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Synthetic chemistry is built around the formation of carbon-carbon bonds.
However, the development of methods for selective carbon-carbon bond cleavage is
alargely unmet challenge'°. Such methods will have promising applicationsin
synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass
conversion. For example, aromatic rings are ubiquitous skeletal featuresininert
chemical feedstocks, but are inert to many reaction conditions owing to their
aromaticity and low polarity. Over the past century, only afew methods under harsh
conditions have achieved direct arene-ring modifications involving the cleavage of
inert aromatic carbon-carbon bonds”, and arene-ring-cleavage reactions using
stoichiometric transition-metal complexes or enzymes in bacteria are still limited® ™.
Here we report a copper-catalysed selective arene-ring-opening reaction strategy.
Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl
azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and
aryl diazonium salts into alkenyl nitriles through selective carbon-carbon bond
cleavage of arene rings. This chemistry was applied to the modification of polycyclic
aromatics and the preparation of industrially important hexamethylenediamine and

adipicacid derivatives. Several examples of the late-stage modification of complex
molecules and fused ring compounds further support the potential broad utility of

this methodology.

Since the discovery of benzene by Faraday nearly 200 years ago'?, the
substitution of arenes has rapidly developed™*; however, the activa-
tion of aromatic carbon-carbon (C-C) bonds'  via ring-expansion or
ring-opening reactions remains even now a challenging and largely
unexplored area due to the difficulty in breaking aromaticity and the
high bond dissociation energy of an aromatic C=C bond (calculated
bond dissociation energy 147 kcal mol™). In addition, the thermo-
dynamic and kinetic limitations block the conversion of arene rings
surrounded by the C-H bonds. To achieve the preparation of useful
value-added acyclic compounds from arenes, as well as coal liquefac-
tion and biomass conversion, researchers have studied the selective
cutting open of arene rings”®. In industry, the naphtha hydrocrack-
ing process of benzene performed at high temperature, producing
methylcyclopentane and acyclic saturated hydrocarbons, suffers from
amixture of products (Fig. 1a)®. Although the preparation of useful
C6 synthons and more complex acyclic fragments from benzenes is
attractive, catalytic methods to cleave widely available arene rings
under mild conditions with good selectivity are still unknown.
Inrecentdecades, several strategies have been reported for suchreac-
tions. (1) The cleavage of areneringsin bacteria transforms benzeneinto
muconic acid viaa multistep oxidizing pathway* catalysed by two key
dioxygenases (Fig.1b)", but the enzymatic processis hard to mimic™¢,

(2) Transition-metal complexes have also been developed for dearoma-
tive C-Cbond cleavage of arenes®®" or ortho-phenylenediamines’®2°,
The groups of Parkin® and Crimmin" realized the C-C bond cleavage
of quinoxaline heteroarene and biphenylene by a tungsten complex
and a aluminium(I) complex, respectively. A titanium-mediated C-C
bond cleavage and rearrangement of benzene was disclosed by Hou
and co-workers™. (3) Alternatively, the ring expansion of arenes by
carbene?, nitrene?>* or phosphinidene? species have been reported
for the preparation of seven-membered ring compounds. Despite the
importance of these strategies, the preparation of acyclic products
from benzenes is rarely applied in chemical synthesis.
Itisreportedthat1,2-diazidobenzeneyields1,4-dicyano-1,3-butadiene
through a thermal decomposition process'®*?%, which indicates
that the 1,2-phenylene bis-nitrene intermediate can lead to benzene
ring-opening. Inspired by the enzymatic processinbacteria (Fig. 1b), we
hypothesized that abiomimetic cascade activation strategy for general
arenes could incorporate two active nitrogen cofactors that would work
like the catechol to target the intradiol ring-cleaving dioxygenase for
the subsequent arene ring-opening, thus converting arene derivatives
into alkenyl nitriles. We demonstrate anovel copper-catalysed aerobic
oxidative arene ring-opening transformation that affords selective
arene-ring C-C bond cleavage. A broad range of arene derivatives,
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Fig.1|Cleaving arenerings. a, Theindustrial hydrocracking process for the
arenering-opening transformation. b, The cleavage of arene rings inbacteria
with Rieske dioxygenase (Protein Data Bank 3EN1) and intradiol dioxygenase
(Protein DataBank 4WHR). ¢, Copper catalysed arene ring-opening reactions
forthe preparation of alkenyl nitriles and adiponitrile, hexamethylenediamine
and adipicacid derivatives. FG, functional group; pin, pinacolate; TMO,
trimethoxy; OTf, trifluoromethanesulfonate; PA, polyamide.

includinganilines, arylboronic acids, aryl azides, aryl halides, aryl tri-
flates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazo-
nium salts can now be efficiently converted into alkenyl nitriles, and
easily transformed into the industriallyimportant adiponitrile, hexa-
methylenediamine and adipic acid derivatives (Fig. 1c).

The investigation began with naphthalen-1-amine as the substrate.
We initially selected azides as the proposed active nitrogen cofactor,
because of their high reactivity and their importance in chemistry
and chemical biology, such as click chemistry?®~*?, C-H functionaliza-
tion**, C-C functionalization®** and other synthetic chemistry***°.
The extensive screening demonstrated that the present hypothesis was
achieved by an aerobic oxidative copper catalyst, which successfully
delivered (2)-2-(2-cyanovinyl)benzonitrile (2) with high stereoselec-
tivity (Supplementary Section 4.1). The further broad screening of
catalysts and ligands indicated that the Cu(NO;),-3H,0 with ligand
2,2’-bipyridine has the key rolein the C-C cleavage of the benzenering
with air as the oxidant. Inspired by these results, we also achieved the
cleavage of naphthalen-1-ylboronic acid. In this case, the screening
results showed that the Cu(hfacac),-H,0 performed much better than
other copper salts (Supplementary Section 4.2.2).

Modification of the skeleton of polycyclic aromatic compounds
substantially alters their physical and chemical properties* . Napth-
ylamine and naphthylboronic acid derivatives readily give the aromatic
ring-opening products (Fig. 2a); the cleavage of naphthylboronicacids
better tolerates electron-withdrawing groups than naphthylamines
(15-20). The transformationis not limited to naphthalene, and quino-
line (18 and 19), isoquinoline (20) and some larger conjugated arene
rings (29-36) canbe cleaved in these reactions with moderate to good
yields.

Itis noteworthy that other common aromatic chemicals, including
arylhydroxamicacids, aryl azides, aryl trimethylsiloxanes, aryl halides,
aryltriflates and aryl diazonium salts, can be efficiently converted into
alkenyl nitriles by the present cascade activation strategy (Fig. 2b).
Among them, 1-naphthohydroxamic acid 37, 1-azidonaphthalene 38
and 1-naphthyldiazonium tetrafluoroborate 43 afforded the alkenyl
nitrile product 2 withyields of 50% to 70%. Furthermore, benzene, alkyl
benzenes and benzyl alcohols, which are common in bulk chemicals,
could also be transformed into dearomative ring-cleavage products
viamodified procedures (Supplementary Section 4.4.3). These results
demonstrate the broad prospects of the further development of dearo-
mative C-C bond cleavage.

Owing to theimportance of Cé6 synthons in polymers***, the scope of
differentalkyl-side-chain-substituted benzene substrates was investi-
gated (Fig.3a). Substratesbearing amide (58), SMe (59), OMe (60-62),
olefin (63), phenyl (64 and 65) and substituted aryl groups (66-76 and
83),and cyclicaliphaticrings (77,78 and 84) underwent cleavage reac-
tion with moderate to good yields. Itis noteworthy that the cleavage of
conjugated aromatic heterocycles, including furan (79), benzofuran
(80), benzothiophene (81) and indole (82), offers new heterocycles
with cyano and cyanovinyl substituents.

These approaches also hold promise for the late-stage modifica-
tion of complex molecules (Fig. 3b). Alkenes, amides, Boc-protecting
groups, ethersand esters (85-91) are well tolerated, withgood chirality
retention. Although anilines substituted with strong electron-donating
groups, such as 3,4-dimethoxyaniline, cannot undergo the cleavage
process, the corresponding arylboronic acids substituted with strong
electron-donating groups underwent cleavage well (62), which dem-
onstrates the excellent complementary protocol for these two kinds
of substrate.

Notably, the formed cyanoalkene products can be easily reduced to
industrially important acrylonitrile and adiponitrile derivatives with
Pd/CandH,, and can be further transformed into corresponding sub-
stituted hexamethylenediamine 98 and adipic acid derivative 99 with
good efficiencies (Extended DataFig.1a).In addition, theinfluence of
thering-cleavage transformation on the optical properties of the aro-
matic compounds was studied, as the introduction of a flexible alkenyl
nitrile chain mightimprove the aggregation-induced emission property
of'the conjugated aryl-ring chemicals (Supplementary Section 4.4.5).

To understand the mechanism, we subjected benzene-1,2-diamine
(100), 2-azidoaniline (101),1,2-diazidobenzene (102), in-situ-generated
benzyne (103) and azobenzene (104) to the standard conditions used
forthe cleavage of anilines; in no case was aring-cleaved alkenylInitrile
product formed, excluding these intermediates from being involved
in this transformation (Extended Data Fig. 1b). The corresponding
anilines oraryl azides could be detected form different starting materi-
als when we changed the standard conditions or reduced the loading
of azides (Supplementary Section 4.3.1.3), which indicates that they
are the common key intermediates of these reactions. Moreover, the
BN-labelling experiment with ®N-labelled naphthalen-1-amine dem-
onstrates that NaN; provides only one nitrogen atom in the cleavage
of anilines (Fig. 4a).

Quantum mechanical calculations using density functional theory
(DFT) at the (U)M06-D3/6-311++G(d,p)-SDD(Cu)-SMD(DMF)//(U)
B3LYP-D3-(B))/6-31G(d)-SDD(Cu)-SMD(DMF) (see Supplementary
Information for details) level enriches the mechanistic details. Enlight-
ened by the reactions of the copper complex with aryl azides***” and
the Cu(I)/Cu(ll) redox cycle in related aerobic copper catalytic reac-
tions*3*°, we explored the likelihood of a copper nitrene intermedi-
ate. A plausible mechanism is shown in Fig. 4b. It involves (1) capture
of the azide radical by the triplet copper nitrene, (2) inner-sphere
ortho-azidation, (3) hydrogen atom abstraction, (4) bis-nitrene for-
mation and (e) copper-assisted dearomative C-C bond cleavage. The
triplet copper nitrene ((Intl) can capture the azide radical to give the
copper azide (*Int2) in the quartet state, which leads to the doublet
one (?Int2) through a minimum energy crossing point (MECP1). Fol-
lowing theinner-sphere azidyl group transfer from copper leadstoan
ortho-azidated species (Int3) regioselectively, whereas direct attack of
the azide radical towards the phenylringis obstructed (Supplementary
Fig.11). Subsequent hydrogen atom abstraction by asecond azide radi-
cal affords a copper ortho-azido nitrene (’Int4). For comparison, the
azideanionis not competentinbothazidation of *Intl and deprotona-
tion of 2Int3 (Supplementary Fig.13). Extrusion of N, in *Int4 furnishes
akeyintermediate, the triplet copper bis-nitrene (Int5), which features
asubstantially weakened C-C bond. Consequently, the ensuing >TS4
of C-Cbond cleavage, still in the triplet state, has an energy barrier
as low as 3.4 kcal mol ™, whereas the singlet analogue is energetically
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Fig.2|Scope of polycyclic aromatic compounds and transformations to
ortho(cis-cyanovinyl) arylnitriles. a, The scope of naphthylamines and
naphthylboronicacids. b, The scope of other substituted naphthalene
compounds. Onlyisolated yields are shown. Only one Z- or E-isomer was
detected, or theratioislarger than 20:1unless theratiois given.*Prepared from
naphthylamine (0.3 mmol), with Cu(NO,),:3H,0, 2,2"-bipyridine and KH,PO, in

prohibited (Supplementary Fig.17). After3TS4, acomplex of copperand
product CInt6) forms, which facilely transforms into the singlet state
(*Int6) via MECP2, and a final ligand exchange with solvent releases
the ring-opening product.

In addition, the kinetic isotope effect experiments and the study
of reaction kinetics are consistent with the proposed pathways
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DMF at40 °Cunder open air.°Prepared from naphthylboronicacid (0.3 mmol),
with Cu(hfacac),'H,0 and 4-MeOPyridine in PhClat130 °Cunder O, (1atm).
‘Using the boronicacid pinacol ester as the substrate under the same condition
of naphthylboronicacid. See the Supplementary Information for
experimental details. hfacac, hexafluoroacetylacetonate.

(Supplementary Section 4.3.1). A trace amount of the released HN,
was detected by a gas chromatography-tandem mass spectrometry
system via headspace sample injection, which is consistent with the
hydrogen atom abstraction by the azide radical (Supplementary Sec-
tion4.3.3). Moreimportantly, for the cleavage of aniline, electrospray
ionization-high-resolution mass spectrometry (ESI-HRMS) analysis
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Fig.3|The cleavage of anilines and phenylboronicacids and downstream
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b, Late-stage modification of complex molecules. Onlyisolated yields are
shown. Only one Z- or E-isomer was detected, or theratiois larger than20:1
unlesstheratiois given.*Reaction performed with aniline (0.3 mmol), with
Cu(NO5),-3H,0, 4-MeOPyridine in DMF at 40 °C under open air. Reaction
performed with phenylboronicacid (0.3 mmol), with Cu(hfacac),-H,0, Ph-BOX

ofthereactionsample (diluted in acetonitrile) detected ion peaks and
theisotope ion peaks of two copper nitrene species resembling 2Int3
and’Int4 (Fig. 4b). Although the ESI-HRMS analysis could not provide
information of the quantity of the detected species, the high-sensitivity
detection of the generated intermediatesindicates the possible involve-
ment of copper nitrene intermediates in the process (Supplementary
Section4.3.4).

By inspecting the molecular orbitals (MO) of the triplet cop-
per bis-nitrene intermediate, we noticed antibonding interaction
between py and o._c* in both singly occupied molecular orbitals
HOMO(a) and HOMO-1(B). HOMO(a) represents the intrinsic orbital
interaction in bis-nitrene, while HOMO-1(f3) shows not only the
intrinsic contributions but also the involvement of the d, orbital
(Extended Data Fig. 1c). These two MOs together unveil a unique
bonding pattern leading to C-C bond cleavage: chelation of
bis-nitrene with copper efficiently facilitates lone pairs of two adja-
cent nitrogen atoms to interact with the antibonding orbital of the
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and 3-MeOPyridinein PhClat130 °Cunder O, (1atm). “Using the phenylboronic
acid pinacol ester (0.3 mmol), with Cu(hfacac),-H,0, 2,2"-bipyridinein PhCl at
130 °Cunder O, (1atm). “Reaction performed with phenylboronicacid (0.3
mmol), with Cu(hfacac),-H,0, 2,2"-bipyridine in PhClat 130 °C under O, (1atm).
*See the Supplementary Information for experimental details. Ph-BOX,
(45,4’S)-2,2"-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole).

intervening C-C bond, which facilitates the arene ring C-C bond
cleavage.

Compared with the thermolysis pathway of 1,2-diazidobenzene,
the current mechanism has a lower energy barrier for ring cleavage
(3TS4, 3.4 kcal mol*versus'TS-II, 6.1 kcal mol™; Supplementary Figs. 7
and 25). As antibonding interaction exists in "Int-I (the intermediate
beforeTS-1II) as well, the decreased barrier for catalytic ring cleavage
is ascribed to a better mixing of o._.* and py in ’Int5, probably owing
to the presence of transition metal.
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