

Cleaving arene rings for acyclic alkenyl nitrile synthesis

<https://doi.org/10.1038/s41586-021-03801-y>

Received: 17 February 2021

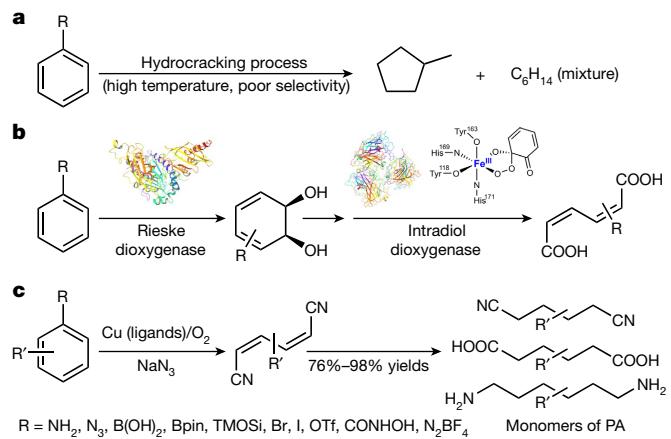
Accepted: 6 July 2021

Published online: 19 July 2021

 Check for updates

Xu Qiu^{1,6}, Yueqian Sang^{3,6}, Hao Wu^{1,4,6}, Xiao-Song Xue^{2,3}, Zixi Yan¹, Yachong Wang¹, Zengrui Cheng¹, Xiaoyang Wang¹, Hui Tan¹, Song Song¹, Guisheng Zhang⁴, Xiaohui Zhang¹, K. N. Houk^{2,✉} & Ning Jiao^{1,5,✉}

Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge^{1–6}. Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds^{7,8}, and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited^{9–11}. Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology.


Since the discovery of benzene by Faraday nearly 200 years ago¹², the substitution of arenes has rapidly developed^{13,14}; however, the activation of aromatic carbon–carbon (C–C) bonds^{1–6} via ring-expansion or ring-opening reactions remains even now a challenging and largely unexplored area due to the difficulty in breaking aromaticity and the high bond dissociation energy of an aromatic C=C bond (calculated bond dissociation energy 147 kcal mol^{−1}). In addition, the thermodynamic and kinetic limitations block the conversion of arene rings surrounded by the C–H bonds. To achieve the preparation of useful value-added acyclic compounds from arenes, as well as coal liquefaction and biomass conversion, researchers have studied the selective cutting open of arene rings^{7,8}. In industry, the naphtha hydrocracking process of benzene performed at high temperature, producing methylcyclopentane and acyclic saturated hydrocarbons, suffers from a mixture of products (Fig. 1a)⁸. Although the preparation of useful C₆ synthons and more complex acyclic fragments from benzenes is attractive, catalytic methods to cleave widely available arene rings under mild conditions with good selectivity are still unknown.

In recent decades, several strategies have been reported for such reactions. (1) The cleavage of arene rings in bacteria transforms benzene into muconic acid via a multistep oxidizing pathway⁴ catalysed by two key dioxygenases (Fig. 1b)¹⁵, but the enzymatic process is hard to mimic^{11,16}.

(2) Transition-metal complexes have also been developed for dearomatic C–C bond cleavage of arenes^{9,10,17} or *ortho*-phenylenediamines^{18–20}. The groups of Parkin⁹ and Crimmin¹⁷ realized the C–C bond cleavage of quinoxaline heteroarene and biphenylene by a tungsten complex and a aluminium(I) complex, respectively. A titanium-mediated C–C bond cleavage and rearrangement of benzene was disclosed by Hou and co-workers¹⁰. (3) Alternatively, the ring expansion of arenes by carbene²¹, nitrene^{22,23} or phosphinidene²⁴ species have been reported for the preparation of seven-membered ring compounds. Despite the importance of these strategies, the preparation of acyclic products from benzenes is rarely applied in chemical synthesis.

It is reported that 1,2-diazidobenzene yields 1,4-dicyano-1,3-butadiene through a thermal decomposition process^{18,25–27}, which indicates that the 1,2-phenylene bis-nitrene intermediate can lead to benzene ring-opening. Inspired by the enzymatic process in bacteria (Fig. 1b), we hypothesized that a biomimetic cascade activation strategy for general arenes could incorporate two active nitrogen cofactors that would work like the catechol to target the intradiol ring-cleaving dioxygenase for the subsequent arene ring-opening, thus converting arene derivatives into alkenyl nitriles. We demonstrate a novel copper-catalysed aerobic oxidative arene ring-opening transformation that affords selective arene-ring C–C bond cleavage. A broad range of arene derivatives,

¹State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China. ²Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. ³State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China. ⁴Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China. ⁵State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China. ⁶These authors contributed equally: Xu Qiu, Yueqian Sang, Hao Wu. [✉]e-mail: houk@chem.ucla.edu; jiaoning@pku.edu.cn

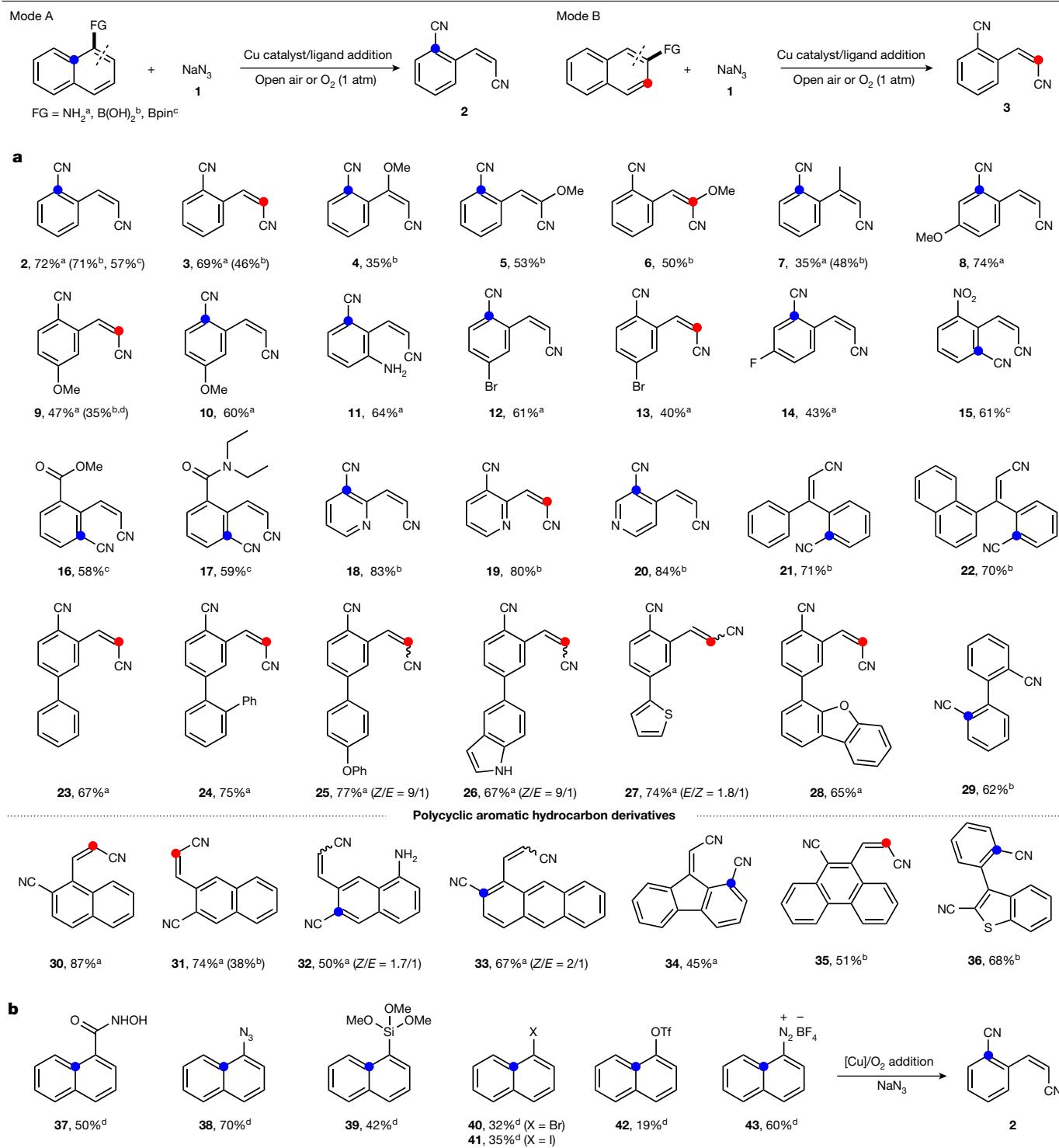
Fig. 1 | Cleaving arene rings. **a**, The industrial hydrocracking process for the arene ring-opening transformation. **b**, The cleavage of arene rings in bacteria with Rieske dioxygenase (Protein Data Bank 3EN1) and intradiol dioxygenase (Protein Data Bank 4WHR). **c**, Copper catalysed arene ring-opening reactions for the preparation of alkenyl nitriles and adiponitrile, hexamethylenediamine and adipic acid derivatives. FG, functional group; pin, pinacolate; TMO, trimethoxy; OTf, trifluoromethanesulfonate; PA, polyamide.

including anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts can now be efficiently converted into alkenyl nitriles, and easily transformed into the industrially important adiponitrile, hexamethylenediamine and adipic acid derivatives (Fig. 1c).

The investigation began with naphthalen-1-amine as the substrate. We initially selected azides as the proposed active nitrogen cofactor, because of their high reactivity and their importance in chemistry and chemical biology, such as click chemistry^{28–32}, C–H functionalization^{33–35}, C–C functionalization^{36–38} and other synthetic chemistry^{39,40}. The extensive screening demonstrated that the present hypothesis was achieved by an aerobic oxidative copper catalyst, which successfully delivered (*Z*)-2-(2-cyanovinyl)benzonitrile (**2**) with high stereoselectivity (Supplementary Section 4.1). The further broad screening of catalysts and ligands indicated that the Cu(NO₃)₂·3H₂O with ligand 2,2'-bipyridine has the key role in the C–C cleavage of the benzene ring with air as the oxidant. Inspired by these results, we also achieved the cleavage of naphthalen-1-ylboronic acid. In this case, the screening results showed that the Cu(hfacac)₂·H₂O performed much better than other copper salts (Supplementary Section 4.2.2).

Modification of the skeleton of polycyclic aromatic compounds substantially alters their physical and chemical properties^{41–43}. Naphthylamine and naphthylboronic acid derivatives readily give the aromatic ring-opening products (Fig. 2a); the cleavage of naphthylboronic acids better tolerates electron-withdrawing groups than naphthylamines (**15–20**). The transformation is not limited to naphthalene, and quinoline (**18** and **19**), isoquinoline (**20**) and some larger conjugated arene rings (**29–36**) can be cleaved in these reactions with moderate to good yields.

It is noteworthy that other common aromatic chemicals, including aryl hydroxamic acids, aryl azides, aryl trimethylsiloxanes, aryl halides, aryl triflates and aryl diazonium salts, can be efficiently converted into alkenyl nitriles by the present cascade activation strategy (Fig. 2b). Among them, 1-naphthohydroxamic acid **37**, 1-azidonaphthalene **38** and 1-naphthyldiazonium tetrafluoroborate **43** afforded the alkenyl nitrile product **2** with yields of 50% to 70%. Furthermore, benzene, alkyl benzenes and benzyl alcohols, which are common in bulk chemicals, could also be transformed into dearomatic ring-cleavage products via modified procedures (Supplementary Section 4.4.3). These results demonstrate the broad prospects of the further development of dearomatic C–C bond cleavage.

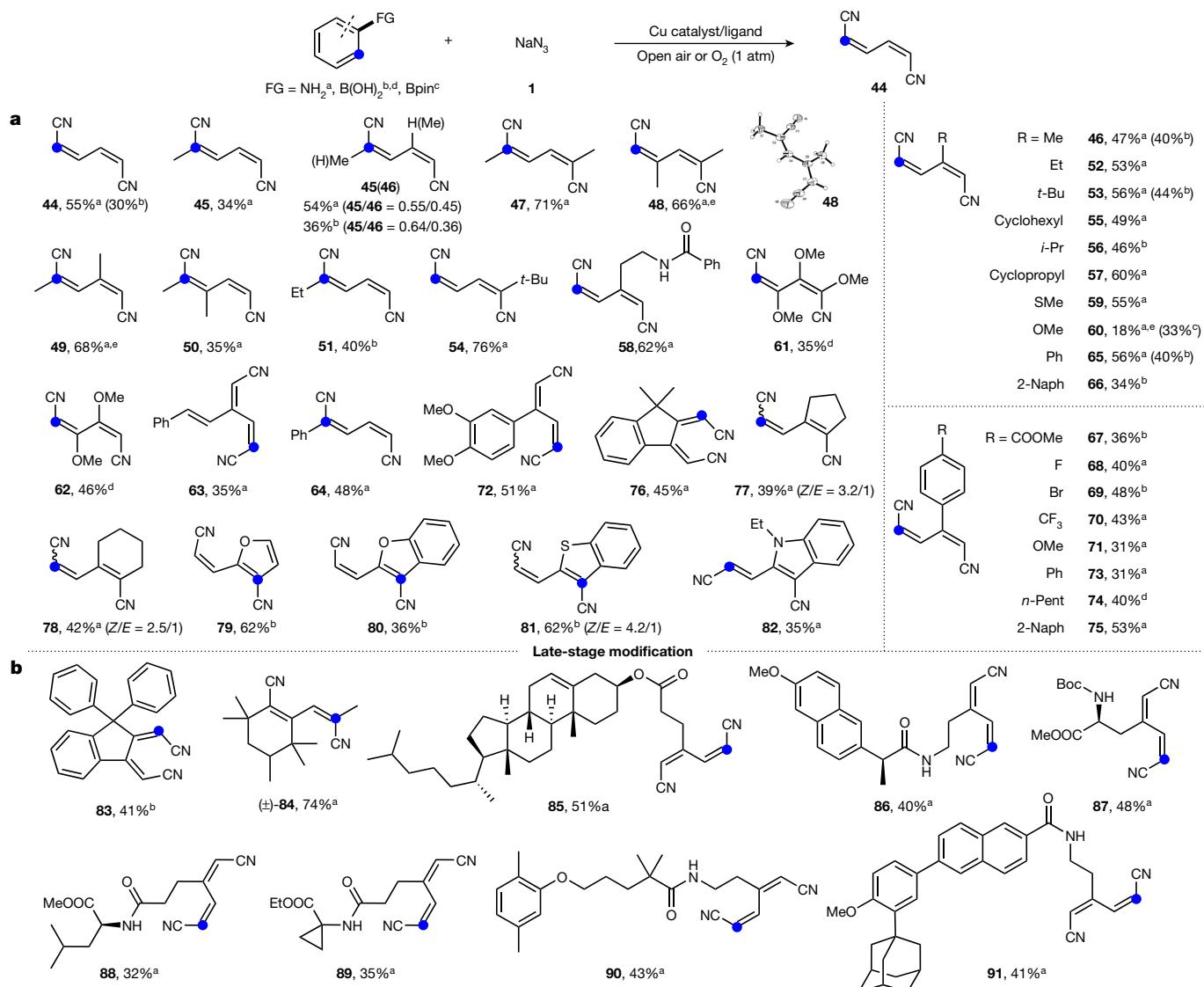

Owing to the importance of C6 synthons in polymers^{44,45}, the scope of different alkyl-side-chain-substituted benzene substrates was investigated (Fig. 3a). Substrates bearing amide (**58**), SMe (**59**), OMe (**60–62**), olefin (**63**), phenyl (**64** and **65**) and substituted aryl groups (**66–76** and **83**), and cyclic aliphatic rings (**77, 78** and **84**) underwent cleavage reaction with moderate to good yields. It is noteworthy that the cleavage of conjugated aromatic heterocycles, including furan (**79**), benzofuran (**80**), benzothiophene (**81**) and indole (**82**), offers new heterocycles with cyano and cyanovinyl substituents.

These approaches also hold promise for the late-stage modification of complex molecules (Fig. 3b). Alkenes, amides, Boc-protecting groups, ethers and esters (**85–91**) are well tolerated, with good chirality retention. Although anilines substituted with strong electron-donating groups, such as 3,4-dimethoxyaniline, cannot undergo the cleavage process, the corresponding arylboronic acids substituted with strong electron-donating groups underwent cleavage well (**62**), which demonstrates the excellent complementary protocol for these two kinds of substrate.

Notably, the formed cyanoalkene products can be easily reduced to industrially important acrylonitrile and adiponitrile derivatives with Pd/C and H₂, and can be further transformed into corresponding substituted hexamethylenediamine **98** and adipic acid derivative **99** with good efficiencies (Extended Data Fig. 1a). In addition, the influence of the ring-cleavage transformation on the optical properties of the aromatic compounds was studied, as the introduction of a flexible alkenyl nitrile chain might improve the aggregation-induced emission property of the conjugated aryl-ring chemicals (Supplementary Section 4.4.5).

To understand the mechanism, we subjected benzene-1,2-diamine (**100**), 2-azidoaniline (**101**), 1,2-diazidobenzene (**102**), in-situ-generated benzene (**103**) and azobenzene (**104**) to the standard conditions used for the cleavage of anilines; in no case was a ring-cleaved alkenyl nitrile product formed, excluding these intermediates from being involved in this transformation (Extended Data Fig. 1b). The corresponding anilines or aryl azides could be detected from different starting materials when we changed the standard conditions or reduced the loading of azides (Supplementary Section 4.3.1.3), which indicates that they are the common key intermediates of these reactions. Moreover, the ¹⁵N-labelling experiment with ¹⁵N-labelled naphthalen-1-amine demonstrates that NaN₃ provides only one nitrogen atom in the cleavage of anilines (Fig. 4a).

Quantum mechanical calculations using density functional theory (DFT) at the (U)M06-D3/6-311++G(d,p)-SDD(Cu)-SMD(DMF)/(U)B3LYP-D3-(BJ)/6-31G(d)-SDD(Cu)-SMD(DMF) (see Supplementary Information for details) level enriches the mechanistic details. Enlightened by the reactions of the copper complex with aryl azides^{46,47} and the Cu(I)/Cu(II) redox cycle in related aerobic copper catalytic reactions^{48,49}, we explored the likelihood of a copper nitrene intermediate. A plausible mechanism is shown in Fig. 4b. It involves (1) capture of the azide radical by the triplet copper nitrene, (2) inner-sphere *ortho*-azidation, (3) hydrogen atom abstraction, (4) bis-nitrene formation and (5) copper-assisted dearomatic C–C bond cleavage. The triplet copper nitrene (³Int1) can capture the azide radical to give the copper azide (⁴Int2) in the quartet state, which leads to the doublet one (²Int2) through a minimum energy crossing point (**MECP1**). Following the inner-sphere azidyl group transfer from copper leads to an *ortho*-azidated species (²Int3) regioselectively, whereas direct attack of the azide radical towards the phenyl ring is obstructed (Supplementary Fig. 11). Subsequent hydrogen atom abstraction by a second azide radical affords a copper *ortho*-azido nitrene (³Int4). For comparison, the azide anion is not competent in both azidation of ³Int1 and deprotonation of ²Int3 (Supplementary Fig. 13). Extrusion of N₂ in ³Int4 furnishes a key intermediate, the triplet copper bis-nitrene (³Int5), which features a substantially weakened C–C bond. Consequently, the ensuing ³Ts4 of C–C bond cleavage, still in the triplet state, has an energy barrier as low as 3.4 kcal mol⁻¹, whereas the singlet analogue is energetically


Fig. 2 | Scope of polycyclic aromatic compounds and transformations to *ortho*(*cis*-cyanovinyl) aryl nitriles. **a**, The scope of naphthylamines and naphthylboronic acids. **b**, The scope of other substituted naphthalene compounds. Only isolated yields are shown. Only one *Z*- or *E*-isomer was detected, or the ratio is larger than 20:1 unless the ratio is given. ^aPrepared from naphthylamine (0.3 mmol), with $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$, 2,2'-bipyridine and KH_2PO_4 in

DMF at 40 °C under open air. ^bPrepared from naphthylboronic acid (0.3 mmol), with Cu(hfacac)₂·H₂O and 4-MeOPyridine in PhCl at 130 °C under O₂ (1 atm). ^cUsing the boronic acid pinacol ester as the substrate under the same condition of naphthylboronic acid. ^dSee the Supplementary Information for experimental details. hfacac, hexafluoroacetylacetone.

prohibited (Supplementary Fig. 17). After **3TS4**, a complex of copper and product (**3Int6**) forms, which facilely transforms into the singlet state (**4Int6**) via **MECP2**, and a final ligand exchange with solvent releases the ring-opening product.

In addition, the kinetic isotope effect experiments and the study of reaction kinetics are consistent with the proposed pathways

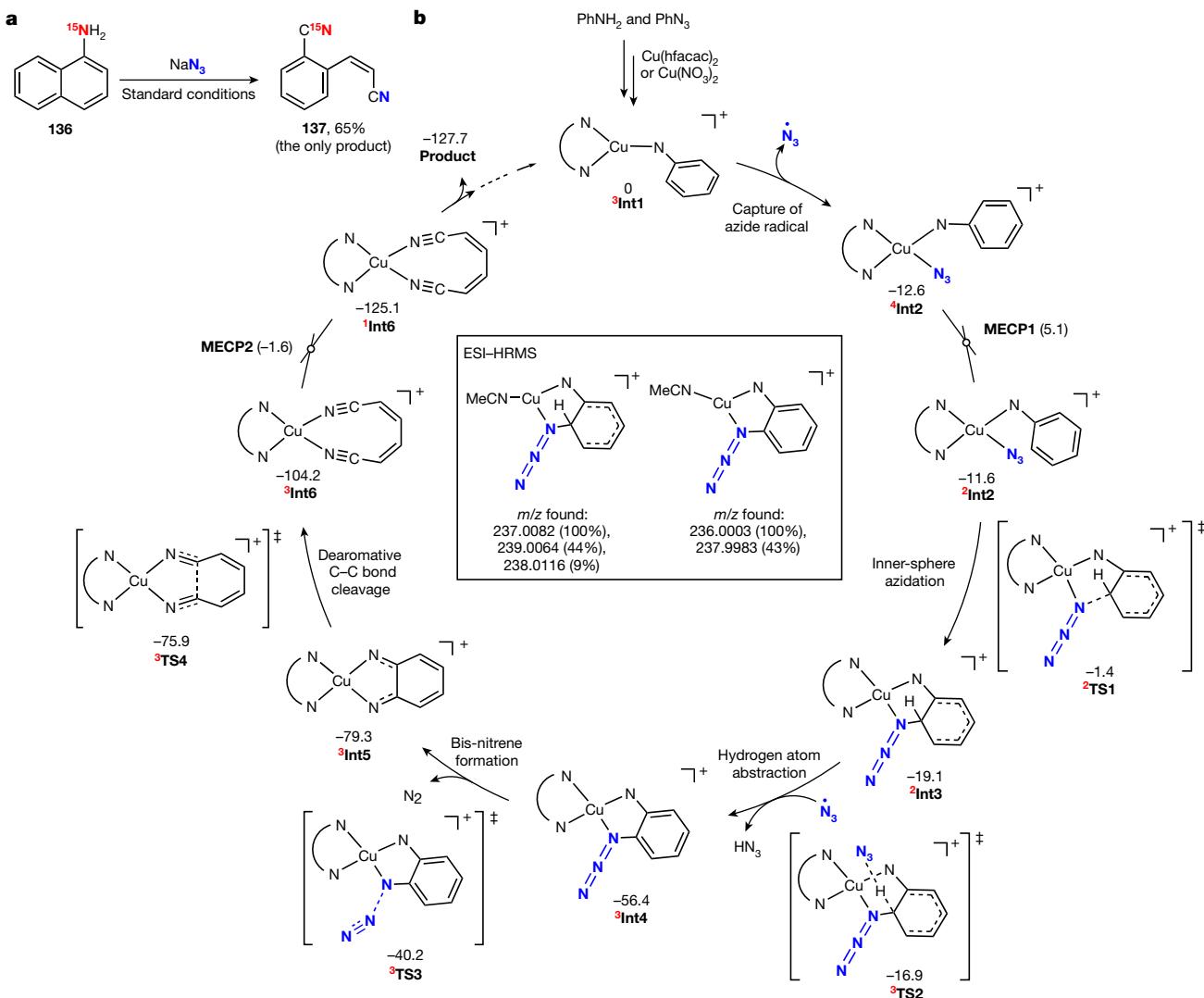
(Supplementary Section 4.3.1). A trace amount of the released HN_3 was detected by a gas chromatography–tandem mass spectrometry system via headspace sample injection, which is consistent with the hydrogen atom abstraction by the azide radical (Supplementary Section 4.3.3). More importantly, for the cleavage of aniline, electrospray ionization–high-resolution mass spectrometry (ESI–HRMS) analysis

Fig. 3 | The cleavage of anilines and phenylboronic acids and downstream transformations. a, The scope of anilines and phenylboronic acids.

b, Late-stage modification of complex molecules. Only isolated yields are shown. Only one *Z*- or *E*-isomer was detected, or the ratio is larger than 20:1 unless the ratio is given. ^aReaction performed with aniline (0.3 mmol), with $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$, 4-MeOPyridine in DMF at 40 °C under open air. ^bReaction performed with phenylboronic acid (0.3 mmol), with $\text{Cu}(\text{hfacac})_2 \cdot \text{H}_2\text{O}$, Ph-BOX and 3-MeOPyridine in PhCl at 130 °C under O_2 (1 atm). ^cUsing the phenylboronic acid pinacol ester (0.3 mmol), with $\text{Cu}(\text{hfacac})_2 \cdot \text{H}_2\text{O}$, 2,2'-bipyridine in PhCl at 130 °C under O_2 (1 atm). ^dReaction performed with phenylboronic acid (0.3 mmol), with $\text{Cu}(\text{hfacac})_2 \cdot \text{H}_2\text{O}$, 2,2'-bipyridine in PhCl at 130 °C under O_2 (1 atm). ^eSee the Supplementary Information for experimental details. Ph-BOX, (4*S*,4'*S*)-2,2'-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole).

and 3-MeOPyridine in PhCl at 130 °C under O_2 (1 atm). ^cUsing the phenylboronic acid pinacol ester (0.3 mmol), with $\text{Cu}(\text{hfacac})_2 \cdot \text{H}_2\text{O}$, 2,2'-bipyridine in PhCl at 130 °C under O_2 (1 atm). ^dReaction performed with phenylboronic acid (0.3 mmol), with $\text{Cu}(\text{hfacac})_2 \cdot \text{H}_2\text{O}$, 2,2'-bipyridine in PhCl at 130 °C under O_2 (1 atm). ^eSee the Supplementary Information for experimental details. Ph-BOX, (4*S*,4'*S*)-2,2'-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole).

of the reaction sample (diluted in acetonitrile) detected ion peaks and the isotope ion peaks of two copper nitrene species resembling ²Int3 and ³Int4 (Fig. 4b). Although the ESI-HRMS analysis could not provide information of the quantity of the detected species, the high-sensitivity detection of the generated intermediates indicates the possible involvement of copper nitrene intermediates in the process (Supplementary Section 4.3.4).


By inspecting the molecular orbitals (MO) of the triplet copper bis-nitrene intermediate, we noticed antibonding interaction between p_N and $\sigma_{\text{C}-\text{C}}^*$ in both singly occupied molecular orbitals HOMO(α) and HOMO-1(β). HOMO(α) represents the intrinsic orbital interaction in bis-nitrene, while HOMO-1(β) shows not only the intrinsic contributions but also the involvement of the d_{Cu} orbital (Extended Data Fig. 1c). These two MOs together unveil a unique bonding pattern leading to C-C bond cleavage: chelation of bis-nitrene with copper efficiently facilitates lone pairs of two adjacent nitrogen atoms to interact with the antibonding orbital of the

intervening C-C bond, which facilitates the arene ring C-C bond cleavage.

Compared with the thermolysis pathway of 1,2-diazidobenzene, the current mechanism has a lower energy barrier for ring cleavage (³TS4, 3.4 kcal mol⁻¹ versus ¹TS-II, 6.1 kcal mol⁻¹; Supplementary Figs. 7 and 25). As antibonding interaction exists in ¹Int-I (the intermediate before ¹TS-II) as well, the decreased barrier for catalytic ring cleavage is ascribed to a better mixing of $\sigma_{\text{C}-\text{C}}^*$ and p_N in ³Int5, probably owing to the presence of transition metal.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at <https://doi.org/10.1038/s41586-021-03801-y>.

Fig. 4 | Mechanism studies. a, Isotopic labelling experiment with the ^{15}N -labelled naphthalen-1-amine as the substrate. **b,** Proposed mechanism. Detected copper nitrene species from the reaction sample of aniline diluted with acetonitrile via ESI-HRMS and energies from DFT calculations ((U)

M06-D3/6-311++G(d,p)-SDD(Cu)-SMD(DMF)//(U)B3LYP-D3-(BJ)/6-31G(d)-SDD(Cu)-SMD(DMF)). The superscript numbers on the top left corners of Int and TS denote spin multiplicity. All energies are in kcal mol⁻¹. ^{15}N , nitrogen-15 isotope with seven protons and eight neutrons.

1. National Research Council (US) *Health and Medicine: Challenges for the Chemical Sciences in the 21st Century* (National Academies Press, 2004).
2. Jones, W. D. The fall of the C-C bond. *Nature* **364**, 676–677 (1993).
3. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2'-biphenols. *Nat. Chem.* **11**, 45–51 (2019).
4. Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C Bonds by enzymatic oxidation-reduction reactions. *Chem. Rev.* **118**, 6573–6655 (2018).
5. Jakoobi, M. & Sergeev, A. G. Transition-metal-mediated cleavage of C–C bonds in aromatic rings. *Chem. Asian J.* **14**, 2181–2192 (2019).
6. Murakami, M. & Chatani, N. *Cleavage of Carbon–Carbon Single Bonds by Transition Metals* (Wiley, 2015).
7. Mortier, J. *Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds* (Wiley, 2015).
8. Benitez, V. M., Grau, J. M., Yori, J. C., Pieck, C. L. & Vera, C. R. Hydroisomerization of benzene-containing paraffinic feedstocks over Pt/WO₃–ZrO₂ catalysts. *Energy Fuels* **20**, 1791–1798 (2006).
9. Sattler, A. & Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. *Nature* **463**, 523–526 (2010).
10. Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. *Nature* **512**, 413–415 (2014).
11. Bugg, T. D. H. & Winfield, C. J. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. *Nat. Prod. Rep.* **15**, 513–530 (1998).
12. Wilson, J. Celebrating Michael Faraday's discovery of benzene. *Ambix* **59**, 241–265 (2013).
13. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. *Nature* **417**, 507–514 (2002).
14. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. *Chem. Soc. Rev.* **45**, 2900–2936 (2016).
15. Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. *J. Biol. Inorg. Chem.* **22**, 395–405 (2017).
16. Siddiqui, Z., Wiertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomatic synthesis of arene oxides and oxepines. *J. Am. Chem. Soc.* **142**, 10125–10131 (2020).
17. Kong, R. Y. & Crimmin, M. R. Chemoselective C–C σ -bond activation of the most stable ring in biphenylene. *Angew. Chem. Int. Ed.* **60**, 2619–2623 (2021).
18. Nakagawa, K. & Onoue, H. Oxidation of o-phenylenediamines with lead tetra-acetate. *Chem. Commun. (London)* 396a (1965).
19. Nakagawa, K. & Onoue, H. Oxidation with nickel peroxide. V. The formation of cis,cis-1,4-dicyano-1,3-butadienes in the oxidation of o-phenylenediamines. *Tetrahedr. Lett.* **6**, 1433–1436 (1965).
20. Kajimoto, T., Takahashi, H. & Tsuji, J. Copper-catalyzed oxidation of o-phenylenediamines to cis,cis-mucononitriles. *J. Org. Chem.* **41**, 1389–1393 (1976).
21. Buchner, E. & Curtius, T. Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. *Ber. Dtsch. Chem. Ges.* **18**, 2371–2377 (1885).
22. Chapman, O. L. & Leroux, J. P. 1-Aza-1,2,4,6-cycloheptatetraene. *J. Am. Chem. Soc.* **100**, 282–285 (1978).
23. Satake, K., Mizushima, H., Kimura, M. & Morosawa, S. The reactions of nitrene for the conjugated π -systems. *Heterocycles* **23**, 195 (1985).
24. Liu, L. L. et al. A transient vinylphosphinidene via a phosphirene–phosphinidene rearrangement. *J. Am. Chem. Soc.* **140**, 147–150 (2018).
25. Hall, J. H. Dinitrenes from o-diazides. synthesis of 1,4-dicyano-1,3-butadienes. *J. Am. Chem. Soc.* **87**, 1147–1148 (1965).
26. Campbell, C. D. & Rees, C. W. Oxidation of 1- and 2-aminobenzotriazole. *Chem. Commun. (London)* 192–193 (1965).

27. Nicolaides, A. et al. Of *ortho*-conjugatively linked reactive intermediates: the cases of *ortho*-phenylene-(bis)nitrene, -carbenonitrene, and -(bis)carbene. *J. Am. Chem. Soc.* **121**, 10563–10572 (1999).

28. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. *Angew. Chem. Int. Ed.* **40**, 2004–2021 (2001).

29. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. *Nat. Chem.* **3**, 146–153 (2011).

30. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. *Nature* **430**, 873–877 (2004).

31. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. *Nature* **559**, 269–273 (2018).

32. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. *Nature* **574**, 86–89 (2019).

33. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. *Nature* **517**, 600–604 (2015).

34. Zhdankin, V. V. et al. Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes derivatives of benziodoxole. *J. Am. Chem. Soc.* **118**, 5192–5197 (1996).

35. Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. *J. Am. Chem. Soc.* **137**, 5300–5303 (2015).

36. Schmidt, K. F. Über die Einwirkung von NH auf organische Verbindungen. *Angew. Chem.* **36**, 511 (1923).

37. Schmidt, K. F. Über den Imin-Rest. *Ber. Dtsch. Chem. Ges.* **57B**, 704–706 (1924).

38. Liu, J. et al. From alkylarenes to anilines via site-directed carbon–carbon amination. *Nat. Chem.* **11**, 71–77 (2018).

39. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. *Science* **357**, 575–579 (2017).

40. Scriven, E. F. V. & Turnbull, K. Azides: their preparation and synthetic uses. *Chem. Rev.* **88**, 297–368 (1988).

41. Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. *Science* **366**, 1107–1110 (2019).

42. Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO₂ surfaces. *Science* **363**, 57–60 (2019).

43. Yano, Y. et al. Living annulative pi-extension polymerization for graphene nanoribbon synthesis. *Nature* **571**, 387–392 (2019).

44. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. *Science* **309**, 1200–1205 (2005).

45. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. *Nature* **539**, 411–415 (2016).

46. Bakhoda, A. G., Jiang, Q., Bertke, J. A., Cundari, T. R. & Warren, T. H. Elusive terminal copper arylnitrene intermediates. *Angew. Chem. Int. Ed.* **56**, 6426–6430 (2017).

47. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. *Science* **365**, 1138–1143 (2019).

48. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. *Chem. Rev.* **113**, 6234–6458 (2013).

49. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. *Acc. Chem. Res.* **48**, 1756–1766 (2015).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Article

Data availability

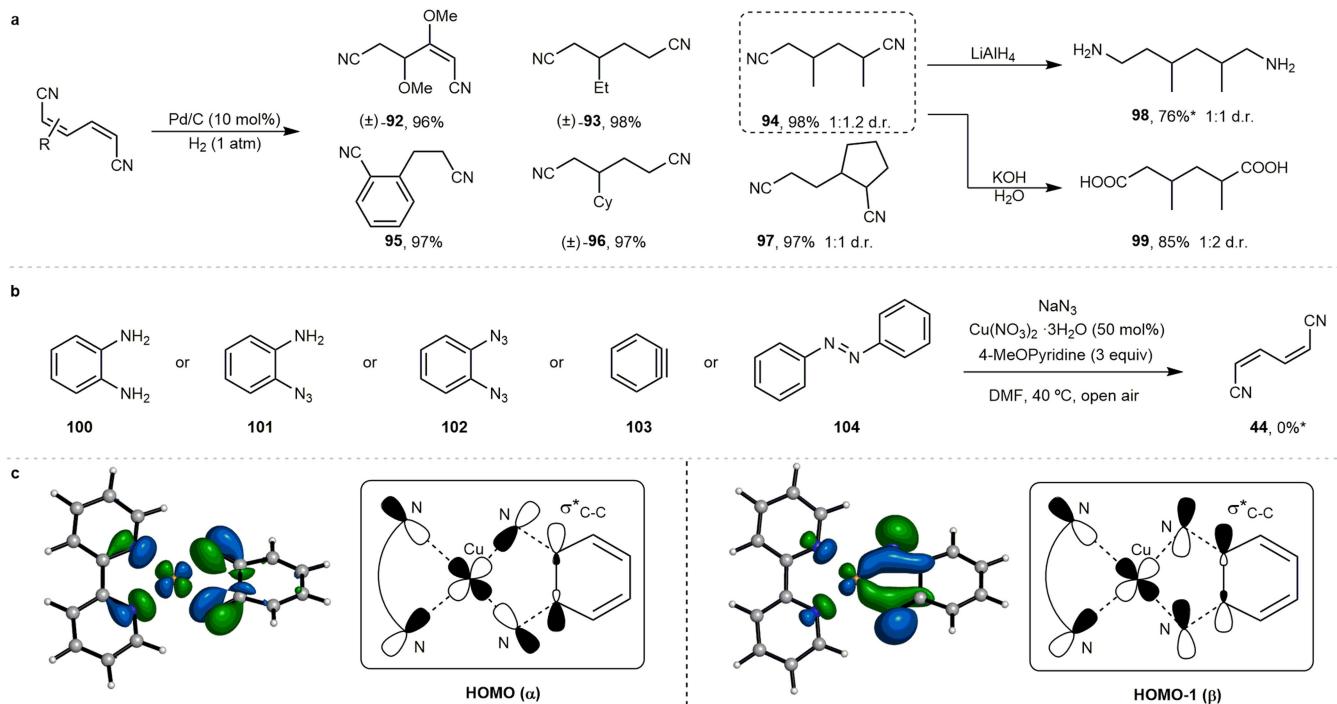
The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgements We acknowledge the NSFC (grant numbers 21632001, 21772002, 81821004, 21933004), the National Key Research and Development Project (grant number 2019YFC1708902), and the US National Science Foundation (CHE-1764328) for financial support of this research.

Author contributions N.J. conceived the project and directed the research. K.N.H. and X.-S.X. supervised the mechanistic study. X.Q., Y.S., X.-S.X., K.N.H. and N.J. wrote the paper. X.Q., H.W.,

Z.Y., Y.W., Z.C. and X.W. performed the experiments. Y.S. performed the DFT calculations. H.T., S.S., G.Z. and X.Z. discussed the results.

Competing interests The authors declare no competing interests.


Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41586-021-03801-y>.

Correspondence and requests for materials should be addressed to K.N.H. and N.J.

Peer review information *Nature* thanks Adrian Mulholland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at <http://www.nature.com/reprints>.

Extended Data Fig. 1 | Downstream transformations and mechanism studies. **a**, Downstream transformations of alkenyl nitriles. **b**, The excluded intermediates. **c**, HOMO(α) and HOMO-1(β) of the triplet copper bis-nitrene intermediate. *See Supplementary Information for experimental details.