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Cleaving arene rings for acyclic alkenylnitrile 
synthesis

Xu Qiu1,6, Yueqian Sang3,6, Hao Wu1,4,6, Xiao-Song Xue2,3, Zixi Yan1, Yachong Wang1, 
Zengrui Cheng1, Xiaoyang Wang1, Hui Tan1, Song Song1, Guisheng Zhang4, Xiaohui Zhang1, 
K. N. Houk2 ✉ & Ning Jiao1,5 ✉

Synthetic chemistry is built around the formation of carbon–carbon bonds. 
However, the development of methods for selective carbon–carbon bond cleavage is 
a largely unmet challenge1–6. Such methods will have promising applications in 
synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass 
conversion. For example, aromatic rings are ubiquitous skeletal features in inert 
chemical feedstocks, but are inert to many reaction conditions owing to their 
aromaticity and low polarity. Over the past century, only a few methods under harsh 
conditions have achieved direct arene-ring modifications involving the cleavage of 
inert aromatic carbon–carbon bonds7,8, and arene-ring-cleavage reactions using 
stoichiometric transition-metal complexes or enzymes in bacteria are still limited9–11. 
Here we report a copper-catalysed selective arene-ring-opening reaction strategy. 
Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl 
azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and 
aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond 
cleavage of arene rings. This chemistry was applied to the modification of polycyclic 
aromatics and the preparation of industrially important hexamethylenediamine and 
adipic acid derivatives. Several examples of the late-stage modification of complex 
molecules and fused ring compounds further support the potential broad utility of 
this methodology.

Since the discovery of benzene by Faraday nearly 200 years ago12, the 
substitution of arenes has rapidly developed13,14; however, the activa-
tion of aromatic carbon–carbon (C–C) bonds1–6 via ring-expansion or 
ring-opening reactions remains even now a challenging and largely 
unexplored area due to the difficulty in breaking aromaticity and the 
high bond dissociation energy of an aromatic C=C bond (calculated 
bond dissociation energy 147 kcal mol−1). In addition, the thermo-
dynamic and kinetic limitations block the conversion of arene rings 
surrounded by the C–H bonds. To achieve the preparation of useful 
value-added acyclic compounds from arenes, as well as coal liquefac-
tion and biomass conversion, researchers have studied the selective 
cutting open of arene rings7,8. In industry, the naphtha hydrocrack-
ing process of benzene performed at high temperature, producing 
methylcyclopentane and acyclic saturated hydrocarbons, suffers from 
a mixture of products (Fig. 1a)8. Although the preparation of useful 
C6 synthons and more complex acyclic fragments from benzenes is 
attractive, catalytic methods to cleave widely available arene rings 
under mild conditions with good selectivity are still unknown.

In recent decades, several strategies have been reported for such reac-
tions. (1) The cleavage of arene rings in bacteria transforms benzene into 
muconic acid via a multistep oxidizing pathway4 catalysed by two key 
dioxygenases (Fig. 1b)15, but the enzymatic process is hard to mimic11,16. 

(2) Transition-metal complexes have also been developed for dearoma-
tive C–C bond cleavage of arenes9,10,17 or ortho-phenylenediamines18–20. 
The groups of Parkin9 and Crimmin17 realized the C–C bond cleavage 
of quinoxaline heteroarene and biphenylene by a tungsten complex 
and a aluminium(I) complex, respectively. A titanium-mediated C–C 
bond cleavage and rearrangement of benzene was disclosed by Hou 
and co-workers10. (3) Alternatively, the ring expansion of arenes by 
carbene21, nitrene22,23 or phosphinidene24 species have been reported 
for the preparation of seven-membered ring compounds. Despite the 
importance of these strategies, the preparation of acyclic products 
from benzenes is rarely applied in chemical synthesis.

It is reported that 1,2-diazidobenzene yields 1,4-dicyano-1,3-butadiene 
through a thermal decomposition process18,25–27, which indicates 
that the 1,2-phenylene bis-nitrene intermediate can lead to benzene 
ring-opening. Inspired by the enzymatic process in bacteria (Fig. 1b), we 
hypothesized that a biomimetic cascade activation strategy for general 
arenes could incorporate two active nitrogen cofactors that would work 
like the catechol to target the intradiol ring-cleaving dioxygenase for 
the subsequent arene ring-opening, thus converting arene derivatives 
into alkenyl nitriles. We demonstrate a novel copper-catalysed aerobic 
oxidative arene ring-opening transformation that affords selective 
arene-ring C–C bond cleavage. A broad range of arene derivatives, 
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including anilines, arylboronic acids, aryl azides, aryl halides, aryl tri-
flates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazo-
nium salts can now be efficiently converted into alkenyl nitriles, and 
easily transformed into the industrially important adiponitrile, hexa-
methylenediamine and adipic acid derivatives (Fig. 1c).

The investigation began with naphthalen-1-amine as the substrate. 
We initially selected azides as the proposed active nitrogen cofactor, 
because of their high reactivity and their importance in chemistry 
and chemical biology, such as click chemistry28–32, C–H functionaliza-
tion33–35, C–C functionalization36–38 and other synthetic chemistry39,40. 
The extensive screening demonstrated that the present hypothesis was 
achieved by an aerobic oxidative copper catalyst, which successfully 
delivered (Z)-2-(2-cyanovinyl)benzonitrile (2) with high stereoselec-
tivity (Supplementary Section 4.1). The further broad screening of 
catalysts and ligands indicated that the Cu(NO3)2·3H2O with ligand 
2,2′-bipyridine has the key role in the C–C cleavage of the benzene ring 
with air as the oxidant. Inspired by these results, we also achieved the 
cleavage of naphthalen-1-ylboronic acid. In this case, the screening 
results showed that the Cu(hfacac)2·H2O performed much better than 
other copper salts (Supplementary Section 4.2.2).

Modification of the skeleton of polycyclic aromatic compounds 
substantially alters their physical and chemical properties41–43. Napth-
ylamine and naphthylboronic acid derivatives readily give the aromatic 
ring-opening products (Fig. 2a); the cleavage of naphthylboronic acids 
better tolerates electron-withdrawing groups than naphthylamines 
(15–20). The transformation is not limited to naphthalene, and quino-
line (18 and 19), isoquinoline (20) and some larger conjugated arene 
rings (29–36) can be cleaved in these reactions with moderate to good 
yields.

It is noteworthy that other common aromatic chemicals, including 
aryl hydroxamic acids, aryl azides, aryl trimethylsiloxanes, aryl halides, 
aryl triflates and aryl diazonium salts, can be efficiently converted into 
alkenyl nitriles by the present cascade activation strategy (Fig. 2b). 
Among them, 1-naphthohydroxamic acid 37, 1-azidonaphthalene 38 
and 1-naphthyldiazonium tetrafluoroborate 43 afforded the alkenyl 
nitrile product 2 with yields of 50% to 70%. Furthermore, benzene, alkyl 
benzenes and benzyl alcohols, which are common in bulk chemicals, 
could also be transformed into dearomative ring-cleavage products 
via modified procedures (Supplementary Section 4.4.3). These results 
demonstrate the broad prospects of the further development of dearo-
mative C–C bond cleavage.

Owing to the importance of C6 synthons in polymers44,45, the scope of 
different alkyl-side-chain-substituted benzene substrates was investi-
gated (Fig. 3a). Substrates bearing amide (58), SMe (59), OMe (60–62), 
olefin (63), phenyl (64 and 65) and substituted aryl groups (66–76 and 
83), and cyclic aliphatic rings (77, 78 and 84) underwent cleavage reac-
tion with moderate to good yields. It is noteworthy that the cleavage of 
conjugated aromatic heterocycles, including furan (79), benzofuran 
(80), benzothiophene (81) and indole (82), offers new heterocycles 
with cyano and cyanovinyl substituents.

These approaches also hold promise for the late-stage modifica-
tion of complex molecules (Fig. 3b). Alkenes, amides, Boc-protecting 
groups, ethers and esters (85–91) are well tolerated, with good chirality 
retention. Although anilines substituted with strong electron-donating 
groups, such as 3,4-dimethoxyaniline, cannot undergo the cleavage 
process, the corresponding arylboronic acids substituted with strong 
electron-donating groups underwent cleavage well (62), which dem-
onstrates the excellent complementary protocol for these two kinds 
of substrate.

Notably, the formed cyanoalkene products can be easily reduced to 
industrially important acrylonitrile and adiponitrile derivatives with 
Pd/C and H2, and can be further transformed into corresponding sub-
stituted hexamethylenediamine 98 and adipic acid derivative 99 with 
good efficiencies (Extended Data Fig. 1a). In addition, the influence of 
the ring-cleavage transformation on the optical properties of the aro-
matic compounds was studied, as the introduction of a flexible alkenyl 
nitrile chain might improve the aggregation-induced emission property 
of the conjugated aryl-ring chemicals (Supplementary Section 4.4.5).

To understand the mechanism, we subjected benzene-1,2-diamine 
(100), 2-azidoaniline (101), 1,2-diazidobenzene (102), in-situ-generated 
benzyne (103) and azobenzene (104) to the standard conditions used 
for the cleavage of anilines; in no case was a ring-cleaved alkenylnitrile 
product formed, excluding these intermediates from being involved 
in this transformation (Extended Data Fig. 1b). The corresponding 
anilines or aryl azides could be detected form different starting materi-
als when we changed the standard conditions or reduced the loading 
of azides (Supplementary Section 4.3.1.3), which indicates that they 
are the common key intermediates of these reactions. Moreover, the 
15N-labelling experiment with 15N-labelled naphthalen-1-amine dem-
onstrates that NaN3 provides only one nitrogen atom in the cleavage 
of anilines (Fig. 4a).

Quantum mechanical calculations using density functional theory 
(DFT) at the (U)M06-D3/6-311++G(d,p)-SDD(Cu)-SMD(DMF)//(U)
B3LYP-D3-(BJ)/6-31G(d)-SDD(Cu)-SMD(DMF) (see Supplementary 
Information for details) level enriches the mechanistic details. Enlight-
ened by the reactions of the copper complex with aryl azides46,47 and 
the Cu(I)/Cu(II) redox cycle in related aerobic copper catalytic reac-
tions48,49, we explored the likelihood of a copper nitrene intermedi-
ate. A plausible mechanism is shown in Fig. 4b. It involves (1) capture 
of the azide radical by the triplet copper nitrene, (2) inner-sphere 
ortho-azidation, (3) hydrogen atom abstraction, (4) bis-nitrene for-
mation and (e) copper-assisted dearomative C–C bond cleavage. The 
triplet copper nitrene (3Int1) can capture the azide radical to give the 
copper azide (4Int2) in the quartet state, which leads to the doublet 
one (2Int2) through a minimum energy crossing point (MECP1). Fol-
lowing the inner-sphere azidyl group transfer from copper leads to an 
ortho-azidated species (2Int3) regioselectively, whereas direct attack of 
the azide radical towards the phenyl ring is obstructed (Supplementary 
Fig. 11). Subsequent hydrogen atom abstraction by a second azide radi-
cal affords a copper ortho-azido nitrene (3Int4). For comparison, the 
azide anion is not competent in both azidation of 3Int1 and deprotona-
tion of 2Int3 (Supplementary Fig. 13). Extrusion of N2 in 3Int4 furnishes 
a key intermediate, the triplet copper bis-nitrene (3Int5), which features 
a substantially weakened C–C bond. Consequently, the ensuing 3TS4 
of C–C bond cleavage, still in the triplet state, has an energy barrier 
as low as 3.4 kcal mol−1, whereas the singlet analogue is energetically 
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Fig. 1 | Cleaving arene rings. a, The industrial hydrocracking process for the 
arene ring-opening transformation. b, The cleavage of arene rings in bacteria 
with Rieske dioxygenase (Protein Data Bank 3EN1) and intradiol dioxygenase 
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prohibited (Supplementary Fig. 17). After 3TS4, a complex of copper and 
product (3Int6) forms, which facilely transforms into the singlet state 
(1Int6) via MECP2, and a final ligand exchange with solvent releases 
the ring-opening product.

In addition, the kinetic isotope effect experiments and the study 
of reaction kinetics are consistent with the proposed pathways 

(Supplementary Section 4.3.1). A trace amount of the released HN3 
was detected by a gas chromatography–tandem mass spectrometry 
system via headspace sample injection, which is consistent with the 
hydrogen atom abstraction by the azide radical (Supplementary Sec-
tion 4.3.3). More importantly, for the cleavage of aniline, electrospray 
ionization–high-resolution mass spectrometry (ESI–HRMS) analysis 
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compounds. Only isolated yields are shown. Only one Z- or E-isomer was 
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DMF at 40 °C under open air. bPrepared from naphthylboronic acid (0.3 mmol), 
with Cu(hfacac)2·H2O and 4-MeOPyridine in PhCl at 130 °C under O2 (1 atm). 
cUsing the boronic acid pinacol ester as the substrate under the same condition 
of naphthylboronic acid. dSee the Supplementary Information for 
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of the reaction sample (diluted in acetonitrile) detected ion peaks and 
the isotope ion peaks of two copper nitrene species resembling 2Int3 
and 3Int4 (Fig. 4b). Although the ESI–HRMS analysis could not provide 
information of the quantity of the detected species, the high-sensitivity 
detection of the generated intermediates indicates the possible involve-
ment of copper nitrene intermediates in the process (Supplementary 
Section 4.3.4).

By inspecting the molecular orbitals (MO) of the triplet cop-
per bis-nitrene intermediate, we noticed antibonding interaction 
between pN and σC–C* in both singly occupied molecular orbitals 
HOMO(α) and HOMO-1(β). HOMO(α) represents the intrinsic orbital 
interaction in bis-nitrene, while HOMO-1(β) shows not only the 
intrinsic contributions but also the involvement of the dCu orbital 
(Extended Data Fig. 1c). These two MOs together unveil a unique 
bonding pattern leading to C–C bond cleavage: chelation of 
bis-nitrene with copper efficiently facilitates lone pairs of two adja-
cent nitrogen atoms to interact with the antibonding orbital of the 

intervening C–C bond, which facilitates the arene ring C–C bond  
cleavage.

Compared with the thermolysis pathway of 1,2-diazidobenzene, 
the current mechanism has a lower energy barrier for ring cleavage 
(3TS4, 3.4 kcal mol−1 versus 1TS-II, 6.1 kcal mol−1; Supplementary Figs. 7 
and 25). As antibonding interaction exists in 1Int-I (the intermediate 
before 1TS-II) as well, the decreased barrier for catalytic ring cleavage 
is ascribed to a better mixing of σC–C* and pN in 3Int5, probably owing 
to the presence of transition metal.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Extended Data Fig. 1 | Downstream transformations and mechanism studies. a, Downstream transformations of alkenyl nitriles. b, The excluded 
intermediates. c, HOMO(α) and HOMO-1(β) of the triplet copper bis-nitrene intermediate. *See Supplementary Information for experimental details.
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