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ABSTRACT: We report that structurally complex guanidinium . " conconed JNHZ
heterocycles can be prepared in one step by regio- and stereoselective P . HN§/\ 2 asynchronous REHN .

[4 + 2]-cycloadditions of N-amidinyliminium ions with indoles or r{ [ O N | TR
benzothiophene. In contrast to reactions of these heterodienes with X <)_R’ R ~x 5 A
alkenes, density functional theory (DFT) calculations show that  X=NRS 21 examples
these cycloadditions take place in a concerted asynchronous fashion. 34-87% yield

The [4 + 2]-cycloaddition of N-amidinyliminium ions (1,3-diaza-1,3-
dienes) with indoles and benzothiophene are distinctive, as related [4 + 2]-cycloadditions of N-acyliminium ions (1-oxa-3-aza-1,3-
dienes) are apparently unknown.

he guanidine functional group is found in a diverse array of

drugs and potential therapeutics, re ecting its ability to " :< 442 re N R
N N—R —— . = -
N </ cycloaddition

form a variety of strong noncovalent interactions, such as
hydrogen bonding and -stacking." The anticancer agent
pemetrexed (Alimta, 1) exemplifies a class of therapeutic
structures in which the guanidine is embedded in a
polyheterocyclic unit.” Conversely, camostat mesylate (2), a
drug for the treatment of chronic pancreatitis in Japan and

currently under investigation as a potential therapy for SARS-
\
R!

CoV-2,” harbors an unsubstituted guanidine fragment (Figure ;
5H-pyrimido[5,4-blindole-2-amine (8) ! regioisomeric cycloadduct 9

1). In addition, a wide variety of bioactive marine natural

products contain guanidine units embedded in various Figure 2. Preparation of guanidinium heterocycles 7 by cycloaddition
of 3-substituted indoles § with N-amidinyliminium ions 6.
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Figure 1. Selected drugs, drug candidates, and natural products ' %
containing a guanidinium group.
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Figure 3. Scope of the cycloaddition of the amidinyl iminium ion
derived from phenylthio precursor 9 and indoles or benzothiophene.
Reactions were conducted under the conditions depicted in Scheme 1.
The yield of 12a was 97  in a reaction conducted at the 1 mmol scale.
Several products contained a small amount of an inseparable byproduct,
which could be a regio- or stereoisomer.

polycyclic scaffolds, as exemplified by tetrodotoxin (3) and
isocrambescidin 800 (4)."*

Herein we report that guanidinium heterocycles, exemplified
by 7, featuring a dihydroindole motif can be prepared by
cycloaddition of N-amidinyliminium ions with 3-substituted
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substituent is largely unexplored.” We first encountered these
iminium jon variants as intermediates in tethered Biginelli
reactions.”” Subsequently, we developed a method to generate
these electrophiles under aprotic conditions from the reaction of
a-(thiophenyl)guanidinium ions with Cu(OTf), and studied
their reaction with electron-rich alkenes.” To further explore the
reactivity of N-amidinyliminium ions, we recently investigated
their reactivity with indoles. We began by examining the reaction
of several indoles with N-amidinyliminium ion precursor 10
using the thiophilic reagent 2,6-dichloro-1- uoropyridinium
tetra uoroborate (11),"" which had performed exceptionally
well in recent studies of the cyclocondensation reaction of 10
with styrenes (Scheme 1)."" Although 1-methylindole and 1,3-
dimethylindole gave complex mixtures of reaction products, 3-
methylindoles harboring a Cbz or Ts substituent on nitrogen
provided one major cycloadduct 12 on exposure to 10 and 1
equiv of the N- uoropyridinium salt 11 at 0 °C in CH,Cl, (or
mixtures of acetonitrile and CH,Cl,). Additional optimization
experiments showed that the reaction of 3 equiv of the indole, 1
equiv of iminium ion precursor 10, and 1.1 equivof 11 at 0 °Cin
a 4/1 CH,Cl,/MeCN solvent mixture in the presence of 4 A
molecular sieves gave cycloadducts 12a,b with high diaster-
eoselectivityin 85 97 and 59 yields, respectively (Figure 3).
The structure of these cycloadducts was originally assigned on
the basis of NMR spectra. Particularly diagnostic were the
downfield resonance for the fully substituted benzylic carbon
(12a, 61.9 ppm; 12b, 63.7 ppm) and the signal for Ha, which
appeared at 4.82 and 4.28 ppm as a clean doublet (J = 5.3 and 4.5
Hz) for 12a)b, respectively. These data rule out the alternate
regioisomeric structure 9. The relative configurational assign-
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(a) Model reaction used for the cycloaddition of iminium cation with indole
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(d) DFT-optimized transition state structures for reaction (c)
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Figure S. Model reactions (a, c) studied computationally. DFT-optimized transition state structures (b, d). The energy zero is the separate reactants.

ment to cycloadducts 12, which was originally proposed on the
expectation of endo cycloaddition from the face opposite the
phenethyl substituent, was subsequently confirmed by a single-
crystal X-ray analysis of product 12j bearing a phenyl substituent
on the aromatic ring (see below).

The results of our survey of the cycloaddition of the N-
amidinyliminium ion derived from thioaminal precursor 10 with
various substituted indoles are summarized in Figure 3. Useful
yields were obtained when the indole nitrogen was protected
with either a carbamate or sulfonyl substituent. Substitution at
C-5 or C-6 of the indole precursor was well tolerated (formation
of 12f i). These polar guanidinium products are difficult to
isolate in pure form; therefore, differences in yield of 10 20
undoubtedly re ect these challenges. Nonetheless, the signifi-
cantly lower yields observed in forming 12e,n and the lack of
reactivity of 3-isopropylindole derivatives (see the Supporting
Information) likely re ects a steric impediment to creating the
fully substituted benzylic C N o-bond. Indoles harboring
electron-withdrawing substituents at C-3 or C-5, or a
siloxymethyl substituent at C-3, were not successful reaction
partners (see the Supporting Information). It is notable that
benzothiophene participated well in the cycloaddition reaction,
giving rise to cycloadduct 120 in 72 yield. In addition, the
structurally intricate bridged pentacycle 12p could be accessed
by utilizing a 1,2,3,4-tetrahydrocyclopent[b]indole derivative in

the N-amidinyliminium ion cycloaddition.

We then explored this cycloaddition method with 1-
(benzyloxycarbonyl)-3-methylindole and several alternate N-
amidinyliminium ion precursors (Figure 4). Truncation of the
phenethyl substituent is well tolerated, as illustrated by 12q.

There is a diminished yield for adduct 12s, which is not
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surprising considering the effect that steric in uences played in
our examination of the indole scope (see the Supporting
Information). In addition, more complex N-amidinyliminium
ion precursors could be utilized, as exemplified by the formation
of adduct 12u.

Intrigued by the observed regio- and stereoselectivity of this
type of cycloaddition reaction, we undertook density functional
theory (DFT) calculations to gain further insight into the
underlying mechanism.'” "> On the basis of the experimental
results, the model reactions shown in Figure Sa,c were used for
the computational study. Figure Sb shows DFT-optimized
transition state (TS) structures for the cycloaddition of A
(iminium cation) with B (indole substrate). We calculated four
possible TSs. The competition between TS1 and TS2
determines the regioselectivity, while the energy difference
between TS1 and TS3 determines the stereoselectivity. TS1 is
the most favorable and leads to the experimentally observed
product. We also calculated four possible transition states
(Figure Sd) for the cycloaddition of A (iminium cation) with C
(benzothiophene substrate) on the basis of the model reaction
shown in Figure Sc.
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Figure 6. (a) Stepwise cycloaddition mechanism. Free energies are
given in kcal/mol. (b) Orbital interaction diagram for the cycloaddition
of A and B. Percentages given are the fraction of electron density at that
position in that orbital.

The competition between TS5 and TS6 determines the
regioselectivity, while the energy difference between TSS and
TS7 determines the stereoselectivity. Of the four transition
states studied, TSS is the most favorable and generates the
experimentally observed product (Figure 5d). Our computa-
tional results are consistent with the experimental observations.
The calculated transition states shown in Figure 5b,d are highly
asynchronous, but intrinsic reaction coordinate (IRC) calcu-
lations confirm the concerted nature of these transition states.

In addition to the concerted mechanism, we also studied the
possibility of a stepwise pathway. As shown in Figure 6a, for the
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cycloaddition of A (iminium cation) with C (benzothiophene
substrate), a stepwise mechanism occurs via TS9 to form the
first C C bond, and the barrier is 22.2 kcal/mol. The energy of
the resulting stepwise intermediate, D, is 18.4 kcal/mol. Next,
the second C N bond formation occurs via TS10, which has a
free energy of 20.4 kcal/mol. Overall, the rate-limiting step for
the stepwise mechanism is the first C C bond formation, and
the barrier is 22.2 kcal/mol (via TS9). Thus, the stepwise
mechanism is less favorable in comparison to the concerted
mechanism, in which the overall barrier is 20.2 kcal/mol (via
TSS, Figure 5d).

To understand the origins of regioselectivity for the
cycloaddition of A with B, we studied the orbital interaction
between the reactants. The orbital interaction diagrams shown
in Figure 6b suggest that the dominant interaction is from the
HOMO of B to the LUMO of A, which produces not only the
primary orbital interaction (highlighted in green) but also the
favorable secondary orbital interaction (SOI, gray line) between
nitrogen and nitrogen. The difference in nucleophilicity between
C2 and C3 (orbital coefficients for C2 and C3 in HOMO) of B
determines the regioselectivity, making TS1 more favorable than
TS2. Similar orbital interactions control the cycloaddition of A
with C (Figure S1).

We also explored the origins of stereoselectivity for these
cycloadditions. The endo TS1 is favored by 4.8 kcal/mol versus
the exo TS3. The endo TSs are favored by 1.8 4.8 kcal/mol for
all four cycloadditions depicted in Figure 6b. Secondary orbital
interactions and stabilizing electrostatic interactions'® between
the systems of B and C and the cationic diene, A, favor the endo
transition state in every case (Figure 6b and Figure S1).

In summary, complex guanidinium heterocycles harboring
fragment 7 can be prepared by [4 + 2]-cycloaddition of N-
amidinyliminium ions with indoles. This reactivity of N-
amidinyliminum ions appear to be unique, as related [4 + 2]-
cycloadditions of N-acyliminium ions are apparently un-
known."” In contrast to reactions of N-amidinyliminium ions
with alkenes,” the [4 + 2] -cycloadditions of these cationic
heterodienes with indoles and benzothiophenes ions occur in a
concerted, asynchronous fashion. The high regio- and stereo-
selectivity of these concerted cycloadditions are reproduced by
DFT calculations and explained by a simple FMO model. This
cycloaddition approach should allow the diverse pharmaco-
logical activity of heterocycles containing the SH-pyrimidino-
[S,4-blindole-2-amine (8) moiety to be explored with analogues
having a three-dimensional structure.’
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