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ABSTRACT: The rst examples of cross-metathesis between two different allenes is disclosed. First- and second-generation Ru
complexes were found to be ineffective, at most affording only oligomeric products. The exception was a rst-generation complex
bearing a bidentate phenyl isopropoxy ligand (i.e, PCy; is not released upon initiation), reactions with which afforded a 1,3-
disubstituted allenyl boronate in 22 yield. On the basis of mechanistic studies designed to gain deeper understanding of the reasons
for the ineffectiveness of different Ru catalysts, it was discovered that phosphine-free Ru-CAAC complexes have the steric and
electronic attributes to be highly effective. The results of these investigations pave the way for development of additional ole n
metathesis reactions that generate allenes.
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Why are reactions inefficient?
Might mechanistic insight be used to enhance efficiency?

were obtained together with polymeric byproducts. As the rst
step to address this shortcoming, we decided to develop
transformations that afford boryl-substituted allenes (Scheme
1b). The choice of substrates was for two reasons: the
versatility and increasing use of allenyl boronates in organic
synthesis,” and the likelihood that CM of electronically
complementary allenes would be more facile (vs homometa-
thesis).®

We began by probing the reaction between commercially
available allenyl-B(pin) (1) and 2a (Scheme 2). None of the
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puri cation). The key question then was: why would a less
active Ru complex be more effective?

In search of an answer, we investigated the fate of Ru-II
under the reaction conditions. The *P NMR spectrum of the
mixture derived from the reaction between allenes 1 and 2b
indicated rapid Ru complex consumption and formation of two
new species, evidenced by the appearance of signals at 35.1 and
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24.4 ppm (Scheme 3a). For insight regarding the identity of
the vinylidene complexes formed and the reason for their low

Scheme 3. Studies with Ru-I and Ru-II
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“Performed under N, atm. See the Supporting Information for details.

reactivity, we rst treated Ru-II with 4.0 equiv of 1 (Scheme
3b). A new vinylidene was formed together with decom-
position byproducts.” On the basis of spectroscopic analysis
and X-ray crystallography, the resulting complex was identi ed
as Ru-vinyl-1. This was con rmed when Ru-vinyl-1 was
generated in 91 yield by reaction of Ru-I and allenyl-B(pin)
(1.5 equiv). A similar process involved alkyl-allene 2b,
affording Ru-vinyl-2 and Ru-vinyl-3 (mixture; 14 and 56
yield, respectively). These ndings suggested that formation of
the more electron-de cient allenyl-B(pin) is more favorable
(vs an alkyl-allene). Control experiments showed that Ru-
vinylidene complexes are less effective than Ru-II in promoting
CM (e.g, ~10 conv to 3b with 5.0 mol ~ Ru-vinyl-1 or Ru-
vinyl-2/Ru-vinyl-3, mostly oligomerization).

Parallel experiments were carried out with NHC-containing
Ru-IIT and Ru-IV (Scheme 4). The reaction with mono-
phosphine Ru-III produced Ru-vinyl-4 in 92  yield (Scheme
4). The transformation between allenyl-B(pin) and phosphine-

Scheme 4. Studies Involving Ru-III and Ru-IV
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“Performed under N, atm. See the Supporting Information for details.

free Ru-IV, on the other hand, revealed a different
decomposition mode: Ru-carbide® was obtained in 50
yield (Scheme 4). An X-ray structure was secured, but
spectroscopic analysis was precluded by the complexs low
solubility.

Next, we performed DFT studies (Scheme S) to obtain
further information vis-a-vis the productive pathways and those
leading to inactive complexes, such as Ru-vinyl-1 4 and Ru-
carbide. Catalyst initiation likely occurs via ts-i and mcb-i to
give vinyl-i (catalytically active, unlike bis-phosphine Ru-vinyl-
1).” Reaction of vinyl-i with the second allene then affords the
CM product and unsubstituted vinylidene complex vinyl-ii
(via ts-ii mcb-ii, and ts-iii). Ensuing transformation involving
vinyl-ii and allenyl-B(pin) 1 regenerates vinyli via ts-iv,
completing a productive catalytic cycle. Another energetically
competitive route for vinyl-ii entails its homometathesis via ts-
v to yield mcb-iv. Cyclo-reversion of mcb-iv then leads to a
carbide complex, which is likely considerably lower in energy
( 32.1and 22.2 kcal/mol for Ru-carbide with L = PCy; and
NHC, respectively).

DFT investigations revealed that catalyst initiation is the
most energetically demanding stage of the transformation (Ru-
II or Ru-IV ts-i mcb-i vinyl-, Scheme S$).
Furthermore, in the case of phosphine-free Ru-IV, the barrier
for carbide formation is competitive with the productive route
(see vinyl-ii  ts-iv vs vinyl-ii  ts-v). In connection to Ru-
II, bisphosphine vinylidene formation likely occurs by
interception of vinyl-i or vinyl-ii with PCy; ( Ru-vinyl-1
or Ru-vinyl-2, respectively). DFT studies indicated that
bisphosphine formation is nearly barrierless and highly
exergonic ( 19.0 and 14.5 kcal/mol for Ru-vinyl-1 or Ru-
vinyl-2, respectively).'® Regarding reactions with Ru-II, which
typically do not generate PCy;, it might be suggested that
bisphosphine vinylidene generation entails intramolecular
phosphine transfer in a complex such as mcb-iv (L = PCy;).
Nonetheless, computational studies indicate that such path-
ways, as well as loss of PCy; from the intermediates illustrated
in Scheme 5, are unfavorable.'' This suggests that, when Ru-II
is used, a likely source of free phosphine is catalyst
decomposition. A more detailed picture will require further
mechanistic exploration.

The above ndings indicated that a more efficient Ru
complex would be one that instead of a phosphine contains a
ligand that is signi cantly more sterically demanding than a

https://doi.org/10.1021/jacs.1c11453
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Scheme S. Pathways for Catalyst Initiation Productive
Cycles and Catalyst Deactivation
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“Performed with B97X-D/6-311++G(d,p)-SDD(Ru), SMD-
(CH,CL,)//B3LYP-D3/6-31G(d)-SDD(Ru). See the Supporting
Information for details. “Ether dissociation is calculated to require
16.1 kcal/mol, the highest point in the reaction with Ru-IV (L =
NHC).

PCy; or NHC so that two vinylidenes cannot readily react (see
mcb-iv, Scheme S) to generate an inactive carbide. These
considerations led us to cyclic (alkyl) (amino) carbenes
(CAAC)" as potential ligands (Scheme 6a). This was partly
because the quaternary carbon in a CAAC ligand causes the
space around the transition metal to be notably more hindered
compared to an NHC unit with a more sizable N-aryl or N-
alkyl group (referred to as a “wall” vs an “umbrella” shape,
respectivelylz). DFT studies (Scheme 6b) indicated that
catalyst initiation and the productive catalytic cycle would
require higher energy (e.g, 22.1 vs 17.5 and 12.7 kcal/mol ts-i
and 17.5 vs 3.8 and 1.3 kcal/mol ts-ii for Ru-Va, Ru-II, and
Ru-IV, respectively). However, the difference in activation
barriers at the crucial juncture, determining the preference for
a productive cycle versus carbide formation (vinyl-ii ~ ts-iv vs
vinyl-ii  ts-v), was calculated to be higher (e.g., 9.8 vs 16.2
kcal/mol for Ru-Va compared to 2.2 vs 2.1 kcal/mol for Ru-
IV, respectively).

Scheme 6. Energetics of Reactions with Ru-CAAC
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Information for details.

When Ru-Va (prepared in one step from Ru-II)"’ was
subjected to allenyl-B(pin) and phenanthroline (4; to help
capture an otherwise unstable species; Scheme 7a), Ru-vinyl-
5'* was formed in 82 yield along with detectable amounts of
diborylallene § (<25 ; unstable). A likely pathway to Ru-
vinyl-5 entails reaction of the initially generated (pin)B-
substituted Ru vinylidene with 1, pointing to greater longevity
of a Ru-CAAC vinylidene. Without diamine 4, 1 was
consumed completely (20 h, 45 °C), affording ~15 S, with
~80 unreacted Ru-Va. None of the derived carbide complex
was detected. What is more, with 5.0 mol Ru-Va CM
between 1 and 2a (Scheme 7b) proceeded to 93  conversion,
allowing us to isolate 3a in 67 yield.

With an effective catalyst identi ed, we prepared 1,3-
disubstituted allenyl-B(pin) products 3a h and 3j 1 in 40
71 yield (Scheme 7b). When performed at larger scale (1.0
mmol), 3b was isolated in 65 vyield (85 conv). The
presence of a terminal alkyne led to the formation of a mixture
of unidenti able byproducts (compare 3i and 3j), and reaction
with cyclohexyl allene afforded 3m in only 21 yield. Use of
less hindered complexes Ru-Vb ¢, an effective strategy in
reactions of sizable ole ns resulted in reduced efficiency. The
lower yield for 3m is likely caused by greater steric repulsion
between the B(pin) and Cy groups in ts-iii (Scheme S and 6b).
Here, the size of L is unlikely to be influential, with reaction
between two unsubstituted Ru-vinylidenes (see vinyl-ii) and
carbide formation becoming faster. Finally, the following
points merit note: (1) CM reactions proceed with complete
chemoselectivity in the presence of a monosubstituted ole n
(3h). (2) As might be expected,6 CM between two

https://doi.org/10.1021/jacs.1c11453
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Scheme 7. Ru-CAAC Complexes for Allene CM
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“Performed under N, atm. Conv (+2 ) refers to the desired product
generated, determined by analysis of the 'H NMR spectra of
unpuri ed mixtures. Yields of pure product (+5 ). Discrepancy
between  conv and yield is mostly due to product instability. ©10
mol  Ru-Va was used.

electronically similar alkyl-substituted allenes led to signi cant
amount of homocoupling (e.g,, 6). (3) Disubstituted allenyl-
B(pin) compounds can be converted to other allenes by the
use of a variety of established methods."

To summarize, we nd that Ru-CAAC complexes are
distinctively effective in promoting CM between allenes. We
have been able to gain insight regarding catalyst decomposition
pathways when Ru-PCy; or Ru-NHC complexes are involved.
Additionally, features that render Ru-vinylidenes distinct from
the more widely studied carbenes have been outlined. The
newly acquired knowledge sheds light on some of the more
recent ndlngs and should prove to be of value to future
initiatives," mcludmg those intended to be diastereo- and/or
enantioselective.'”
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