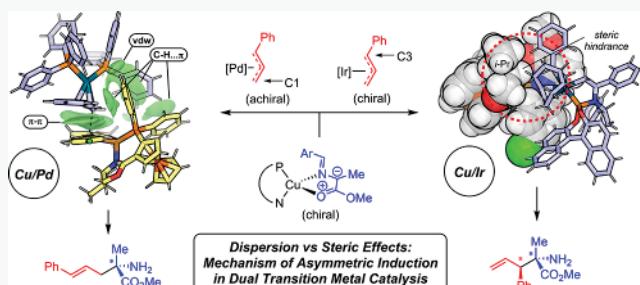


Dispersion and Steric Effects on Enantio /Diastereoselectivities in Synergistic Dual Transition Metal Catalysis

Bo Li Hui Xu Yanfeng Dang and K. N. Houk

Cite This: *J. Am. Chem. Soc.* 2022 144 1971 1985

Read Online


CCES

Metrics More

Article Recommendations

Supporting Information

ABSTRACT: Comprehensive computational studies were carried out to explore the mechanisms of enantioselective Cu/Pd and stereodivergent Cu/Ir dual-catalytic syntheses of α , β -disubstituted α -amino acids (α -AAs). A chiral copper azomethine ylide undergoes facile α -allylation with racemic π -allylpalladium species or stereopure π -allyliridium complex to stereoconvergently or stereodivergently furnish single/double stereocenters, respectively. Stereoselectivity at the β -center is controlled by the facial selectivity of α -allylation with respect to the prochiral nucleophile. Despite apparently similar transition-state assemblies, computational models and distortion/interaction analyses disclose versatile modes of stereoinduction wherein the copper azomethine ylide species can face-selectively intercept metal π -allyl intermediates utilizing attractive dispersion interactions and/or sterically caused distortions. Generation of the β -stereocenter in the Cu/Ir system relies on a stereospecifically generated allyliridium complex and electronically controlled branched-to-linear selectivity, while the dual Cu/Pd system yields a linear monochiral product due to steric factors and π π stacking interactions. The studies demonstrate on a molecular level how ligand-encoded chiral information is transferred to the α -/ β -sites of the resulting α -AAs and how the mode of regio-/stereoselection is altered by differences in transition-metal-stabilized coupling partners. To facilitate studies of stereoselective catalysis, a suite of analytical tools to extract controlling factors for asymmetric induction is demonstrated.

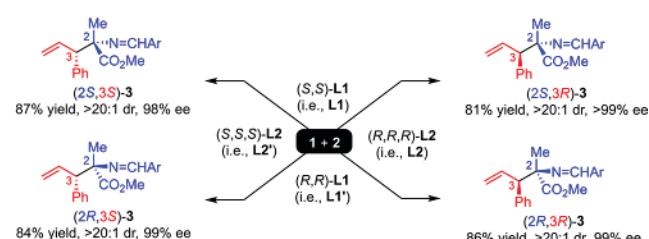
1. INTRODUCTION

The absolute and relative conformations of chiral molecules with multiple stereogenic centers determine the functionalities of essential biomacromolecules such as proteins and nucleic acids as well as a wide spectrum of bioactive natural products and pharmaceuticals.¹ However, the one-step catalytic construction of multiple stereogenic centers with full control of enantio- and diastereoselectivities remains a synthetic challenge.² Since the seminal work of Carreira et al. in 2013,³ the strategy of dual catalysis in which two chiral catalysts are exploited to exercise control over the corresponding stereocenters to stereodivergently access all permutations of product stereoselectivity has been intensely researched.⁴ While earlier explorations focused more on merging transition-metal (TM) catalysis with organocatalysis,^{3–11} the dual TM variant was not reported until the stereodivergent Zn/Ir dual-catalytic α -allylation of α -hydroxyketones by Zhang in 2016.¹² Subsequent years have witnessed the advancement and diversification of stereodivergent dual TM catalysis^{4,13} by Zhang,^{14–16} Wang,^{17,18} Hartwig,¹⁹ Zi,²⁰ and He.²¹ Utilizing TM reactivities, these protocols provide stereodivergent access to multichiral molecules from identical starting materials,^{4,13} providing an array of concise enantio-/diastereoselective methods with new opportunities toward diversity-oriented asymmetric synthesis and library design.⁴

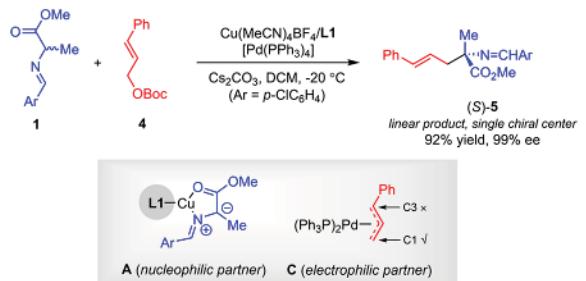
While synergistic catalysis triggered much computational effort,^{22–25} theoretical studies on stereodivergent dual TM catalysis remain limited.^{24,25} Sunoj et al. recently investigated a related synergistic Cu/Ir system, highlighting the role of noncovalent interactions in absolute and relative stereocontrol.²⁴ Notwithstanding the expanding scope of reported reactions,^{4,13–21} little is known about how differences in TM-stabilized chiral partners influence the mechanism and nature of stereorecognition. Recent studies of organometallic stereoinduction have established the role of dispersion interactions as the control element for reactions featuring large ligand architectures,^{26–29} and new asymmetric systems have been developed by use of large substituents or heavy elements,²⁶ complementing the sterically driven design principle. Attractive dispersion interactions can be general in dual TM catalysis,^{24,25} but due to the high expense of quantum mechanical computations (typically involving 150–250 atoms) and the difficulty for extracting meaningful information from overly

Received: December 2, 2021

Published: January 20, 2022




complicated transition structures, insight into the influence of dispersion effects on stereoselectivities of relevant systems and how they compare to steric repulsions are not usually obtained.


To explore the possible stereocontrolling dispersion and steric effects in such systems, we have performed quantum-mechanical studies on two dual TM-catalyzed syntheses of α , β -disubstituted α -amino acids (α -AAs) as shown in **Scheme 1**. In

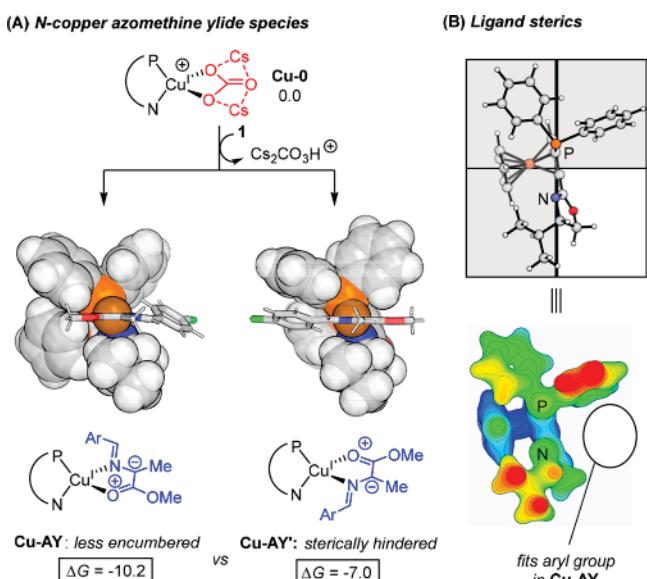
Scheme 1. Representative Asymmetric Bimetallic Dual-Catalytic Syntheses of Non-Proteinogenic α -Amino Acids Studied in the Present Work^{15,17,30}

(A) *Stereodivergent dual Cu/Ir catalysis* (Wang, Ref 17, closely related: Zhang, Ref 15)

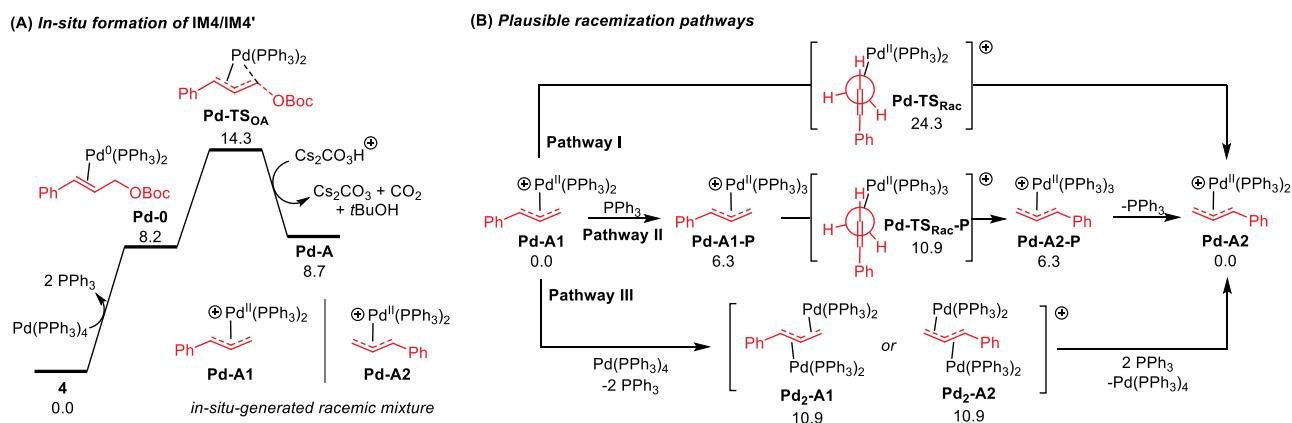
(B) *Enantioselective dual Cu/Pd catalysis* (Wang, Ref 30)

2018, Wang¹⁷ and Zhang¹⁵ independently reported two closely related, fully stereodivergent Cu/Ir systems to synthesize α -AAs bearing vicinal quaternary/tertiary α , β -stereocenters. The reaction reported by the Wang group (**Scheme 1A**) is investigated here in parallel with their early work on a similar enantioselective Cu/Pd system (**Scheme 1B**).^{30,32} The two reactions employ the identical prochiral nucleophile, i.e., copper azomethine ylide species, a key chiral synthon whose utility has been actively studied in recent years especially in the context of dual TM catalysis.^{15,18,20,31,33,34} These two systems are excellent for studying the stereorecognition of the representative prochiral nucleophile A with meta- π -allyl species B (chiral) or C (achiral). We have explored in greater depth the origins of stereoselectivity in these cases, given the ubiquity

of metal-enolate-type prochiral nucleophiles. We describe a suite of analytical tools that differentiates the stereocontrolling factors in dual-catalytic transformations.


2. COMPUTATIONAL METHODS

Density functional theory (DFT) calculations were carried out mostly in the Gaussian 09 package.³⁵ We used the M06-L functional throughout due to its good performance for transition-metal chemistry and noncovalent interactions as well as the relatively low computational cost as a local functional.³⁶ Geometry optimizations and vibrational frequency calculations were conducted with a mixed basis set that combines the Stuttgart Dresden SDD effective core potential (ECP) basis set³⁷ for transition metals (Fe, Cu, Pd, Ir) with 6-31G(d) for all other elements. Single-point energies were subsequently calculated using the def2-TZVP basis set³⁸ and the Truhlar-Cramer universal solvation model based on density (SMD) for CH₂Cl₂.³⁹ All thermodynamic quantities (concentration 1 mol/L, temperature 253.15 K for the Cu/Pd system,³⁰ 288.15 K for the Cu/Ir system¹⁷) were evaluated in the GoodVibes code⁴⁰ with quasi-rigid-rotor-harmonic-oscillator approximations (frequency cutoff 100 cm⁻¹).⁴¹ Absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA)⁴² implemented in the Q-Chem software package⁴³ was performed with M06-L/def2-TZVP. Multiwfn⁴⁴ was utilized to produce steric contours,⁴⁵ compute buried surface areas,⁴⁶ and van der Waals potentials⁴⁷ and to analyze noncovalent interactions with the independent gradient model (IGM).⁴⁸ Molecular visualizations were carried out in CYLview and PyMOL.⁴⁹


3. RESULTS AND DISCUSSION

3.1. Mechanism of Synergistic Cu/Pd Catalysis. The stereorecognition of Pd^{II}/Ir^{III}- π -allyl species by Cu^I-azomethine ylide is the basis of stereocontrol in dual-catalytic stereodivergent α -AA syntheses.^{15,17,30} Molecular-level information about the formation and subsequent reactions of these species is achieved in this report. To understand the origin of α -center stereoselectivity, we first studied the Cu/Pd system in **Scheme 1B** with the (S,S)-L1 ligand (designated as L1).

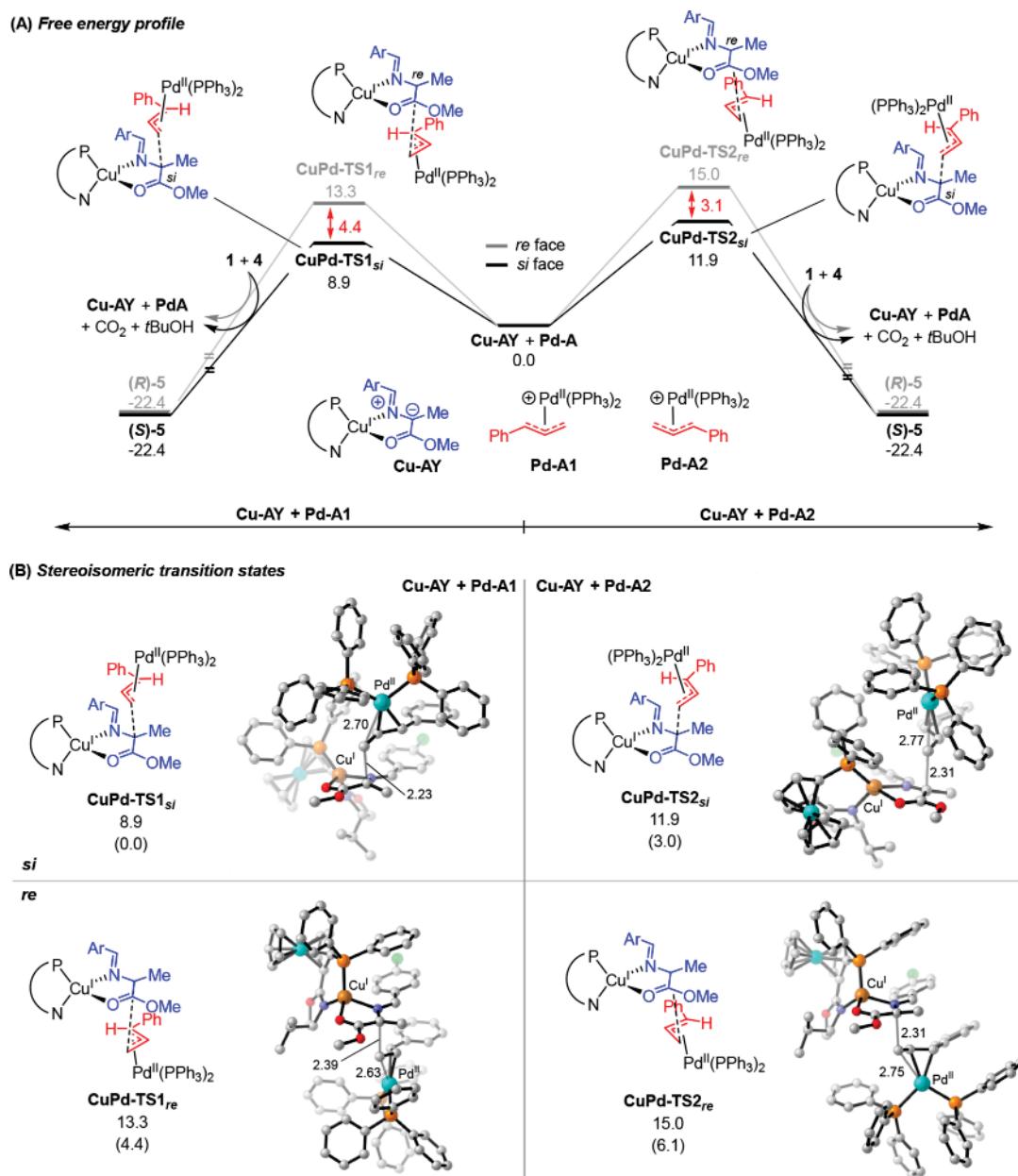

Formation of N-Copper Azomethine Ylide and Allylpalladium Species. We begin by investigating the formations of the prochiral nucleophile and the allylpalladium electrophile. As shown in **Figure 1A**, the copper azomethine ylide has two

Figure 1. Copper azomethine ylide species. (A) Formation and stereoisomers. (B) Ligand steric environment.

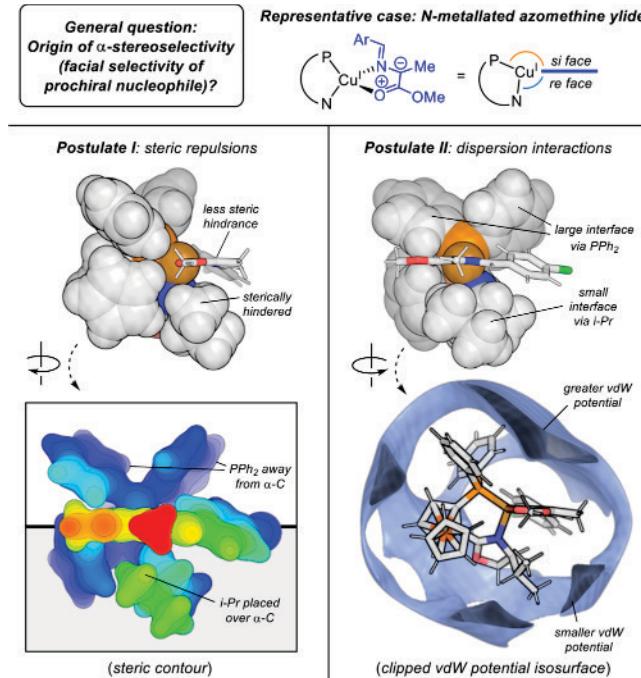
Figure 2. (A) Free energy profile for the in situ formation of allylpalladium. (B) Stereochemical stability analysis by free energy profiles of possible racemization pathways.

Figure 3. (A) Free energy profile and (B) stereoisomeric transition states for the -allylation of Cu^1 azomethine ylide by Pd^{II} -allyl species.

possible stereoisomers **Cu-AY** and **Cu-AY'**. Formation of the former is more exergonic by a substantial 3.2 kcal/mol due to a favorable ligand-substrate arrangement where the bulky *p*-C₆H₄Cl aryl group is on the less encumbered side of **L1** (Figure 1B). Hence, **Cu-AY** is likely to be the main form of the copper azomethine ylide^{25,50} and is focused on in subsequent computations.

The allylpalladium is formed by the mechanism shown in Figure 2A. The initial Pd⁰ catalyst undergoes ligand exchange with 4 to form an η^2 -complex **Pd-0** (8.2 kcal/mol), and the allylic C–O bond is cleaved by oxidative addition (Pd-TS_{OA} 14.3 kcal/mol), leading to the Pd^{II}– π -allyl complex **Pd-A** (8.7 kcal/mol, note that A denotes allyl group in all notations) as a racemic mixture (we denote the two enantiomers by **Pd-A1** and **Pd-A2**). This is to be contrasted with the Cu/Ir dual-catalytic system where the chiral ligand **L2** renders the Ir^{III} π -allyl complex stereopure.

To evaluate whether the enantiomers of **Pd-A** could interconvert within the time scale of the reaction, the free energy profiles of three representative mechanisms were computed (Figure 2B).⁵¹ In pathway I, **Pd-A1** undertakes η^3 η^1 η^3 (i.e., π σ π) isomerization toward **Pd-A2**,⁵² which requires a high 24.3 kcal/mol barrier (via **Pd-TS_{Rac}**). Ligation of an extra PPh₃ to Pd^{II} can stabilize the transition state and promote the η^3 η^1 η^3 isomerization, giving rise to pathway II whose barrier is considerably lowered (10.9 kcal/mol via **Pd-TS_{Rac-P}**).⁵³ We also examined the nucleophilic displacement mechanism (pathway III)⁵⁴ in which a second [Pd(PPh₃)₂] motif substitutes the original one in **Pd-A1** from the opposite face of allyl to yield **Pd-A2**. Pathway III involves bipalladium- π -allyl intermediates **Pd₂-A1** and **Pd₂-A2** whose stabilities are similar to **TS3**. Hence, the racemization needs to overcome 10.9 kcal/mol via pathways II or III. This is comparable to the barriers of the following bond formation (9–12 kcal/mol, discussed later).

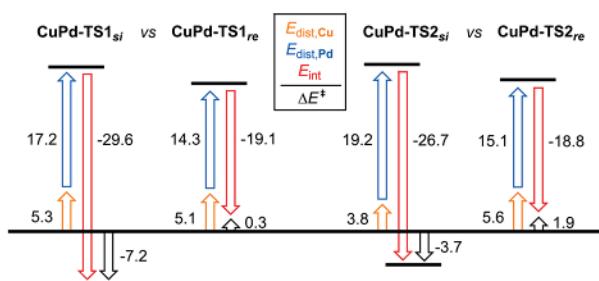

According to these results, **Pd-A1/Pd-A2** may be unable to experience substantial interconversions as the reaction proceeds.⁵⁵ Ideal stereocontrol would require that **Cu-AY** stereoselectively consume both enantiomers of **Pd-A**. As the stereoselectivity is determined by the face from which the prochiral α -C of **Cu-AY** is approached by **Pd-A**, it is likely that **Cu-AY** has a facial preference that is independent of the absolute conformation of the Pd^{II} π -allyl, thus achieving stereoconvergence toward a single product stereoisomer. The proposed mechanism is explored in the next section.

Mechanism of Stereoselective α -Allylation. We studied the α -allylation of **Cu-AY** with the **Pd-A** racemate.⁵⁶ For the two enantiomers of **Pd-A**, the two possible approaches (*re* and *si*) to **Cu-AY** result in a total of four stereoisomeric C–C bond-forming TSs (Figure 3). The lower energy TSs **CuPd-TS1_{si}** (8.9 kcal/mol, with **Pd-A1**) and **CuPd-TS2_{si}** (11.9 kcal/mol, with **Pd-A2**) lead to the same enantiomer (*S*)-**S**, the main product of this system.¹⁷ The favorability of the *si*-TS over the *re*-TS is 4.4 and 3.1 kcal/mol, respectively, both implying high stereoselectivity.

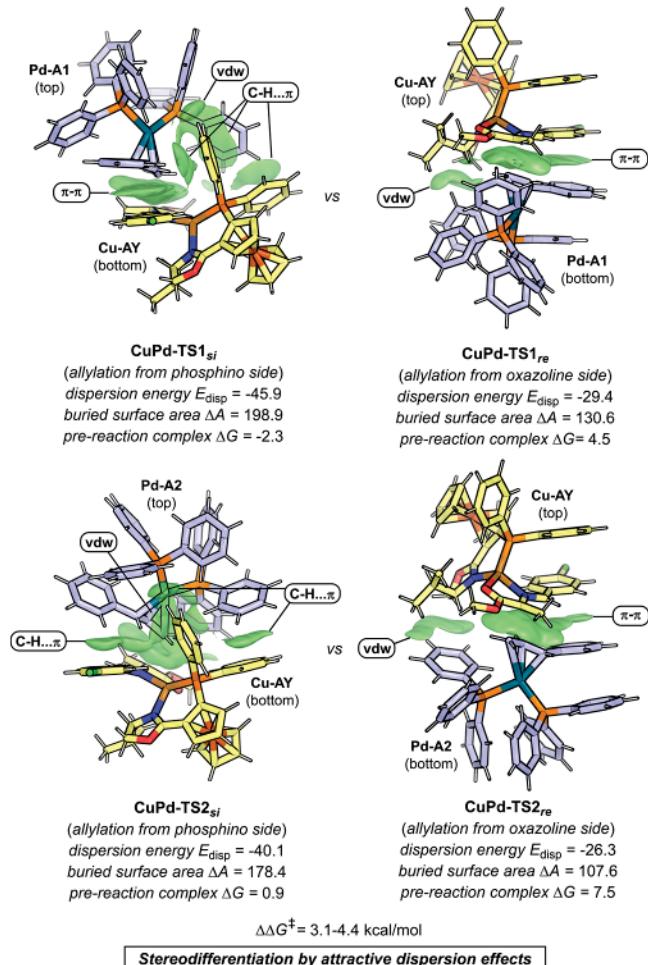
Origin of Enantioselectivity. Since the *si*-face approach of **Cu-AY** is favored regardless of the absolute conformation of **Pd-A**, it is critical to understand how the stereochemical elements of **Cu-AY** result in such a strong facial preference. The facial discrimination of metal-enolate-type prochiral nucleophiles comprises a rather general problem in stereo-divergent dual catalysis,^{12–21} and the very frequently employed *N*-metalated azomethine ylide is regarded here as a

representative system.^{15–18,20,31,33,34} The asymmetric environment of **Cu-AY** is analyzed in Scheme 2. The preferred

Scheme 2. Analysis of the Origin of α -Stereoselectivity


^aVarious renditions of **Cu-AY** are shown. The observed *si* attack is from the top, *re* attack from the bottom.

direction of attack by **Pd-A** could originate from steric hindrance^{57,58} and/or dispersion interactions.^{26–29} On the one hand, the biased sterics on the two faces (left sub-gures in Scheme 2) might cause larger distortions and steric repulsions when α -allylation occurs at the more encumbered *re* face over which a *i*-Pr group on the oxazoline unit of **L1** could hinder the approach of allyl-metal species (postulate I). On the other hand, since the phosphino motif of **L1** over the *si* face could potentially provide large π -interfaces⁵⁹ with a greater surface area than the 4-isopropyl-oxazoline unit over the *re* face, dispersion interactions might favor *si* attack (postulate II, right sub-gures). This is illustrated by an evaluation of van der Waals (vdW) potential, which calculates the potential energy of a He atom interacting with the molecule of interest to probe sites with attractive vdW interactions.⁴⁷ The analysis discloses a greater distribution of negative (attractive) values on the *si* face.


To disentangle the possible controlling factors, distortion/interaction (D/I) analysis^{60,61} was performed for the four stereoisomeric TSs to quantitate (a) the interaction strength between **Cu-AY** and **Pd-A** as they reach each TS and (b) the associated structural distortions in each reactant. According to Figure 4A, the barrier differences originate primarily from the much greater interaction energies in **CuPd-TS1_{si}** (–29.6 kcal/mol) and **CuPd-TS2_{si}** (–26.7 kcal/mol) than **CuPd-TS1_{re}** (–19.1 kcal/mol) and **CuPd-TS2_{re}** (–18.8 kcal/mol), which is compatible with postulate II.

We further explored postulate II by a visual analysis of noncovalent interactions (NCIs).⁶² We adopted the independent gradient model (IGM) due to its capability for extracting intermolecular NCIs. These are shown by the isosurface of

(A) Distortion/interaction analysis

(B) Intermolecular non-covalent interactions

Figure 4. Origin of enantioselectivity in Cu/Pd synergistic catalysis. (A) Distortion/interaction analysis. (B) Visualization of intermolecular noncovalent interactions. Dispersion energies from EDA, buried surface areas (Å^2), and free energies of prereaction complexes are provided alongside.

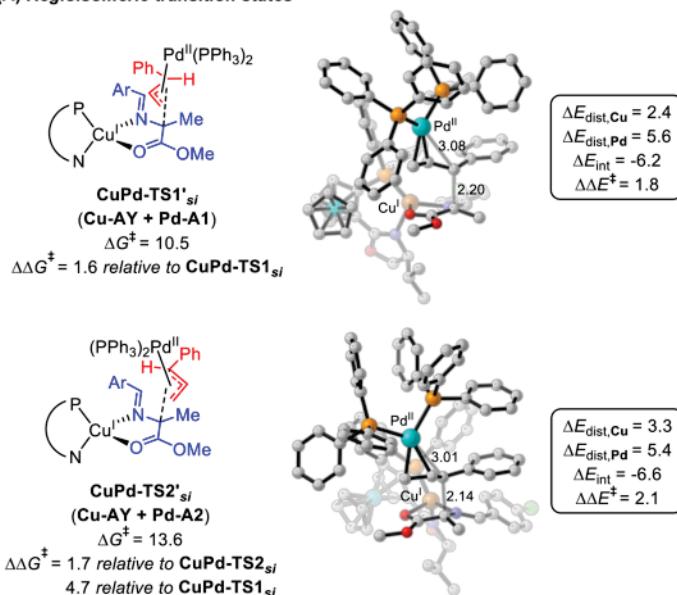
δg^{inter} function (green blobs in Figure 4B).⁴⁸ In comparing $\text{CuPd-TS1}_{\text{si}}$ with $\text{CuPd-TS1}_{\text{re}}$, a significant difference in $\text{L1}\cdots\text{Pd-A1}$ nonbonding interactions is observed. The phosphino unit of L1 in Cu-AY can interact with Pd-A1 with a variety of $\text{C}\cdots\pi/\text{vdW}$ interactions in $\text{CuPd-TS1}_{\text{si}}$ (buried surface area 198.9 Å^2), while $\text{CuPd-TS1}_{\text{re}}$ (buried surface area 130.6 Å^2) only allows Pd-A1 to interact with a relatively small *i*-Pr group on the oxazoline unit of L1 . The same analyses also revealed larger vdW contact in $\text{CuPd-TS2}_{\text{si}}$ than in $\text{CuPd-TS2}_{\text{re}}$ (Figure 4B). The importance of these interactions is supported by energy decomposition analysis (EDA), which discloses

considerably stronger dispersion interactions in the *si*-TSs (ca. 13–17 kcal/mol). Moreover, there are shallow PES minima before the TSs, and these prereaction complexes (PRCs) have energy differences related to the corresponding TSs but are free of the transition-state bonding interactions, thus providing an additional estimate for the nonbonding effects. As anticipated, the *si*-PRCs are 6.8 (for CuPd-TS1) and 6.6 kcal/mol (for CuPd-TS2) more stable than the *re*-PRCs, which correlate with the relative barriers of the TSs. These differences are due to more stabilizing dispersion in the *si* approach.

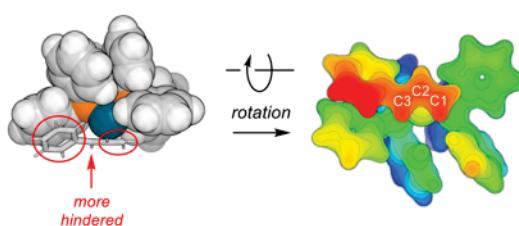
In summary, the above-presented multimodal stereochemical analyses, including distortion/interaction analysis, noncovalent interaction plots, buried surface areas, dispersion energies, and relative stabilities of pre-reaction complexes, consistently point to attractive dispersion effects as the origin of enantioselectivity (i.e., the *si* facial preference of prochiral nucleophile) for the present Cu/Pd system.

Origin of Regioselectivity. Regiocontrol is fundamental for selective allylic substitutions.^{51,63–68} Here, the regiochemistry for the attack of metal-allyl species determines the number of stereocenters. As depicted in Scheme 3, the Cu/Pd dual

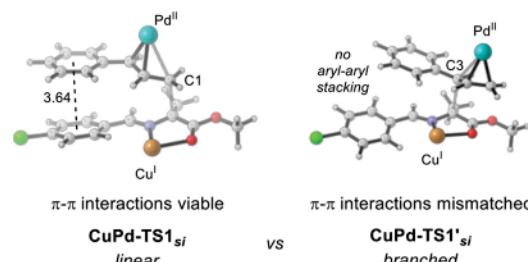
Scheme 3. Regiochemistry Comparison for the Reactions Investigated in the Present Work

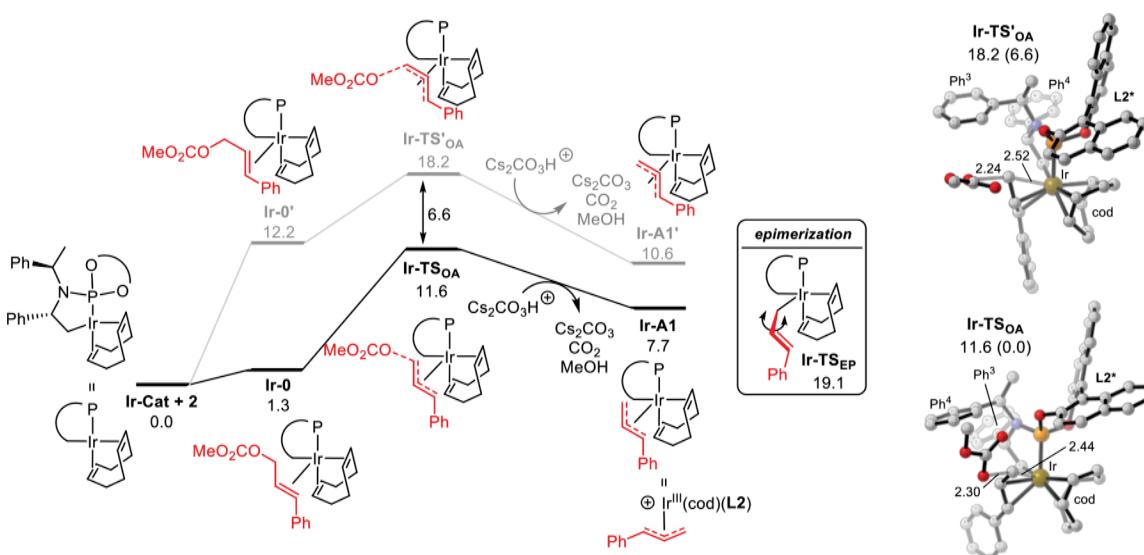

	product connectivity	number and source(s) of chiral center(s)
Cu-AY (top) Pd-A1 (bottom)	<i>linear</i>	one stereocenter (α -C of azomethine ylide)
Cu-AY (top) Pd-A2 (bottom)	<i>branched</i>	two stereocenters (α -C of azomethine ylide, C3 of allyl complex)

catalysis affords linear product **5** with one α -stereocenter.³⁰ This differs from the synergistic Cu/Ir system, which furnishes branched product **3** with successive β,β -stereocenters.¹⁷ We next explore the regioselectivity of the Cu/Pd system, and the Cu/Ir catalysis will be discussed later.


Figure 5A analyzes the two α -allylation TSs for branched products. The barriers of branched TSs $\text{CuPd-TS1}_{\text{si}}$ (Cu-AY with Pd-A1) and $\text{CuPd-TS2}_{\text{si}}$ (Cu-AY with Pd-A2) are higher than the linear TSs $\text{CuPd-TS1}_{\text{si}}$ and $\text{CuPd-TS2}_{\text{si}}$ by 1.6 and 1.7 kcal/mol, respectively, which explains the linear selectivity. Notably, the linear-to-branched selectivity is independent of the absolute conformation of **Pd-A**, and both enantiomers of **Pd-A** prefer the unsubstituted terminus.

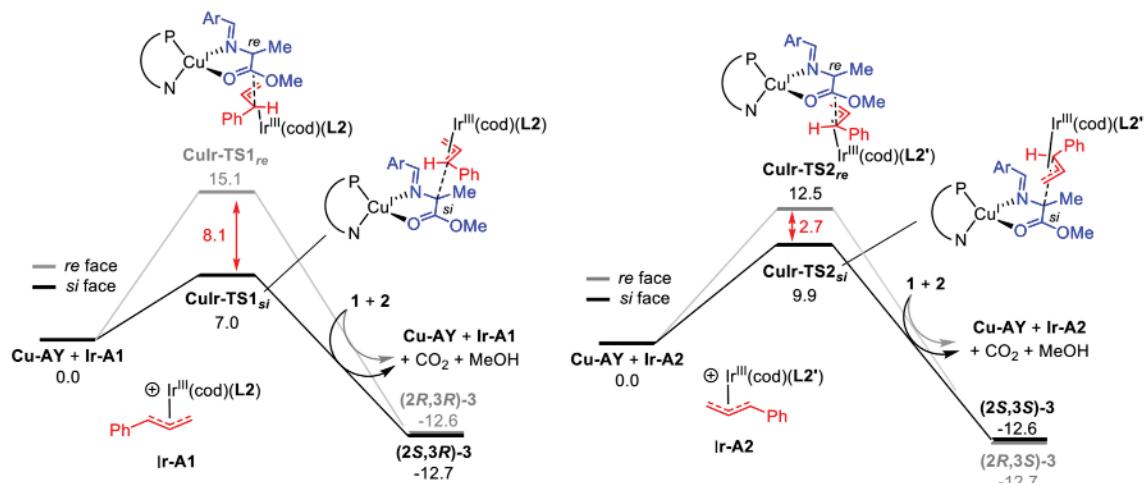
Distortion/interaction analysis shows that both branched TSs have higher distortion energies than the linear TSs, while the interaction energies are not large enough to compensate for the unfavored distortions. The regioselectivity originates from at least two effects. First, an inspection of the steric environment of **Pd-A** shows that C3 is sterically hindered (Figure 5B). To expose C3 to the nucleophilic partner, the breaking Pd–C bond in branched TSs (Pd–C3 3.08 Å for $\text{CuPd-TS1}_{\text{si}}$, 3.01 Å for $\text{CuPd-TS2}_{\text{si}}$) has to be more stretched than those in linear TSs (Pd–C1 2.70 Å for $\text{CuPd-TS1}_{\text{si}}$, 2.77 Å for $\text{CuPd-TS2}_{\text{si}}$), which explains the distortion energies. Second, attacks at the C1 site create a suitable geometrical relationship for NCIs between the Ph group of **Pd-A** and the *p*-C₆H₄Cl group of **Cu-AY** ($\pi\cdots\pi$ in **TS4a**, C–H $\cdots\pi$ in **TS5a**, see Figures 5C and 4B, respectively), but the same groups are too distant in the branched TSs to afford such stabilizations. Hence, the regioselectivity in the Cu/Pd system


(A) Regioisomeric transition states

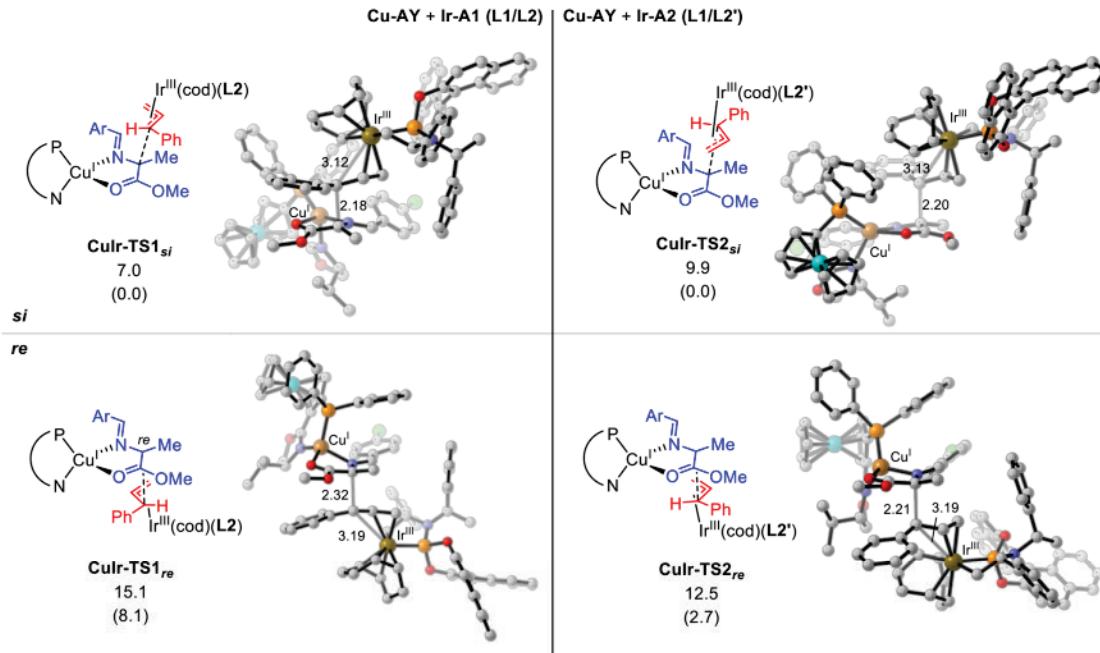

(B) Steric environment of allylpalladium

(C) Transition-state non-covalent interactions

Figure 5. Origin of regioselectivity in synergistic Cu/Pd system. (A) Regioisomeric transition states providing branched products with free energy barriers and D/I energies. (B) Steric environment of π -allylpalladium species. (C) Comparison of key NCI in regioisomeric TSs; ligands omitted for clarity.


Figure 6. Formation and epimerization of allyliridium intermediate. For simplicity, L2 is also used to denote the phosphoramidite ligand adopting the metallacyclic mode of coordination.

is likely to be a consequence of steric repulsions and dispersion effects.

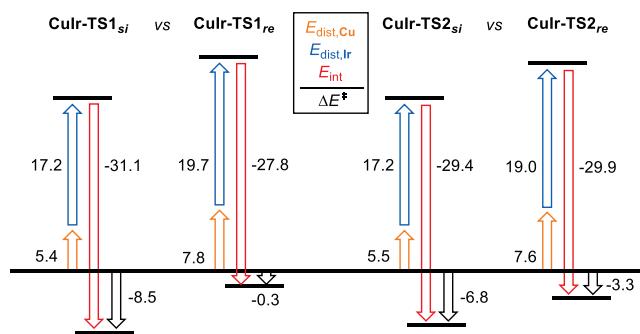

3.2. Mechanism of Synergistic Cu/Ir Catalysis. For the second half of the present study, we explore the mechanism whereby the coupling between two chiral partners, the copper azomethine ylide and the π -allyliridium complex, gives rise to two consecutive β -stereogenic centers in the selected Cu/Ir dual-catalytic system (Scheme 1A).¹⁷ We assume for now that L1 and (R,R,R)-L2 (denoted simply by L2) are used, and we will later discuss the other combination of L1 with (S,S,S)-L2 (L2') to shed light on the origin of stereodivergence.¹⁷ For ease of understanding, we avoid discussing (R,R)-L1 (i.e., L1') throughout, as the results will be equivalent. We skip discussions on the prochiral nucleophile because the same Cu-azomethine ylide species Cu-AY is involved.

Formation of Allyliridium Species. The selected Cu/Ir dual-catalytic -AA synthesis is empowered by an Ir-based asymmetric allylic substitution system^{69,70} using phosphoramidite ligand L2,⁷¹ which involves an activated catalyst Ir-Cat with a metallacyclic structure.⁷² The catalysis commences with the generation of Ir^{III}-allyl species Ir-A from Ir-Cat (Figure 6).^{69,72,75} The entrance of cinnamyl methyl carbonate substrate 2 into the coordination sphere results in an η^2 -complex Ir-0, which affords allyliridium species Ir-A1 via oxidative addition (Ir-TS_{OA}). The stereoisomeric pathways are computed to be at least 6.6 kcal/mol less favored (more details are provided in the SI). The predicted Ir-A1 is supported by the X-ray structure of related phosphoramidite ligand-derived allyliridium.⁷⁴ Similar to the Cu/Pd system, a high epimerization barrier (11.4 kcal/mol, at least 1.5 kcal/mol

(A) Free energy profiles

(B) Stereoisomeric transition states

Figure 7. Mechanism of stereodivergent β -allylation in the dual Cu/Ir system. (A) Free energy profiles and (B) stereoisomeric transition states for the β -allylation of chiral Cu^I-azomethine ylide species by chiral Ir^{III}-allyl species.

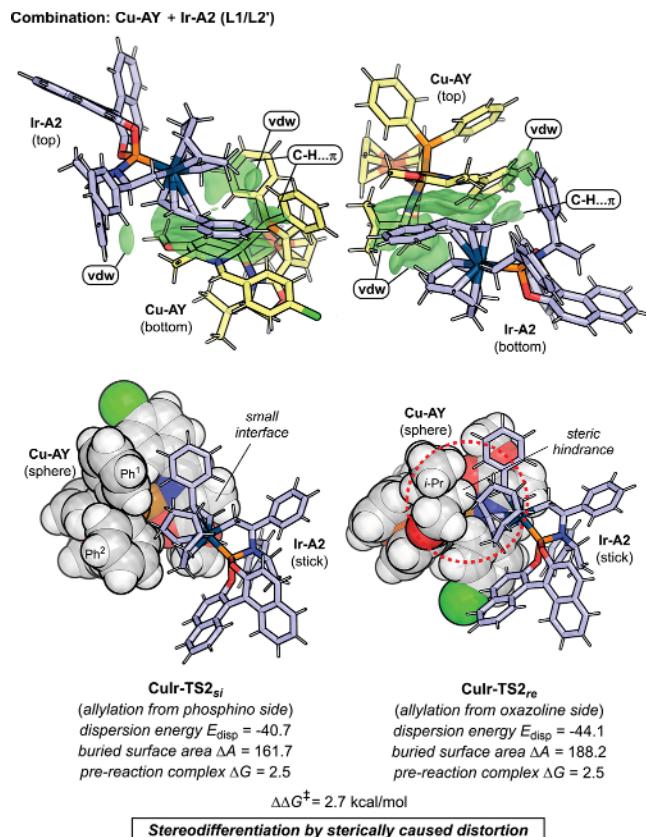

higher than bond formation) suggests that the stereochemical structure of Ir-A1 should be largely static.

We note that the absolute conformation of allyliridium translates into the β -center diastereoselectivity of the reaction because outer-sphere bond formation proceeds via a stereo-defined *anti*-displacement. An analysis for the mode of β -site stereoselection is provided in the *Supporting Information*.

Mechanism of Stereodivergent β -Allylation. The stereodivergent β -allylation of copper azomethine ylide Cu-AY with allyliridium Ir-A1 (when using L2) or the enantiomer Ir-A2 (when using L2') is investigated. The facial preference of Cu-AY determines the absolute conformation of the β -stereocenter. Figure 7 presents the free energy profile for the stereodivergent β -allylation between Cu-AY and Ir-A. The copper azomethine ylide Cu-AY can consume either Ir-A1 or Ir-A2 with low barriers (<10 kcal/mol), which indicates high reactivity. Consistent with the Cu/Pd system, the *si* diastereo-

face of Cu-AY is more favorable, the barrier differences being 8.1 kcal/mol (CuIr-TS1_{si} vs CuIr-TS1_{re}) and 2.7 kcal/mol (CuIr-TS2_{si} vs CuIr-TS2_{re}). We predict accordingly that (2S,3R)-3 and (2S,3S)-3 are generated, respectively, in the two cases, which agrees with experiments.¹⁷

Origin of Diastereoselectivity (β -Stereocenter). With the transition-state models established, we studied the facial discrimination for Cu-AY to gain insights into the β -center diastereoselectivity (i.e., for the formation of 2S center when L1 is employed). We begin with a distortion/interaction analysis (Figure 8). Although the *si* face of Cu-AY is consistently more favorable, the distortion/interaction energies suggest a mode of stereoselection distinct from the Cu/Pd system, with distortions playing a more important role. This is especially the case for L1/L2 (i.e., Cu-AY and Ir-A2): While the distortion favors CuIr-TS2_{si} by 3.9 kcal/mol, the interaction energies are almost identical. For L1/L2' (i.e.,


Figure 8. Origin of -center diastereoselectivity in the Cu/Ir dual-catalytic system from distortion/interaction analysis.

Cu-AY and **Ir-A1**), distortion and interaction energies contribute to the barrier difference by 4.9 and 3.3 kcal/mol, respectively, which also involves significant distortion-driven differentiation.

Recalling the analysis in **Scheme 2**, we speculate that versatile modes of asymmetric induction for the prochiral nucleophile **Cu-AY** are possible by simply changing the electrophilic coupling partner. Notably, the stereocontrol in dual catalysis is often assumed to be local in order to realize stereodivergence.³ The connection between such interpretation and the underlying mode of stereoselection is not fully understood largely because of the difficulty of identifying the key stereocontrol elements from these involved bond-forming TSs. In what follows, we utilize the suite of visual analysis and energetic/physical-organic indices to unveil the nature of diastereofacial selection for the prochiral nucleophile.

First, we considered the distortion-controlled coupling of **Cu-AY** with **Ir-A2** (i.e., **L1/L2**, see **Figure 9**). According to D/I analysis and following our analysis in **Scheme 2**, we propose that the *si* diastereofacial preference originates from steric effects (i.e., postulate I holds). In fact, inspection of TSs reveals that the lower energy **CuIr-TS2_{si}** complements the cod in **Ir-A2** with the phosphino unit of **L1**, while the higher energy **CuIr-TS2_{re}** entails repulsions between cod and the 4-isopropylloxazoline unit of **L1** (see the bottom subfigures). The repulsions are reflected by the above-presented distortion energies and the greater Pauli repulsions in the disfavored **CuIr-TS2_{re}** (110.0 kcal/mol) than in **CuIr-TS2_{si}** (106.7 kcal/mol, see **Table S2** for full EDA and **Figure S5** for repulsive distances). On the other hand, contrary to postulate II (i.e., facial diastereoselection by dispersion), the favored **CuIr-TS2_{si}** (buried surface area 161.7 Å²) exhibits smaller dispersion energy (40.7 kcal/mol) than the disfavored **CuIr-TS2_{re}** (44.1 kcal/mol, buried surface area 188.2 Å²), and an assessment of the noncovalently bound prereaction complexes also suggests that **CuIr-RC2_{si}** and **CuIr-RC2_{re}** are equally stable. Inspection of the sphere(**Cu-AY**)/stick(**Ir-A2**) models in **Figure 9** shows that the available molecular surface over the *si* face is not fully harnessed by **CuIr-TS2_{si}**, which explains the lack of *si*-favoring attractive dispersions. According to these results, we conclude that steric effects control the diastereoface-selective -allylation of **Cu-AY** by **Ir-A2**.

We then explored the origin of diastereoselectivity for **L1/L2** (i.e., **Cu-AY/Ir-A1**) by again examining the postulates I and II (**Figure 10**). For postulate I (steric effects), **CuIr-TS1_{si}** manifests a less encumbered arrangement by placing the allyl over the π-system of azomethine ylide, while **CuIr-TS1_{re}** is destabilized by the steric repulsions over cod/4-isopropyl-

Figure 9. Origin of -center diastereoselectivity in the Cu/Ir system: **CuIr-TS2_{si}** vs **CuIr-TS2_{re}**. Top: Intermolecular NCIs. Bottom: TSs shown in sphere(copper azomethine ylide)-stick(allyliridium) representation. Dispersion interaction energies, buried surface areas (Å²), and free energies of PRCs are provided alongside.

oxazoline and -Ph³/p-C₆H₄Cl interfaces; this is mirrored by the distortion energies (**CuIr-TS1_{re}** 26.6 kcal/mol > **CuIr-TS1_{si}** 22.7 kcal/mol) and repulsive distances (**Figure S5**). For postulate II (attractive dispersions), we observe greater dispersion energy (**CuIr-TS1_{si}** 54.9 kcal/mol, **CuIr-TS1_{re}** 45.2 kcal/mol), larger buried surface area (**CuIr-TS1_{si}** 206.2 Å², **CuIr-TS1_{re}** 168.7 Å²), and higher stability of PRC (**CuIr-RC1_{si}** 0.2 kcal/mol, **CuIr-RC1_{re}** 11.9 kcal/mol) for the *si* face approach. Overall, the diastereofacial differentiation with **L1/L2** is dictated by the combined effects of sterically caused distortions and attractive dispersions.

The findings to this point are indicative that, despite an identical prochiral nucleophile, similar metal allyl electrophiles and consistent modes of attack, the seemingly analogous TSs in **Figures 3B** and **7B** involve different mechanisms of stereoselection that are based on dispersion and/or steric effects between the two coupling partners. How the asymmetric induction mechanism would change in more general situations of stereodivergent cooperative catalysis is yet to be investigated. To this end, the above-presented energetic and physical organic parameters are expected to be useful tools for extracting relevant information about stereoselection, thus providing more rigorous insights for the proper interpretation of these extended and involved computational models.

Origin of Regioselectivity. Contrasting the formation of linear product in the previous Cu/Pd system, the synergistic Cu/Ir catalysis affords branched products with successive β-stereocenters (**Scheme 3**). The regiosomeric TSs for the

Combination: Cu-AY + Ir-A1 (L1/L2)

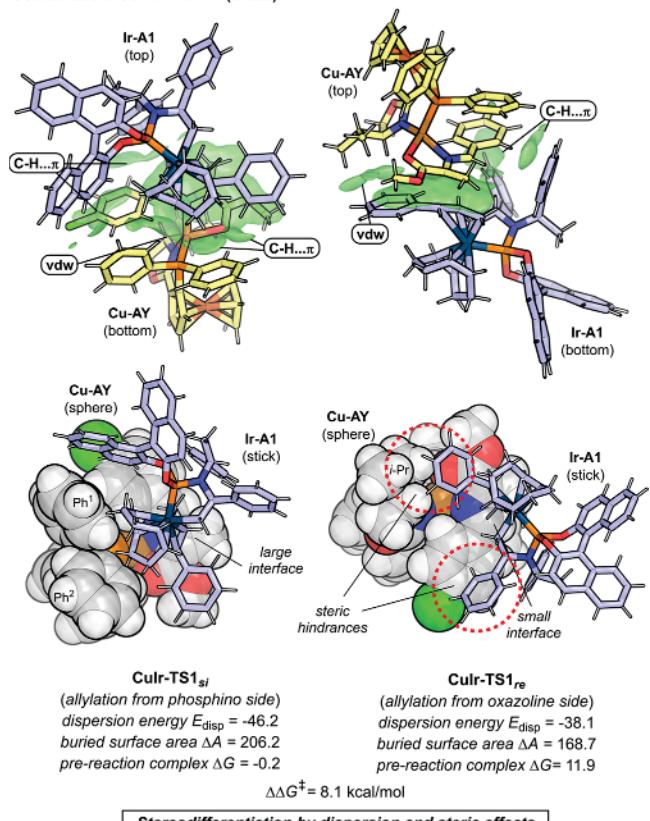


Figure 10. Origin of -center diastereoselectivity in the Cu/Ir system: CuIr-TS1_{si} vs CuIr-TS1_{re}. See caption of Figure 9 for details.

nucleophilic attack of Ir-A by Cu-AY were studied (Figure 11A). The barriers of CuIr-TS1_{si} (with Ir-A1) and CuIr-TS2_{si} (with Ir-A2) are 7.4 and 3.1 kcal/mol higher than CuIr-TS1_{si} and CuIr-TS2_{si}, respectively, which is in accord with the branched selectivity.¹⁷ The preference toward the more

substituted allyl terminus (i.e., C3) is typical for Ir-based allylic substitutions.^{66,67,70} We studied the origin of regioselectivity using D/I analysis. The analysis ascribes the branched-to-linear selectivity to the smaller interaction energies in branched TSs CuIr-TS1_{si} (6.5 kcal/mol lower than than CuIr-TS1_{si}) and CuIr-TS2_{si} (4.2 kcal/mol lower than CuIr-TS2_{si}, see Figure 11A). Such an interaction-controlled branched-to-linear selectivity differs from the Cu/Pd system and motivated us to examine in Figure 11B the LUMO diagrams of metal allyl species Ir-A and Pd-A. Interestingly, the LUMO of Ir-A displays a greater atomic weight at C3 (20.1 > 4.8 at C1), whereas Pd-A exhibits a more symmetrical LUMO distribution (atomic weights: 16.5 at C3 14.3 at C1). The branched selectivity of Ir-A can thus arise from the stronger FMO interactions at the C3 site.

4. CONCLUSION

We have reported detailed quantum-mechanical explorations of the mechanisms and origins of enantio-/diastereo-/regioselectivities in the Cu/Pd and Cu/Ir dual-catalytic syntheses of nonproteinogenic , -disubstituted -AAs. The main conclusions are summarized as follows:

Consistent with previous assumptions, we establish a mechanism (Scheme 4) involving the dual activations of aldimine ester and allylic ester to give a nucleophilic copper azomethine ylide and an electrophilic metal π -allyl species. The facile coupling between the pair of in situ formed intermediates yields the desired -AA products. The good agreement with experiments highlights the applicability of quantum mechanical computations for complicated asymmetric processes at a scale of 150–250 atoms.

We showcase the application of a set of analytical tools that proves effective for unveiling the mode of facial discrimination of N-metallated azomethine ylide, by far the most employed metal enolate-type prochiral nucleophile in stereodivergent systems. Since there has been limited insight into the asymmetric induction in

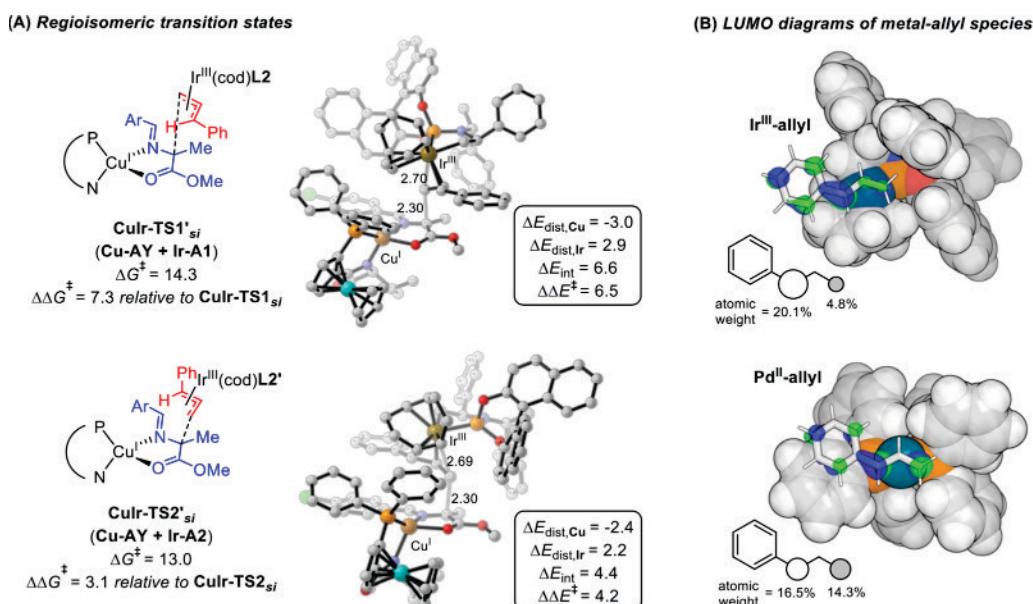
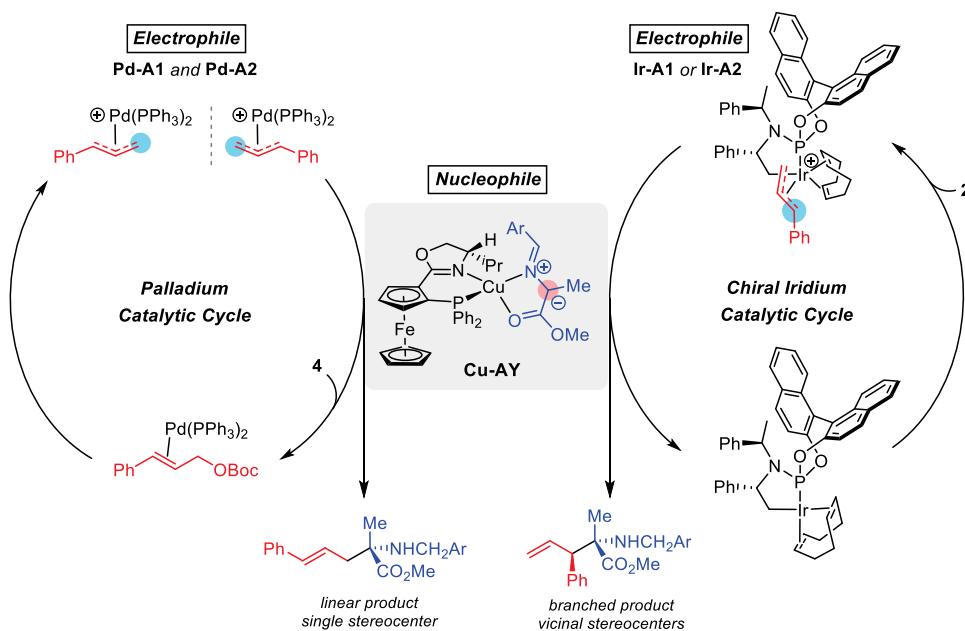



Figure 11. Origin of regioselectivity in the synergistic Cu/Ir system. (A) Regiosomeric transition states affording linear products, with free energy barriers and D/I energies. (B) LUMO diagrams of metal-allyl species.

Scheme 4. Summary of Catalytic Cycles for Synergistic Pd/Cu and Ir/Cu Catalysis

stereodivergent dual transition-metal catalysis, the results provide a framework for rationalizing the stereoselection at the quaternary α -stereocenter based on energetic and physical organic parameters. Specifically, we show that the stereoselection about the prochiral nucleophile can deviate from the canonical interpretation of stereodivergent dual catalysis,³ as the mode of facial discrimination is not only determined by the copper catalyst but also depends on the stereo-recognition between the two coupling partners. Moreover, attractive dispersion and sterically caused structural distortions can originate from different aspects of stereorecognition and consequently act under different circumstances. It follows that the nature of stereodivergence can be more involved than usually assumed, and the precise understanding of stereodivergence in relevant synthetic methods in turn comprises a theoretical question for future investigations.

Many preceding studies on stereodivergent dual catalysis focused on the stereocontrolling bond-forming step, which sometimes implicitly applied certain Curtin Hammett condition(s) on certain isomers of the coupling partners. Our computational results support the relative stereochemical stability of metal π -allyl species as compared to the facile bond-forming events. The results indicate that Curtin Hammett conditions might not always hold, especially given the variation of substrates and reaction conditions. This emphasizes a mechanistic parameter for the more precise interpretation and/or catalytic control of these reactions. Notably, the prochiral nucleophile can stereoconvergently intercept a racemic mixture of allylpalladium to afford enantioenriched product in the Cu/Pd dual catalysis, which reflects the robustness of the stereoinduction.

A comparison of the two dual-catalytic systems points to the regiochemical preference of metal π -allyl species to dictate the number of stereocenters. We show that the stronger FMO interactions for the more substituted terminus of allyliridium overcome the steric impediment

and thereby render the branched product more favorable in the Cu/Ir system. In contrast, the allylpalladium with a more symmetrical LUMO is subject to a steric control of regiochemistry, hence the linear preference in the Cu/Pd dual catalysis.

In summary, this study not only provides novel molecular insights into the mechanism and asymmetric induction in synergistic dual transition-metal catalysis but also further explores how practical quantum mechanical computations can be analyzed to rationalize complicated organometallic reactions and asymmetric processes involving sizable catalyst architectures.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.1c12664>.

Supplementary computations, energetics and coordinates of optimized structures ([PDF](#))

AUTHOR INFORMATION

Corresponding Authors

Yanfeng Dang *Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China;* orcid.org/0000-0002-9297-9759; Email: yanfeng.dang@tju.edu.cn

K N Houk *Department of Chemistry and Biochemistry University of California Los Angeles California 90095 United States;* orcid.org/0000-0002-8387-5261; Email: houk@chem.ucla.edu

Authors

Bo Li *Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China; Department of Chemistry and Biochemistry University of California Los Angeles California 90095 United States*

Hui Xu Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China

Complete contact information is available at:
<https://pubs.acs.org/10.1021/jacs.1c12664>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge support for this work from the National Natural Science Foundation of China (Grant No. 22073067) and the National Science Foundation (Grant No. CHE-1764328). Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (Grant OCI-1053575).

REFERENCES

- (1) (a) Caldwell, J. The Importance of Stereochemistry in Drug Action and Disposition. *J. Clin. Pharmacol.* **1992**, *32*, 925–929. (b) Jozwiak, K.; Lough, W. J.; Wainer, I. W. *Drug Stereochemistry: Analytical Methods and Pharmacology*, 3rd ed.; Informa: New York, 2012. (c) Rentsch, K. M. The Importance of Stereoselective Determination of Drugs in The Clinical Laboratory. *J. Biochem. Biophys. Methods* **2002**, *54*, 1–9.
- (2) Selected recent works on transition-metal-catalyzed syntheses of multichiral molecules: (a) Ashida, K.; Hoshimoto, Y.; Tohnai, N.; Scott, D. E.; Ohashi, M.; Imaizumi, H.; Tsuchiya, Y.; Ogoshi, S. Enantioselective Synthesis of Polycyclic γ -Lactams with Multiple Chiral Carbon Centers via Ni(0)-Catalyzed Asymmetric Carbonylative Cycloadditions without Stirring. *J. Am. Chem. Soc.* **2020**, *142*, 1594–1602. (b) Trost, B. M.; Gnanamani, E.; Kalnams, C. A.; Hung, C.-I.; Tracy, J. S. Direct Enantio- and Diastereoselective Vinylogous Addition of Butenolides to Chromones Catalyzed by Zn-ProPhenol. *J. Am. Chem. Soc.* **2019**, *141*, 1489–1493. (c) Ishihara, H.; Huang, J.; Mochizuki, T.; Hatano, M.; Ishihara, K. Enantio- and Diastereoselective Carbonyl-Ene Cyclization Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids. *ACS Catal.* **2021**, *11*, 6121–6127. (d) Zheng, G.; Zhou, Z.; Zhu, G.; Zhai, S.; Xu, H.; Duan, X.; Yi, W.; Li, X. Rhodium(III)-Catalyzed Enantio- and Diastereoselective C–H Cyclopropylation of N-Phenoxy sulfonamides: Combined Experimental and Computational Studies. *Angew. Chem. Int. Ed.* **2020**, *59*, 2890–2896. (e) Matviitsuk, A.; Denmark, S. E. Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. *Angew. Chem. Int. Ed.* **2019**, *58*, 12486–12490. (f) Manna, S.; Dherbassy, Q.; Perry, G. J. P.; Procter, D. J. Enantio- and Diastereoselective Synthesis of Homopropargyl Amines by Copper-Catalyzed Coupling of Imines, 1,3-Enynes, and Diborons. *Angew. Chem. Int. Ed.* **2020**, *59*, 4879–4882. (g) Han, Y.-Q.; Yang, X.; Kong, K.-X.; Deng, Y.-T.; Wu, L.-S.; Ding, Y.; Shi, B.-F. Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladium-Catalyzed Enantio-, Chemo- and Diastereoselective Methylenec(sp³)–H arylation. *Angew. Chem. Int. Ed.* **2020**, *59*, 20455–20458.
- (3) (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Enantio- and Diastereodivergent Dual Catalysis: α -Allylation of Branched Aldehydes. *Science* **2013**, *340*, 1065–1068. (b) For a related perspective, see: Schindler, C. S.; Jacobsen, E. N. A New Twist on Cooperative Catalysis. *Science* **2013**, *340*, 1052–1053.
- (4) Selected recent reviews/perspectives on stereodivergent dual catalysis: (a) Bihani, M.; Zhao, J. C.-G. Advances in Asymmetric Diastereodivergent Catalysis. *Adv. Synth. Catal.* **2017**, *359*, 534–575. (b) Krautwald, S.; Carreira, E. M. Stereodivergence in Asymmetric Catalysis. *J. Am. Chem. Soc.* **2017**, *139*, 5627–5639. (c) Beletskaya, I. P.; Nájera, C.; Yus, M. Stereodivergent Catalysis. *Chem. Rev.* **2018**, *118*, 5080–5200. (d) Kalita, S. J.; Huang, Y.-Y.; Schneider, U. Stereodivergent Catalytic Asymmetric Allylic Alkylation. *Science Bulletin* **2020**, *65*, 1865–1868. (e) Martinez, S.; Veth, L.; Lainer, B.; Dydio, P. Challenges and Opportunities in Multicatalysis. *ACS Catal.* **2021**, *11*, 3891–3915.
- (5) (a) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. Stereodivergent α -Allylation of Linear Aldehydes with Dual Iridium and Amine Catalysis. *J. Am. Chem. Soc.* **2014**, *136*, 3020–3023. (b) Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Stereodivergent Total Synthesis of α -Tetrahydrocannabinols. *Angew. Chem. Int. Ed.* **2014**, *53*, 13898–13901. (c) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Stereodivergent Dual Catalytic α -Allylation of Protected α -Amino- and α -Hydroxyacetaldehydes. *Angew. Chem. Int. Ed.* **2015**, *54*, 14363–14367.
- (6) Naesborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Asymmetric γ -Allylation of β -Unsaturated Aldehydes by Combined Organocatalysis and Transition-Metal Catalysis. *Angew. Chem. Int. Ed.* **2015**, *54*, 10193–10197.
- (7) Jiang, X.; Beiger, J. J.; Hartwig, J. F. Stereodivergent Allylic Substitutions with Aryl Acetic Acid Esters by Synergistic Iridium and Lewis Base Catalysis. *J. Am. Chem. Soc.* **2017**, *139*, 87–90.
- (8) Cruz, F. A.; Dong, V. M. Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine. *J. Am. Chem. Soc.* **2017**, *139*, 1029–1032.
- (9) Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Diastereodivergent Synthesis of Enantioenriched β -Disubstituted γ -Butyrolactones via Cooperative N-Heterocyclic Carbene and Ir Catalysis. *Nat. Catal.* **2020**, *3*, 48–54.
- (10) Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Synergetic Iridium and Amine Catalysis Enables Asymmetric [4 + 2] Cycloadditions of Vinyl Aminoalcohols with Carbonyls. *Nat. Commun.* **2019**, *10*, 2716.
- (11) Zhang, J.; Gao, Y.-S.; Gu, B.-M.; Yang, W.-L.; Tian, B.-X.; Deng, W.-P. Cooperative N-heterocyclic Carbene and Iridium Catalysis Enables Stereoselective and Regiodivergent [3 + 2] and [3 + 3] Annulation Reactions. *ACS Catal.* **2021**, *11*, 3810–3821.
- (12) Huo, X.; He, R.; Zhang, X.; Zhang, W. An Ir/Zn Dual Catalysis for Enantio- and Diastereodivergent α -Allylation of α -Hydroxyketones. *J. Am. Chem. Soc.* **2016**, *138*, 11093–11096.
- (13) For selected reviews, see: (a) Fu, J.; Huo, X.; Li, B.; Zhang, W. Cooperative Bimetallic Catalysis in Asymmetric Allylic Substitution. *Org. Biomol. Chem.* **2017**, *15*, 9747–9759. (b) Kim, U. B.; Jung, D. J.; Jeon, H. J.; Rathwell, K.; Lee, S.-G. Synergistic Dual Transition Metal Catalysis. *Chem. Rev.* **2020**, *120*, 13382–13433.
- (14) He, R.; Liu, P.; Huo, X.; Zhang, W. Ir/Zn Dual Catalysis: Enantioselective and Diastereodivergent α -Allylation of Unprotected α -Hydroxy Indanones. *Org. Lett.* **2017**, *19*, 5513–5516.
- (15) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α -Disubstituted α -Amino Acids Bearing Vicinal Stereocenters. *J. Am. Chem. Soc.* **2018**, *140*, 2080–2084.
- (16) (a) He, R.; Huo, X.; Zhao, L.; Wang, F.; Jiang, L.; Liao, J.; Zhang, W. Stereodivergent Pd/Cu Catalysis for the Dynamic Kinetic Asymmetric Transformation of Racemic Unsymmetrical 1,3-Disubstituted Allyl Acetates. *J. Am. Chem. Soc.* **2020**, *142*, 8097–8103. (b) Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Enantioselective and Diastereodivergent Access to α -Substituted α -Amino Acids via Dual Iridium and Copper Catalysis. *Adv. Synth. Catal.* **2019**, *361*, 1130–1139. (c) Zhao, L.; Li, G.; He, R.; Liu, P.; Wang, F.; Huo, X.; Zhao, M.; Zhang, W. Stereodivergent Pd/Cu Catalysis: Asymmetric Alkylation of Racemic Symmetrical 1,3-Diphenyl Allyl Acetates. *Org. Biomol. Chem.* **2021**, *19*, 1955–1959. (d) Huo, X.; Zhao, L.; Luo, Y.; Wu, Y.; Sun, Y.; Li, G.; Gridneva, T.; Zhang, J.; Ye, Y.; Zhang, W. Stereodivergent Pd/Cu Catalysis for Asymmetric Desymmetric Alkylation of Allylic Geminal Dicarboxylates. *CCS Chem.* **2021**, *3*, 1933–1944. (e) Xia, J.; Hirai, T.;

Katayama, S.; Nagae, H.; Zhang, W.; Mashima, K. Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation; Asymmetric Coupling of 1,3-Dienes with C-nucleophiles to Construct Vicinal Stereocenters. *ACS Catal.* **2021**, *11*, 6643–6655. (f) Zhang, J.; Huo, X.; Xiao, J.; Zhao, L.; Ma, S.; Zhang, W. Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 12622–12632.

(17) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. Stereodivergent Synthesis of α -Disubstituted α -Amino Acids via Synergistic Cu/Ir Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 1508–1513.

(18) (a) Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Stereodivergent Assembly of Tetrahydro- γ -carbolines via Synergistic Catalytic Asymmetric Cascade Reaction. *Nat. Commun.* **2019**, *10*, 5553. (b) Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Synergistic Catalysis for Cascade Allylation and 2-Aza-Cope Rearrangement of Azomethine Ylides. *Nat. Commun.* **2019**, *10*, 1594. (c) Wu, H.-M.; Zhang, Z.; Xiao, F.; Wei, L.; Dong, X.-Q.; Wang, C.-J. Stereodivergent Synthesis of α -Quaternary Serine and Cysteine Derivatives Containing Two Contiguous Stereogenic Centers via Synergistic Cu/Ir Catalysis. *Org. Lett.* **2020**, *22*, 4852–4857.

(19) (a) He, Z.-T.; Jiang, X.; Hartwig, J. F. Stereodivergent Construction of Tertiary Fluorides in Vicinal Stereogenic Pairs by Allylic Substitution with Iridium and Copper Catalysts. *J. Am. Chem. Soc.* **2019**, *141*, 13066–13073. (b) Jiang, X.; Boehm, P.; Hartwig, J. F. Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 1239–1242.

(20) (a) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W. Stereodivergent Coupling of 1,3-Dienes with Aldimine Esters Enabled by Synergistic Pd and Cu Catalysis. *J. Am. Chem. Soc.* **2019**, *141*, 14554–14559. (b) Zhu, M.; Zhang, Q.; Zi, W. Diastereodivergent Synthesis of β -Amino Alcohols by Dual-Metal-Catalyzed Coupling of Alkoxyallenes with Aldimine Esters. *Angew. Chem. Int. Ed.* **2021**, *60*, 6545–6552.

(21) Yang, S.-Q.; Wang, Y.-F.; Zhao, W.-C.; Lin, G.-Q.; He, Z.-T. Stereodivergent Synthesis of Tertiary Fluoride-Tethered Allenes via Copper and Palladium Dual Catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 7285–7291.

(22) (a) Bhaskararao, B.; Sunoj, R. B. Origin of Stereodivergence in Cooperative Asymmetric Catalysis with Simultaneous Involvement of Two Chiral Catalysts. *J. Am. Chem. Soc.* **2015**, *137*, 15712–15722. (b) Bhaskararao, B.; Sunoj, R. B. Asymmetric Dual Chiral Catalysis using Iridium Phosphoramidites and Diarylprolinol Silyl Ethers: Insights into Stereodivergence. *ACS Catal.* **2017**, *7*, 6675–6685. (c) Tribedi, S.; Hadad, C. M.; Sunoj, R. B. Origin of Stereoselectivity in the Amination of Alcohols using Cooperative Asymmetric Dual Catalysis Involving Chiral Counter-Ions. *Chem. Sci.* **2018**, *9*, 6126–6133. (d) Bhaskararao, B.; Sunoj, R. B. Two Chiral Catalysts in Action: Insights into Cooperativity and Stereoselectivity in Proline and Cinchona-Thiourea Dual Organocatalysis. *Chem. Sci.* **2018**, *9*, 8738–8747.

(23) Selected theoretical studies concerning achiral dual transition-metal-catalyzed transformations: (a) Kalek, M.; Himo, F. Mechanism and Selectivity of Cooperatively Catalyzed Meyer Schuster Rearrangement/Tsuji–Trost Allylic Substitution. Evaluation of Synergistic Catalysis by Means of Combined DFT and Kinetics Simulations. *J. Am. Chem. Soc.* **2017**, *139*, 10250–10266. (b) Funes-Ardoiz, I.; Maseras, F. Cooperative Reductive Elimination: The Missing Piece in the Oxidative-Coupling Mechanistic Puzzle. *Angew. Chem. Int. Ed.* **2016**, *55*, 2764–2767. (c) Funes-Ardoiz, I.; Maseras, F. Computational Characterization of the Mechanism for the Oxidative Coupling of Benzoic Acid and Alkynes by Rhodium/Copper and Rhodium/Silver systems. *Chem. – Eur. J.* **2018**, *24*, 12383–12388. For related recent reviews, see: (d) Sciortino, G.; Maseras, F. Computational Study of Homogeneous Multimetallic Cooperative Catalysis. *Top. Catal.* **2021**, DOI: 10.1007/s11244-021-01493-2. (e) Matsuzawa, A.; Harvey, J. N.; Himo, F. On the Importance of Considering Multinuclear Metal Sites in Homogeneous Catalysis Modeling. *Top. Catal.* **2021**, DOI: 10.1007/s11244-021-01507-z.

(24) Changotra, A.; Bhaskararao, B.; Hadad, C. M.; Sunoj, R. B. Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. *J. Am. Chem. Soc.* **2020**, *142*, 9612–9624.

(25) Xu, H.; Li, B.; Liu, Z.; Dang, Y. Mechanistic Origins of Stereodivergence in Asymmetric Cascade Allylation and Cyclization Reactions Enabled by Synergistic Cu/Ir Catalysis. *ACS Catal.* **2021**, *11*, 9008–9021.

(26) Selected recent developments of chiral organometallic catalysts based on dispersion interactions: (a) Singha, S.; Buchsteiner, M.; Bistoni, G.; Goddard, R.; Fürstner, A. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth Rhodium Paddlewheel Catalysts. *J. Am. Chem. Soc.* **2021**, *143*, 5666–5673. (b) Chen, J.; Gridnev, I. D. Size is Important: Artificial Catalyst Mimics Behavior of Natural Enzymes. *iScience* **2020**, *23*, 100960. (c) Xi, Y.; Su, B.; Qi, X.; Pedram, S.; Liu, P.; Hartwig, J. F. Application of Trimethylgermanyl-Substituted Bisphosphine Ligands with Enhanced Dispersion Interactions to Copper-Catalyzed Hydroboration of Disubstituted Alkenes. *J. Am. Chem. Soc.* **2020**, *142*, 18213–18222. (d) Wang, H.; Park, Y.; Bai, Z.; Chang, S.; He, G.; Chen, G. Iridium-Catalyzed Enantioselective $C(sp^3)–H$ Amidation Controlled by Attractive Noncovalent Interactions. *J. Am. Chem. Soc.* **2019**, *141*, 7194–7201.

(27) Other selected recent studies on organometallic stereoduction: (a) Eschmann, C.; Song, L.; Schreiner, P. R. London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey Bakshi Shibata Reduction. *Angew. Chem. Int. Ed.* **2021**, *60*, 4823–4832. (b) Deng, L.; Fu, Y.; Lee, S. Y.; Wang, C.; Liu, P.; Dong, G. Kinetic Resolution via Rh-Catalyzed C–C Activation of Cyclobutanones at Room Temperature. *J. Am. Chem. Soc.* **2019**, *141*, 16260–16265. (c) Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Nickel-Catalyzed Asymmetric Hydrogenation of N-Sulfonyl Imines. *Angew. Chem. Int. Ed.* **2019**, *58*, 7329–7334. (d) Gridnev, I. D. Attraction versus Repulsion in Rhodium-Catalyzed Asymmetric Hydrogenation. *ChemCatChem* **2016**, *8*, 3463–3468. (e) Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C. Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity. *J. Am. Chem. Soc.* **2011**, *133*, 9878–9891.

(28) Selected studies for dispersion effects on other types of organometallic catalysis: (a) Saper, N. I.; Ohgi, A.; Small, D. W.; Semba, K.; Nakao, Y.; Hartwig, J. F. Nickel-Catalysed anti-Markovnikov Hydroarylation of Unactivated Alkenes with Unactivated Arenes Facilitated by Non-Covalent Interactions. *Nat. Chem.* **2020**, *12*, 276–283. (b) Kalvet, I.; Deckers, K.; Funes-Ardoiz, I.; Magnin, G.; Sperger, T.; Kremer, M.; Schoenebeck, F. Selective *ortho*-Functionalization of Adamantylarenes Enabled by Dispersion and an Air-Stable Palladium(I) Dimer. *Angew. Chem. Int. Ed.* **2020**, *59*, 7721–7725. (c) Thomas, A. A.; Speck, K.; Kevlishvili, I.; Lu, Z.; Liu, P.; Buchwald, S. L. Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions. *J. Am. Chem. Soc.* **2018**, *140*, 13976–13984. (d) Chen, J.; Zhang, Z.; Li, B.; Li, F.; Wang, Y.; Zhao, M.; Gridnev, I. D.; Imamoto, T.; Zhang, W. Pd(OAc)₂-Catalyzed Asymmetric Hydrogenation of Sterically Hindered N-tosylimines. *Nat. Commun.* **2018**, *9*, 5000. (e) Lu, G.; Liu, R. Y.; Yang, Y.; Fang, C.; Lambrecht, D. S.; Buchwald, S. L.; Liu, P. Ligand Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. *J. Am. Chem. Soc.* **2017**, *139*, 16548–16555. (f) Meyer, T. H.; Liu, W.; Feldt, M.; Wuttke, A.; Mata, R. A.; Ackermann, L. Manganese(I)-Catalyzed Dispersion-Enabled C–H/C–C Activation. *Chem. Eur. J.* **2017**, *23*, 5443–5447. (g) Lyngvi, E.; Sanhueza, I. A.; Schoenebeck, F. Dispersion Makes the Difference: Bisigated Transition States Found for the Oxidative Addition of Pd(P*i*Pr)(tBu₂)₂ to Ar–OSO₂R and Dispersion-Controlled Chemoselectivity in Reactions with Pd[P(iPr)(tBu₂)₂]. *Organometallics* **2015**, *34*, 805–812. (h) Lu, Q.; Neese, F.; Bistoni, G. London Dispersion Effects in the Coordination and

Activation of Alkanes in σ -complexes: A Local Energy Decomposition Study. *Phys. Chem. Chem. Phys.* **2019**, *21*, 11569–11577.

(29) For related perspectives/reviews, see: (a) Knowles, R. R.; Jacobsen, E. N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links between Enzymes and Small Molecule Catalysts. *Proc. Natl. Acad. Sci. U. S. A.* **2010**, *107*, 20678–20685. (b) Wagner, J. P.; Schreiner, P. R. London Dispersion in Molecular Chemistry: Reconsidering Steric Effects. *Angew. Chem. Int. Ed.* **2015**, *54*, 12274–12296. (c) Sperger, T.; Sanhueza, I. A.; Schoenebeck, F. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities. *Acc. Chem. Res.* **2016**, *49*, 1311–1319. (d) Liptrot, D. J.; Power, P. P. London Dispersion Forces in Sterically Crowded Inorganic and Organometallic Molecules. *Nat. Rev. Chem.* **2017**, *1*, 0004. (e) Bursch, M.; Caldeweyher, E.; Hansen, A.; Neugebauer, H.; Ehlert, S.; Grimme, S. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. *Acc. Chem. Res.* **2019**, *52*, 258–266. (f) Fanourakis, A.; Docherty, P. J.; Chuentrugool, P.; Phipps, R. J. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. *ACS Catal.* **2020**, *10*, 10672–10714.

(30) Wei, L.; Xu, S.-M.; Zhu, Q.; Che, C.; Wang, C.-J. Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to α -Disubstituted α -Amino Acids. *Angew. Chem. Int. Ed.* **2017**, *56*, 12312–12316.

(31) For selected relevant recent studies, see: (a) Wei, L.; Lu, X.; Wang, C.-J. Synergistic Cu/Pd Catalysis for Enantioselective Allylation of Ketimine Esters: The Direct Synthesis of α -Substituted α -Amino Acids and 2H-Pyrrols. *Adv. Synth. Catal.* **2018**, *360*, 4715–4719. (b) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis. *J. Am. Chem. Soc.* **2017**, *139*, 9819–9822. (c) Xia, J.; Hirai, T.; Katayama, S.; Nagae, H.; Zhang, W.; Mashima, K. Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation: Asymmetric Coupling of 1,3-Dienes with C-nucleophiles to Construct Vicinal Stereocenters. *ACS Catal.* **2021**, *11*, 6643–6655. (d) Liu, P.; Huo, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang, W. Stereoselective Allylic Alkylation of 1-Pyrroline-5-carboxylic Esters via a Pd/Cu Dual Catalysis. *Org. Lett.* **2018**, *20*, 6564–6568. (e) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Pd/Cu Dual Catalysis: Highly Enantioselective Access to α -Substituted α -Amino Acids and α -Amino Amides. *Chem. Commun.* **2018**, *54*, 599–602. (f) Xu, S.; Zhang, Z.-M.; Xu, B.; Liu, B.; Liu, Y.; Zhang, J. Enantioselective Regiodivergent Synthesis of Chiral Pyrrolidines with Two Quaternary Stereocenters via Ligand-Controlled Copper(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloadditions. *J. Am. Chem. Soc.* **2018**, *140*, 2272–2283.

(32) For selected reviews related to dual catalysis combining chiral/achiral catalysts: (a) Afewerki, S.; Córdova, A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. *Chem. Rev.* **2016**, *116*, 13512–13570. (b) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Enantioselective Cooperative Catalysis. *Org. Biomol. Chem.* **2015**, *13*, 8116–8162. (c) Allen, A. E.; MacMillan, D. W. C. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development. *Chem. Sci.* **2012**, *3*, 633–658. (d) Du, Z.; Shao, Z. Combining Transition Metal Catalysis and Organocatalysis: An Update. *Chem. Soc. Rev.* **2013**, *42*, 1337–1378. (e) Shao, Z.; Zhang, H. Combining Transition Metal Catalysis and Organocatalysis: A Broad New Concept for Catalysis. *Chem. Soc. Rev.* **2009**, *38*, 2745–2755.

(33) Wei, L.; Chang, X.; Wang, C.-J. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. *Acc. Chem. Res.* **2020**, *53*, 1084–1100.

(34) Wei, L.; Wang, C.-J. Synergistic Catalysis with Azomethine Ylides. *Chin. J. Chem.* **2021**, *39*, 19–24.

(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;

EHARA, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*; Gaussian, Inc.: Wallingford, CT, 2013.

(36) (a) Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. *J. Chem. Phys.* **2006**, *125*, 194101. (b) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241. (c) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.* **2008**, *41*, 157–167.

(37) (a) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-Adjusted ab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* **1990**, *77*, 123–141. (b) Roy, L. E.; Hay, P. J.; Martin, R. L. Revised Basis Sets for the LANL Effective Core Potentials. *J. Chem. Theory Comput.* **2008**, *4*, 1029–1031.

(38) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

(39) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.

(40) Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. *F1000Res.* **2020**, *9*, 291.

(41) (a) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. -Eur. J.* **2012**, *18*, 9955–9964. (b) Li, Y.-P.; Gomes, J.; Sharada, S. M.; Bell, A. T.; Head-Gordon, M. Improved Force-Field Parameters for QM/MM Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for Adsorption Enthalpies. *J. Phys. Chem. C* **2015**, *119*, 1840–1850.

(42) (a) Horn, P. R.; Mao, Y.; Head-Gordon, M. Probing Non-Covalent Interactions with a Second Generation Energy Decomposition Analysis using Absolutely Localized Molecular Orbitals. *Phys. Chem. Chem. Phys.* **2016**, *18*, 23067–23079. (b) Horn, P. R.; Mao, Y.; Head-Gordon, M. Defining the Contributions of Permanent Electrostatics, Pauli Repulsion, and Dispersion in Density Functional Theory Calculations of Intermolecular Interaction Energies. *J. Chem. Phys.* **2016**, *144*, 114107. (c) Horn, P. R.; Head-Gordon, M. Polarization Contributions to Intermolecular Interactions Revisited with Fragment Electric-Field Response Functions. *J. Chem. Phys.* **2015**, *143*, 114111.

(43) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L., III; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.;

Diedenhofen, M.; DiStasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyayev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O'Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K.-L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A., III; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Henry, F. S., III; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. *Mol. Phys.* **2015**, *113*, 184–215.

(44) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. *J. Comput. Chem.* **2012**, *33*, 580–592.

(45) Liu, P.; Montgomery, J.; Houk, K. N. Ligand Steric Contours To Understand the Effects of N-Heterocyclic Carbene Ligands on the Reversal of Regioselectivity in Ni-Catalyzed Reductive Couplings of Alkynes and Aldehydes. *J. Am. Chem. Soc.* **2011**, *133*, 6956–6959.

(46) Lu, T.; Chen, F. Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm. *J. Mol. Graph. Model.* **2012**, *38*, 314–323.

(47) Lu, T.; Chen, Q. van der Waals Potential: An Important Complement to Molecular Electrostatic Potential in Studying Intermolecular Interactions. *J. Mol. Model.* **2020**, *26*, 315.

(48) Lefebvre, C.; Rubez, G.; Khatabil, H.; Boisson, J.-C.; Contreras-García, J.; Hénon, E. Accurately Extracting the Signature of Intermolecular Interactions Present in the NCI Plot of the Reduced Density Gradient versus Electron Density. *Phys. Chem. Chem. Phys.* **2017**, *19*, 17928–17936.

(49) (a) Legault, C. Y. *CYLview 1.0b*; Université de Sherbrooke: Québec, Montreal, Canada, 2009. (b) Delano, W. L. *The PyMOL Molecular Graphics System*; Delano Scientific, 2002.

(50) (a) Chang, X.; Yang, Y.; Shen, C.; Xue, K.-S.; Wang, Z.-F.; Cong, H.; Tao, H.-Y.; Chung, L. W.; Wang, C.-J. β -Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. *J. Am. Chem. Soc.* **2021**, *143*, 3519–3535. (b) Shen, C.; Yang, Y.; Wei, L.; Dong, W.-W.; Chung, L. W.; Wang, C.-J. Kinetic Resolution of Alkylidene Norcamphors via a Ligand-Controlled Umpolung-Type 1,3-Dipolar Cycloaddition. *iScience* **2019**, *11*, 146–159. (c) Wang, M.; Wang, C.-J.; Lin, Z. Cu(I)/TF-Biphosphos Catalyzed Reactions of Alkylidene Bisphosphates and Alkylidene Malonates with Azomethine Ylides: Michael Addition versus 1,3-Dipolar Cycloaddition. *Organometallics* **2012**, *31*, 7870–7876. (d) Cabrera, S.; Gómez-Arrayás, R.; Martín-Matute, B.; Cossío, F. P.; Carretero, J. C. Cu¹ Fusulphos Complexes: Efficient Chiral Catalysts for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides. *Tetrahedron* **2007**, *63*, 6587. (e) He, Z.-L.; Sheong, F. K.; Li, Q.-H.; Lin, Z.; Wang, C.-J. Exoselective 1,3-Dipolar [3 + 6] Cycloaddition of Azomethine Ylides with 2-Acylcycloheptatrienes: Stereoselectivity and Mechanistic Insight. *Org. Lett.* **2015**, *17*, 1365–1368.

(51) Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkylation. *Chem. Rev.* **1996**, *96*, 395–422.

(52) (a) Corradini, P.; Maglio, G.; Musco, A.; Paiaro, G. Molecular Asymmetry in π -Allylic Complexes of Transition Metals. *Chem. Commun.* **1966**, *0*, 618–619. (b) Meyer, H.; Zschunke, A. Intramolecular Mobility of η^3 -Allylpalladium Chloride Complexes of Different Phosphines Studied by two Dimensional NMR Spectroscopy. *J. Organomet. Chem.* **1984**, *269*, 209. (c) Ogasawara, M.; Takizawa, K.-i.; Hayashi, T. Effects of Bidentate Phosphine Ligands on *syn* *anti* Isomerization in π -Allylpalladium Complexes. *Organometallics* **2002**, *21*, 4853–4861.

(53) Solin, N.; Szabó, K. J. Mechanism of the η^3 η^1 η^3 Isomerization in Allylpalladium Complexes: Solvent Coordination, Ligand, and Substituent Effects. *Organometallics* **2001**, *20*, 5464–5471.

(54) (a) Collman, J. P.; Hegedus, L. S. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1980; p 692. (b) Takahashi, T.; Jinbo, Y.; Kitamura, K.; Tsuji, J. Chirality Transfer from C–O to C–C in the Palladium Catalyzed ScN' Reaction of *I*- and (Z)-Allylic Carbonates with Carbonucleophile. *Tetrahedron Lett.* **1984**, *25*, 5921–5924. (c) Mackenzie, P. B.; Whelan, J.; Bosnich, B. Asymmetric Synthesis. Mechanism of Asymmetric Catalytic Allylation. *J. Am. Chem. Soc.* **1985**, *107*, 2046–2054. (d) Granberg, K. L.; Baeckvall, J. E. Isomerization of (π -Allyl)Palladium Complexes via Nucleophilic Displacement by Palladium(0). A Common Mechanism in Palladium(0)-Catalyzed Allylic Substitution. *J. Am. Chem. Soc.* **1992**, *114*, 6858–6863.

(55) Madrahimov, S. T.; Hartwig, J. F. Origins of Enantioselectivity during Allylic Substitution Reactions. *J. Am. Chem. Soc.* **2012**, *134*, 8136–8147.

(56) (a) Kagan, H. B. Various Aspects of the Reaction of a Chiral Catalyst or Reagent with a Racemic or Enantiopure Substrate. *Tetrahedron* **2001**, *57*, 2449–2468. (b) For a related review, see: Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoabative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations. *Chem. Rev.* **2017**, *117*, 4528–4561.

(57) Arrastia, I.; Arrieta, A.; Cossío, F. P. Application of 1,3-Dipolar Reactions between Azomethine Ylides and Alkenes to the Synthesis of Catalysts and Biologically Active Compounds. *Eur. J. Org. Chem.* **2018**, *2018*, 5889–5904.

(58) (a) Conde, E.; Bello, D.; de Cárdenas, A.; Sánchez, M.; Vázquez, M. A.; Cossío, F. P. Densely Substituted Unnatural L- and D-prolines as Catalysts for Highly Enantioselective Stereodivergent (3 + 2) Cycloadditions and Aldol Reactions. *Chem. Sci.* **2012**, *3*, 1486–1491. (b) Conde, E.; Rivilla, I.; Larumbe, A.; Cossío, F. P. Enantiodivergent Synthesis of Bis-Spiropyrrolidines via Sequential Interrupted and Completed (3 + 2) Cycloadditions. *J. Org. Chem.* **2015**, *80*, 11755–11767. (c) Pascual-Escudero, A.; de Cárdenas, A.; Cossío, F. P.; Adrio, J.; Carretero, J. C. Alkenyl Arenes as Dipolarophiles in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. *Angew. Chem. Int. Ed.* **2016**, *128*, 15560–15564. (d) Caleffi, G. S.; Larrañaga, O.; Ferrández-Sáperas, M.; Costa, P. R. R.; Nájera, C.; de Cárdenas, A.; Cossío, F. P.; Sansano, J. M. Switching Diastereoselectivity in Catalytic Enantioselective (3 + 2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. *J. Org. Chem.* **2019**, *84*, 10593–10605.

(59) Ligands that are large but to some extent flat (instead of isotropically bulky) were shown to build up relatively strong dispersion interactions; see: Wolters, L. P.; Koekkoek, R.; Bickelhaupt, F. M. Role of Steric Attraction and Bite-Angle Flexibility in Metal-Mediated C–H Bond Activation. *ACS Catal.* **2015**, *5*, 5766–5775.

(60) Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. *Angew. Chem. Int. Ed.* **2017**, *56*, 10070–10086.

(61) For selected applications of D/I analysis to organometallic selectivities, see: (a) Green, A. G.; Liu, P.; Merlic, C. A.; Houk, K. N.

Distortion/Interaction Analysis Reveals the Origins of Selectivities in Iridium-Catalyzed C H Borylation of Substituted Arenes and 5-Membered Heterocycles. *J. Am. Chem. Soc.* **2014**, *136*, 4575–4583. (b) Schoenebeck, F.; Houk, K. N. Ligand-Controlled Regioselectivity in Palladium-Catalyzed Cross Coupling Reactions. *J. Am. Chem. Soc.* **2010**, *132*, 2496–2497. (c) Yu, J.-L.; Zhang, S.-Q.; Hong, X. Mechanisms and Origins of Chemo- and Regioselectivities of Ru(II)-Catalyzed Decarboxylative C H Alkenylation of Aryl Carboxylic Acids with Alkynes: A Computational Study. *J. Am. Chem. Soc.* **2017**, *139*, 7224–7243. (d) Lu, G.; Liu, R. Y.; Yang, Y.; Fang, C.; Lambrecht, D. S.; Buchwald, S. L.; Liu, P. Ligand Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. *J. Am. Chem. Soc.* **2017**, *139*, 16548–16555.

(62) (a) Grimme, S. Do Special Noncovalent π π Stacking Interactions Really Exist? *Angew. Chem. Int. Ed.* **2008**, *47*, 3430–3434. (b) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Exploiting Non-Covalent π Interactions for Catalyst Design. *Nature* **2017**, *543*, 637–646.

(63) Selected related reviews: (a) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylation: Applications in Total Synthesis. *Chem. Rev.* **2003**, *103*, 2921–2943. (b) Trost, B. M. Pd Asymmetric Allylic Alkylation (AAA). A Powerful Synthetic Tool. *Chem. Pharm. Bull.* **2002**, *50*, 1–14. (c) Fernandes, R. A.; Nallasivam, J. L. Catalytic Allylic Functionalization via π -Allyl Palladium Chemistry. *Org. Biomol. Chem.* **2019**, *17*, 8647–8672.

(64) Trost, B. M.; Hung, M.-H. On the Regiochemistry of Metal-Catalyzed Allylic Alkylation: A Model. *J. Am. Chem. Soc.* **1984**, *106*, 6837–6839.

(65) Selected studies concerning regioselectivities of Pd-catalyzed allylations: (a) Kazmaier, U.; Stoltz, D.; Krämer, K.; Zumpe, F. L. Influences on the Regioselectivity of Palladium-Catalyzed Allylic Alkylation. *Chem. Eur. J.* **2008**, *14*, 1322–1329. (b) Hayashi, T.; Kawatsura, M.; Uozumi, Y. Regio- and Enantio-Selective Allylic Alkylation Catalysed by a Chiral Monophosphine Palladium Complex. *Chem. Commun.* **1997**, *561*–562. (c) Prétot, R.; Pfaltz, A. New Ligands for Regio- and Enantiocontrol in Pd-Catalyzed Allylic Alkylation. *Angew. Chem. Int. Ed.* **1998**, *37*, 323–325. (d) Liu, Y.; Jiao, Y.; Luo, H.; Huang, N.; Lai, M.; Zou, K.; Yao, H. Catalyst-Controlled Regiodivergent Synthesis of 1- and 3-Thiosugars with High Stereoselectivity and Chemoselectivity. *ACS Catal.* **2021**, *11*, 5287–5293. (e) Hu, L.; Cai, A.; Wu, Z.; Kleij, A. W.; Huang, G. A Mechanistic Analysis of the Palladium-Catalyzed Formation of Branched Allylic Amines Reveals the Origin of the Regio- and Enantioselectivity through a Unique Inner-Sphere Pathway. *Angew. Chem. Int. Ed.* **2019**, *58*, 14694–14702. (f) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Palladium/N-Heterocyclic Carbene Catalyzed Regio- and Diastereoselective Reaction of Ketones with Allyl Reagents via Inner-Sphere Mechanism. *Nat. Commun.* **2016**, *7*, 11806. (g) Cai, A.; Guo, W.; Martínez-Rodríguez, L.; Kleij, A. W. Palladium-Catalyzed Regio- and Enantioselective Synthesis of Allylic Amines Featuring Tetrasubstituted Tertiary Carbons. *J. Am. Chem. Soc.* **2016**, *138*, 14194–14197. (h) Katcher, M. H.; Sha, A.; Doyle, A. G. Palladium-Catalyzed Regio- and Enantioselective Fluorination of Acyclic Allylic Halides. *J. Am. Chem. Soc.* **2011**, *133*, 15902–15905. (i) Watson, I. D. G.; Yudin, A. K. New Insights into the Mechanism of Palladium-Catalyzed Allylic Amination. *J. Am. Chem. Soc.* **2005**, *127*, 17516–17529.

(66) Madrahimov, S. T.; Li, Q.; Sharma, A.; Hartwig, J. F. Origins of Regioselectivity in Iridium-Catalyzed Allylic Substitution. *J. Am. Chem. Soc.* **2015**, *137*, 14968–14981.

(67) (a) Takeuchi, R.; Kashio, M. Highly Selective Allylic Alkylation with a Carbon Nucleophile at the More Substituted Allylic Terminus Catalyzed by an Iridium Complex: An Efficient Method for Constructing Quaternary Carbon Centers. *Angew. Chem. Int. Ed.* **1997**, *36*, 263–265. (b) Janssen, J. P.; Helmchen, G. First Enantioselective Alkylation of Monosubstituted Allylic Acetates Catalyzed by Chiral Iridium Complexes. *Tetrahedron Lett.* **1997**, *38*, 8025–8026.

(68) Selected studies involving regioselectivity of allylation for other metals: (a) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.; Bruneau, C. $[\text{Cp}(\eta^2\text{-bipy})(\text{MeCN})\text{Ru}^{\text{II}}][\text{PF}_6]$ Catalysts for Regioselective Allylic Substitution and Characterization of Dicationic $[\text{Cp}(\eta^2\text{-bipy})(\eta^3\text{-allyl})\text{Ru}^{\text{IV}}][\text{PF}_6]_2$ Intermediates. *Angew. Chem. Int. Ed.* **2003**, *42*, 5066–5068. (b) Trost, B. M.; Rao, M.; Dieskau, A. P. A Chiral Sulfoxide-Ligated Ruthenium Complex for Asymmetric Catalysis: Enantio- and Regioselective Allylic Substitution. *J. Am. Chem. Soc.* **2013**, *135*, 18697–18704. (c) Ghorai, S.; Chirke, S. S.; Xu, W.-B.; Chen, J.-F.; Li, C. Cobalt-Catalyzed Regio- and Enantioselective Allylic Amination. *J. Am. Chem. Soc.* **2019**, *141*, 11430–11434. (d) Salman, M.; Xu, Y.; Khan, S.; Zhang, J.; Khan, A. Regioselective molybdenum-catalyzed allylic substitution of tertiary allylic electrophiles: methodology development and applications. *Chem. Sci.* **2020**, *11*, 5481–5486. (e) Arnold, J. S.; Mwenda, E. T.; Nguyen, H. M. Rhodium-Catalyzed Sequential Allylic Amination and Olefin Hydroacylation Reactions: Enantioselective Synthesis of Seven-Membered Nitrogen Heterocycles. *Angew. Chem. Int. Ed.* **2014**, *53*, 3688–3692. (f) Arnold, J. S.; Nguyen, H. M. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Racemic Tertiary Allylic Trichloroacetimidates with Anilines. *J. Am. Chem. Soc.* **2012**, *134*, 8380–8383. (g) Tang, S.-B.; Zhang, X.; Tu, H.-F.; You, S.-L. Regio- and Enantioselective Rhodium-Catalyzed Allylic Alkylation of Racemic Allylic Alcohols with 1,3-Diketones. *J. Am. Chem. Soc.* **2018**, *140*, 7737–7742.

(69) Hartwig, J. F.; Stanley, L. M. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution. *Acc. Chem. Res.* **2010**, *43*, 1461–1475.

(70) For selected reviews on Ir-catalyzed allylic substitutions, see: (a) Hartwig, J. F.; Pouy, M. J. Iridium-Catalyzed Allylic Substitution. *Top. Organomet. Chem.* **2011**, *34*, 169–208. (b) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. *Chem. Rev.* **2019**, *119*, 1855–1969. (c) Tosatti, P.; Nelson, A.; Marsden, S. P. Recent Advances and Applications of Iridium-Catalysed Asymmetric Allylic Substitution. *Org. Biomol. Chem.* **2012**, *10*, 3147–3163. (d) Helmchen, G.; Dahm, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Iridium-Catalysed Asymmetric Allylic Substitutions. *Chem. Commun.* **2007**, *675*–691.

(71) (a) Tissot-Croset, K.; Polet, D.; Alexakis, A. A Highly Effective Phosphoramidite Ligand for Asymmetric Allylic Substitution. *Angew. Chem. Int. Ed.* **2004**, *43*, 2426–2428. (b) Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite, Olefin) Ligands. *Acc. Chem. Res.* **2019**, *52*, 2657–2672. (c) Teichert, J. F.; Feringa, B. L. Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. *Angew. Chem. Int. Ed.* **2010**, *49*, 2486–2528.

(72) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. Identification of an Activated Catalyst in the Iridium-Catalyzed Allylic Amination and Etherification. Increased Rates, Scope, and Selectivity. *J. Am. Chem. Soc.* **2003**, *125*, 14272–14273.

(73) Marković, D.; Hartwig, J. F. Resting State and Kinetic Studies on the Asymmetric Allylic Substitutions Catalyzed by Iridium Phosphoramidite Complexes. *J. Am. Chem. Soc.* **2007**, *129*, 11680–11681.

(74) Madrahimov, S. T.; Markovic, D.; Hartwig, J. F. The Allyl Intermediate in Regioselective and Enantioselective Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. *J. Am. Chem. Soc.* **2009**, *131*, 7228–7229.

(75) Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. A Simple Iridium Catalyst with a Single Resolved Stereocenter for Enantioselective Allylic Amination. Catalyst Selection from Mechanistic Analysis. *J. Am. Chem. Soc.* **2005**, *127*, 15506–15514.