-
ple, consider applying the operator move_north (Table 1) to the initial state defined in
Table 2 with arguments (r, 2), indicating rover r is to move north for 2 time steps. The
operator changes the rover’s fuel level fuel[r] and its y coordinate, at-y[r]. The upper
bound of its fuel level, at-y[z]+, changes from 10 to (4 10 (s—¢ .9); when ¢t = 2,
the execution of the operator is completed and the value of at-y[x]4 is set to 8.2 (i.e.,
(4+ 10 (x —2.9)).

A plan 7 is defined as a set of time stamped actions of the form (time, action). For
example, in Table 2 the first action in 7 is (0, move_north(r, 2)), indicating that at time
0, the action move north with the parameters r and 2 is executed. The next action is (0,
move_east(r, 2)). Since its starting time is also 0, the effect of this is the rover moving
diagonally.

We denote the partial mapping Ts : T -+ P(A) as a mapping from a time ¢ to the
set of actions T(¢) starting at time ¢. Analogously, we also define the partial mapping
T. : T -+ P(A) as a mapping from times to sets of actions that end at those times
(P(A) is the power set of A).

A planning problem is a triple P = (Sp, A, G). A plan 7 solves a problem P if the
following conditions are met: there is a sequence of states Sy, S, ..., S, such that: (1)
S; yields S;;; in 7. (2) G is satisfied in .S,,.

S; yields S; 41 by adding > f,(1) for all actions a such that a € Ti(t') U T.(t")
with ¢/ <14 < t”, with f, being the functional effect that changes a variable v in action
a. That is, for each variable v, S;11[v] = S;[v] + 3% fa[v](1).

A mapping of variables to values such as G is satisfied in a state S'if forall v € V,
Glv;] > Slv,] and for all v+ € Vj, G[vy] > S[vy]. The same definition applies to an

Monitoring GDA Agent’s Expectations Generated from Durative Effects 5

(:operator move_north
:parameters X t

:condition

at-y[z]; — (* t move-rate[z]+)
fuel[z]y — (x ¢ fuel-rate[z]¢)
-effect

at-y[z], — (+aty[z], ((fr2)t
at-ylals — (+ at-ylalr ((
fuel[z]; — (+ fuellz], ((
fuel[z]y — (+ fuel[z]y ((
f1=Az.(At.(x t move-rate[z]+
f2 = Az.(At.(x t move-rate[z],
f3 = Ax.(At.(x -t fuel-rate[z]+)),
fa=Ax.(At.(x -t fuel-rate[z]}))
Table 1. Example of operator with a numeric fluent (fuel).

Jax)
f3)
Jax)

expectation X, which is also a mapping from variables to values, to be satisfied in a
state S.

Similarly, let 7; be the portion of the plan 7 that remains to be executed at time
t < n+ 1. That is, 7; includes all actions in 7 not in 7,(0) U T, (1) U ... T.(t) (.e.,
actions that are still under execution or whose execution has not started yet). 7; is valid
if there is a sequence of states S;, Si41, ..., Sp, yielded such that: (1) S; yields S;; in 7.
(2) G is satisfied in S),. In our work, we assume the state persists unmodified after the
completion of the plan 7, meaning S,, = S,,+1 and therefore, the empty plan 7,11 = ()
solves (Sp+1, A, G) whenever 7 solves (Sy, 4, G).

4 Two Basic Operations

We introduce two basic operations &g and ©p, which are used to define precisely the
different forms of expectations. Informally, ®g compounds lambda functions (useful
for adding together effects of actions), whereas ©p removes a function from a com-
pounded set (useful for removing the effect of an action as its function of ¢ after it is
completed).

We define D = A @g B, where A are some variables (e.g., accumulated changes
while compounding functions), S is the current state, ¢’ is the current time, and B are
the effects of some action (e.g., the next action in the plan). More generally, for any
partial functions A and B, any time ¢/, and any state S with A : V - A, S : V — A,
e Zt,and B:V » A, A @g B is a partial mapping Dy : V - A defined as
follows:

1. ifv € V4 NV where A[v] = M and B[v] = N, then
Dy [v] = Xt.(+ (M t) (N(—tt))).

2. ifv € V4 — Vg then Dy (v) = A(v).

3. ifv € Vg — V4 where S[v] = M and B[v] = N, then
Dy[v] = Xt.(+ (M t) (N (=t t'))).

6 Author Names Withheld

(:Initial State
{fuel : {r;: 10, r4: 10]}}
{Beacon_fuel : {r;: 1, r4: 11}}
{at-y : {r;: 2, ry: 2, Beaconl: 0, Beaconl4: 0}}
{at-x: {r;: 0, ry: 0, Beaconl: 2, Beaconls: 2}}
{lit : {Beaconl,: 0, Beaconl4: 0}}
{fuel-rate : {ry:.9, ry:1.1}}
{move-rate : {r;:.9, ry:1.1}}
:Actions
move_north, move_south, move_east, move_west,
light_beacon
:Goals
{lit : {Beaconl: 1, Beaconls: 1]}}
:Plan 7
(0, move_north(r, 2)), (0, move_east(r, 2)),
(2, light_beacon(r, 1))
Table 2. Planning problem and a solution plan

4. for all other variables Dy is undefined (i.e., Vp,, = Va U Vp)

Informally, A ®% B results in a function addition (+ (A[v] t) (B[v] (— '))) when
the variable v is defined in A and B (Case 1), or (4 (S[v] t) (B[v] (— tt'))) when v is
defined in B but not A (Case 3). We are using an updated time variable (— ¢ ¢") for the
functions from B since these represent the effects of the next actions to be added into
the expectation set. Since we are in the middle of the plan, we need to shift the value of
t to represent that that action isn’t starting at time ¢ = 0. If the variable v is defined in
A but not B, it’s assigned A[v] (Case 2). When it’s undefined in A and B, then it’s left
undefined (Case 4). For example, if A, S, and B are defined as:

A={a: M.(+(x21)3),c: Mt.(t)}

S={a: M.(+(x21)3),b: X.(—(x3t)4),c: At.(¢)}

B={a: .(x21),b: \t.(1)}

— t' = 3 (current time is 3)

— Then D = A& B={a: M.(—(x4)3),b: M.(—(x41)7),c: AL.(t)}

In the resulting partial function D]a] = At.(— (% 4 t) 3) is obtained by adding the
functions (Ala] t) and (Bla] (—t 3)) (i.e., Case 1). This procedure is shown in Figure
1. D[b] and D|c] are similarly obtained from the rules defined in the & operator.

We define D = A @‘}; B, where A are some variables (e.g., accumulated changes
while compounding functions), P are the preconditions from some action (e.g., the cur-
rent action we are regressing from) and B are the effects of the action. More generally,
letA:V A, P:V -»C,tcZt and B : V—/»A,WedeﬁneAe‘}/,Basapartial
mapping D : V - A with:

1. ifv € V4 — Vg then D[v] = A[v].
2. ifv € V4 N Vp where A[v] = M and Blv] = N, then
Dv] = (= (M t) (N (= t1))).

Monitoring GDA Agent’s Expectations Generated from Durative Effects 7

A+ (ARl Y (Bl -t 3)
A% ~a
AL(F|(AL(+ (* 2t) 3)[t) (At.(* 21) (-t 3)))

AL(+[(AL(+ (* 2 1) 3) V) (At.(* 2 1) (- £ 3))

At.(

At(- (*41)3)

Fig. 1. Example calculation of D[a] from the & operator example

3. if v € Vp then D[v] = At.(P[v])
4. for all other variables D is undefined (i.e., Vp = V4 U Vp)

Informally, A @'}; B results in a new partial mapping that is defined for all variables
from A and P. The new mapping takes the value A(v) if v is defined in A but not in B
(Case 1). If a variable v is defined in A and B, the new mapping takes the values after
subtracting (— (A[v] t) (B[v] (=t t'))) (Case 2), If a variable v is defined in P the new
mapping takes the value P[v] (Case 3). If a variable is not defined in either A or P, it
is left undefined (Case 4). For example, if we have the three partial functions A, P, and
B, as follows:

A={a: M.(+t3),b: X.(— (x2t)4)}

- P={c: -2}

B={b:\.(x21)}

— t/ = 3 (current time is 3)

Then D = A% B={a: At.(+ ¢ 3),b: At.(2),c: At.(- 2)}.

5 Informed Expectations with durative effects

Agents using Informed Expectations check that the compounded and accumulated ef-
fects are valid in the environment. Informally, informed Expectations accumulate a set
of functions over time extracted from the effects of all previous durative actions exe-
cuted so far in 7. They compound all active durative actions’ functions, and retain all
past changes made to the state by actions that have finished executing.

Formally, informed expectations are denoted as X, (m,-1,¢,0) = inf;, for some
time t. Each in f; is recursively generated as follows:

1. inf.; = (. (we start with ¢ = -1 for bookkeeping)

2. For all t > 0, in f; is generated by the following 3 steps:
(@) infy =infi1
(b) forall a € Ty(t), inf; =inf, &, effe.

St—1
(c) forall a € T.(t), infy = inf: @’f{} eff®

8 Author Names Withheld

Case 1, the base case, indicates that before the first action is executed, we have no
accumulated effects. The 3 steps of Case 2, the recursive case, are as follows: we start
with the expectations computed up to time ¢ — 1 (Step 2 (a)). We add the effects of
actions starting in ¢ (Step 2 (b)). Finally, we substract the effects of actions terminating
at time t (step 2(c)).

Example: If we are at time ¢ = 2 in our plan, we can calculate info for fuel
as follows in Figure 2: The first step in caclulating the expectations is to combine in f;
(Informed expectations at time 1) with e f fmove-0rth (effects of the move north action)
using the ©2, operator. Line 3 of the figure shows the substitutions of the values of
these mappings (Line 2) applied using the © operator definitions. The right side of line
3 shows the simplified result of this operator application. Lines 4 and 5 sets up the
second & operator, using the result of the last calculation and the effects of the move
east action. Then, the left side of line 6 shows application of the operator, with the right
side being the simplified result.

We can see the entire calculation in Figure 3. This figure includes all steps and for
all variables and follows a similar calculation path as the simplified figure.

|i7'l-fl |]i} ‘(\ ffmmw_nm’fh‘ \’5{2} (.ffmar'f,_ﬂmf, q}ﬁl ‘,fj'[zﬂf!Ll’Jr‘m'ﬂrl

infy = {Juel : {ry : M.(— 10 (+221)] 2, [ef frove-north {fm[{ry : AL(% (- 1) 1.1),

_~—1

ri s AL(— 10 (* 1.81))} re 2 AL(x (- 1).9)}
\
Juel : {7y : M.(— (— 10 (* 2.2 1)) (* (- (— £ 2)) 1.1),| [fuel : {r; : AL.(— 7.8 (+ 1.11))),
re s AbL(— (- 10 *lbl) (#(-(—12).9)} re s AL(— 8.2 (% .91))}
‘”’fl _{ (ffmn“ “north f‘ ’W\ “1‘2 f_fthm beacon
{f“f/ {ry: /\" 7.8 (x 1.11))),| p2 |effmoveeast = {fuel : {ry : M.(+ (-1) L.1),
et AL(— 8.2 (.9 1)) i re s AL(x (-1).9))

{fuel : {ry : X.(— 7.8 (x1.11))), {fuel : {r, : AL.(5.6),
rt: AL(— 8.2 (¥.91))} rt 2 AL(6.4)}

Fig. 2. Calculation of the informed expectations for variable fuel at time step ¢ = 2. The last
operation step is left out because e f f1*9"t-b¢acon doesn’t alter the variable fuel and thus doesn’t
alter the expectation set for this variable. Full expansion of all variables in the state can be seen
in Figure 3.

6 Regression Expectations

Informally, Regression Expectations accumulate a set of functions starting backwards
from the last action in 7. It compounds all active durative actions’ inverse functions as

Monitoring GDA Agent’s Expectations Generated from Durative Effects 9

move_north [=
o

2 [
infi O le

2 .2 o f flight_beacon
f} (iffm:)ue,eust ‘q?fl ef f

i\’;f(l 2 ({ule’/;)}{ﬂtj‘ : {A,‘,(; 2)(\!* (]‘]'»”1'3‘ r}? | effroverert = faty : {23, : M.(x (1) 11), 234 :
(=2 (9 D)haex 2 {23 0 NG9 0, 230 1O | Ap (o (- 1) .9)), fuel = {r23; : AL(x (- £) 1.1), 123 :
M(+ L1 1)) fuel = {123, AL(— 10 (= 221)), 123, o]~} + T

TR . b AL(x (-) 9)}}
{aty : {23, M(— (—2(+ 1.10)) (x (- (— £2) 1.1)))
23t AL(— (—2(*.90) (x (-(—12).9))}atx : {aty = {r23; : At(- .2), 23 : AL(2)}atx :
{r23y ¢ AL(x .91), 1234 @ AL(x L1 0)} fuel = {r23) 1 —ol{r23) : At.(x .9 1), 1234 : A.(x 1.1 ¢)}, fuel : {r23, :
AL(— (=10 (+ 22 1)) (x (- (= ¢ 2) 1.1)), 234 AL (— 7.8 (x 1.11)), 1234 : At.(— 8.2 (x .91))}}
A(— (— 10 (« 1.8 1)) (x (- (— £2) 9)}}

‘iﬂf} (J%} (_,ffmoue_nm‘th O?}

{at-y : {r23; : A.(- .2), 1233 : At(.2)}.atx :) ef frovecast = faex @ {123 @ At.(x ¢ 1.1), 1234 :
{123y ¢ M.(+ .9 8), 1234 2 A(+ L1)} fuel = {r23, :|OnAE(x ¢ .9)}, fuel = {r23; : At.(x (- £) 1.1), 1234 :
M.(— 7.8 (+ 1.1t)), 234 : At.(— 8.2 (+ .9 1)) }} A(x (-1) 9)}}

l

(123, : M.(-.2), 23 : AL(2)
{23, = A(C (¢ 9 0) (x (— t2).9),
M= (# L1 2) (x (=t 2) L1)}, fuel :
M.~ (— 7.8 (+ 1.1 1) (x (- (
M.~ (—82(x.91)) (% (- (—£2).9)}}

{aty :

t2) 1.1)),

}oatx
23; {at-y : {r23 : AL.(-.2), 1234 : AL(.2)},atx : {r23, :
{r23, @ |—{AL(L.8), 123+ : AL(2.2)}, fuel : {r23) : AL(5.6), 1234 :
23; AL.(6.4)}}

‘iﬂfl (]‘?} affnmre:nm‘th p

\,}?} Cffnzm't;,eu.qt

@§1| of flaHt-beacon

{at-y : {r23, : M.(- .2), 234 :
AL(1.8), 1234 : AL.(2.2)}, fuel :
AL.(6.4)}}

AL.(.2)},at-x

{23, “AL(5.6), 1231 ¢ |

: {r23, :

{lit : {Beaconl; : At.(t), Beaconl; :

{at-y {r23

A (— 2 (+ 9 1))}, atx :

o0 AL(— 2 (x 11 1)), 23
{23, = A(+ 91), 234 :
10 (x 2.21)), 1234 :

|

AL(6.4)}, it
M(—12)})

{at-y : {r23; : AL.(- .2), 234
AL(1.8), 1231 : AL(2.2)}, fuel : {123, : AL(5.6), 23} :

tAL(.2)},atx : {r23; :

{Beaconl : AL(— ¢ 2),Beaconl; :

Fig. 3. Expanded calculation of the informed expectations at time step t = 2.

well as their preconditions, ensuring that the goals will still be met after the completion

of .

Formally, let n be the time step when 7 finalizes its execution, O the time when 7
starts its execution, ¢ a natural number with 0 < ¢t < n + 1, we denote the regressed
expectations at time ¢ with X,.., (7, t, n+1,G)= reg;. Each reg; is generated as follows:

1. regn+1 = G. (we start with ¢ = n + 1 for bookkeeping)

2. For all t < n, we compute reg;
(a) regy = regi41

in three steps:

10 Author Names Withheld

(b) foralla € Ty(s), reg; = regi O, ca ef f*
(c) forall a € T.(t), reg; = reg: @Ztﬂ effe.

Case 1 is the base case; t = n is the time that the last action in 7 completes its
execution. So ¢t = n+1 is the first time step after the completion of the plan’s execution
and we expect the set of goals G to be satisfied. If the goals are unknown, then G = {}.
The 3 steps of Case 2, the recursive case, are as follows: we start with the regressed
expectations computed up to time ¢ + 1 (Step 2 (a)). We subtract the effects of actions
starting at time ¢ (step 2(b)). Finally, we add the effects of actions ending in ¢ (Step 2
(©)-

Agents using Regression Expectations check that the rest of the plan can be exe-
cuted, and when finished the set of goals G (if they exist) will be satisfied.

Example: If we are at time ¢ = 2 of the plan trace 7 in Table 2 we can calculate the
Regression Expectations rega = X, egress (T, 52,G) as follows (The preconditions and
effects for move_east and light_beacon have not been shown before):

- regs = G ={lit: {Beaconl : 1, Beaconly : 1]}}. (i.e., Case 1 with n = 3)

- regs = regy @Yy ef fMPercon = {lit : {Beaconl : (+ 1 (— ¢ 3)), Beaconly :
(+ 1 (—t3))]}} (i.e., Step 2 (b): light_beacon ends at t = 3).

— Thus regs = Teg?)@ZTe“ghmemn efflight,beacon@?}effmove,north@%}effmove,east
(i.e., Step 2 (b): light_beacon starts at t = 2 and Step 2 (c): move_east and move_north
end att = 2).

7 Goldilocks Expectations

Goldilocks Expectations [7] combines Informed and Regression Expectations. For-
mally, we define Goldilocks Expectations as X yo4(7,t,G) = gold;, where gold; =
(infi, regy). That is, for ever time ¢, gold, is the pair containing the Informed and Re-
gression Expectations for that time. An agent using X 04(7, %,G) checks the overlap of
the regressed and the informed intervals, [le ft(v"), right(v")] N [left(v”), right(v”)].
This ensures completing the goals while checking for inferred considerations from the
action model such as efficiency.

Example: If we are at time ¢ = 2, then we can compute the Goldilocks Expectations

goldy = (in fa,7eg2)

8 Property of Regression

Theorem 1. Let 7 be a plan solving (So, A, G). If X,¢4(7,t,n + 1,G) is satisfied in .S,
then 7; solves (St A4, G).

Base case: t = n+1. At time n + 1, X,4(m,n + 1,n + 1,G) = G by definition.
Therefore if X,¢q4(m, n+ 1,n+ 1,G) is satisfied, then the empty plan m,, 1 = () solves
(Snt1,4,9).

Recursive case: We show that if reg; is satisfied in ¢ = ¢, then when executing one
time step in 7;, reg;41 will be satisfied in ¢ = ¢ + 1. By induction hypothesis, m;11
solves (S;41, A, G) and, hence, 7; solves (S;, A, G).

Monitoring GDA Agent’s Expectations Generated from Durative Effects 11

The calculation for reg; begins with reg; equaling reg;, ;. We analyze the three
kinds of actions with respect to reg;, and its such that if for each of these types of
actions reg; yields reg; 1 individually, then reg; yields reg;+, overall:

— Actions that are continuing through time set i: that is, each action a such that
a € Ts(t')NT.(t") and t' < i < t”. For each such action a, reg; will yield reg; 1
over the variables affected by a. That is, reg;+1[v] = regi[v] + 3% fa[v](1).

— Actions that end in time step 7. That is, each action a with a € T,(t). For each
such action a, its effects are added into the regression set as a function of time using
the & operator. Specifically, this will execute step 1 of the & operator resulting in
reg; = (+ (regit1 t) (eff* (— ¢ t*))). For this time step where the action is
ending, t = t/, thus (eff* (=t t')) = 0 and (4 (regi+1 t) (eff* (—tt"))) =
T€gi+1

— For actions that begin in time step :. That is, each action a with a € T(t). For
each such action a, we are removing their effects from the regression set using the
© operator. We consider first the effects and then the preconditions:

o Effects: Specifically we use the second clause of the operator resulting in
reg; = (— (regiv1 t) (ef f* (— tt'))). For this time step where the action is
starting, t = t/, thus (ef f* (= tt‘)) = Oand (— (reg;+1 t) (ef f* (=t t"))) =
regi+1

e Preconditions: Lastly, we add in the preconditions for all actions that begin at
time ¢. By adding these values into the regression set, we ensure that all actions
beginning at time 7 will be executable.

9 Empirical Evaluation

We did a comparative study of the 5 different types of expectations across 2 temporal
domains. The 5 Expectation types we tested were Immediate, Informed, Regression,
Goal Regression, and Goldilocks Expectations (Immediate expectations in this case
are simply checking the preconditions of the action before execution). The difference
between goal regression and regression is that in the latter G= (3, accounting for situa-
tions when the goals are not known (e.g., using a domain-specific planner with implicit
goals). For planning purposes, we use the Pyhop HTN planner [20], which was extended
to handle numeric fluents over a temporal space and the HTN methods configured to
generate correct plans. Other than the expectation type, the agent uses the same plan-
ning and discrepancy handling processes. Whenever a discrepancy is observed from the
expectations, we use a simple goal-reasoning process to select the original goal and
plan again from the current state. Thus, any performance changes is attributable to the
expectations.

Marsworld Definition. We used is a temporal variant on the Marsworld domain [5],
itself inspired by Mudsworld [21]. The agent has to navigate a 10x10 grid to turn on 3
randomly placed beacons. The grid space is continuous in this version. Each movement
action drains some amount of the agents fuel. There is a second fuel resource which is
used solely for lighting the beacon.

While executing its actions, the agent may unexpectedly have damage caused to it,
forcing it to use more fuel per action until repaired (this can occur with a 2% probability

12 Author Names Withheld

Fuel Consumed in Marsworld Domain

— Informed

7000 - Regression
* G-Regression
6000 —°" Immediate

Goldilocks
5000 4

4000 +

3000 A

Fuel Consumed

2000

1000 -

T T T
0 20 40 60 80 100
Number of Unique Examples

Fig. 4. Experimental results for our Marsworld Domain

after each time step). This damage may also cause the agent to lose beacon fuel. For
testing, we ran 200 trials, each trial placed the rover and beacons randomly on the grid.
During the trials we measured total fuel consumption as well as whether or not an
execution failed. A failure means the preconditions of some action were not satisfied
when it was to be executed (e.g., when the agent attempts to execute a move but it
doesn’t have enough fuel).

Results for Marsworld. In Figure 4, we can see that Regression and Goal Regres-
sion Expectations consumed the most fuel, with the Informed and Immediate perform-
ing basically equally. Goldilocks Expectations outperforms all of the rest. This occurs
because Regression and Goal Regression Expectations are the only ones not noticing
when the agent is damaged, causing increased fuel consumption. They only look at fu-
ture preconditions, so they only realize the damage once it drains enough fuel so that
the plan can no longer be completed. The other 3 expectation types identify increase
consumption after 1 action, since they monitor effects of the actions. Goldilocks has the
addition of noticing the mud from the regression part of its expectations, so it travels a
more efficient route.

Immediate, Regression, Goal Regression and Goldilocks are able to ensure that the
plan will be completed without failures, while 27% of trials failed for Informed Expec-
tations. Informed fails because it will attempt to execute an action without it’s precon-
ditions being satisfied. All other expectation types check preconditions. Specifically, in
this scenario, agents using Informed expectations will attempt to light a beacon after
having lost beacon fuel, thus failing.

Camera Surveillance Definition. The agent in this domain is a camera with the
ability to swivel 360° as well as zoom in and out. The goal of the agent in this domain
is to keep a moving object in the environment in view, while as zoomed in as possible.

Monitoring GDA Agent’s Expectations Generated from Durative Effects 13

Energy Used in Camera Domain

3000 { — Informed
Regression
* G-Regression
—-- Immediate
Goldilocks

2500

2000 4

Energy Used
=
u
(=1
o

1000 A

500 A

T T T
0 20 40 60 80 100
Number of Unique Examples

Fig. 5. Experimental results for our Camera Domain

Without a state satisfiable goal, we instead represented the goal as a reward function.
Both zooming and turning the camera are durative actions in this domain, both consum-
ing from the same energy resource. While executing its actions, the agent may suffer
unexpected damage causing its actions to consume more energy. This damage is re-
pairable if recognized. Since there is no satisfiable set of goals G, goal regression and
regression are equal.

Camera Surveillance Results. All expectation types were able to track the object,
so the only difference between them is in energy consumption. In Figure 5, we can see
that Regression and Goal Regression are very similar with the only differences coming
from the random setup. We can also see these expectations used the most energy, while
immediate and informed used a lower amount and Goldilocks used the lowest. This dif-
ferential comes from the recognition of excess energy consumption, as well as efficient
action taking. For example, both regression and goal regression only check the precon-
ditions of actions. Therefore when an action consumes more energy than expected, the
agent doesn’t recognize it. This results in the agent continuing to take actions while con-
suming more energy per action, which results in more energy consumption per episode.

10 Conclusions

We see some commonalities from these two domains which are backed up by theory.
Regression expectations may incur in a higher execution cost for the agent, but guaran-
tee that the plan will succeed, illustrating Theorem 1. The increased cost comes from not
monitoring the effects of actions previously executed. This allows for situations where
the agent incurs excess cost without recognizing it. Informed and Immediate mitigate
execution costs for the agent by checking the effects of previous actions. However by

14

Author Names Withheld

Reward Achieved in Camera Domain

8000
— Informed

7000 4 Regression
* G-Regression
—-- Immediate
Goldilocks

6000 -

5000

4000 +

3000 4

Reward Achieved

2000 A

1000 -

T T T
0 20 40 60 80 100
Number of Unique Examples

Fig. 6. Experimental results across Marsworld and Camera Domain

not checking the preconditions of future actions, the agent can fail to achieve its goals.
Goldilocks is able to take the best from both and incur the smallest execution costs
while guaranteeing the success of the plan. The agent checks its regressed conditions
ensuring its goals are achieved, while monitoring the accumulated effects of its actions
ensuring it doesn’t incur in unexpected costs.

Our definition of expectations are not limited to GDA agents and could be used by

other execution monitoring agents. In particular for future work, we will like to explore
agent’s expectations when the agent is part of a team achieving a common goal. This
will require reasoning with social interaction aspects in addition to states’ fluents.

References

[\

AN B~ W

. D.W. Aha, Al Magazine (2018)
. H. Muiioz-Avila, U. Jaidee, D. Aha, E. Carter, in Case-Based Reasoning. Research and De-

velopment (Springer, 2010), pp. 228-241

. M. Molineaux, M. Klenk, D.W. Aha, in AAAI (2010)

. D. Dannenhauer, H. Munoz-Avila, M.T. Cox, in IJCAI (2016), pp. 2493-2499

. D. Dannenhauer, H. Munoz-Avila, in IJCAI (2015), pp. 2241-2247

. D. Dannenhauer, Self monitoring goal driven autonomy agents. Ph.D. thesis, Lehigh Uni-

versity (2017)

. N. Reifsnyder, H. Munoz-Avila, in 6th Goal Reasoning Workshop at IJCAI/FAIM-2018

(2018)

. M. Molineaux, U. Kuter, M. Klenk, in Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems-Volume 2 (International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012), pp. 989-996
J. Powell, M. Molineaux, D.W. Aha, in FLAIRS Conference (2011)

10.

11.
12.

13.

14.
15.

16.
17.
18.
19.

20.

21

Monitoring GDA Agent’s Expectations Generated from Durative Effects 15

H. Munoz-Avila, D. Dannenhauer, N. Reifsnyder, in Twentieth International Conference on
Automated Planning and SchedulingProceedings of AAAI-19 (2019)

J.L. Pollock, Artificial Intelligence 106(2), 267 (1998)

M.A. Wilson, J. McMahon, D.W. Aha, in Al and Robotics: Papers from the AAAI Workshop
(2014)

N. Reifsnyder, H. Munoz-Avila, in Eight Annual Conference on Cognitive Systems (ACS-
2020) (2020)

D. Wilkins, Computer Intelligence 1, 33 (1985)

L. Birnbaum, G. Collins, M. Freed, B. Krulwich, in AAAI, vol. 90 (1990), vol. 90, pp. 318-
323

M.T. Cox, Al magazine 28(1), 32 (2007)

D.E. Wilkins, Computational Intelligence 1(1), 33 (1985)

C. Fritz, S.A. Mcllraith, in ICAPS (2007), pp. 144-151

E. Scala, P. Haslum, S. Thiébaux, M. Ramirez, in Proceedings of the Twenty-second Euro-
pean Conference on Artificial Intelligence (10S Press, 2016), pp. 655-663

D. Nau. Pyhop, version 1.2.2 a simple htn planning system written in python. https:
//bitbucket.org/dananau/pyhop (2013). Accessed: 2019-01-30

M. Molineaux, D.W. Aha, in AAAI (2014), pp. 395401

