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ABSTRACT: Motivated by the biosynthesis of azamerone, we report the
example of a diazo-Hooker reaction, which involves the formation of a phthalazine
ring system by the oxidative rearrangement of a diazoketone. Computational
studies indicate that the diazo-Hooker reaction proceeds via an 8 -electro-
cyclization followed by ring contraction and aromatization. The biosynthetic origin
of the diazoketone functional group was also chemically mimicked using a related

natural product, naphterpin, as a model system.

he Hooker reaction is one of the most remarkable

transformations in the canon of organic synthesis. Under
the original conditions of alkaline KMnO,, a single methylene
group is apparently deleted from the alkyl side chain of a 2-
hydroxy-3-alkyl-1,4-naphthoquinone (Figure 1a)." In an
elegant labeling experiment in which the aromatic ring was
marked with a bromine substituent, Fieser showed that the
Hooker reaction must proceed via oxidative cleavage of the
naphthoquinone ring, followed by ring closure and loss of the
C2 atom as carbon dioxide.” Fieser later reported an improved
stepwise protocol for the Hooker reaction using alkaline H,0,
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Figure 1 (a) Hooker reaction. (b) Proposed diazo-Hooker reaction,
inspired by (c) the biosynthesis of azamerone from A80915D.
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followed by CuSO, as the oxidants in place of KMnO,.’
Although the occurrence of a Hooker reaction in biosynthesis
is unknown, we were intrigued by the possibility of a
bioinspired, diazo variant of this rearrangement. We proposed
that replacement of the C1 ketone of a naphthoquinone
substrate with a diazo group could lead to the formation of a
phthalazine product under oxidative conditions via a “diazo-
Hooker reaction” (Figure 1b). This idea was inspired by the
proposed biosynthesis of the unusual pyridazine* natural
product azamerone (1)° from the related diazoketone,’
A80915D (2)’ (Figure 1c). Both 1 and 2 are members of
the napyradiomycin family of meroterpenoids isolated from
marine strains of Streptomyces bacteria.® In 2009, Winter et al.
reported that 2-'°C-9-'*N-labeled A8091SD was converted
into azamerone when fed back to their natural source, the
marine sediment-derived Streptomyces sp. CNQ-766.” The
position of the '*C label on the methyl ketone and the N
label embedded within the pyridazine ring of the azamerone
product implied a unique rearrangement mechanism involving
oxidative cleavage of the aryl diazoketone, followed by
cyclization and rearomatization. Herein, we propose that this
biosynthetic transformation features a diazo-Hooker reaction,
using synthetic and computational studies to support our

hypothesis.
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The simplest possible diazo-Hooker reaction is presented in
Figure 2. First, 2-methyl-1,3-dihydroxynaphthalene (3) was

1. i-PrBr, K,CO3
OH DMF, 60 °C (98%) OH

2. n-BuLi, TMEDA, Mel
soN sod

Et,0, 0 °C to rt (98%)

3. BCly, CH,Cl,
789 B %
1,3-dihydroxynaphthalene 78°C100°C (96%) 3
B Et;N, MeCN
| o 45°C
o N Ns 87%
BF, K 4 diazo transfer
OH
Cl
= | NCS, THF, 0 °C X
™
o 95% o]
N® chlorination N®
6 Il 5 I
N© N©
NaOH, DMF-H,0
0°Ctort
(e]
OH diazo-Hooker
reaction = ] N
— U
) 32% N
l|\|l®
7 NO 8

Figure 2 Diazo-Hooker reaction.

synthesized in three steps from 1,3-dihydroxynaphthalene. The
transfer of diazo from azidinium salt 4'° to 3 in the presence of
Et;N then formed diazonaphthoquinone $ in good yield.
Attempted oxidation of S using either Hookers original
conditions (KMnO,) or Fieser s modi ed conditions (H,0,/

CuSO,), or an electrophilic oxidant such as m-CPBA or
DMDO, led to either decomposition or loss of the diazo group.
However, chlorination of § with NCS gave a-chloro-f-
diketone 6 in high yield. Hydrolysis of 6 with NaOH in
DME/H,O0 then triggered the diazo-Hooker reaction to give
phthalazine 8 in modest yield. The structure of 8 was assigned
by NMR studies and comparison to literature data for the same
compound previously synthesized using a Minisci reaction of
phthalazine.'" The intermediacy of a-hydroxy-S-diketone 7 in
the rearrangement of 6 was indicated by its isolation in high
yield when the reaction was stopped after 10 min. Sy2
substitutions at the tertiary position of cyclic a-chloro-j-
dicarbonyl compounds with structures similar to that of 6 have
been reported.'” Further attempts to improve the yield of 8
and to broaden the scope of the diazo-Hooker reaction met
with failure. Nevertheless, this remarkable rearrangement
provides some supporting chemical evidence that favors the
proposed biosynthesis of azamerone from a diazoketone
precursor.

It is instructive to compare the mechanism of the newly
discovered diazo-Hooker reaction with that of the canonical
Hooker reaction of the simplest possible naphthoquinone
substrate, phthiocol, under Fiesers optimized conditions
(Figure 3a)."” Initial oxidation of phthiocol by a hydroperoxide
anion gives an epoxide, which opens to give a-hydroxy-j-
diketone 9. Nucleophilic attack of hydroxide at the C2
carbonyl of 9 gives 10, which undergoes a retro-Dieckmann
condensation to give 11. Intramolecular aldol reaction of
enolate 11 then forms the ring-contracted product, a-
hydroxyketone 12. This isolable intermediate (Fiesers
intermediate) could alternatively arise via a benzilic acid
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Figure 3 Comparison of the mechanisms for (a) the Hooker reaction of phthiocol (under Fieser s modi ed conditions) and (b) the diazo-Hooker

reaction.
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Figure 4 Gibbs free energy diagrams for (a) the Hooker reaction and (b) the diazo-Hooker reaction. Energies are shown in kilocalories per mole,

and bond lengths are given in angstroms.

rearrangement of 10. Addition of a basic CuSO, solution to 12
then causes oxidative cleavage to give 1,2-diketone 13, and
then a second intramolecular aldol reaction to form 14. Finally,
decarboxylation of 14 and oxidation of the resultant hydro-
quinone give 2-hydroxy-1,4-naphthoquinone.

The mechanism of the diazo-Hooker reaction of §, the CI1-
diazoketone analogue of phthiocol, could share several features
with the parent Hooker reaction (Figure 3b). First, C3
oxidation of § gives a-hydroxy-f-diketone 7 via chlorination
and subsequent Sy2 substitution of the intermediate a-chloro-
p-diketone with hydroxide. Nucleophilic attack by hydroxide at
C2 then initiates a retro-Dieckmann condensation of 15 to give
the diazocarboxylic acid 16, which could undergo an 8 -
electrocyclization to give 17. Several related 1,7-electrocyclic
reactions of conjugated diazo compounds to give 1H-2,3-
benzodiazepines have been reported.'* Tautomerization of 17
to give ketol 18 could precede ring contraction via an a-
hydroxyketone rearrangement to give 19. Finally, decarbox-
ylation and dehydration form the aromatic phthalazine ring
system of 8. Alternatively, the phthalazine ring could arise from
a more direct 6-endo-dig cyclization'” of enolate 16 onto the
nearby diazo group to give 19.

DEFT calculations were carried out to study the mechanism
of the Hooker and diazo-Hooker reactions. Computations
were conducted within Gaussian 16,'¢ with preliminary
conformational searches using Schrodinger'” Maestro 10.6.
The low-energy conformers that are within S kcal/mol of the
global minimum were optimized with the B3LYP-D3'® density
functional with the 6-31G(d) basis set, using the SMD"
solvation model of water. Vibrational frequency calculations
were performed at the same level of theory to con rm the
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stationary point is an energy minimum or a transition state and
to evaluate its zero-point vibrational energy (ZPVE) and
thermal corrections at 298 K. Single-point energies were
calculated using a larger basis set, 6-311+G(d,p), with the same
solvation model. As shown in Figure 4a, the Hooker reaction
proceeds via a stepwise mechanism. The ring opening of 10
requires a Gibbs free energy barrier of 9.2 kcal/mol (TS1) and
leads to intermediate 11. This is followed by an intramolecular
aldol reaction via TS2 to give 12, with an overall barrier of 13.6
kcal/mol. The formation of the diastereomer of 12 has an
overall barrier of 14.0 kcal/mol (Figure S1). Figure 4b shows
the calculated Gibbs free energy diagram of the diazo-Hooker
reaction. Ring opening of 15 via TS3 followed by 8 -
electrocyclization of 16 via TS4 leads to a stable seven-
membered ring intermediate 17. Tautomerization via TSS$
gives intermediate 18, followed by a-hydroxyketone rearrange-
ment to form 19. Our calculation suggests that the
tautomerization step is the rate-determining step, and the
overall barrier is 20.3 kcal/mol (17 to TSS). The alternative,
direct 6-endo-dig cyclization of 16 is unfavorable, with a high
activation barrier of 42.1 kcal/mol (Figure S2). Further details
of the DFT calculations are provided in the Supporting
Information.

We can now propose a biosynthesis of azamerone (1)
featuring a diazo-Hooker reaction of A80915D (2) to give
pyridazine 20 (Figure S). This diazo-Hooker reaction could be
initiated by either direct oxidation of 2 at C7 or a stepwise
chlorination/Sy2 hydrolysis mechanism. The involvement of a
chlorination step in this biosynthetic diazo-Hooker reaction is
attractive because halogenation, catalyzed by vanadium-
dependent haloperoxidase (VHPO) enzymes,” is a common
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Figure S Proposed biosynthesis of azamerone from A80915D
invoking a diazo-Hooker reaction.

reaction in the biosynthesis of napyradiomycin natural
products.”’ Indeed, the biosynthesis of 2 incorporates three
separate, enzyme-catalyzed chlorination steps. Subsequent
formation of azamerone then requires C2 dechlorination of
20, followed by a 1,2-shift of the cyclohexyl side chain of 21
from C3 to C4.

While we have now demonstrated the feasibility of the
diazo-Hooker reaction using both computational and exper-
imental methods, the mechanistic origin of the diazoketone
motif of A8091SD is still unclear. However, previous '*N
labeling studies indicate that the two nitrogen atoms of
A80915D are introduced separately, probably via diazotization
of a primary aromatic amine.” Recently, a biosynthetic pathway
to aromatic amines via enzyme-catalyzed nucleophilic amina-
tion of a hydroxyquinone was reported.”> Furthermore, a
diazo-forming enzyme that uses nitrite to oxidize a primary
aromatic amine has been characterized in the biosynthesis of
cremeomycin by Streptomyces cremeus.”> We therefore
attempted to chemically mimic these aromatic amination/
diazotization reactions in the stepwise formation of a designed
diazo-meroterpenoid 26, using naphterpin (22)** as a readily
available model system (Figure 6). Simple addition of NH; to
a solution of 22 in EtOH at room temperature generated
primary aromatic amine 25, albeit in only 9  yield, via a redox-
driven nucleophilic aromatic substitution.”> The yield of this
net C H amination was improved by replacing NH; with
allylamine in K,CO;/EtOH at 80 °C, with deallylation also
occurring under these conditions to give 25 in 34 yield. Use
of methylamine gave the N-Me analogue of 25 in 60 yield.
The mechanism of this amination presumably involves initial
nucleophilic addition of the amine to CS of 22 to give 23,
followed by tautomerization to hydroquinone 24 and then
aerobic oxidation to give quinone 25. Diazotization of 25
under standard conditions’® then gave a-diazo ketone 26 in
good yield. Although an attempted diazo-Hooker reaction on
this complex substrate was unsuccessful, the formation of a
diazoketone via facile C H amination and diazotization
perhaps gives some chemical insight into the biosynthetic
origin into diazo-napyradiomycins such as A80915D.

In summary, we have discovered a diazo-Hooker reaction
that mimics a key step in the biosynthesis of azamerone from
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Figure 6 Bioinspired amination/diazotization of naphterpin.

A80915D. These chemical studies suggest that the unusual
pyridazine ring system of azamerone arises from oxidative
rearrangement of a diazoketone that could be initiated by a
cryptic halogenation.”” We also investigated the stepwise
formation of a diazoketone natural product analogue of
A80915D via redox-driven nucleophilic aromatic substitution
with an amine followed by diazotization. The rst computa-
tional study of the parent Hooker reaction shows that the
mechanism likely involves ring opening of the oxidized
naphthoquinone ring followed by an intramolecular aldol
reaction, rather than a benzilic acid rearrangement. Similar
modeling of the diazo-Hooker reaction also supports a ring
opening mechanism, with a subsequent cascade of 8 -
electrocyclization, a-hydroxyketone rearrangement, and aro-
matization giving the phthalazine product.
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